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CHAPTER I

1.1 Introduction =~

In the hearings of the Congressional Space Committee last year,
NASA identified three major technology problem areas for the develop~
ment of the Space Shuttle. These were

e New materials for ablative heat-shielding
e New propulsion systems
e New automatic checkout concepts

We who work in computer software technology feel that we can
contribute significantly to the solution of this third technology
problem area.

The Space Shuttle will have to withstand severe flight conditions
not just for one flight but for many versatile missions, while the
Space Station has to endure many years in space environment function-
ing reliability. Although the flight components and systems possess
a high degree of reliability, malfunctions have to be expected. The
time to refurbish and checkout the shuttle between missions will be
very short compared to prelaunch checkout time of the present Saturn V
flight system. Moreover, the costs for ground checkout equipment and
operations have to be reduced considerably, for new space systems to
be feasible, and the on-board checkout hardware has to be limited in
weight and volume. These future space vehicles will be highly autono-
mous so that more checkout and maintenance functions have to be per-
formed on-board the vehicle. The flight crew will be small and can
devote only a small portion of their time to flight maintenance. A
large portion of the time in checkout and maintenance operations is
devoted to the detection and isolation of malfunctions.

Let us take a brief look at some cost relationship.®* 1In
Figure 1.1, qualitative curves of cost versus mean time between
failure (MIBF) are shown for acquisition, maintenance and logistics.
If one adds up these curves, the total cost versus MTBF curve has a
minimum. Through employing fast and efficient fault isolation tech-
niques together with less reliable cpmponents, the total cost could
be shifted closer to the minimum of the total cost versus MTIBF curve.

It is our opinion that this area of fault detection and iso-
lation can be improved by greater utilization of computer technology.

*Ben S. Blanchard - Concepts of Cost Effectiveness, General Dynamics/
Electronics, Rochester, New York.
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Cost
Total

Acquisition

Maintenance

Logistic
MTBF

Figure 1.1

During the last five years, enormous progress in micro-
electronics has been made, which leads to more powerful computers
and digital analyzers. Minicomputers with great processing speed,
large memory capacities, and graphical input/output are now avail-
able for relative low cost, At the same time, great advances in
new mathematical techniques in such disciplines as control systems
engineering, information theory, and systems theory have been made.
New techniques for parameter estimation, digital filtering, and
adaptive control have been developed. 1It is expected that these
modern developments could be put to work for improved automatic

" checkout. Presently in checkout operations, mainly static values
of signals are used. By utilizing the information that is often
available in dynamic and statistical signals at the outputs of a
system, more information about the health of its units inside the
system could be derived. For instance, instead of monitoring
several components of a subsystem, the transfer function response
could be measured and the coefficients of the transfer function
which relate to component values could be computed. Thereby, the
number of test points and the amount of instrumentation and data
acquisition hardware might be reduced. This means that the computer
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will be burdened with more complex analysis computations; in other
words, by reducing the hardware requirements, the software require-
ments will be increased. Though these new techniques look very
promising, more research in this area is needed to derive mathe-
matical and computational techniques which are efficient.

The Computation Laboratory has developed for years systems and
applications software for automatic checkout and testing in the
Quality and Reliability Assurance Laboratory and the Astronautics
Laboratory. It has developed under contract with General Dynamics
the Automatic Malfunction Analysis Program (AMA) which isolates
faults in discrete networks. We will now concentrate on the develop-
ment of fault isolation methods for continuous systems which to a
high degree requires investigations into applied mathematics and
computational methods. It is not our intent to develop any hardware
for checkout systems, rather we want to concentrate on the develop-
ment of principal software techniques which are independent of a
specific hardware design. Then, we will make recommendations to
the hardware designers so they can adjust their design, if necessary,
for better utilizing these software techniques.

In our research work in computer methods for fault isolation,
we intend to develop a few software methods which are promising for
practical applications in testing, ground checkout, and on-board
checkout of systems and electronic circuits. We do not expect to
develop one general method which can be applied throughout the
checkout of a complete vehicle, rather we expect to develop different
methods which can be applied for different types of systems.

A few years ago, the Quality and Reliability Assurance Laboratory
developed a few techniques for dynamic testing. These techniques
were programmed by Computation Laboratory and applied to the check- -
out of the stabilized platform of the Saturn V Instrumentation Unit[21
The results showed that the approach seems to be feasible; however,
it was not completely satisfactory and more research was needed.
About a year ago, we began in-house a thorough literature study of
various computerized fault isolation methods, in order to make use
of work that has already been done. Out of about 70 papers, ten
distinct methods based on different principles were identified and
they form the subject matter of this report. They are now being
evaluated with actual test cases and are being programmed for the
computer. Most of these methods were developed under Government-
funded contracts between 1958 and 1965; a great number of them were
sponsored by Wright-Patterson Air Force Base., The majority of them
were developed for fault isolation within electronic circuits. We
think that several of them can also be applied for fault isolation
within systems since the mathematical representation of circuits and
systems is very similar. 1In the examples, although simple electrical
circuits are used for illustrative purposes, this does not imply that
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the method presented is necessarily restricted to these simple cir-

cuits. While these methods form a good base for our investigations,
we think that improved fault isolation techniques could be developed
utilizing latest analytical and numerical methods.

In our research, we plan to concentrate on a few methods which
are promising for practical application in automatic checkout and
testing. These methods will be tested by running them first against
simulated systems and then against a hardware breadboard system. We
will then make recommendations for their use in Space Shuttle and
Space Station checkout and in checkout and testing operation at MSFC.

Thus, the report represents the first step of our endeavor in
the development of computer methods for fault isolation., 1In preparing
this report the first source of information has been the internal
note "Preliminary Study of Some Fault Isolation Techniques" by
Donald Nalley - IN-COMP-70-2-MSFC.

1,2 General Considerations -

In order to accomplish the objective of Automatic Diagnosis with
full use of today's capabilities, the following steps have to be
taken.

e Evaluation of the different mathematical methods which
have been developed by Government and industry.

e Utilization of modern analysis techniques of linear and nonlinear
systems in the diagnosis process.

e Utilization of the capabilities of today's computers more in
the analysis of the process under test, rather than in hand-
ling big quantity of data. This is going to give us the
possibility of performing the analysis of the unit under test
prior to the checkout process, thereby decreasing the size of
the on-line computer required during the checkout process.

e Correlation between the fault isolation computer methods
and the instrumentation required.

e New measurement techniques.

e Better estimation of the measurements.
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In evaluating the different mathematical tools that have been
used in the solution of the Fault Isolation Problem, it is helpful
to define clearly the terms 'method" and '"technique". See Figure 1.2.

Fault .
Isolation Technique/s >

Method

Figure 1.2

Method is the physical approach used in detecting the fault.

Technique is the effective mathematical tool used for the above
purpose.

As a result of reviewing about 70 papers and applying the
above definitions, we arrive at ten different methods, three of
them employing two different techniques.

1.3 Some Comments on the Different Methods Studied -

Before beginning our study, it is convenient to make the
following comments.

e All the papers that have been reviewed are indicated in the
references.

e The papers that have been used for obtaining a given method,
technique or some piece of information are indicated in the
references with an asterisk before the name. '

® At the beginning of each method, the reference number/s are
indicated between brackets.

e For each example given, the program and computer that has
been used are indicated in the Appendix.
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CHAPTER II

The methods which will be discussed in this chapter are the following:
1. Classification Method

a) Matrix Recognition Technique
b) Sequential Recognition Technique

2, Key Element Search Method

a) Nonlinear Technique
b) Linear Technique

3. Iterative Method
4. Transfer Function Method

a) Bode Diagram Technique
b) Tracking Technique

5. Scalar Remnant Method (Dynamic System Testing)

6. Inverse Probability Method

7. Power Spectra Method

8. Parameter Identification Method

9. Max-Current Method

10. Dpetection Condition Method (Dynamic System Testing)

The order given in the presentation of the above methods is a good approach
in the introduction of the different ideas involved in Fault Isolation
Diagnosis. In some cases computer applications are included, with some

comments on the results of them.

2.1 Classification Method [25]
2.1.1 General

The idea of this method is to choose a number of test points, from which
it is possible to define, in the n-dimension space, regions of normal
operation of the system, and regions of failure of the system. In this
last case each region could make identification as to what kind of failure
has occurred. It is understood that we may go to any level of failure
classification that we need, changing the number of test points. This
last statement suggests the name given to this method.
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The number of test points depends on the

° Detail of failure analysis that is needed,
. Correct selection of the test points.

Suppose that our system looked like the one shown in Figure 2.1. The
system under test has three test points.

SYSTEM }|——>—e X}

S.L_DIUL_UE___ UNDER ————>»—e@ X2
| _TEST _ |——>—90 X3
Figure 2.1

Now, we need to define the regions of normal operation, and the regions
of failure. Let these regions be

Region 1 X1 <kj2
(Normal Operation) ko1 < X2< kg9
k31< X3
Region 2
(Normal Operation) Xq <kjo
X9 <k21
X3<k3y
Region 3 X1 <kjo
(Failure 1) k21 < X2 <k22
X3 <k31
Region 4 k12< X1
(Failure 2) ko< X2 <k22
X3 <k31
Region 5 X1< ki2
(Failure 3) X2 <k21
k31< X3

The above regions 1list is complete, in other words there is no possibility
of getting values of X1, X2, and X3 from our system, which will belong to
a region that is not in the given list. This means that the other regions
are not allowed for our system. Therefore, we can make the following
classification :
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e Allowed Regions.
@ Not Allowed Regions.

For a given system, we are interested in finding all the allowed regions,
With this in mind, we take the measures of X3, X2, X3 and look for that
region which satisfies all conditions within the region. Thus, it is
possible to know the operation region, and therefore, if the system
under test is in normal operation, or in what type of failure mode,

In Figures 2.2, 2.3, and 2.4 are shown the normal operation regions,

failure regions and not allowed regions, respectively, which belong to
the example given. Not all the not allowed regions are shown in Figure 2.4;

this is for drawing simplicity.

i
1
|
|

Region 1

x2 Figure 2.2 - Normal Operation Regions
Region 1 Region 2
X1<ki2 X1<ki2
ka1 < X2 <k22 X2< k21

k3 < X3 X3<ks3]
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Figure 2.4 - Not Allowed Regions

2.1.2 Matrix Recognition Techniques

Given the matrix: equation. :
Y =XM
where,

Y = Output vector of the form (Y3, Y2,....Yp)

(2.1)



Input vector of the form (X1,X2,:0.¢Xp,1)
Matrix of size (m+l) X n.

Number of regions

Number of measured variables.

g8 RX
|

We must form the matrix M in such a way that when the product of the
vector X by the matrix M, gives the vector Y, the highest component

of this last vector gives us the number of the region, i.e., if the
highest component is the third, the region number three is in operation.
Therefore, we are not looking for the value of the highest component
instead, we are looking for the component in which this happens; being
this the number of the region. The name given to the matrix M is the
recognition matrix of the given circuit.

The way of getting the matrix M is through the product of the matrix
H by the matrix K. Of course,rth}s is not the only way, see for instance
the method given in reference {25_.

M = H.K (2.2)

The matrix H is formed with the negative of the boundary values in the
last row. First, all the different boundary values that belong to X1
then all the different boundary values that belong to X,, and so on.
Elsewhere it has zeroes, except that it has 1's in the %irst row, but
only in the columns that belong to X5 1's in the second row but onlvy
in the column that belongs to X9 and so on. Therefore, this matrix
looks like

1 1.. 1 0O 0.. 0... O 0 .. 0_—1

0 .. 0 1 1.. 1... 0 O0.. O

0 .. 0 0 0.. 0... 0 O.. O
H = (2"3)

- o oe . ° o oo o ©®©oo . o oo

0 .. 6 0 0.. 0... 1 1.. 1

—Al -AZoo-Anl -Bl -BZoo-anonn "Zl -ZZoo —an

—_—

The size of this matrix is given by [number of measured variables + 1]
X Esummation of (number of measured variables x different boundary values
in each one)] .

The number of rows in the matrix K are the same as the number of columns
in the matrix H. The number of columns in matrix K is equal to the
number of regions that we have in our system (each column belongs to

one of the regions). All the columns have the value 1 in each row. The
sign associated with it obeys the following rule: 'The components of

the vector (X-A;, X-A2,...., X-An;; X-Bl, X-B2se0ee, X-Bn2,ocoscoscanns
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X-Z1, X-Z25ec0, X-an) are tested in order. If, for an operating
~point in the region, the component is positive, a '+' is entered. If

it is negative, a '-' is entered",

let us takeithe fgllowing example

In order to {llustrate the corncdpty

Region 1 10 <x3 <30
(Normal Operation) 5<X9<40
X3 <10
Region 2 10<X3 <30
(Failure Mode #1) Xp <5
X3 <10
Region 3 10< X1 <30
(Failure Mode #2) 40<X>
X3 <10
Region 4 30<xy
(Failure Mode #3) Xy <5
10<X3

The matrices H and K are given, respectively,

1 111

11 0 0 O -1 «1 -1 1

H = 0 01 1 0 s K= 11 1-1
0 0 0 0 1 -1 .1 1-1

~-10-30 -5-40-10 -1 -1-11

And the recognition matrix M=HK, are given by

0O o o0 2

0 -2 2 .2

M= <1 -1 -1 1
65 75 -15 .5

But, since Y=XM, and X=(X1,X2,X3,1), we get

Y = (65-X3, 75-ZKp-X3, 2X2-X3-15, 2X1-2X24X3-5)
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I1f we assume that our measured values are given by

X; =20
X9 = 50
X3 = 5

the output vector results

Y = (60, -30, 80, -60)

Therefore, our operation occurs in the region 3. It is very easy to see
that this result is correct. The steps that are necessary to follow in
order to get the output vector using a computer, are indicated in

Figures 2.5, 2.6, and 2.7. The symbols used in the mentioned figures are

indicated as follows:

N = number of regions

M = number of measured variables

JMAX = The sum of all the different bound used in each region
H(I,J) = Element of row I, and column J belonging to matrix H.
K(I,J) = Element of row I, and column J belonging to matrix K.
M(I,J) = Element of row I, and column J belonging to matrix M.
NUM(J) = Number of different bounds in region J

IVAL(J) =Bounds

X(J) = Element J of input vector

0(J) = Element J of output vector.

2.1,2.1 Computer Application

We are going to consider two different applications.

2,1,2.2 1st Application Let us define the following problem

Region 1 10X <73

X2 <43

4< X318

35 X4 <76

Region 2 10< Xy <46
- 43 7X9

4<X3<18

35< X4 <76



—] Yes
Matrix H

(see Fig. 2.6)

2.9

7
Matrix K
Read N.x (see Fig. 2.7)
. KOK =
Matrix M KOK + 1
JMAX #
MO=2M M(I,J)=3 1M(J.L)
L=1
* K(L,J) Y
Read
Input
Vector [47
Print IND=IND+1
Regions and IVAL(IND)=
Variables of K(L,MMM)
E]
the Problem Calculate
Output
Vector
KK1=0
IND=0
10D=0
=-1
Print
1 Results
— | LL=LI+1
IND=IND+1 e —————
JRI=1
No
4
JRI=JRI+1 Y
Yes
IVAL(IND) = KOK = 0
ICK(JRI’J) o L=o0 L = IL+1 MMM=KOK+1
LIUD=IND-IOD |

Figure 2.5 - Matrix Recognition Technique

Classification Method




2.10

JMAX = Total number of all different

JMAX = IND bounds in all the regions
m§ = g+1 M = Number of measured variables
IVAL(J) = Bound J
)
NUM(J) = Number of different bounds in
variable J
J = H1
1=0
I =141
\ 4
H(1,J) = 0
No
Yes
Yes No Kl = K2+ 1
K2 = K2 +
H(IMAX, J) = NUH(L+1)
-IVAL(J)
Yes
No
No
es
Kl =1 J =K1 o
p————————] > =7J+1 - =
K2 = NUM(1) L=L+1 J=17 H(L,J) =1
L =0

Figure 7.6 M~trix H -~ Matrix Recognilion Tecl ~qu
Classificstion Method
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J = }1
I=0 <
Y
I= I+1 e
Y
K(I,D) =1
No
es
No
es
1=0
y
I=I+1 o
iL=1 IL= IL + 1
J=0 :
No
V
Is {
I~ J+41 | H(IL,7) > 0)_To8
?
+L

Figure 7.7 Matrix K - Matrix Recognition Technique
Classification Method
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Region 3 46<Xy<73
43< X9y
4 < X3<18
35<X; <76

Region 4 10<X1 <73
X2 <43

18<X3
35<X, <76

Region 5 10<X7<73
X9 <43

X3 < 4

35 <X4 < 76

Region 6 10<X1<73
Xo<43
4= X3<18

76 <Xy

Region 7 10<X71<73
X0 <43
4<X3<18

X5 < 35

Region 8 X1<10
X9 <43

4<Xq<18

35<%4 776

The results obtained are as follows:

~ M

i1 1 1 0 o0 o0 o o

"0 0 0 1 0 0 0 0 ’

H = 0 0 0 0 1 1 0 o |
0O 0 0 O O o0 1 1

-10 -46 -73 43 -4 _18 -35 -76_!



1 1 1 1 1 1 1 -1
1 -1 1 1 1 1 1 -1
-1 -1 -1 -1 -1 -1 -1 -1 ;
-1 1 1 -1 -1 -1 -1 -1 i
K = 1 1 1 1 -1 1 1 1

-1 -1 -1 1 -1 -1 -1 -1
1 1 1 1 1 1 -1 1
-1 -1 -1 -1 -1 1 -1 -1

;~ 1 -1 1 1 1 1 -3—1

1
-1 1 1 -1 -1 -1 -1 -1 i
M = .0 0 0 2 -2 0 0 0 |
i 0 0 O 0 0 2 -2 0
Llls 121 29 79 123 -37 185 227J
Output

68 26 17 85

157 79 123 155 131 175 57 -3

Region 6

72 37 22 46
150 86 138 158 114 90 128
Region 4

_ 11 6 17 37
E:é:::> 120 116 46 118 94 42 116 188

Region 8

-26

2-13

It is very easy to see that the first two results are correct, but the
third one is not. The reason for this is the following.

Let us take only the variable Xj, in the first three regions

Region 1 10<Xy <73 3
Region 2 10< X1 <46 ;
Region 3 46 X1 <73 ;

This is not allowed with the matrix recognition
problem we must re-define the regions. We have

Therefore we come out with four regions,

the other wvariables
the other wvariables
the other wvariables

technique. In this particular
to break region one into
two regions, one that goes from 10 to 46 and the other from 46 to 73.

Region 1 10<X3< 46 ; the
Region 1° 46< X1 <73 ; the
Region 2 104Xy <46 ; the
Region 3 46 <Xq <73 ; the

other
other
other
other

variables
var iables
variables
variables.
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Taking this in consideration, the eight given regions are going to be
transformed into thirteen, which are,

Regiop 1 10<X1<46
- X9< 43
4<X3<18

35<X4<176

Region 2 Lo<X1<73
- X2< 43
4<X3<18
35< X4 < 76

Region 3 10<X31< 46

- 43< X2
L<X3<18
35<X4< 76

Region 4 46<X1<73

- 43< X9
4L<X3< 18
35<X4<176

Region 5 X1< 46
X9 43

18< X3
35<X4<176

Region 6 46<X3<73
X2<43

18< X3

35<X4<76

Region 7 ' 10<X1< 46
X2< 43

X3< 4

35<X4<76

Region 8 46<%X1<73
- ' Xo< 43
X3< 4

35 <X < 76

Region 9 10< X1 < 46
X9< 43
4< X3< 18

76< X4



Region 10
Region 11
Region 12

Region 13

46<X1-73

X2(43
4<X3-18
X4 < 35

10<X]1 <46
X9<43
4 <X3< 18
X4 = 35

46 <X1 <73

X2<43
4 <X3<18
X.4<35

X3 <10
X2<43
4<X3<18

35<X, <76

The results obtained are as follows:

[

R |
M= i 0
l 0
207
L
Output
68 26 17
113 157 79
Region 10
72 37 22
98 150 86
Region 6
11 6 17
190 120 116
Region 1
6 6 17
195 115 121

Region 13

1 -1
-1 1
0 0
0 0
115 121

85

123

46
138

38
46

39
41

2

111

106

188

193

LCOOoOMM

-1
-1
2

0
171

155

158

118

113

1 -1
-1 -1

2 -2

0 0
79 215
87 131
62 1l4
164 94
169 89

1
-1
-2

0

123

131

38

112

121

-1
-1
0
2
55

175

20

42

41

NN O

-1
-1

-2
277

13

76

186

187

-1

-2
185

57

128

116

107

.15

-3

-26

188

203
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14 42 16 74
151 87 149 85 147 83 127 63 147 83 73 9 143

Region 1

48 42 16 74
117 121 115 119 113 117 93 97 113 117 39 43 41

Region 2

14 42 16 105
151 87 147 85 147 83 127 63 209 145 11 -53 143

Region 9

48 42 16 105
117 121 115 119 113 117 93 97 175 179 -23 -19 41

Region 10

46 42 16 74
119 119 117 117 115 115 95 95 115 115 41 41 47

Region 1 - Region 2

73 42 3 38
92 146 90 144 62 116 9 148 16 70 86 140 -34

Region 8

10 42 15 40
155 83 153 81 149 77 133 61 83 11 145 73 155

Region 1 - Region 13

22 42 15 40
143 95 141 93 137 89 121 73 71 23 133 35 119

Region 1

3 42 15 40
131 107 129 105 125 101 109 85 59 35 121 97 83

Region 1

46 42 15 40
119 119 117 117 113 113 97 97 47 47 109 109 47

Region 1 - Region 2
From this first application we arrive at the following conclusions:

° The real number of regions is obtained by means of the following
bound's rule: '"For a given variable, the bounds in one region
must not be contained in the bounds of some other region, except
when these bounds are the same."



2.17

° If the operation point is in between two regions (located on
the bound), the maximum value appears twice in the output vector.

° If the operation point is moving inside of a region, the
maximum value in the output vector changes. Therefore, looking
for these changes as a function of time, it is possible to per-
form some predictions.

2,1,2,3 2nd Application

As a second application we are going to consider the

example given in page 2.7. The outputs obtained are as follows

20 50 5
60 -30 80
Region 3

4 500 30
35 -955 955

Region 3
13 68 7
58 -68 114
Region 3
17 3 7
58 62 -16
Region 2

-60

967 (=

-108

30

It is very easy to see that the second result is incorrect. The reason
of this is because, the input vector (4,500,30) does not belong to any

given region.

2.1.3 Sequentia_l Recognition Technique

This is a straight forward technique because we need only to check for each
region if the boundaries are met or not by the measurements. The region
that meets all the boundaries, gives the operate region.

For the example given in page 2.7, we have

MEASURES
Xq X9 X3
REGION
1 v v
2 v v \
3 v v
4
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The principal advantage of this technique over the recognition matrix
technique is that if because of a me2asuremant error the components of
the input vector do not belong to any given region, this situation is
detected. On the other hand, with the recognition matrix technique,
we arrive at a wrong result,

2.1.4 Conclusions

The essential features of the Classification Method could be summarized
as follows:

° It possesses a high flexibility; this means that the diagnosis
can be adjusted to any desirable level of identification.

° The possibility of making the diagnosis without interruption
to the normal operation,

° The possibility to make a reduction in the number of thes test
points, without changing the diagnosis level.

. The possibility to perform trend analysis.,

] The small amount of post=-calculations that are necessary in
order to get the operation diagnosis.

2.1.5 Applications

The application of this method covers linear and nonlinear circuits/
systems. In relation to the level of identification, it seems to be
the more important application at the modular level.

2.1,6 Computer Requirements

Only a few simple calculations are necessary to be performsd, after the
measured values are taken. Therefore, there are no strong requirements
imposed over the computer system needed.

2.2 Key Element Search MetthLl%J

2,2.1, General

A major feature of this metbod involves the diagnosis of a fault compo-
nent t'at can be done with an insufficient number of measurements to solve
for network elements values. Of course, t'is is a most likelitood approac!
We are going to consider two techniques

a) Nonlinear Technique
b) Linear Technique
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In both techniques the idea of this method is to define an index that is
function of the measurements and only one component. For each component
in the network we are going to have an associated index value, therefore,
we can prepare the following table as an example:

1
§ h| Sj
; 1 0.0135
! |
2 | 0.0275
j> ; 3 0.0036 \/—'“
Y i iy -
| 4 0.0085
] 5 0.0123

The most likely faulty component, will be the component that has the
minimum value of the index. In our case it will be the third component.

2.2,2 Nonlinear Technique

Consider a network with N components and M measurable nodes associated with
it. The admittance* in each one of the measurable nodes will be given by

¥i = £5 (X15%2;5e000XN) for j =1, 2, s.0..M (2.4)
where,

xi = value of component i

yj = admittance of node j

Let us call Xjo (for j =1, 2, «..N) the normal values of the components,
and with gj (for j =1, 2, ...M) the measured admittance values. We are
going to define the index Sj in the following way:

M

2
53 = 2: [gi - £5 (xlo,xzo,.,.X(j_l)o’xj,X(j+1)0,...XNO)].
i=1
M
= 2 [gi - £1(x3) ]2 (2.5)
i=1

* The reason to use the admittance instead of the impedance is because
the former is more easy to get applying topological laws.
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We are looking for the minimum value of Sj, that is function of the
component Xj. Therefore, the derivate of (2.5) is given by

M dfj(x:) M
. ) j
Si- .2y 8 T 42 _2_1: £1(x5) dfs(xj)
X i=1 dxj }- “—523——

Setting this derivative equal to zero

M dfi(x ) M dfi ()
) gi —— - 2 fix)) ——— =0
i=1 dx i=1 dx

J j

The numerical solution of equation (2.7) can be accomplishad by some
iterative technique such as Newton-Rapshon's,

The diagnosis procedure is as follows:

° Take the measurements at M pre-defined points. This number
of points is less than the number of components.

e For each component, and by means of aquation (2.7), we shall

find the component value, that makes a minimum in equation
(2.5).

] Substituting the value x, as calculated in the previous step

into the equation (2.5), we get Sj°

) With each component, we have associated a value of §.. The

smallest value of Sj gives us the most likely fault Component.

With this method, the computer program depends on the circuit under

test. Therefore, we are going to consider first the application, and

then the program. Two applications will be studied,

(2.6)

(2.7)
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2.2,2.1 1st Application Let us consider the circuit shown in Figure 2.8.

i O e

O— —— AN

Ry

—ANVN
R
3

e /\‘fv’\/"*—‘——‘ﬁ—vﬂ\/\r’\'-’—o I -

€ 16

,.—-— . 'f'\_/'\‘/"\'-’& ....._‘___4
T
(@]

-t
|

Y.

R1= 63.0% ; R4y= 46.0Q ; R7 = 94.0 Q 5 G3= 0.0068 mho
R2= 43.08 ; R5s= 100,09 ; Gi1 = 0.0106 mho ; G4= 0.0195 mho
R3= 78.09 ; Re= 83.0%; G2 = 0,0354 mho ;

Figure 2.8

The admittance Gi, G2, G3 and G4 are given by

(R24+R3) (R41+R5+R6) + (R5+R6)R4
(R4+R5+Re) (R1R2+HR2R3+R3R1) + (R5+R6) (R1R4HR4R2)

(R24R3) R4 + (R5+R6) (R2HR3+R4)

Gy =
(R2+R3) R4 (R5+R6) (2.8)

(R5+Rg) (R2+R31R4) + R4 (R24R3)
(R2+R3+R4) (R7R6HR6R5HRSR7) + (R2+R3) (R7R4+R4R6)

(R2+R3 JR4+(R5HRe) (R2HR34Ry)

G
R5Re (R24R3+R4)  + R4Re(R21R3)
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Tn order to be able to prepare a more simple program, We must write
the admittance in each node as well as the first and second derivative of
it, in a general form. Let us write as follows,

A:R:+B;
e (2.9)

T TR

dGi Ai(CiRj + Dy)-C,; (AiRj+Bi)

dR; (CiRj+D1)?

AiDj-BiCj (2.10)
(CiRj+Di)2

and, similarly

a6y _ 2C1(BiCi-AiDi) (2.11)
dRj (Dr+RjCi)3

for all j=1,2...7; and i=1,...4. In Table I the values A;, B;, Cj, and
D; are given for each i(i=1,...4) as function of Rj(j=1,2,°“7)°

The second derivative will be needed if the iterative technique of Newton-
Raphson is used. 1In our application, we will use a simpler approach.

In order to be able to check the results obtained from the computer run,
Table II gives the values of Gy, G2, G3, and G4 for different combinations
of Ry, Ro, Ry, Ry, R5, Rg» and R7.

The flowchart in Figure 2,9 is self-explanatory; however, we want to point
out that the technique used to find the root of the equation 2.7, is the
simple one of changing the size of the step any time that the value of the
root is over. This is possible to apply because

e There is only one root

o The value of the root is real and greater than zero (for this
reason we start from xjl=0)

The results obtained are as follow



Table 1
ARj+ B 9 ap-pe . £6x, " 2C(BC-AD)
G'I'CRi ) @R "R CF RZ " DeRCP
Ri i A B [ ) L]
1 0 Ry ¢ Ry} Ry 4+ R 4 Re) Ry + Ry} Ry 4 Rg 4+ Ry RRR, + R; + R
+ R‘ 'RS + R") + R‘ IRs + RG, RZRI le + Rél
e ? 0 R+ Ryl Ry + Ry 4 R 0 Ry + Ry} Ry + R},
1 B *R, R, %Ry o
3 -0 (R2 + R3) (R‘ 4 RS + Rb' 0 (Rz + R3 + R‘l lR5R7 +
+R4 (Rs + R6i R,Rbo _aéki' + (Rz + R;)
R‘ IRG* 81'
4 .0 (Rz + R,NR‘ + R, + Rb' 0 R‘R5 (R2 + R3 + R‘)
¢R‘(R50R6) !R‘Rb(kzokal
1 Ry +Ro+ Ry Ry + RHR, + RV 4 Ry R, ®) + Ry (R, + Ry + R} RyRy (R, + Ro + R
) ) 4R (R + R} + R Ry (Rs + Re)
R 2 R‘ + Rs + R6 (I!3 + R‘NRS + RG) + l!3 R‘ R‘lks + R6) lt3 R‘ (R5 + RG’
2 = ——— -
3 R‘ + Rs + Ré (Il3 + R‘i le + Ré) + R, R‘ R7 (R5 + R‘,’ + R‘ (R, + Rél R7 lR3 + R‘l (RS + RG) + R,R‘
o Ry Re Ry + RoM RsR, Ry + LA
) 4 R‘ + RS + R6 lli3 + R‘) IR5 + Flo) + R3 R‘ R6 lR‘ + R5) (R, + R‘) Rs lt6 + R,R‘Hs
1 Ry*Rs + Ry Ry 4 RMHRs ¢ Ro)+ Ry R, Ry ¢ RV R, + Ry + Rl RiRy Ry +Rg +RY +
o o ) (Rl¢R2NR5’R6DR‘
N H Ryt Rs+Rg Ry + R MRS + Ro) + Ry R, Ry R + R RyRRg + R}
3 —- L2 §
3. Ry +Rs +R, 1Ry + RMRS + Rh + R, R, R61R4+R5+R7)*R7R‘ ‘"z’“t“s“ﬂ"r“s'“a"s’
i - + Rs R1 ) + nza‘m6 + R.,)
4 R4%R5vlb ‘RZ”E"RS,* RthzR‘ RG(R‘+R5) IR2+R‘i RsﬂofRzR‘R‘
1 RZ + R3 + R5 + F(6 (Rz + R3MR5 + R6) Rl (Iv?2 + R3 + R5~ R‘) + le + RG“]"Z + R2R3 + RBRI’
' . | Rz lR3 + R5 + R6)
o 2 RZ + R; + R5 + R6 (Rz + RJ, lR5 + Rol (R2 + R,NRS + Rél 0
4 P
3 Ry #Ry+ R +Ry (R, + RyMR, +R) RgR, + RyR+ R R + Ry + RMR.R, + R R + R6R5'
o (R6 + R,)(R2 + R3)
4 RZ + R3 + R5 + Rb (Rz + RB)(RS + RG) Ro (ll2+ R; + Rsi ll!z + R,) Rs R6
1 RZ*R3+R‘ (R‘*R6NRZ*R3)+R‘R6 RI(R2+R’)+R‘(R1 th) (R‘+R6)Rl(RZ'R3)*R‘R6
"Ry &y R R, By Ry + B
0 2 RZ+R3+R4 (R‘+R6NRZ*R3)+R‘R6 R‘(R24R3) R‘Rslllz‘ﬂal
; _
3 R2+R30R‘ (R‘¢R6NRZ~R3)oR‘R6 lR6+R7HR24R3+R“ R6R1(RZQR3~R‘HR‘R1
le + R,) + R‘ R& (Rz + R,)
4 R20R3+R‘ |R4*R6)(RZ'R3)+R‘R6 (Rz !R36R‘i R6 R‘RG(Rzékal
1 R2+R3+R‘ (R‘+R5NR20 Rfralns R11R24R3D+R‘(R1H!2) (Rlonslklmfkann‘lts
. * RZ RJ ml * RZ' * R?“J (Rl * “S)
N 2 R24R3+R‘ IR‘~R5HRZ+R3)4R‘R5 R‘lﬂ.éikz) R4R5(R2+R3)
6
3 R2+R3+R‘ (RA'RSHRz'Ra“Rlas (R7+n5)(nz+n3.n‘| Rs'ﬂ"z‘“;"“‘““l“‘l
+RR, +Ry) Ry + Ry}
4 R2+R;+l (R‘ + RSHR2+R3)0R‘R5 (R2+R34R4) Rsm‘(ﬂz#l’ []
1 0 (RZ+R3)(R‘+R5+R‘) 0 (R‘+R’0R‘)(RIR2'R2R,
+Ry®s + Ry *RyR)) +(Ry + RHR) + R,
2 ] (RZ*RJHR‘+R5+R6) 0 leOR’NR’QR‘)R‘
R7 o AR‘(R5+R6I
3 0 (RZ*R3KR‘+R5+R6l (R5+R6NR2+R30R‘) R,R‘(Rz+lt,+l‘)
”;R‘(R5+R6) +R‘(RZ+R3) ol‘l.(l!2¢l3l
[} [1] 1R, * RyHR, + Ry + Ry} 0 ReRs Ry + Ry + RY
+R‘(R5+R6) +I‘I‘(I2H!3)

2.23



Table 2
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R, R, Ry R, Rg R, R, G G, Gg G,
63.00 | 43.00} 78.00 | 46.00 | 100.00 | 83.00 | 94.00 { 0.0106 { 0.0354 | 0.0068 [ 0.0195
63.00 | 43,00 97.50 | 46.00 | 100.00 . 83.00 (| 94.00 | 0.0104 | 0.0343 | 0.0068 | 0.0194
63.00 | 43,00 | 136.50 | 46.00 | 100.00 ( 83.00 | 94.00 | 0.0102 | 0.0327 | 0.0068 | 0.0193
63.00 | 43.00{ 78.00 | 46.00 | 100.00 { 103.75| 94.00 [ 0.0106 | 0.0349 | 0.0065 | 0.0171
63.00| 43.00| 78.00 | 46.00 [ 100.00 { 145.25| 94.00 | 0.0105 | 0.0340 | 0.0061 | 0.0143
63.00 | 53,75| 78.00 | 46.00 | 100.00 | 83.00| 94.00 | 0.0100 | 0.0347 | 0.0068 | 0.0195
63.00( 72.25| 78.00 | 46.00 { 100.00 | 83.00( 94.00 (0.0092 | 0.0337| 0.0068 {0.0194
63.00 | 43.00| 78.00¢{ 46.00 { 100.00| 83.00 117.50 0.0106 | 0.0354 | 0.0059 | 0.0195
63.00 | 43,00 78.00 | 46.00 | 100.00 | 83.00 | 164.50 | 0.0106 | 0.0354 | 0.0046 | 0.0195
63.00 | 43.00 | 78.00 | 46.00 [ 125.00 | 83.00| 94.00 | 0.0105 0.0348 | 0.0067 | 0.0183
63.00] 43.00| 78.00 ] 46,00 |175.00 | 83.00| 94.00 | 0.0105( 0.0338| 0.0065 | 0.0168 .
78.75| 53.75{ 117.00 { 57.50 | 125.00 | 103.75 | 117.50 | 0.0083 | 0.0276| 0.0055 | 0.0155
78.75) 53.75] 156.00 } 57.50 | 125,00 | 103775 | 117.50 | 0.0082 | 0.0265| 0.0054 | 0.0155
78.75| 64.50 | 97.50 } 57.50 ) 125.00 | 103.75) 117.50 | 0.0081 | 0.0279] 0.0055 | 0.0156
78.75| 86.00 | 97.50} 57.50 {125.00 | 103.75| 117.50 | 0.0075 | 0.0272} 0.0055 | 0.0155
78.75| 53.75| 97.50 { 57.50 { 125.00 | 103.75 | 141.00 | 0.0084 | 0.0283| 0.0048 [ 0.0156
78.751 53.75| 97.50 | 57.50 {125.00 | 103.75 | 188.00 | 0.0084 | 0.0283| 0.0039 [ 0.0156
78.75153.75| 97.50] 57.50 | 125.00 | 124.50 | 117.50 { 0.0084 | 0.0280( 0.0052 | 0.0140
78.751 53.75| 97.50| 57.50 | 125.00 | 166.00 | 117.50 | 0.0084 | 0.0274| 0.0049 |0.0120
94.50 ) 64.50 | 117.00 69.00 150.00 | 166.00 | 141.00 | 0.0070 | 0.0231} 0.0043 | 0.0110




Print

Results
“read Rl, Rz, R3, RA, o element?
Rgs Rg, Ry = G(1),
G(2), G(3), G(4)
: 4
+ s(kk1) = 3> (G(L) --A*RI2+B)/
. i=1

‘Write
.*, .2’ .'3: .1" ’»5’
l6’ R7: - G(l): G(z)
3), G4

Y

| carmmrzpy)) 2
KK1 = KK1+1

Set Values According
to Table 1
A B i,
C(1),€(2),C(3)0C44),
D(R),D(2),D(3),D(4)
AM = 100.0 ]
XJ1 = 0.0 21 = 22 Test = 21.22
zl1 = 0.0
Yes
Y Is it
<38 L = 4?
AM = AM/10 < Y <

1

XJ2 = XJ1 + AM ALA= (A+D(L) -B=C(L)) /

(D(L)+XT1#C(L)) **2
Y {_ Z=Z; + G(L)*ALA - AlA *

22 = 0.0 (A*XJ1 +B)/ (C(L)*XJ1 + D(L)
L =0 ] L =L+ 1 2 (Only when XJL = 0.0)
ALA = (Asp(L) - BeC(L))/

((owy + xw2ecy) **2)
Z2 = 22 + G(L)*ALA - ALA#
@ » 2+ B/ (carexsz + pwy)

Figure 2.9 Nonlinear Technique
Key Element Search
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OQutput
Gl = 0.0102 G2=0,0327 G3=0.0068 G4=0.0193

0.00000000
0.00000196
0.00000001
0.00000014%
0.00000543
0.00000721
0.00000000

-

NouwmbSwN =

G1=0.0106 G2:=0.0354 G3=0.0046 G4=0.0195

0.00000000
0.00000524
0.00000523
0.00000523
0.00000514
0.00000513
0.00000000

NonSWwWN e

e g

Gl1=0.0105 G2=0.0388 (3:=0.0065 G4=0.0168

0.00000000
0.00000826
0,00000709
0.00000708
0.00000000
0.00000098
0.00000000

wp>

G1=0.0105 G2=0.0340 G3=0.0061 G4=0.0143

NounmPwNn e

1 0.00000000
2 0.00002818
3 0.00002704
4 0.00002704
5 0.00000245
m» 6 0.00000001
7 0.00000000
The arrow at the left side of the component number, in each one of the
four given cases, indicates the faulty component (See Table II).
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The following conclusions are obtained from this first application

Always the first and seventh component have the index §j=0.

The reason of this is because G2, G3, and G4 are not a function
of Ry; and Gl, G2, and G4 are nota function of R7. 1In order

for this technique to work properly the admittance in each

node mustbea function of all the components (See 2nd Application).

Disregarding the first and seventh component, this technique
gives good results.

2.2,2,2 2nd Application Let us consider the circuit shown in Figure 2,10,

R1=43.
R2=78.
R3=46.

(el eNe]

ol ok

0D
| A
—AAMA———4— S AAAA -0
R, R,
R, Ry R, Gy ¢,

R,=100.00 G1=0.0319 mho
R5= 83.00 G2=0.0354 mho
G3=0.0195 mho

Figure 2.10
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The admittances G1, G2, and G3 are given by

(R3+R41R5) (R1+R2) + R3(R4+R5)

Gy =
(R3+R4+R5) R1R2+ R1R3(R4+R5)
oy = (R1+R2HR4+R5) R3+(R1+R2) (R4+Rs)
(R1+R2) R3(R4HR5)
(R4 +R5) (R1HR2+R3) + (R1+R2) R3
63 =

R4R5(R3HR2HR3) + (R1+R2) R3Rjp

The general form of the admittance in each node as well as the first and

second derivatives are given by equations (2.9), (2.10) and (2.11). The

results of this application could be checked by means of Table III. The

flow-chart needed is similar to the one shown in Figure 2.9. The results
obtained are as follow

Output

G1=0.0319 G2=0.0349 G3=0.0171

1 0.00000629
2 0.00000603
3 0.00000579
4 0.00000053
S%%% 0.00000000

G1=0.0310 G2=0.0282 G3=0.0189

0.00005046
2 0.00002209
3%%% 0.00000001
4 0.00003459
5 0.00004897

In both cases, the results are correct.
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' TABLE III
R1 R2 R3 Ry Rs5 G1 G2 G3
43.00 78.00 46.00 | 100.00 83.00 0.0319 0.0354 0.0195
53.75 78.00 46.00 | 100.00 83.00 0.0273 0.0347 0.0195
64.50 78.00 46.00 100.00 83.00 | 0.0242 | 0.0342 0.0194
43.00 97.50 46.00 | 100.00 83.00 0.0307 0.0343 0.0194
43.00 117.00 46.00 100.00 83.00 | 0.0297 0.0334 0.019%
43.00 78.00 57.50 100.00 83.00 | 0.0314 0.0311 0.0192
43.00 78.00 69.00 100.00 83.00 0.0310 | 0.0282 0.0189
43.00 78.00 46.00 | 125.00 83.00 | 0.0319 0.0348 0.0183
43.00 78.00 46.00 150.00 83.00 0.0318 | 0.0342 0.0175
43.00 78.00 46.00 100.00 103.75 0.0319 0.0349 0.0171
43.00 78.00 46.00 100.00 124.50 0.0318 0.0344 0.0155
53.75 97.50 57.50 | 125.00 124.50 0.0255 0.0280 | 0.0140
53.75 97.50 57.50 125.00 166.00 0.0254 0.0274 0.0120
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2.2,3 Linear Technique

Let us take the difference between the measured value and the normal value of the
admittance i

ANfi = gi - fig (2.12)

where fj, is the value of equation (2.4) when all the components are set equal
to the normal values. We assume that the difference of equation (2.12) is
due to the failure of an element Xj in the network.

In order to express the equation (2.12) in a more suitable way, we define

9fi
Qij = " (2.13)

X j X=Xo

Now, we can make the following linear approximation using the first two
terms of the Taylor series expansion, then

£i = fio + Ox1 Qip +8%2Qqp + ... + AXQyy = (2.14)

Now, if we assume that the measured values are given by an equation like
(2.14), the equation (2.12) becomes

N
Ofi = Dx1Qi1+OXQigt. « .+ OXNQ4N = El D x5Q1 5 (2.15)
J=

We have M equations 1like (2.1l5) (i=1,2,...M). Our index is defined as

M
5 2
S; = Z T‘Afi - AXjQij] (2.16)

i=1

We must find for which .omponent (xj) the equation (2.16) is a minimum.
This component will be the likely fault component. Taking the derivative
of (2.16), we have

ds M M 2
i = - 2 Y Afqi442 21 Ox1Q4 4 (2.17)
i=1 i=
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Setting this derivative equal to zero, and solving for Ax..
J

M
2. DfiQiy
Axy = i=l (2.18)
M 2
2. Qi j
i=1
Therefore, our Sjmin is given by
> 4
M 2 f]-_Qj_- M
4 J -
Sjmin = E Nfy - 2 i=1 Z N fiQij
i=1 % 2 i=1
Qi
i=1 J
[ M 2
2, £iQij
i=1 M 2
+ M 2 > Qi s (2.19)
Q. . i=1
1]
i=1
Then
2
M
S imin = 2 of - lis (2.20)
i=1 M 2
Qi ;
i=1 ]
Let 2
M ]
2 o £iQ4 4
My = i=1 _ (2.21)
M 2
2 Qij
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M
To minimize Sy, is the same as to maximize Mj, because Z%fsfiz and
I=
Simin are always positive quantities. Then, we are going to search for
tﬁe component that has the maximum value of Mje. This component will be
the likely fault component.

Therefore, for each component j there is an associated value Mj

e

Mj

0.36
0.48
1.73
1.72
1.68
0.48

1.77 «
0.85

1.25
1.38

>

owvwooNoTULPWNH

—

In this case, the most likely fault component will be the number seven.
The diagnosis procedure is as follows:

° Take the measurements at M pre-defined points. This number of
points is less than the number of components.

° For each component, and by means of equation (2.21) we shall
find the value Mj.

° With each component, we have associated M:. The highest value
of Mj gives us the most likely fault compoOnent.

2.2.3.1 Application

Let us consider the circuit shown in Figure 2.8. The flow chart is
indicated in Figure 2.11l, the same is self-explanatory. The results
obtained are as follows:



Read

R =R

G(L), L =1, 4

Y

Set Values according to
Table 1

A, B

C(1), C€(2), €(3), C(4)

D(1), D(2), D(3), D(4»

X1

Print

Y

Results

Y

KKl = KK1 + 1

L=0

1

L=0L+ L}

A

A
2
=1

#(L,J) * VF(L)

MI(I) =

SI(I) = ;;'
L=1

gJ=1,7

L

2 0]’

¢(L,J) * VF(L)

A*D(L) -B*C(L)

@(L,RK1)=
(D(L)+x1*c w 52

A

VF(L) = CM(L) -
G(L)

L=1, 4

A

Write
Ry —» R7
G(L), L=1, 4

Read
CM(L), L =1, 4

>_4_.

A

Figure 2.11

Lineax Technique
Key Element Search
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Output

G1=0.0102 G2=0.0327

J My sJ

T 0.00000015 0.00000733
2 0.00000531 0.00000217
3&%% 0.00000748 0.00000000
4 0.00000735 0.00000013
5 0.00000206 0.00000542
6 0.00000110 0.00000638
7 0.00000000 0.00000749
G1=0.0106 G2=0.0354

J MJ SJ

1 0.00000000 0.000004 84
2 0.00000000 0.00000483
3 0.00000000 0.00000483
4 0.00000000 0.00000483
5 0.00000005 0.00000478
6 0.00000018 0.00000465
7#%% 0,00000484 0.00000000

G3=0.0068

G3=0.0046

G4=0.0193

G4=0.0195

In both techniques the results are correct (See Table II). The advantages
ol this technique over the nonlinear technique are the following

There is no need for all the measured admittances to be g function
of the components that belong to the circuit under test.

There are less calculations that must be performed after the
measurements are taken.

2.2.4 Conclusions

The two techniques given in the Key Element Search Method involve the use
of insufficient data to isolate faulty components. Both techniques give
a good answer if measurements can be made with sufficient accuracy, and
the component tolerances are small in comparison with the derivation of

the faulty component from its nominal value.

From the points of view of

the types of circuit that is possible to be handled, and post-calculation
requirements, it is more convenient to use the linear technique. The
future improvement that will be possible to do in this method is,

The development of the relationship of diagnostic accuracy
to the number of test terminals, the component tolerances and
the measurement accuracy.
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. The development of techniques which will facilitate the treat-
ment of nonlinear circuit elements.

2.2.5 Applications The application of this method is for linear circuits

at component level, and the extension to include linear systems is
straight forward.

2.2,6 Computer Requirements

Only a few simple calculations are necessary after the measured values
are taken. Therefore, there is no strong requirements imposed on the
computer system needed,

2.3. Iterative Method [8]’ [9] ’ [10]

2.3.1 Generai

The iterative method is based on the idea that the configuration of

the circuit is known as well as the normal components values, but at

some time after that, the components values are unknown. The procedure

to get the component values is an interactive one using maximum likelihood
estimation technique at each stage.

Let the circuit under test be the one that is shown in Figure 2.12.

el o —————-——-Ovl
ey O— | —
. . Circuit Under 2
Stimuli eg O&—— Test ————o0V3 Measurements
0— — —— - - — — —0
w —————OoVy

Figure 2,12

Let

= Number of unknown circuit components.

= Number of measurements made,

j = True values of unknown circuit components (isjsM)

i = Observed values of measurements made in response to specified
stimuli (1<i=N).

fi(%1,%2,...%) = Theoretical expression for the ith measurement

(1<i<N).

<4 RZ R
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8i = Measurement error for ith measurement (12i%N)

= Standard deviation of ith measurement error.
Errors assumed independent, normally distributed with zero
mean (1ifN). ]

Xjo = Initial values of circuit components (1£j£M).

Q
|

The following relation between M and N must hold

Nz M (2.22)
This does not give us an indication that we need more test points than
circuit components. On the contrary, if M is the number of test points,
the equation (2.22) tells us that we need to make the measurements at
N/M frequencies in the given test points.
For the ith measurement, we can write

Vi = £ (X1:X250000.XM) + 8i (2.23)

For maximum likelihood estimation the following sufficient statistic
is used

2
N
i~ f'(x-l,XZ:"°x )]
§ = Z [vl 5 il (2.24)

i=l 0’12

The maximum likelihood estimate of the components value is the set of
x, values which causes S to be a minimum. . Therefore,

S =
aa- -0 l=2j=M (2.25)
xj

If we designate with
fi50 = —9- f£iX1,%2,..Xy) ., 1<isN; 12jSM (2.26)

9% j

We can write as a first approximation of the Taylor series
M

£5@15%2,.0 %)) = £46 +Z & £i50 (2.27)
j=1
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where £i,=fi(x10,%x20;+++xM0), and Ejaxjexjo. Now by means of (2.27),

the equation (2.24) is written as follows

N Vi - f-j_o - Ejfijo

s = j=1
i=1 g;2
Let 7y = Vji-£fi,, then equation (2.28) becomes
N M

2 2. 2
S = o £:f1jo

i=1 =1 J

! 7.2 ]

In order to carry out the minimization procedure, we write

Caad
]

[Ela E2:"'- £M]

N = [nl, ”2,0-0- ”N]

[_ —_—
£110 £120 +-++ fiM0

£210 £220 .... f2M0

F =
fN10 f3N20 o--- fNMOJ
62 0 e e 00 0
1 1
0 ';EZ O )
P =

0 0 cece ;ﬁg'

(2.28)

(2.29)

(2.30)

(2.31)

(2.32)

(2.33)
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In matrix form, (2.28) becomes
§= 92w, - 2nA &, FEFA (2.34)

where the subscript t designates "transpose' and A is given by A=PF.
The derivative of equation (2.34) is as follows.
-2n A+2 EFtA=0 (2.35)

b= 1A (Fea)~t (2.36)

The diagnosis procedure is as follows:

° Take the N measurements at the pre-defined points. If the
number of points is less than N, we have to take the measure-
ments at more than one frequency.

. Calculate the matrix P defined by means of (2.33).

] Set the components values to the initial valueé.

] Calculate the following matrices

Matrix F by means of (2.32)
Matrix 7 by means of (2.31)
Matrix A by means of A=PF

Mattix £ by means of (2.36)

. Calculate S1 by means of equation (2.24) and change the com-

ponent values by means of xj = Ej + X (j=1, ... M);
J
calculate S2 by means of equation (2.25) with the new set of
S
values. 1If _El. ¥ 1, the new set of values is the true one;
2

otherwise, assuming that this new set of values is the initial
one, go back to step 4 and repeat the process.



Read Measurements
taken and circuit
information

«

Calculate
P matrix

Set
xjo(j =1, 2, ... M)

equal to normal
condition

l

Calculate -

£ )3 (L = 1,2,...,0)
1=1,2,...N

-9 .
fi40 = ax, £1(*10°%20° - > %403 )j=1,2,...4

10 = £1(x0s%30s -
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Check if the obtained
values are within the
range, If not, print
the faulty component.

Yes

Set
F matrix; A matrix x = x No
-1 3o jl
A(F A)
t (J - 1. e .H)
"i v, - in H i=1, 2, ..., N
-1
£ = TA(F A)
Calculate 2 X . =x Calculate 2
s i‘: - £i9) - 11 —> % vy £5y)
0 i=] '-f (j - 1: 2, * H) i=1 01

Figure 2.13 ZXterative Method



The flow chart is indicated in figure 2.13.
2,3,1,1 Example

Let us consider the circuit shown 2.14.

Cy
H
it
- Q ¢ g —t C R, = 20000 Q
A A\‘/--__.J 1
R, —I— c, C, = .006 uF
Vi ﬁ_/)R v, R, = 5000 Q
>l c,= .02 uF
l )
Y o S ———O-
‘Figure 2.14 - Lead-Lag Network
The oupput/input relation is given by
(i (&)
v, 2 WC
= . 2.37
v . 7 ( )
i
;cz .+ R 222 + w(lz
1+ w 1R1 1+ w ClRl 2

In order to ne able to check the result obtained with the computer run,
Table IV gives the values of Vv /V for different combinations of R;» Cl’
R,, CZ’ and frequency.
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Table IV

B » o ] v /vy at
Ry Gy Ry | Co | £ =] f£2= f3 = £, = f5 =
N | 230 | 1,020 | 2,120 | 5,860 | 12,300
10,000 | .0060 | 5,000 |.020 |0.90865 | 0.52429 | 0.44460 | 0.61463 | 0.82914
11,000 | .0068 | 5,000 |.020 [0.89579 | 0.50005 | 0.43109 | 0.61571 | 0.83272
12,000 | .0060 | 5,000 | .020 |0.88262] 0.47867 | 0.41999 | 0.61709 | 0.83586
10,000 | .0060 | 5,500 | .020 |0.90597 | 0.52840 | 0.46049 | 0.64141 | 0.84780
10,000 | .0060 | 6,000 | .020 |0.90336 | 0.53313 |0.47613 | 0.66545 | 0.86332
10,000 | .0066 | 5,000 | .020 |0.90695] 0.52503 | 0.45462 | 0.64084 | 0.84900
10,000 | .0072] 5,000 | .020 |0.90528 | 0.52619 | 0.46501 | 0.66486 | 0.86555
10,000 | .0060| 5,000 | .022 |0.89475| 0.50348 | 0.43690 | 0.61639 | 0.83151
10,000 | .0060| 5,000 | .024 |0.88052 | 0.48577 | 0.43090 | 0.61807 | 0.83353
11,000 | .0060| 5,000 | .024 |0.86472 | 0.46246 |0.41787 | 0.61942 | 0.83723
11,000 | .0066| 5,000 | .024 [0.86267 | 0.46443 |0.42952 | 0.64684 | 0.85679
11,000 | .0066| 5,500 | .024 [0.85931 | 0.47153 | 0.44799 | 0.67398 | 0.87335
12,100 | .0066| 5,500 | .024 |0.84143 | 0.45018 |0.43773 | 0.67670 | 0.87653
12,100 | .0072| 5,500 | .024 |0.83904 | 0.45388 |0.45264 | 0.70385 | 0.89231
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The results from the computer run are as follows

First Case =

Frequencies Measurements Standard Deviation
0.23 0.8826 0.43
1.02 0.4786 0.43
2.12 0.4199 0.43
5.86 0.6170 0.43

12.30 0.8358 0.43
Values
Components -
Normal Predicted Real
Ry .01 .0127 .012
C1 .006 .00567 .006
R2 .005 .00529 .005
C2 .02 .0189 .02
Second Case -

Frequencies Measurements Standard Deviation
0.23 0.9052 0.43
1.02 0.5261 0.43
2,12 0.4650 0.43
5.86 0.6648 0.43

12.30 0.8655 0.43
Values -

Component —

Normal Predicted Real
R1 .01 .0105 .01
C1 .006 .00684 .0072
R2 .005 .0052 .005
Co .02 .0191 .02

In both cases,

the results obtained are satisfactory.
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2,3.2 Conclusions -

This method gives a good approach in the solution of the fault
isolation problem, but there are some difficulties in the matrix
inversion process. In the second case of the example given above,
the matrix FtA has the following values

.4396 x 1078 -.1044 x 103 -.1237 x 1078 .2200 x 10%
-.1044 x 103 .1520 x 1017 .2006 x 107 .4611 x 1014
-.1237 x 108 .2006 x 10° .2697 x 10~/ -.4371 x 103

.2200 x 10% .4611 x 104 -.4371 x 103 1114 x 10%°

Therefore, using the inversion matrix subroutine that is included in
the IBM/360 math-pack, we get the following inverse matrix

.5478 x 1012 -.2925 .2267 x 1012 -.9806

-.2925 .1625 x 10712 _.1258 .5215 x 10" 12
.2267 x 102 -.1258 .9745 x 10°7 - . 4043

-.9806 5215 x 10712 -.4043 1757 x 101

The product of the two given matrices are the following

.1000 x 10% .1387 x 10718 .0000 -.5551 x 10°°
4456 x 108 .9999 11520 x 10° -.9536 x 107>

-4 -17 1 -16
5722 x 10 -.3469 x 10 .1000 x 10 -.6938 x 10
1677 x 108 -.7629 x 10™° 4194 x 107 .9999

Therefore, some improvement in the matrix inversion subroutine is needed.

2.3.3 Applications ~ The application of this method is for linear circuits
at component level. : '

. 2.3.4 Computer Requirements = Since complex calculations are involved in the
process of getting the predicted values of the circuit components, there
are. some requirements imposed over the computer system needed.
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2.4 Transfer Function Method

2,4,1 Bode Diagram TechniquelEq

The idea of this technique is to apply at the input of the
circuit under test, signals of different frequencies (test frequencies),
and for each one of them to measure the gain (output/input).

These gains are checked against the normal gains. The difference
between both setsof gains permits diagnosing which component is out of
the normal range.

The principal advantages of this method could be summarized
as follows:

e Use only available input and output terminals
® For diagnosis, it requires simple calculations
e Identification of the failure at component level.

In order to be able to determine the failure of the circuit at
component level, it is necessary to prepare for each circuit, before
the test is carried out, a '"fault dictionary." This dictionary is a
list of all the possible components variations (i.e., R1 low, Ry high,
etc.), and the associated variations in the gain at some frequency (or
frequencies). When this is done, we assign a "+" or "-" if the circuit
gain was above or below the normal range, and zero if it was in the
range. The fault dictionary looks like the one indicated in Table V
(for a given circuit).

Table V Fault Dictionary

Gain at

Fault
£ £ £
0 0 0 Normal
+ + 0 C, low
- - 0 C; high
0 + + . C2 low
0 - - C, high
+ 0 0 C3 low
0 0 - R; low
0 .0 + R, high
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Now if we have this circuit under test, and we take the gains
at frequencies f;, f,, f3, we are going to come out with some sequence

of "#", "."  or "0". By checking this sequence in the above table, we
know which component is out of the normal range, i.e., if the sequence
is +00, this means that the value of C3 is low.

This method does not require post calculations, because after
the measure is taken, we must look only for the row that matches with
it. When the match is obtained, we know which is the fault component.

Our circuit under test has the configuration indicated in
Figure 2.15.

Fin(s) H(s) Fo(s)
(circuit under test) }——p————0
F_(s)
H(s) =
Fin(s)
Figure 2.15
where

Fin(s) = [Laplace transform of the input function

Fo(s) = Laplace transform of the output function

H(s) = Transfer function

For lumped linear circuits, the transfer function H(s) may be expressed
as a ratio of two polynomials, or

H(s) - A(s) _ K (s -s1)(s -5s89) . . . (s - Sp) (2.38)
B(s) s™(s - 8,)(s - s) ... (s - sp)

where

n = number of zeros of the transfer function
mtp = number of poles of the transfer function

K = gain constant

I
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Now, if s = jw
. Gw - sp)(Gw - s9) . . . (jw - s3)
H(jw) = K L 2 n (2.39)
TN 1 P . .
Gw)" (v - s )W - sp) ... (Jw - s0)
Let LE designate the magnitude of Sy At very low frequencies (for
all w < w,;., where wy;  is the lower value of wj), the gain is given by
n
20 log10 , H(JW), = 20 log10 K+ 20 E 1og10 w,
ie
- 20 f 1 - o
é oglo v, 20 log10 w (2.40)

From the above equation we can see that any change in the components
value . is going to change the gain at low frequency, but there is no
way to know, looking only at this very low frequency, which component
is responsible for the change.

Now, if in equation (2.40) we have N parameters, we need to

apply this equation for N different frequencies, and by means

of conventional techniques to find the N parameters value. By an
optimal selection of the test frequencies, it is possible to find the
parameters value in a very simple way. In order to choose the optimum
frequencies, we must remember the following:

e Each pole or zero (w;) makes a breakpoint in the gain

characteristic, the change in the slope is 20 db/decade
(- if it a pole, and + if it is a zero). This value is
obtained as follows:

The contribution of each pole is given by

1

e, = I‘;‘};{f‘ (2.41)
Therefore,
e 1+ jw,T
1. T (2.42)
e 1+ jw.T
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if w.T and w,T are both > 1, we can make the following

1 2
approximation
e w
1 2
oy = e (2.43)
Then
20 log,. L = 20 log,. “2 (2.44)
10 e 10 ;I
if in equation (2.44) Wy = _10w1 , we have
e
20 log,, El = 20 db/decade (2.45)

2

e Each pair of complex conjugated poles or zeros make a break-
point in the gain characteristic. The change in the slope
is 40 db/dec (- if it is a pole, and + if it is a zero).
The gain in the breakpoint may vary from -6 db to + 20 db in
function of the decrement factor (1.0 < ¢ < 0.05).

Taking in consideration the above items, the test frequencies
are chosen as follows:

e One test frequency must be below the lowest breakpoint,

® One test frequency must be above the highest breakpoint.

e One test frequency in between breakpoints.

e One test frequency for éach breakpoint that belongs to the

complex conjugated values. This must be on it or very close
to it.
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In order to apply this concept let us take the circuit shown
in figure 2.16.

E{n(s) C1 R2 Eo(s)

Q

Figure 2.16 Lead Network

The transfer function of this circuit is given by

Eo(s) _ T2 1+ sTl 2.46)
Ein(s) Tl 1+ sT2
where
T = C.R
1 11
R1 + R2 ,

The Bode diagram (straight approximation) that belongs to this
circuit is indicated in figure 2.17. Also, in the same figure we can
see the three test frequencies that were taken following the given rules.
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Gain test frequencies

t3

Figure 2.17 Bode Diagram l

In figure 2.18 the influence on the Bode diagram by changes in
the parameters value is indicated. Therefore, the fault dictionary
given in Table VI is obtained.

Table VI Fault Dictionary

Gain at

Fault

Fh
rt

ftl ftz 3

Normal
R~| low
R, high
low
R, high
C‘ low
C, high

1 + o
1 ++ 1000

oo+

cooco1r +0
w
~

Nonlinear circuits cannot be treated in a general way. For
each type of nonlinear circuit, it is possible to find a general
solution which can be linearly approximated. After this is done, we
can apply the technique given for linear circuits, Of course, that same
constraint will be applied to the linear approximation given as well as
the general solution.
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c1 > Cln cl < cln

Figure 2.18 1Influence of Changes in Parameters Value
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Until now, we looked at this method from a theoretical approach,
let us see what are the results in a practical application. To do
this, let us tdive the following example.

i 2.4,1.1 Example - For the circuit shown in figure 2,14, we want to find
the fault dictionary.

Let

R1 = 0.01 Megohm

R2 = 0.005 Megohm

01 = 0.006 Micrpfarad

c, = 0.02 Microfarad
Then

£, = 0.46 Kc/sec

£, = 1.59 Ke/sec

£, = 2.65 Kc/sec

£, = 9.08 Kc/sec

and the test frequencies are

£, = 0.23 Kc/sec
£, = 1.02 Kc/sec
ft3 = 2,12 Ke/sec
£, = 5.86 Kc/sec
ft5 = 12.30 Kc/sec

The flow chart that we need to perform the calculations is indicated
in figure 2.19., The steps are self-explanatory, therefore, there is
no need to make further comments about them. The results obtained
are indicated in tables VII and VIII; from these we arrive at the
following conclusions

® The sequence of gains which is associated with a faulty com-
ponent are function not only of the component itself, but
also of the variation of it and the zero detecting (the lat-
ter in our case was: normal condition £0.003). See Table VIII.
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Read
R1,C1,R2,C2
AMMM

RELA (J1)
= PLUS

FREQ

D1F=krm(mayrnQ(m)) /4

{KBA+1)=PREQ(KBA)+DIF

FREQ(KBA+ 2) =PREQ (KBA+1 }+DIF
FREQ(KEA+ 3) sFREQ (FBA+ 2)4+DIF
KBA * KBA+4 )

No s it

L=57

Yes

S8BT
BREAK(LL); LL =
TEST(LL); LL =

Write
R1,C1,R2,C2

1,4
,5

A

Calculate

T1 = CL * Rl

T2 = C2 * R2

T12 = Rl * C2

B2= ((TI4+T2)/(2.*T1 * T2))

C = SQRT((B¥*2)-(1./(T1¥I2)))

SDl = B+ C

SD2 =B - C

B = ((THT2)T12)/(2.*TI*T2))

C = SQRT((B¥*2)-(1./(T1*T2)) RELA (J1)

SNL = B+ C I——JL| = MINUM

SN2 = B - C L=0 [

1 v

SBE L=L+1 I

AM = 0.10

TPL = §.2832 A

FREQ(1) = 0.0

FREQ(5) = -SD1/TPI - "

FREQ(9) = -SN1/TPI NU jg{{}gmﬁfgf" I

FREQ(13)= -SD2/TPL EN = ANUW 2+ ((TLHT2+T12)*

FREQ(17)= -SD2/TPI oMW 2) /DEN .

FREQ(21)=2.$FREQ(17) ~PREQ(13) R = (ANUR*2+(TI+T2)* (T1+

kea = 1 T2+T12) *OM¥ 2) /DEN
IP = ((T1+T2)*ANU*OM-ANU*

(TIHT2T12)*0MY /DEN

LA (L)»- SQRT (PR 25N 2)
LU(J,L) = RELA(L)

No ‘ Yes

|Change
Parameter

No

KK1 = KK1 + 1
RELU(J,L)=RELU(1,L) -RELU(J,L)
J=2,9; L=1,5

TEST(LL); LL =
BREAK(LL); LL
AMMM; AM

1,5
= 1,4

A

RELU(1,L) = @.¢4 ;

L=1,5

Figure 2.19 Bode Diagram Technique
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TABLE VII
GAIN1 | GAIN2 | GAIN3 | GAIN4 | GAIN.5 |CONDITION |- -AV =’

09070 [“0.5225 | 0.4446 | 0.6150 | 0.8291 | NORMAL" 2

0.9197 | 0.5500 |.0.4611 | 0.6145 | 0.8250 | RjLOW.

0.8940 | 0.4984 | '0.4311 | 0.6161 | 0.8327 | Ry HIGH

0.9098 | 0.5190 | 0.4286 | 0.5852 | 0.8064 | RpLOW -

0.9943° | 0.5267. | 0.4605° | 0.6418 .| 0.8478° | Ry HIGH +10%

0.9088 | 0.5222 | 0.4350 | 0.5865 | 0.8051 | C,LOW "

0.9036 | 0.5245 | 0.4650 | 0.6653 | 0.8655 | CjHIGH

0.9207 |. 0.5469 | 04546 | 0.6132 | 0.8263. | -C,LOW

0.8944 | 0.5038 | 0.4376 | 0.6166 | 0.8313 | C,HIGH

0.9070 | 0.5225 | 0,4446 | 0.6150 | 0.8291 | NORMAL

0.9318 0.5812 | 0.4815 | 0.6149 | .0.8203 Ry Low

0:8806 | 0.4771 | 0.4200 | 0.6175° | .0.8358 | Ry HIGH

0.9127 | 0.5164 | 0.4128 -| 0.5519 | 0.7786 | R, LOW

0.9017 | 0.5316 | 0.4761 | 0.6658 | 0.8633 | RoHIGH | *20%

0.9105 0:5223 0.4262 0.5559 | 0.7759 C, Low

0:9036. | 0.5245 | 0.4650 0.6653 | 0.8655 | -Cy HIGH

0.9337° | 0.5758 | 0.4677 | 0.6115 | 0.8230 | C,LOW

0.8843 | 0.4910 | 0.4331 | 0.6178 | 0.8327 | C,HIGH

0:9070 0.5225 | 0.4446 | 0.6150 | .0.8291 | NORMAL ‘|-

0.9434 0.6168 . | 0.5068 0.6169 0.8148 | R; LOW

0.8671 | 0.4583 | 0.4108 | 0.6191 | 0.8386 | Ry HIGH

0.9157 | 0.5149 ‘| 0.3974 | 05150 | 0.7439 | R, LOW

0.8991 | 0.5369 | 0.4914 | 0.6874 | 0.8763 | R, HIGH +30%

0.9123 0.5230° | '0.4182 | 0.5231 0.7401 | -Cy LOW

0.9036 ; 0.5245 | 0.4650 | °0.6653 | 0.8655 | CjyHIGH

09460 | 0.6100 | 0.4853 | 0.6101 | 08189 | CoLOW-

0.8771 | 0.4827 | 0.4304 | 0.6186 | 0.8337 | C,HIGH




Fault Dictionary

TABLE VIII
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e In some cases it is possible to detect the component; in
others, we have the same sequence of gains for more than one
component., See Table VIII: Cg high 20 to 40%, and Ry
high 20 to 40%.

® All possible components variations must be simulated in order
to arrive at a complete fault dictionary.

2,4,1,2 Diagnosis Discrimination -~

In the assignment that we made like '"+" or "-" in the gains,
we get the faulty component and the range of the variation, i.e., if
the sequence is

+, +, +, -, -

we know that the faulty component is C, and.the value is between

10 to 407 low. But it is possible to get a little more information.
A very eéasy way to do it is to make a scale for some frequency, like
the one shown on figure 2.20. The frequency chosen must be the one

that has the maximum variation, i.e., to detect variation in Ry, the

second frequency will be convenient. See table VII.

db
A L+s

Figure 2.20
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2.4.1.3 Conclusions ~

The principal feature of this method is that this does not
require post calculations. After the measurements are already taken, the
only thing that remains is to look into the fault dictionary table
where the results are located, and pick up the one that matches.

The fault dictionary could be generated by two methods:
empirical and analytical. Improvement could be made in the deter-
mination of networks poles and zeros,

-2.,4,1,4 Applications -

The extension of this method to include systems instead of
circuits is straight-forward and, in general, one can assume that a
system is somewhat simpler than a circuit,

2,4,1,5 Computer Requirements =

Since there are no post-calculations involved in this method,
no speclal computer requirements are needed.

2,4.2 Tracking Technique ES 8] ’ [66]’ [67.-.'

2.4.2.1 General

The basic idea of this method is to produce the tracking of
the transfer function continuously, and without any kind of inter-
ruptions of the normal operation of the system under test. By track-
ing of the transfer function is understood the determination of the
coefficients that belong to the dynamical equation of the system in a
continuous:way. Knowing theése coefficients, it is possible to check
if these are or are not within the normal operation range; therefore,
for any time we know what is the status of the system under test.
Since ‘it is possible to know the values of the coefficients for any
desirable t, it is very easy to perform trend analysis. If a diagnosis
to component level is required, this will be carried out-by means of
the mathematical relationship between the coefficients of the dynamical
equation and the values of the components.

A bounded exponential integral and a running leftside Laplace
transform are defined, and a simple low pass filter is given in order
to find them.

The Laplace Transform of a function f(t) is defined by

[0 <]
F(s) = ff(t) e Stat (2.47)

o
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In equation (2.47) we can see that the integration limits are
zero and infinite, or in other words, that we are taking all the infor-
mation that is possible to get from the function f(t). We assume that
f(t) = 0, for £t € O. '

We can also define the transform of the function f(t) only in
the interval tl - t2 as follows

ty
F(s, t7< t € tp) = / f(t)e Stat (2.48)

ty

The integral as defined in the above equation, providei§grat ty; and t,
are finite, is called the Bounded Exponential Integral.

Now suppose that we want to know the bounded exponential

integral of Qfé%l , then

€, ) £,
- - -st
SLB)  otar = £(0eF| 48 £(r)e S tde (2.49)
3!

The above equation could be written in the following way

2
-st -g -
[ dgt!tz e 5 dt = SF(S,tl S t S t2) + f(tz)e t-2__ f(tl)e Stl (2.50)
6

-st
2
In equation (2.50) f(tz)e is the terminal condition and
-st
f1(t)e 1 is the initial condition. We arrive at the important

property that it is possible to operate on a function over the
bounded region, provided that the initial conditions at t; and the
terminal conditions at t, are known,
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In general, for a function over a bound region in time, trans-
formation of the function and its derivatiwes gives

£(t) => F(s, tl _<_ t Stz)

df(t) -St2 -st
S s F(s, t; < t < t) + £(t))e - £(ty)e 1

2

2 i -
4 £(r) =2 g2 F(s, t; < t < ty) + sf(tz) + éfc(ltiZ)] e st2
dt - =

- sf(tl) + T }e

L
and in general
a“s n X n1-i it ] -st
LHE o "R, 5y < £ EY+ z :s“' JLodiE(ey) | TR
de - = T
fem dt
— -
n-1 i h
-1- d f(t -st
- i U I BRFE T
i=0 aet i

If in the above equations, we place t = 0 and t, =o , we get

f£(t) => F(s)
d_cflit£2_=> sF(s) - £(0)

2
D) oy 5% (s) - s£(0) - Tt

dc
ac?

and in general

FRI0) ;o-1-i ale(o)
1e0 7 (2.52)
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that are the well-known expressions of the Laplace transforms of the
derivatives.

Now, in order to make a more general Laplace transformation,
let us go back to our definition given by (2.48). 1In this menti.ned
definition, we assume that the exponential kernel startsat t = 0
(see figure 2.21(a)3. in the same we assume.that s is real and

(a) (b)

Figure 2.21

positive). Suppose now that our exponential kernel is equal to 1 for
some t, not equal to zero (see figure 2.21(b)). With this modifica-
tion the transform of the derivative is given by
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t2 t2 t2
/ d_g.EE)_ eS(E30) g _ £(r) S(E3-0) + s [ £(t) e3(t3-t) g
t]. tl tl

= s F(s, tg, t; < t <t)) + £(t,) eS(t3 - €))
_ f(tl) es(t3-t1) (2.53)
and in general we can write

n-1

n i
4. £(8) => " F(s, t3, t <t < t2) + sn-l-i d £(ty) es(t3-t2)
at” - qcl
i=0 t
n- i
-1-i 4 £(ty) -
- 8" 1 S(esmEy) (2.54)
i= ael

That again, gives us the well-known expression of the Laplace

transform of the derivatives if we make t:3 = t1 =0 and tz =0 ,
Now, let us take t2 = t3 = t and tl = ts’ our equation (2.54)

takes the following form

e n A dEE

4 £(t) = 5™ p(s,t) + s ael

de? i=0

n-1 i
d f(tg)
-1-1 s -
- Z :sn — 57| 8(E-t) (2.55)

1
i=0 dt
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and our Laplace transformation is given by

t
F(s,t) = [ £y 6T g, (2.56)
t

]

The name given to this transform is running leftside Laplace
transform.

With the convolution theorem in mind, and looking at the
equation (2.56), we arrive at the conclusion that F(s,t) will be the
output of a system whose impulse response is given by eSt and has an
input equal to f(t) (see figure 2.22).

£(t) o— - oSt —————0 F(s,t)

Figure 2,22

Now, let us take the low pass filter indicated in figure 2.23. The
practical basis for the method is the discovery that a simple RC low-
pass filter provides a running leftside Laplace transform.

o— A A— —o o
R
I(t) cC —_—_— o(t)
— - r . —o

Figure 2.23
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The impulse response of the filter is given by

h(t) = ilc‘ o FC* (2.57)

Comparing the equation (2.57) with our hypothetical one (eSt), we

S
see that s RC ° Then
t
t-
- s F(s,t) = - s f £(v) STy, (2.58)
tS

Our transformation filter gives us the outputs indicated in
figure 2.24.

I ) -
£(t) + sF(s,t)
R
£(t) l o—
C — -sF(s,t)
Y o . om
Figure 2.24

Now, we assume that our system is defined by means of the following linear
differential equation.

M N
zm at™ Z_. n o gen (2.39)
m=0 n=0
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where
o(t) = Output function
I(t) = Input function
Pm = Coefficients of the part of the differential equation
which determines the poles of the transfer function
(we assume Po = 1)
zn = Coefficients which determine the zeros.
Since p, is equal to 1, then z, is the system gain at zero
frequency.
A transform of equation (2.59) gives
M m-1
R i
z:ps o(st)+§:§:pmsm11.d_d%§£l
m=0 m=1 i=0
z: 2: gn-1-1 do(ts) oS (t-tg)
p— del
N n-1l
z: g.8" I(s,t) + E E zngnli _L(El
n=0 n=1 i=0
N n-1

Z Z z " -1-1i 4 I(t ) | sty (2.60)

n=1 {=0
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The equation (2.60) is a new differential equation, the order
of which is lowered by one due to the time functions in the terminal
conditions. The order could be lowered to zero by transforming a suf-
ficient number of times. As a result, no derivatives are required
for the terminal conditions. Since s is a real negative quantity, the
negative terms in both members of equation (2.60) becomes negligible
after a suffictent waiting period from the beginning of the process.
Therefore,

M -
. i
E ?msm O(s,t) + ﬁmsm-l-l Q_Qé_L
dt
m=0 m= =
N n N n-1 di
= 2 5" 1(s,t) + g gn-l-i 4 I(H) (2.61)
n n dti
n=0 m= ﬁf

In order to understand the application of this method, let us
take the following

2.4,2.2 Example -

Let us assume that the dynamical equation of our system is
given by

2
dogt d o(t dI(t
o(t) + B —a%—l-+ P, dt( ) . Zqg I(t) + Zl —E%—l (2.62)

Taking in consideration the equation (2.61), we can write the equation
(2.62) as follows

do(t)

1(s13,0) [ 20 + N I OR (2.63)
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do(t)

In order to produce the elimination of dt » Wwe must make

another transformation of equation (2.63). The result is as follows

2 .
0(sy35 S350 B) [1 +8y,p * 31192] + 0(sy,,t) ["1 T SBy t g1232]+
+ - v s, s t) |z, + , 2.64
o(t) pz I(sll s12 ) [7‘0 Sllzl] + I(s12 t) 21 ( )

Since we apply this technique to linear systems, the transfor-

mation process could be reversed. Therefore, we can transform for 312

first, and then s;;. We have seen that the values of sy1] and syo are given

by the filter's constants (8 = , therefore, in order to get the

- L
RC
coefficients By» BZ’ go and 21, four equations like (2.64) are needed.

Our equations system takes the form

2
0(5195812: %) [1 toeby t S11§2]+ 0(s12-8) [5’1 *ospPyt S1252]

+ O(t)ﬁz = I(Sll’SIZ’t) [ZO + 81121]+ I(Slz,t)zl

2
0(s37>822,t) [1 +t syPy + s21’2]+ 0(s55t) ["1 *t 8Pyt Szz"z]
+ O(C)FZ = 1(321,522,t) [zo + SZIZé]+ I(SZZ’t)Zl

(2.65)
2. o )
0(s3;3:535:1t) [1 t sy S31"2]+ 0(s4,,t) [P1+s31?2 + E”32‘32]

+ O(t)ﬁ2 = I(s3l,s32,t) [Zo + 3312£]+ I(832,t)22

2 .
58, ,t) |1+ + > 8
0054125422 [ %411 9’42’%’2]+ 005,920 ["1 TPt s42“2]

+ 0()P, = I(s,;55,,,t) [’zo + §41'z1]+ I(s,,, )2,
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The values of Pys> Pgs

Zys and zi are given by

-0(s11, S19° t)

008510 Spp0 O

008315 539> )

“0(s415 5420 ®)

(2.66)

The matrix A is obtained through simple matrix manipulations.

The system configuration needed is shown in figure 2.25.

We can

see that we need sixteen transform filters in order to get the variables

required.
Input Output
I(t) System o(t)
Under Test X ad
Y

11 *n ®3 *m 1 *x 31 41
S S 8 8 s 8 S S
12 22 32 42 12 22 32 42
é é) é) é {6 O

1 81815 1(5438150) #5 511812 00s1;:8150)

#2 $91529 1(321,522,t) #6 891892 0(821,822,t)

#3 831832 I(s31,s32,t) #7 83153, 0(331,332,t)

#8102 14050 85,0842 005454209

Figure 2.25
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By means of this method, we can track continuously the transfer
function. We see from figure 2.25 that the values of the eight
measurements are obtained without any interruption, and therefore by
equation (2.66) we can get the values of P;> By, 24, 2, at any moment

that we want.

It is possible to make some reduction in the number of filters
that are needed, see reference [67] .
2.4.2,3 Conclusions

The more important features of this method could be summarized as
follows:

e It tracks transfer functions of systems continuously and without
delay, while they are in operation.

o The possibility to perform trend analysis, without any further
improvement of the system.

o There is no need of generation of special stimulus.
® Not only the mathematical manipulations of the method will be

handled by the computer, also it is possible to perform the
simulation of the filters.

2.4,2.4 Application

This method can be applied only in the linear case, circuits and
systems.

2.4.2.5 Computer Requirements

The computer size required increases very fast with the complexity
of the system under test. This increase is more strong and could place
some limitations on its applicability, if also we need to make the
simulation of the filters with the same computer.
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. 5
2.5 Scalar Remmant Method (Dynamic System Test1ng)[]

2.5.1 General

This method defines first a scalar performance indicator which
will always be positive when the coefficients of the differential

equation describing the system are within their prescribed
tolerances; otherwise, it will be negative. This method does not
indicate how many coefficients are out of their presecribed tolerances.

The scalar remmant function is formed from measurements of the input and
output and their respective system derivatives as well as from the
normal values of the system coefficients and their allowable deviations.

Therefore, in this method we have

e Indication that one or more coefficients of the differential equa-
tion describing the system are outside of the allowed range.

e Monitoring the scalar remnant with a zero-crossing detector pro-
vides an excellent system fault indicator.

e In function of frequency interruptions, it is possible to per-
form some trend analysis.

& The average value of the scalar remnant can indicate the degree
to which tolerance 1limits are exceeded.

A dynamical equation describing a linear system of nth order, has
the following form

d™x an-lx
anh —— + a —_— + ... + ajx+ a =
T el n-1  g4en-1 1 0
k&mﬂl‘
= by + blu + ... + bm dtm. (2.67)

or

(2.68)

n

Z :a dix
i i

120 d¢

- ,
o
o
e
[~ 1=}
N L
e
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I1f after some time, the coefficients of our system have been
changed, we have

.m
i i
v d'x t dtu
E ;ai T = z bi 1 (2.69)

or, in function of the same variables x and u, whehequation (2.68)
becomes

n . m ]

dl [] ) 1
Z: a; = - b, i—“i- - e(t) (2.70)
1=0 e =0 de

Subtracting equation (2.70) from (2.68) and -demoting with x and u the
variables x' and u' respectively, we have

n

i m i
Z(a‘ - a5 4ot dtx Z dtli + e(t) (2.71)
i=0

i=0

]
By introducing the notation Aai = ay - ay ; and Abi =b; - b; for

the respective deviations of the coefficients, the equation (2.71) can
be written

n { m i
d
Z Aay —7 - Z Aby —d‘{ = e(t) (2.72)
1=0 dt 1=0 de
The maximum error is given by

n di m diu
Max ¢€(t) = Max jAa, 1 |+ Max |- ADb 2.73)
Z : 1 gel 1 gt (

=0 i=0
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and in the same way, the minimum error is given by
n i m

d'x i

i= =

Now it must be determined at what point the magnitude of one or more of

the deviations ‘Aail or IAbil , eXxceeds its respective limit, 6ai
or Gbi .
dix aix
Pl i g 20
, , (2.75)
d'x dlx <
- a. - r)
8 att ’ att 0
aty 4t
+ &b, —; = > 0
1 det det
. , (2.76)
sb dtu d*u
- - — < 0
Logel 7 ged
Therefore, the equation (2.73) becomes
i
Max €(8) S T aly
ax e = 2 : a. | &t 2 : s
i|qel i dti (2.77)
i=0 i=0
and, in the same way
n
Min e(t) ax ' d (2.78)
in e = = a. 1 - b |~ .
Z 835 gt 54 laet
i=0 i=0
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but Max e€(t) = - Min e(t), therefore when the coefficlents are within
tolerance

le(t)l < Max e(t) (2.79)
Then, our scalar remmnant function is given by
5(t) = Max e(t) - ‘.(t)‘ (2.80)

The condition &(t) > 0 1is a necessary but not sufficient condition
for all coefficients of the system to be within their tolerance limits.
However, 8 € 0 is a sufficient condition for one or more coefficients
to be out of tolerance.

Combining equations (2.70) and (2.77) with (2.80), we arrive at the
following expression for § (t)

s _ 2 5 dix m‘é diu
() = Z gt |7 24 P1 | Get
i=0 i=0

n i m

E 4x ay (2.81)
- a. - b, ~ 1 .
iged i gqet

i=0 i=0

In the above equation & - and GtH'are the allowed tolerances for the

coefficients ay and bi’ respectively; and x and u are the measurements
of the input and output, respectively.
Elimination of the derivatives involved in the equation (2.81) could

be done following the technique given in the mentioned reference at the
beginning of this method.
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2.5.2 Example

In order to apply this method let us take the circuit shown
in Figure 2,26.

C
T
1
—0— ——f—
==C, R, = 10,000 @
R
! J 006 uF
C, =. 1)
vi(t) R2 vo(t) 1
R, = 5000 Q
ot Vo W8 y
02 = .02 uF

Figure 2.26 Lead-Lag Network
If we assume that the input are given by
vi(t) = 8in Bt

The first and second derivatives of equation (2.82) are given by

B cost Bt

Vi'(t)

-BZ 8f&n Bt

Vi"(t)

The transfer function of the Lead-Lag network is given by

2
\'4 TqT9 s“ + (T4 + T s+ 1
o (s = 1T2 (T 2)

2
Vi TyTy s°+ (T; + Ty + Typ) s+ 1

(2.82

(2.83)



2,73

where T = R.C

1 1°1
T, = RC,
T12= BGy

Now, since the input function is given by equation (2.82), the
equation (2.83) could be written as follows

2
v ~ 8 Tszs +(T1+T2)s+1
o(s) B 52+ﬁ2

2
T + (T + T_+ + 1
Tl 2 y ( 1 2 TlZ) s

_ _Kg K -8 o, K
s + jB s - jip s = ap s - a,
Therefore
alt azt
vo(t) = 2 IKﬁl cos( Bt +¢) + Ky e + Ky e
alt a2t
vol(t) = - 28 IKIBI sin( gt +¢) + Klale + K2a2e
2 2 alt 2 azt
" = -
v "(t) 28 IKBI cos( Bt +¢) + Kjaye © + Kya, e
where
2 L+ T, 1
s + T.T s 4+ —-—
K = B 2t2 T,T,
1 2 2 B
s“+ B 8 - «
2 s = a
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2 . ThL+ T, . 1
B 1Ty )Ty
K, = Y
s“+ B S -~ a
1 s = az
P TITZSZ $ (T + Ts + 1
Ks = | 3 = A+ jiB
s - jB8 Tszs + (Tl + 'r2+ T12)S + 1
s ==if
- -1 B
¥ = tang 2

The values of the coefficients as well as the allowed ranges are indi-
cated in Table IX. These are obtained allowing a range of variation in
each component of +25%.

TABLE IX
Coeff, Normal Value | Lower Bound Higher Bound | Percentage
(%)
-8 -8 -8
a, .600 x 10 .450 x 10 .750 x 10 25.0
a .360 x 10~3 | .285 x 10~3 .435 x 1073 20.8
a .100 x 10! .100 x 10! .100 x 101 0.0
0
b .600 x 10~8 | .450 x 10-8 .750 x 10~8 25.0
2
b, .160 x 1073 | .135 x 10~3 .185 x 10~3 15.6
by .100 x 10 | .100 x 10! .100 x 10! 0.0
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The output of the program, for different cases, looks like the
following

Case Scalar Param. Coefficients Within
Remnant Status Normal Range
1 .119 x 107> +25% R, Yes
2 -.370 x 1074 +150% Ry No
3 |-seax107* | 4136 ¢, No
4 .532 x 10-4 -10% R2 Yes
5 .712 x 107> +24.3% Ry Yes
6 -.108 x 1073 +200.0% C, No
7 .725 x 107% +100.0% C, No

2,5.3 Conclusions -

The results of the seven cases are satisfactory, except that of
the seventh case. The reason for this complies with what was stated
earlier, namely, that the condition §(t) > 0 is necessary but not a
sufficient condition for all coefficients of the system to be within
their tolerance limits. However, § €< 0 is a sufficient condition
for one or more coefficients to be out of tolerance.

2,5.4 Application -

The field of applicability of this method covers only the linear
case of circuits and systems.

2.5.5 Computer Requirements -

Since there are only simple post-calculations involved in this
method, no special computer requirements are needed.
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2,6 Inverse Probability Method

2,6.1 General

The philosophy involved in this method is as followes:
"'Given m measurements that could be taken in im test points or less,
find the difference between these values and the normal values at
the same points. By means of the inverse probability, the probability
that each component will be a faulty component is found by this difference.
The component that has the highest probability associated with it will
be the most probable faulty component."

If we assume that we have a circuit with 10 components, and

after having taken the measurements and found,the probability for each
component, the following table is obtained.

TABIE X

T

COMPONENT PROBABILITY

6.09875
0.11032
0.09923
0.12543 =
0.11342
0.09987
| 0.09996
. 0.12135
. 0.09345

0.03831

OVvoONOTUVNPOLNE

[

The most probable faulty component will be the 4th component
because it has the highest probability associated to it.

The circuit under test has the configuration shown in figure 2.27.

El (o WEN—— L —— 0 yl
1] 9 O0—— Circuit Under I — o ¥ 2
Test
0. ————oO
wp a_____1 O ;ﬁm

Figure 2,27
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The circuit under test has n components that can fail. The number of
components is greater than the number of measurements taken.

- Let
yi = fj(xl’ Xps wees xn) = Theoretical expression for the jtR
measurement.
i = actual value of the ith component within the network.
= nominal value of each component
n = number of components
m = number of measurements taken

By means of the Taylor series, it is possible to write

— ) (]
fj (Xl,XZ, . .}in) = fj (Xl ,Xz, .o .Xn\ + Exl-xl);}?]‘."'. . .+(Xn-xn)a—xr':’]

fj (xl,xZ, . .xn)

(xn-xn)a%] fj(xl,xz,...xn)l + . (2.84)
n

If we designate wichSYj = fj(xl,xz,...xn)- fj(xl’XZ”"xn) and with x and X
the vectors (xl,xz,...xn), and (Xl,Xz,...Xn) respectively, the equation

(2.84) could be written as follows

2 of 5 (X)

i
L& RI1es)
+ 5T Dx, ODx + ... 2.85)
2! 1 551 i k ax, axk_ (

where ZSxi stands for xi-xi. If one of the increments ZSxL is greater than

the others, our equation (2.85) can be written neglecting some terms, in
the following way
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J — i o 21 xL 2
i=1 1 ixL
n 2
f. (X
v+ 2 % oo 2H® (2.86)
k=1 - axL axk
(k#L)
if Ox > Axi for all i # L
or rewriting in terms of functions of Ax
AYj = gjL(Ax];) Axl + gjL(AxL) sz-i". "'+g§'_(]:-.1)‘.(.AXL) AxL_]_
+ g (%) + gy (B Ox )+ el + gy (Ax)AX (2.87)
Then, for this component, we can form the following system
lBYl = glL(llxl)ZSXI + ...+ glL(ZSXL) + ...+ gln(ZSXL)Zth
L] o o °
AYJ. = gJL(AxL)Ax + ...+ gJL(AxL) + ...+ g5 (AxL)Ax (2.88)

O%n=gmxAﬁ)Ax + ..o+ g (Aﬁ)+...+g (Aﬁ)Ax

A given test result is comprised of contributions of random deviations
of components which are within tolerance, as well as from the faulty
component. We see in the above system that only one column is a function of
one increment, all the others are function of two increments. Therefore,
if in our circuit all the components remain at the normal value, except
the faulty component (Xj), the system (6) becomes

DY) = g, (8x))
) [ ]

KSYj = gjL(ést) (2.89)
[ ] [ ]

DY =

m - g@h( AxL)
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The above is the contribution in each measurement value of the faulty
component. Therefore, all the other terms in the equation (2.88) are
the contribution of each measurement value, made by the remaining compo-
nents that are within the allowed range. For all this reasoning, our
problem is similar to the classical communication problem of detecting

a signal in the presenne of noise.

Our system (2.88) could be written as follows

AYl = SlL(AxL) + NlL(Axl,sz, ...Axn)
® [ ] [ ]

® ®
AYm = SmL(AxL) + NmL(Axl,sz, ...Axn)

It is interesting to note that the '"noise" characteristics are
function of what was called "signal" (Axp).

NjL = [SYj - SjL (2.91)

When NjL is composed of a large number of independent Gaussian-like ran-
dom variables (Z&xl,ékxz, ...,é&xn), the joint distribution approaches

a Gaussian distribution.

Let

—_— 2
jkL eNjLNkL = I:gjL(AxL)gkL(AxL)] o (Axl) + ...+

m
[8 - (Ax)g a ')] s2(ax )
j@-1) ' qk@-n e R -1
2
* [gj(L+1)(A’i)gk(m1)(A‘&,)] ¢ (Ax )+ .. (2.92)

where dZ(Zij) is the variance of an in-tolerance component xj. The

moment matrix is given by
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11, ™2 ™mL

m m o m
M - 21 M22L 2L (2.93)

"nin "m2L P

The joint probability of the m normally distributed random varia-
bles Nl’ N2, .o Nm are given by

PNy, Ny oo NmL = (Zw)i\llu— exp~% Z Z 1kL 1L N (2.94)

i=l k=1

where mTI];L stands for the element that appears in the ith row and kth
: i
column of the inverse of the M, matrix. (For a deduction of the equation

(2.94) see Laning & Battin -R .-Rdudon. Brocasgss .9n Abtvastic .0oateol - MeCaaw
Hill - page 73.) Given a set of measurements values (AYI,AYZ, .-..AYm),

the probability that a given component is responsible for it is as follows

P(X; /DYy, AYy, ... AY) = KfP(xL,:iL)P(AYl, AYy, .. AY /Xy %1 )dx (2.95)

where P(XL,xL) stands for the density distribution of component L, that
with nominal value X, had the value X .

The value of K is equation (2.95) is found knowing that
n

ZP(XL/AYI,AYZ, ...Aym) = 1 (2.96)
I=1

In order to be able to use equation (2.95), we must know the value
P(AYI,AYZ, .. AY /XL,xL); to do this, we use the following equation
m
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PAY_ ,AY., ...AY /X ,x) =
1 2 m

m | m
—g— - %{ G (AY-S; 1)
(2:)%1“,,1" o Z z:mikL ¥y-541

i=1 j=1

(ZSYk -_FkL)} (2.92)

Knowing the circuit, and given a set of measurement values (ZSYI,ZBYZ, ...A&Ym),

for each component, we can get by equation (2.,97) which is the probability
that this will be the faulty component. Therefore, we can prepare the
following 1list

P '
(xl/AYl,AYZ, AY )

m
P(xy/AY),AY,, ...AY )

(2.98)
®
®

P(xn/ZSYl,ZlYZ, ...Z&Ym)

The most probable faulty component will be the component that has the
highest probability associated with it. As a clarification about the

steps that are involved in this process, a flow graph is indicated in
Figure 2.28.
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" Given
i=1l, ... n
gij( Axl) j:i: “ee g *This step is necessary when
y eae we want to know the probability
P ,x )3 4=1, ... associated with each component;
(¢ i’ j)’ =1, B & range of values otherwise, the highest value of
2 . '
v (ij); j=1, ... n pl(s/Yl,...,Ym) gives us the
and the values AY1’ AYz’ LAY most probable faulty component,
m

Calculate

"118"20 " "1nf
Mq = m?llm.zzl mzm!

mml!mmZ'. Bk
ug | A

P( AYl, AYZ, v AYm/Xl, xp)

m m
- e o - 2D kAT, - s
AR [ i1 1

(AYk - Skl)

PRx!/AYl,...AYm)

=/P(x£, x{)P(AY, , .. &Y /K f,x)d_{

No
———
1 *)
S The highest value
(:\:lp g /8Yy, .- -8Y) of P(XY/AY,...BY )
P AY is the faulty
(X! f 1s-- AT component

= (X4 /8Y; ...8Y )K 1=1,2..n

Figure 2.28



2.83
2,6.2 Conclusions -

The most important features of this method could be summarized
as follows

® This method makes a good utilization of all the information
that is possible to get from the circuit under test, like for
instance the density distribution values for each component.

® The number of measurements are less than the number of components..

2,6,3 Applicationg =~

The application of this method is only for linear circuits/systems.
The extension of this method to cover non-linear circuits/systems appears
not to be feasible.

2,6,4 Computer Requirements -

The complex post-calculations involved in this method impossed
strong requirements on the computer required. THhie requirements increase
rapidly with the increase at the size of the circuit under test.

For any set of measurements taken it is possible to see in the
flow-chart shown in figure 2.28 all the mathematical operations involved
in the process. With some improvements on this method it would be possible
to make some reduction in the post-calculations involved.
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2.7 Power Spectra Method =

2,7.1 General

This method consists of obtaining the faulty component through the
knowledge of the transfer function, which is found by power spectra analysis.
There are two big steps involved in the process

e Transfer function determination:

e Faulty component diagnosis

2.7.1.1 Transfer Function Determination ~ Let the configuration of our system

under test be given by Figure 2.29., The input to the system is formed

by two parts: the normal signal fs(t), and the random signal =n(t).

The input to the digital computer will be the input and the output of the
system under test. With these two signals we may form the autocorrelation
function of the input and the cross correlation function between the input
and the output. The Fourier transforms of both functions give us the power
spectra and the cross power spectraj the relation between them permits the
determination of the transfer function.

Under

+ + Test
~J-
£, (E)=n(t) +£ (£)

n(t)

D/A Convt. A/D Convt.

Digital.

Computer

Figure 2,29

Figure 2.30 gives us a clear idea of the relations involved.’

£ (€)= & () + %(t) -fjéﬂ
¢ii(;;---‘~h--~_-‘-""‘ eio(t)

J

$iilw) dio(w)

\ H(W) / |

Figure 2.30
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In order to develop the equations which we need to carry out the
calculations, let us take into consideration the svstem shown in
Figure 2.31.

fi(t) System fo(t)
—> g(t)

Figure 2,31

The autocorrelation function of the input signal is given by
T
L
¢;;(t) = Lim 37 £,(t) £i(t+7)de (2.99)

T>® -T

and the cross correlation function between the input and output signals by

T
1
'Pio(f) = Lim 37 f fi(t) fo(t+r)dt (2.100)

T>® -T

The Fourier transform of ¢pii(~r) is the power spectra of the input

signal and is designated by d)ii(w). In the same way, q>io(w) is the cross

power spectra between the input and output signals. By means of the con-
volution function, it is possible to write the output signal in function
of the input signal and the impulse response of the system.

o
fo(t) = f g(x) fi(t-x)dx (2.101)
and then -®
_ o
fo(t+'r) = f g(x) fi(t+1'-x)dx (2.102)

- @
From equations (2.1Q0) and (2.102), it is possible to write

T ©
e 1
0;o(n) = Lim L f £,(t) f g(x) £, (thr-x)dx dt (2.103)
T o -T -

If the order of integration is interchanged, equation (2.103) may be
written as

T
1
lpio(-r) = f g(x) [Lim 3T f £1(t) fi(t-f-f-x)dt] dx (2.104)

- ® T—)m -T
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It is easy to recognize that the bracketed portion is the auto-correlation
function of the input. The convolution between the impulse response of
the system and the auto-correlation function, results in the cross-
correlation function; or in other words, if we apply in the input of the
system the function ¢,.(7r), we are going to get in the output ¢, (7).

. ii io
See Figure 2.32.

. (1) ,
i1 System ¢10(T)

g(t)

Figure 2.32

In the transform domain the equation (2.104) becomes

¢io(w) = G(w) @ii(w) (2.105)
and then
_ Qio(w)
G(w) = m (2.106)

I1f the input to our system is white noise, the power spectra is a
constant, therefore

G(w) = K ¢io(w) (2.107)

Depending on the case, the transfer function is found by use of equation
(2.106) or (2.107).

1
2.7.1,2 Faulty Component Diagnosis [i]

After the transfer function is obtained, the impulse response is
calculated by means of numerical methods.

A sample of this data must be compared with a nominal sample that
is found knowing the impulse response that describes the system under
test and the nominal values of the components. Now, to complete the
diagnosis we have two steps in our process

e Check if both results represent the same impulse response.

e If both results represent two different impulse responses, find
the component/s responsible for this cause,

In the first step we have two sets of values h(t;) and h (t;), both

for i=1,2,...,n. We can apply the chi-square goodness of fit criteria.
In order to apply this criteria, the interval chosen for sampling the
functions must be such that the points obtained will be independent.
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Impulse
Response ¢

a- N
| ,/ ///_ '.\\\ .
y /‘ l ‘\\‘\\
/7 ' : LN
! ~
//A’ : ! e A
! ~
// | i ; ~.\. \\ hn(ti)
/ ; "~ h(ty)
' = .
hn(ti) = Nominal values
h(ti) = Experimental values
Figure 2.33
The chi-square value is given by
2
2 L [h(t-) - h (t.)]
X°= 3 = n 1 (2.108)
i=1 h ()

The degree of freedom k is one less than the total number of inde-
pendent points in one curve. Given the probability that both data-sets
belong to the same curve, and knowing the degree of freedom, from
Table V (page 368 - John E. Freund - "Mathematical Statistics") we get
the value of X2. For instance, for a probability of 0.975, and a degree
of freedom 26, we get X“ = 13.844. This means that our chi-square value
calculated by means of equation (11) will be less or equal to 13.844

()(12_=l < 13.844), in order to say that with a probability of 0.975 both

data sets belong to the same curve.

1f the result of this step is positive it will mean that our system
is working in optimum performance. Now, on the other hand, if the
result of this step is negative, it will mean that we must go to the
second step, which is to find the components responsible for this result
and check if their values are within the allowed range. If this is the
case, our system is operating in a normal condition; if not, we have

to diagnose the faulty component/s.

In the second step we assume that the impulse response of a system
h{e, Pys Pos «:os pn) is differentiable at Pys Pys +e-5 P then it can

be represented by a multiple Taylor series.
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2 oh(t,p,,sPyns--+sP o)
= 10’720 n0
h(t:pl’pzs"-’pn) h(tap103p20"-°’Pno) + Z 3P Apj
j=1 3
Lo n - a2t cee
+ 3 (£,P102P207 -« + 2Png) AP AP, + .. (2.109)
i=1 j=1 Py apj k|
where ij (for j=1,2,...,n) indicates the nominal parameter values. For
small variations in the parameters, an approximation to the impulse
response can be obtained, if we consider the terms up to the first
order only. Then
h(t,p, ,p P ) ¥ h(t,p,_,p b 3+ 3 IMCEP1oPage - Prgd pp
0 A SR 710°720° 7700”4 J
1= vy
(2.110)
The difference between the impulse response at the operating parameter
_values and the impulse response at the nominal parameter values is given
by
e(t) = h(tsplspzx-'°spn) - h(t, p10’P20""’pnO)
0 dh(t,p q54-+5P; )
= 2, TL0T T T ROT Ap, (2.111)
i=1 ap, J
Since equation (2.111) is a function of the time(t), we can apply it for
n different values. Therefore, we get the following equation system
e(tl) = a; Apl + aj, Ap2+ ce. + a4 Apn
e(t) = a__ Ap +a__Ap_ +....+a_ AP
2 2
1 1 22 2 2n n (2.112)
L ] ® ® [ J
e(tn) = a, Apl + a o A.pz + ...+ annA P,

where

_ ah(tl’pIO’pZO""’pnO)

6PJ-

aij
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o g
Impulse
response
h(ty)
b, (ty)
ecty k
| | I | | | |
| Ve ! = 3 t
Itl 't, i:3 t t e lt:7 Ity

Figure 2.34

The equation (2.112) can be put in the following matrix form

B e(tl) I — a;; a5, a7 r APl -
e(ty) 421 222 3n ARy
- (2.113)
e(t ) a a . a AP
L n -

L~ nl n2 ' nn L. n .
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and then
_ - _ o =1 -~ q
Apl all 812 . . aln e(tl)
APy 31 222 ° ¥y e(ty)
[ ] = L ] . [ ] L] * » (2.114)
Apn anl a ., - . a . e(tn)
L - - - L -
or
ap = Al g (2.115)

The matrix A is determinated a priori, and the same happens with

A'l. Therefore, knowing the error at n different times, it is possible
to find the variation (Apj) in each parameter, and therefore, to see

if the same is in the allowed tolerance range or not.

2.7.2 Conclusions =~

The only test points needed in this method are the input and the
output of the circuit/system under test; therefore, it is possible to
apply it to any circuit/system that is already in use.

The level of noise introduced for test purposes must be kept low

in order not to produce any effects in the normal operation of the
circuit/system under test.

2,7.3 Applications =«

The principal application of this method is to perform the checkout
of a linear circuit/system while it is in normal operation.

The extension of this method to include nonlinear circuits/systems
appears not to be feasible. )
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2.7.4 Computer Requirements -

The computer requirements for handling all the post~-calculations
involved in the faulty component/s determination are extensive, but
the advantages of performing the checkout without interruption of the
operation makes this method very attractive.

The diagnosis calculations will be performed only when the nomi-
nal impulse response and the experimental impulse response do not
represent the same impulse response (chi-square goodness of fit
criteria).
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2.8 Parameter Identification Méthgqpq

2.8,1 General

This method identifies the coefficients of the transfer function
of the unit under test. The output of the unit is cross-correlated
with the outputs of orthogonal filters that are excited by the same
stimulus (white noise); from this cross-correlation, the coefficients
of the transfer function are obtained.

The response of a system to white noise is sufficient to com-
pletely describe both linear and nonlinear systems,

Let us consider the linear system indicated in Figure 2.35.

x(t) o h(t) % y(t)

Figure 2.35

where
h(t) = 1impulse response of the system
y(t) = output of the system
x(t) = 1input of the system

The output of the system is given by

o0

y(t) = /‘ x(t ~7) h(r) dr (2.116)
0
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Similarly, the output of the Lth filter .will he given by

yl(t) = foox(t -7) £ (7) dr (2.117)
0
where
‘[n(t) = impulse response of the nth filter
Xl(t) = output of the nth filter.

Let us define the average of the product of y(t) and %l(t) in
the following way

T
y® -y ® = Lin = / y(e) * yp(e) de (2.118)
T— -T
Then
T (oS ®
y(t) * yp(t) = Lim = dt x(t - 74) h(r,) dr x(t - )fh( Yd-
1 2T / 1 1 1 T 727572
T—>® -T 0 0

(2.119)

By interchanging the integration order, we get

(o) o T
y{%) -'ylzts = /drlh(r]_) fd-rz gn("z) Lif -2% f x(t - rl)x(t - rz)dt
0

0 T—»> ® .T
(2.120)
1 T
But Lim 55 x(t - rl)x(t - 1'2)dt = ¢xx(fl - 1-2), then
T—>® T
' o) o
Y& y® = fdr1h<r1> fd'z Lep e (o1 -7 (2.121)

0 0
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The value y(t) - yI(t) represents voltage level output and will
be designated with A

A /df h(fl) f T (1'2) cpxx(rl - 72) (2.122)

If x(t) is white noise, the power spectra is theoretically the same
value K? for all frequencies, or ¢kx(w) = K2, and therefore the auto-

correlation of the noise is an impulse of area 21K2, or

Cux(r1 = ) = 2K (e - 1) =NPa(ry = 1y (2.123)

Considering equation (2.123), equation (2.122) becomes

o o0
A = /dflh(rl) /d'rzfn(rz) N2¢5(-rl - 72)
0

0

Qo
- N fdr h(r) fn(f) (2.124)
0

By means of the Parseval's theorem, equation (2.124) becomes

2 +j>
N
Ay = 2m /Y(S) h(-s)ds (2.125)

This general expression may be expanded in terms of the residues
of the orthogonal filter transfer function; in this way, a relationship
for the coefficients of Y(s) is obtained. If p is the number of
coefficients in the transfer function, we need to have n from 1 to p.
Therefore, our p equations will be given by

+]oo

f [(s) h(-s) ds for n=1, 2, ..., P

_jm

>
h1z
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The configuration needed is shown in Figure 2.36,
Source of System
White under test —— Computer
Noise
h(t) )
n=1
——0
Orthogonal n=2 |
filters o¢ O J
-0
gn(t) Lo=p
Figure 2.36
If the impulse response of the nth filter could be written as
f A (s)
n(s) = B_(s) (2.126)

where Bn(s) is a polynomial of nth order and within different roots, the
value An could be written as

n

A = Nz E
n

m=

Therefore, our system will be given by

(s + s) fn(s) h(-s)l (2.127)

§ = =8

N2

5>
|

(s + 5p) £, (o) K(-9) I

s = -8;

Ay

2

* P
2
Ap = N E ‘(s + sm) 11(3) ¥(-s) \S=-s
=1 m

(s + 31)'ﬂ2(s) 1(-s) I +
s=-8,;

(s + s )L (s)h(-9)

$='32}

(2.128)




2.96

From this system, the p coefficients of %i(s) are found.

The corresponding analysis for non-linear systems is more
complex and makes use of Wiener's nonlinear theory. See for more
details the reference given at the beginning of this method.

2.82 Conclusions -~

The only test points needed in this method are the input and the
output of the circuit/system under test; therefore, it is possible to
apply it to any circuit/system that is already in use, no hardware
requirements are needed.

2,8.3 Applications -

The application of this method covers linear and nonlinear cir-
cuits/systems, but the main disadvantages is that the circuit/system
must be out of operation.

2,8,4 Computer Requirements -~

The complex post-calculations involved in this method impose
strong requirements on the computer. These requirements
increase if the circuit/system under test is nonlinear. For this rea-
son, the applicability of this method is only justified when there is
no possibility of applying any other method of diagnosis,
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2.9 Max-Current Method >

2.9.1 General

The idea of this method is as follows: "If between 2 nodes
there are more than one branch, a variation in one or more of the
components that belong to the branch which carries a predominant
amount of current can be detected at the given nodes. On the other
hand, any variation in one or more of the components that belong
to the branch that only carries a small amount of current are masked
by the normal. intolerance variations of all the components. Therefore,
the only path in which failure produce a unique effect is in the path
that carries a predominant amount of current. This is called the
majority current path (MCP).,"

The calculations proceed from the test point or node (say node k)
at which the positive test voltage is applied. See figure 2.37.

-Vl

+V1
Test Point

Test Point

Ma jority-current
path

Figure 2.37
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The remaining nodes that are connected to node k are examined
and we choose the one that carries the highest current, say n. This
new node now replaces node k and the process is continued until the
return node of the test point pair is encountered, node i. All the
nodes and branches that were selected belong to the MCP.’

Now, from measurements that will be done between the test points
(k-i), the only components that are going to have a unique effect in
its variations will be the components that belong to the MCP; therefore,
the fault isolation from these two test points will be only for the
components belonging to the MCP. It is obvious, that we need more test
points to make the isolation in all the components that belong to the
circuit given in figure 2.37. 1In order to select the adequate number
and placement of the test points, the following criteria are adequate:

1. There should be a test point at the output of each stage
or at the input to the following stage.

2, There should be a minimum of one test point (including
power, one input, and one output) for every seven passive
components (resistor/capacitor/inductor) and semi-conductor
elements (diode/tramsistor) in the circuit.

3. There should be a test point placed at each node to which
three or more transistors are connected.

4. There should be one additional test point on each bridge
type configuration (see Note below).

5. The added test points should not be connected at a node where
the connection will adversely affect the circuit configuration,
especially the input to a stage of isolation or amplification.

Note - Since the bridge configuration is the most difficult to
analyze , the following procedure is suggested in the mentioned
reference:

1. Determine the lowest numbered node to which three or more
elements are connected.

2. TFind the next lowest numbered node to which three or more
elements are connected,

3. 1Is there an element from a node in step (1) to a node in step (2)?
If yes, a bridge has been found, proceed to step (4). 1If not,
return to step (2) to process the next node (i.e. to find the
next higher numbered node with three elements connected to it).
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6.

8.
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Assume that a bridge has been found and the center nodes of
the bridge are numbered i and j where i is lower in number
than j. Determine if some element goes from node i or node
j to ground. If yes, proceed to step (5); if not, '
that bridge configuration does not require an additional
test point; return to step (2) to process the next node.

Determine if the base or the emitter of a transistor is
connected to node i.

a) 1If not, proceed to step (6)

b) If yes, determine if the emitter has a test point or
if it is connected to ground. If not, place a test.
point on the emitter; if yes, place a test point on the
collector if one does not already exist there. Proceed to
step (8).

Determine if the collector of a transistor is connected to
node 1i.

a) If not, repeat steps (5) and (6) for node j; then proceed
to step (7).

b) 1If yes, place a test point at the collector, proceed to
step (8).

1f a test point has not yet been assigned, node i is assigned
as a test point,

Update node i as the next three element node and continue

the procedure. (If node i is assigned as a test point,

this node is never considered again for a potential bridge
circuit. If a node k on the transistor connected to node i
is assigned as a test point, node k is never considered again
but node i is still under consideration.)

above steps are indicated in the flowchart shown in figure 2.38.

2.9.2 Conclusions -

The number of test points required, increase rapidly with the
increase of the size of the circuit under test. Therefore, this
places a limitation on the size that is possible to be handled.

Dynamic and static measurements will be performed in order to
detect the faulty component.
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2,9.3 Applications -

The application of this method is for transistorized circuits,
and not for systems.

2,9.4 Computer Requirements -

Only simple post calculations are involved, therefore there are
not special requirements about the computer that will be needed.
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2,10 Detection Condition Method (Dynamic System Testing) =

2.,10.1 General

This method consists of taking measurements from a transient
response of a system. The following assumptions are made regarding
the unit that will be checked.

e The configuration of the unit is known, but the actual
values of its components are unknown.

e The design values of the components that belong to the
unit are known; therefore, the theoretical coefficients
of the difference equation are known.

e In order for the performance of the unit to be satisfactory,
the coefficients of the actual difference equation that
describe the system must be within known tolerance bounds.

With all the above assumptions, a mathematical condition is
obtained between the theoretical coefficients, the measurements
taken and the bounds of each coefficient. 1f this condition is
satisfied, the performance of the unit is acceptable; otherwise, it
is faulty.* If the performance of the unit is nonsatisfactory,
the data obtaired could be used to make the diagnosis.

Therefore, the two approaches outlined above are

e First, if our system is working with all the components
within the normal range, and

e Second, if this is not the case, what are the component/s
responsible for this change.

In order to accomplish the first step, we assume that the curve
h,(t) shown in Figure 2.39 represents the theoretical impulse
response of the system under test. Since the components have some
range of tolerance, for any specific combination of them, we are
going to have another impulse response, as the one that is shown in
the mentioned figure Q(t)) . Also the difference between h,(t) and
h(t) is indicated in the same figure.

The samples obtained from both curves must satisfy the following
difference equations

*Garzia, R. F. - A Fast Technique for Dynamic Fault Detection - 1970
IEEE Automatic Support Systems for Advanced Maintainability - St. louis,
Missouri -~ October 1970.
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m

Z ai hn(n + iT) = 0

i=0

7

< (2.129)

m

Za;_ h(n+ iT) = O

L i=0

impulse
response

Figure 2.39
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Now, in oxder for the system to be within the normal range,
each coefficient must be subject to the following constraint.

aj - € 4o =< a; < a, + €, max (2.130)
In general, we can write

]

aj = aj+ € (2.131)
Therefore, the second equation of (2.129) becomes

m m

z ag h(n + iT) + z € h(n+ iT) = O (2.132)

i=0 i=0
Now, if in equation (2.132) we write € max instead of ¢,, we get
the following relationship : 1

i m

. . a
E a; h(n+ iT) + E € max h(n + iT) 0 (2.133)
i=0 i=0

Making the same thing with the lower bound, we arrive at the following
equation

m m
z ;ai h(n + 1iT) - E €imin (0 + 1iT) = 0 . (2.134)
i= i=0
If e . = e, = e
imlin imax im
, m m
P . >
E:ai h(n + iT) + z_:eimh(n+ iT) 2 0
i=0 i=0

(2.135)
ﬁ m m
E:aiMm+ﬂ)-2:emhm+iﬂ 0

i= i=0

\
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Therefore, we can state the following condition

m m
E a; h(n + iT)| = E ¢, h(n+ im)| (2.136)
=0 =0

The above condition is a necessary but not sufficient one for all
coefficients of the system to be within their tolerance limits.

m
2 a; h(n + iT)
i=0

m
However, if > IE &q (o + iT)| is a sufficient
i=0

condition for one or more coefficients to be out of tolerance.

In order to accomplish the second step, we are going to use the
Prony's method that is outlined below and makes use of a number of
measurements given by two times the degree of the differential

23] i

equation that describes the system, [ ] If we have indicated with m the
degree of our differential equation, the transfer function of our

system is given by

K(s - SI)(S - SII) eee (8 - Sd)

H(s) = (2.137)
(s - sl)(s - sz) oo (s - sm)
Now, making the fraction partial expansion of equation (2.137)
K K K
H(s) = —b— + —2_ 4 ... 4 —D_ (2.138)
s - 8, s - S s - sp

Taking the anti-Laplace transform of equation (2.138) we get
Slt Szt Smt

h(t) = K1 e + K2e + ...+ K.m e

In the derivation of this equation, we assume that all the roots are
different.
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If instead of having t as a continuous variable, we assume
that the values are taken at equal dimteryal talled T, it ps poskdble
to write the equation (2.139) as follows

h(nT)

Kle

SlnT +

Kze

sznT

+ ..o+ K eSm

nT

Of course, bbth bapressioms identidy .the same system. Now,
applying the equation (2.140) to different values of n, we can form

the following system

’

h(0)

h(T)
<

h(mT)

Kl + K2 + ... + Km
s1T s9T s T
K, el +K,e2 +...+4K e™
1 2 m
(2
s,mT s omT s_mT
el + K e 2"t ... + K e m”
1 2 . m

In order to get the solution of equations (2.141), we take a;
times the second equation, aj the third equation, and so forth. Now
making the sum with the system formed in that way, we get

agh(mT) + ... + a;h(T) + h(0) = K, [EmeslmT + ... + eslT a; + 1:]

SZmT szT
K ae + ... + e a + 1:]
2 [:m 1

s:T

Calling e L

+

m

&= Zi’ the above equation could

m

-+

+

s mT s T
K lae™ + ,..+e®™ a, +1
m 1

ees + alzl + 1]

R a1z2+ 1]

ees + alzm + 1:]

(2.140)

.141)

] (2.142)

be written as follows

(2.143)
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If 24, Z9, ... Z, are the roots of the equation amZm +

m-1

a Z + ...+ ajZ+ 1 =0, the equation (2.143) becomes

m-1

amh(m'.[‘) + am_lh((m-l)'l) + ... + alh(’l‘) + h(0) =0 (2.144)

And, since this is true for any n, we can write the equation (2.144)
as follows

amh(n+mT) + am_1h<% + (m‘l)T) + ...+ alh(n+T) + h(n) = 0 (2.145)

Applying m times the equation (2.145) for different values of n, we
form the following equation system

’

a_h(uT) + am_lh((m-l)T) + ..o+ a (D) = -h(0)

amh((m-l)T) + am_lh(mT) + .0+ ﬂlh(ZT) = -h(T) (2.146)

|amh(2mT) + am_lh((Zm-l)T) + ... + alh(mT) = -h((m-l)T)

N

Therefore, the procedure for applying the Prony's method is as
follows
e Make 2m measurements of the impulse response at equal Hpbervals.
e With the measurements of the above item, find the values of
the coefficients ay, aj, ... a; with the equations system (2.146).

e FWind the rqots of the equation amz‘“ + am_lZm"1 + ... + alz +1=0
e With the equations system (2.141) find the values Ky, Ky, ... Ky

e The poles of the system are given by

5; = "IT- fo 2, (2.147)
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2.10,2 Conclusions -

This method provides a good approach to the solution of the
fault isolation problem. An optimum sampling interval exists when
Prony's technique is used, the same is a function of the highest
frequency desired to be retrieved.

The detection condition is a very fast procedure for checking
if further analysis with the data will be necessary to be performed.

2,10.3 Applications -

The application of this method covers only linear circuits/
systems, but the main disadvantages is that the system must be out
of operation.

2,10.4 Computer Requirements =

The complex post-calculations involved in thik method imposed
some requirements on the computer required. These requirements
increase if the circuit/system under test becomes more complex.
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CHAPTER III

3.1 Comments on the Methods Described

Ten methods have been presented, three of them with two different
techniques. In some cases, computer applications have been included.

The programs that have been used are given in the Appendix. A
list of them is as follows:

Program No. 1 - Classification Method
Matrix Recognition Technique

Program No. 2 - Key Element Search Method
Nonlinear Technique (First Application)

Program No. 3 - Key Element Search Method
Nonlinear Technique (Second Application)

Program No. 4 - Key Element Search
Linear Technique

Program No. 5 - Iterative Method

Program No. 6 - Transfer Function Method
Bode Diagram Technique

Scalar Remnant Method

Program No. 7
In order to have some idea about each program and also to know
some of the computer requirements, a brief description of each one

of them is given.below.

3.1,1 Program No, 1

This program is the implementation of the classification method
using the matrix recognition technique. The flowcharts that describe
it are given in Figures 2.5, 2.6 and 2.7 (pages 2.9, 2.10 and 2.11).

Up to 14 variables can be handled, with not more than 28 bounds asso-
ciated with them. Therefore, if éach variable has more than two bounds,
the number of variables that will be possible to handle are given by

the following inequality

->: < 28 (5.1)
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where bi designates the number of different bounds that belong to the
variable i, and N gives the number of variables. The number of
regions can go up to 31. 1I1If for some applications, we need to run
programs not subject to these constraints, changes in the DIMENSION
and FORMATs statements could be easily done.

The input to the program is the number of variables, number of
regions, the bounds in each region and the input vectors.

The output is

number of variables

number of regions

description of each region

matrix H

matrix K

Matrix M

for each input vector, its values, the output vector and the
region/s of operation.

The computer used has been the UNIVAC 1108, and the memory
requirements are as follows. -

IBANK (Decimal) 4143 words
DBANK (Decimal) 4%83 words
Total (Decimal) 8806 words

3,1.2 Program No, 2

Since the program for the implementation of the key element search
method - nonlinear technique depends on the circuit under test, the
mentioned program has been developed for the circuit given in Figure 2.8
(page 2.21). The flowchart is indicated in Figure 2.9 (page 2.25).

The input to the program is the design values of the seven resistors
and the four measurements values.

The output is
e design values of the seven resistors

e measurement values
e the values of Sj and the root for each component
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The computer used has been the IBM 1130, and the memory require-
ments are as follows

VARIABLES (Decimal) 192 bytes
PROGRAM (Decimal) 1892 bytes
Total (Decimal) 2084 Dbytes

3.1.3 Program No. 3

The description is exactly the same as the former program, except
that the circuit under test is the one shown in Figure 2.10 (page 2.27).

The computer used has been the IBM 1130, and the memory require-
ments are as follows

VARIABLES (Decimal) 160 bytes
PROGRAM (Pecimal) 1230 bytes
Total (Decimal) 1390 bytes

For the type of circuit given, we can say that the memory require-
ments in function of the number of components will be a curve that looks
like to one shown in Figure 3.1 - nonlinear case.

3.1.,4 Program No. 4

Since the program for the implementation of the key element search
method - linear technique depends on the circuit under test, the men-
tioned progrmm has been developed for the circuit given in Figure 2.8
(page 2.21). The flowchart is indicated in Figure 2.11 (page 2.33).

The input to the program is the design values of the seven resistors
and the four measurements values.

The output is

design values of the seven resistors

measurements values

the values of S; and M; for each component

the most likely fault Component (This is indicated by printing
three stars at the right of the component number.)
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The computer used has been the IBM 1130, and the memory require-
ments are as follows '

VARIABLES (Decimal) 278 bytes
PROGRAM (Decimal) 2100 bytes
Total (Decimal) 2378 bytes

For the type of circuit under study, the curve that shows the
memory required in function of the number of components is given by
the one shown in Figure 3.1 (linear case).

Total
Memory
Requirements linear case
‘ nonlinear case
4K L
3K 1L
2K 4
X
- - —— $ . —- 4 + 4 >
5 6 7 8 9 10 11 12 13 Number of
Components

Figure 3.1 - Computer Requirements
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3.1}5 Program No..b

The steps needed in order to implement this program are given in.
the flowchart shown in Figure 2.13 (page 2.39). The circuit under
study is indicated in Figure 2.14 (page 2.40). Up to ten measurements
of 0/1 gain could be used in the program.

The input to the program is the number of frequencies, the values
of them, the output/input gains, and the standard deviationms.

The output is

normal components
frequencies
measurements
standard deviations
normal O/I relations
Matrix-FtA

e Matrix (FtA)'1

e product matrix (F.A)(F,A)"!

e components values
e S index

The computer used has been the UNIVAC 1108, and the memory require-
ments are as follows

IBANK (Decimal) 4680 words
DBANK (Decimal) 2710 words
Total (Decimal) 7390 words

In the above requirements, it is also included the subroutine MINV
for the matrix inversion.

3,1,6 Program No., 6

This program has been developed for the circuit given in Figure 2.14
(page 2.40). The flow chart is indicated in Figure 2.19 (page 2.52).

The input to the program is the design values of the components (Rl’
Ci> R, and CZ)’ and the detection condition for the zero (in our case

was + 0.003).
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The output is

e the four break frequencies

e the five test frequencies

e the gain at each test frequency for different ranges of
variation of each component

e a dictionary table

The computer used has been the UNIVAC 1108, and the memory require-
ments are as follows

IBANK (Decimal) 4168 words
DBANK (Decimal) 2312 words
Total (Decimal) 6480 words

3.1,7 Program No, 7

Since the program for the implementation of the Scalar Remnant ,
Method depends on the circuit under test, the mentioned program has been
developed for the circuit given in Figure 2.26 (page 2.72).

The input to the program is the design values of the components
(Rl’ Ci1> Ry and Cz), the value of B and the changes in the components,

The output is

e the design values of the components

® the coefficients of the fraction expansion

e the values of the input and output, and the first and second
derivatives of the same, in function of changes in the values
of the components (+25%)

e allowed coefficients variation

e scalar remmant indexes

The computer used has been the UNIVAC 1108, and the memory require-~
ments are as follows '

IBANK (Decimal) 5050 words
DBANK (Decimal) 2547 worxds

Total (Decimal) 7597 words
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3.2 Conclusions

Since only recently we have started to evaluate the methods pre-
sented in this report, we cannot make a final judgement about these
methods but simply state a few observations.

Nearly all methods require a mathematical model of the circuit
or system under test which is very close to the actual system. The
model equations are being used for calculating the nominal response
which is compared with the measured response. The difference between
these two responses, i.e., the error response, is then messaged to
estimate the parameter deviations from their nominal values. Many
methods assume that the physical system can be represented by linear
models which is good for certain circuits and systems or within certain
operating ranges; but in the majority of cases linear models are prob-
ably not sufficient. Hence, a prerequisite for accurate computation
of these deviations is that accurate mathematical models of the physical
system under test can be found. This points to the importance of model-
ing and the verification of models by simulation.

Many methods have been developed for circuits; however, some of
them can also be applied to systems since the mathematical representa-
tion of electrical circuits and certain systems such as feedback control
systems is very similar.

Some of the methods require large amounts of computations which
might lead to large numerical errors so that they can be applied to
small circuits or systems only. If the large amount of computations
has to be done once for a particular hardware systems prior to the test
and if the amount of on-line processing during the test itself is small,
the extensive computational load may be tolerated, since it is required
only once and not for each test. '

None of the methods presented took into account any tolerance bounds
of the components. In all methods, it is assumed that the nominal value
of a component is a fixed number and would not change between allowable
tolerance margins. The determination of the allowable tolerance margins
at the outputs of a system for given tolerance margins of the parameters
of subsystems and components within the system is a difficult task by
itself. For this reason, we have started to work on sensitivity analysis
methods to find out how parameter changes of components affect the output
signal of a subsystem or system/circuit. This study can also lead to

. determining the optimum location of the test points. A computer program
like MARSYAS* which can be expanded to include sensitivity analysis capa-~
bility for any systems configuration would be helpful.

*Trauboth, H. and Prasad, N. - MARSYAS - A Software System for the Digital
Simulation of Physical Systems - Proc. of SJCC, Atlantic City, May 1970.
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Many methods assume that the measurements of the responses are
not distorted by noise.

However, in practice some noise and instrumentation errors
superimpose the measurement signal. For this reason, we are looking
into filtering techniques such as Kalman filtering for better esti-
mation of the measurements and for suppressing signal noise.

Since eventually the computer software methods have to interface
with actual hardware, it is important to know what the constraints
from the instrumentation and data acquisition system are.

We are just starting with an out-of-house contract to define
these constraints such as sensor accuracy, sampling rate, noise level,
location of test points, performance variable dynamics, etc., based
on typical subsystems designs for Space Shuttle.

We feel that some of the methods could be modified and improved to
make them into practical tools. Others which assume ideal situations
are impractical in a real environment. However, we think that the
application of modern techniques of control systems theory, information
theory, and network theory could lead to better fault isolation methods
which are practical and efficient. After thoroughly evaluating the
methods presented in the report, we will concentrate on the development
of a few methods which are promising fer practical applications in
automatic testing and automatic ground/on-board checkout.

3.3 Future Research Needed in this Area

The future research needed in this area would be

Instrumentation requirements for fault isolation computer methods.
Sensitivity analysis of fault isolation computer methods

Better estimation of measurements values

Functional 8imulation of the SSV and SS

Additional fadlt isolation computer methods

New measurements techniques

Mathematical models of the SSV and SS

Logistic/operational studies

Fault isolation method/s for the SSV and SS

>

flowchart on these steps is shown in Figure 3.2,
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5,1 Program No, 1%

c CLASSIFICATION METHOD
INTEGER H(15,28),X(15)
DIMENSION K(31,28),NUM(31),IVAL(28),KK(28,31),MM(15,31)

10 FORMAT(212,314,2A2)

11 FORMAT (2014/)

12 FORMAT (45X,2(12,'/'),14/5X, 'NUMBER OF VARIABLES =',I4/5X, 'NUMBER O

2F REGIONS =',14/)

13 FORMAT(5X, 'REGION',I3, 24X, 'X',I2)
14 FORMAT('+',29X,14,1X,A2)

15 FORMAT('+"',41X,A2,13)

16 FORMAT(38X,'X',1I2)

17 FORMAT(/)

18 FORMAT('1',44X,2(12,'/"),14/)
19 FORMAT(2X, 2814)

20 FORMAT(2713)

21 FORMAT(5X, 'REGION',13)

22 FORMAT(2X, "MATRIX H'//)

23 FORMAT(2X, 'MATRIX K'//)

24 FORMAT(2X, "MATRIX M'//)

25 FORMAT('+',14X,'~ REGION',13)

MM1=5
MM2=6
READ(MM1,10) M1,M2,M3,N,M,GA,CH
MO=2+M
Do 100 I=1,N
100 READ(MM1,11) (K(I,J),J=1,MC)
C STATEMENT OF THE PROBLEM
WRITE(MM2,12) M1,M2,M3,M,N
IL=1
po 101 I=1,N
WRITE(MM2,13) I,IL
IF (K(I,1)) 102,103,102
102 WRITE(MM2,14) K(I,1),CH
103 IF (K(I,2)) 104,105,104
104 WRITE(MM2,15) GA,K(I,2)
105 DO 106 J=2,M

WRITE(MM2,16) J

IF (K(I,2%J-1)) 107,108,107
107 WRITE(MM2,14) K(I,2*J-1),CH
108 IF (K(I,2*J)) 109,106,109
109 WRITE(MM2,15) GA,K(I,2*J)
106 CONTINUE
101 WRITE(MM2,17)
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303
301
302

115

300

191

111

113

114

110

119

118

120

BOUNDS OF EACH VARIABLE
KK1=0

IND=0

10D=0

DO 110 J=1,M0,2
IND=IND+1

JRI=1

IF (K(JRI,J)) 301,301,302
JRI=JRI+1

GO TO 303

IVAL (IND)=K(JRI,J)
TUD=IND-IOD

KOK=0

DO 111 L=1,N

MMM=KOK+J

IF(K(L,MMM)) 111,111,300
DO 191 LL=IUD, IND
IF(K(L,MMM) -IVAL(LL)) 191,111,191
CONTINUE

IND=IND+1

IVAL (IND)=K(L,MMM)
CONTINUE

IF(KOK) 113,113,114
KOK=KOK+1

GO TO 115

KK1=KK1+1
NUM(KK1)=IND-I0D

I10D=IND

CONTINUE

MATRIX H

JMAX=IND

IMAX=M+1

DO 116 J=1,JMAX

DO 117 I=1,IMAX

H(I,J)=0

6 H(IMAX,J)=-IVAL (J)

K1=1
K2=NUM(1)

DO 118 L=1,KKl

DO 119 J=K1,K2

H(L,J)=1

K1=K2+1

K2=NUM(L+1)+K2

WRITE (MM2,18) M1,M2,M3
WRITE (MM2, 22)

DO 120 I=1,IMAX:

WRITE (MM2,19) (H(I,J),J=1,JMAX)
MATRIX K

DO 140 J=1,N

DO 140 I=1,JMAX



140

135
132
799
800
133

131

130

141

142

143

150

144

146

145

KK(I,J)=1

SIGN CORRECTION

DO 130 I=1,N

IL=1

DO 130 J=1,JMAX

IF (H(IL,J)) 131,131,132

IF (K(I,2*IL)) 799,799,800
IF(K(I, 2*IL-1)+1+H(IMAX,J)) 133,130,130
IF(K(I, 2*IL) -1+H(IMAX,J)) 133,130,130
KK(J,I)=-KK(J,I)

GO TO 130

IL~IL+1

GO TO 135

CONTINUE

WRITE (MM2,18) M1,M2,M3

WRITE (MM2, 23)

DO 141 I=1,JMAX
WRITE(MM2,19) (KK(I,J),J=1,N)
MATRIX M

DO 142 I=1,IMAX

DO 142 J=1,N

MM(I,J)=0

DO 142 L=1,JMAX
MM(I,J)=MM(I,J)+H(I,L)*KK(L,J)
WRITE (MM2,18) M1,M2,M3

WRITE (MM2, 24)

DO 143 I=1,IMAX
WRITE(MM2,19) (MM(I,J),J=1,N)
OUTPUT VECTOR

WRITE (MM2,18) M1,M2,M3

READ (MM1,20) (X(I),I=1,M)
X(M+-1)=1

DO 144 I=1,N

NUM(I)=0 .

DO 144 J=1,IMAX
NUM(I)=NUM(I)+X(J)*MM(J,I)
WRITE(MM2,19) (X(J),J=1,M)
WRITE(MM2,19) (NUM(J),J=1,N)
REGION DETERMINATION

MAX=0

DO 145 J=1,N

IF (NUM(J)-MAX) 145,145,146
MAX=NUM(J)

LL=J

CONTINUE

WRITE (MM2,21) LL

DO 701 J=1,N

IF (LL-J) 702,701,702

5.3
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702 IF(NUM(J)-MAX) 701,703,701
703 WRITE(MM2,25) J
701 CONTINUE

WRITE (MM2,17)

GO TO 150

END



5.

5.2 Program No, 2%

C KEY ELEMENT SEARCH
c NONLINEAR TECHNIQUE

DIMENSION G(4),C(4),D(4),8(7),XX(7)

10  FORMAT (2F2,14)

11  FORMAT (7F10.4/4F10.4)

12 FORMAT (10X,1I3,2F25.8)

13 FORMAT (60X,2(12,'/'),I4/5X,'R1=',F9.4,3X,'Gl="',F9.4/5X,'R2=",F9.4,
23%,'G2=',F9.4/5X,'R3="',F9.4,3X, '63=",F9.4/5X, 'R4=",F9.4,3X, 'G4=",
2F9.4/5X%,'R5=",F9.4/5X, 'R6=",F9.4/5X, "R7=",F9.4)

14  FORMAT (/////)

15 FORMAT ('1')

MM1=2
MM2=3
READ (MM1,10) M1,M2,M3
1000 READ(MM1,11) R1,R2,R3,R4,R5,R6,R7,(G(L),L=1,4)
KK1=0
WRITE (MM2,13) M1,M2,M3,R1,G(1),R2,G6(2),R3,G(3),R4,G(4),R5,R6,R7
KKO=1
KKK=1
A=0.0
B=(R2+R3)* (R4+R5+R6)+R4A* (R5HR6)
C(1)=B
D (1) =R2*R3% (R4+R5+R6)+R2%¥R4* (R5+R6)

111 KK1=KK1+1
ANUM=0.0
DEN1=0.0
DEN2=0.0

C CHOOSING THE ROOT
KLS=0
AMMS=10.0
X2=0.0
Z1=0.0
DO 707 L=KKO,KKK
ALA=(A*D (L) -B*C (L)) / ({D(L)+X2*C (L) )**2)

707  Z1=G(L)*ALA-((A*X2+B) /{C(L)*X2+D(1)))*ALA+Z1

616 KLS=KLS+1

612 X2P=X24+AMMS

Z2=0.0
DO 610 L=KKO,KKK
OLA=(A*D (L) ~B*C (L)) /(( D{ L)+X2%C (L) )*%2)

610 Z2=G (L)*OLA- ({A*X2P+B)/(C(L)*X2P+D (L)) )*OLA+Z2
TEST=21%72
X2=X2P
AZ1=Z1
Z1=22

IF (TEST) 611,611,612
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611

613
614
815
816

110

130

101

102

103

X2=X2-AMMS

Z1=AZ1

GO TO (613,614,815,816,110),KLS
AMMS=LD-..0

GO TO 616

AMMS=0.1

GO TO 616

AMMS=0.01

GO TO 616

AMMS=0.001

GO TO 616

XX (KK1)=X2

S(KK1)=0.0

DO 130 L=KKO,KKK

S(RR1)+* (G(L)~(A*X24+B) / (C(L)Y*X 24D (L)) ) **2
GO TO (101,102,103,104,105,106,107) ,KK1
KKK=4

A=R4+R5+R6

B= (R3+R4)* (R5+R6)+R3*R4

C(1)=(RI+R3)* (R4+R5+R6)+R4* (R5HR6)

C(2) =R&* (25+R6)

C(3)=R7% (R5+R6)+R4&* (R7+R6)+R5*%R6
C(4)=R6* (R4+R5)

D(1)=R1*R3* (R4&+R5+R6)+R1*R4* (R5+R6)
D(2)=R3*R&4* (R5+R6)

D(3)=R7* (R3+R4&)* (R5+R6)+R3I*R4* (R7HR6)+R5%R6* (R3+R4)
D(4)=(R3+R4)*R5*R6+R3*RA*R6

GO TO 111

B=(R2+R4)* (R5+R6)+R2*R4

C(1)=(R1+R2)* (R4+R5+R6)

C(2)=R4*(R5+R6)

C(3)=R6* (R4+R5+R7)+R7*¥R4+R5%R7

C(4)=R6* (R4+R5)

D(1)=R1*R2* (R4+R5+R6)+ (R1+R2)* (R5+R6)*R4
D(2)=R2¥R4* (R5+R6)

D(3)=(R2+R4)* (R5¥R74-R7*¥R6+R6*R5)+R2¥R4* (R6+R7)
D(4)={R24+R&)*R5*R6+R2¥R4*R6

GO TO 111

A=R2tR3HR5+R6

B=(R2+R3)* (R5+R6)

C(1)=R1* (R2+R3+R5+R6)+R2* (R3+R5+R6)
C(2)=(RAR3)*(R5+R6)

C(3) =R5*R7+R7*R6+R6*R5+'{R6+R7)*(’R2+R3)
C(4)=R6* (RZ4R3HR5)

D(1)=(R5+R6)* (R1*R2+R2*R3+R3*R1)
D(2)=0.0

D(3)=(R2R3)* (R5%R7+R7*R6+ R6*R5)
D(4)=(R2+-R3)*R5*%R6

GO TO 111



104

105

106

107

307

A=R2+R3+R4
B=(R4+R6)* (R2-R3)+R4*R6

C (1) =R1* (R2FR3)+R4* (R1+R2)+R2¥R3

C(2)=R&4* (R2+R3)

C(3)=(R6+R7)* (R2FR¥R4)

C(4)=(R2+R3+R4)*R6 ' ,
D(1)=(R4&4F+R6)*R1* (R2+R3)+R4*R6* (R1+R2)+R2*R3* (R4+R6)
D( 2)=R4*RE*ER2+R3) )

D(3)=R6*R7* (R2+R3+R4)+R4*R7* (R2+R3)+R4*R6* (R2+R3)
D(4)=R4*R6* (R2-R3)

GO TO 111

B=(R4+R5)* (R4R3)+R4*R5

C(1)=RI* (R2+R3)+R4* (R1+R2)+R2*R3

C(2)=R4* (R2+R3)

C (3)=¢R5+R7)* (R2FR3+R4)+R4* (R2+R3)

C (4) =(R2+R3+R4) *R5+R4* (R2FR3)

D(1)=(R4*+R5)*R1* (R2R3)+R4*R5* (R1FR2)+R2¥R3* (R4ER5)
D(2) =R4*R5* (R2+R3) )

D( 3)=R5*R7%¥ (R2+R3+R4) +R4*R7% ( R2fR3)

D(4)=0.0

GO TO 111

KKO=3

KKK=3

A=0.0

B=(R2+R3)* (R4R5+R6)+R4&* (R5+R6)

CX3)=(R5+R6)* (R2FR3+R4)+R4* (R24R3)

D(3) =R5*R6* (R2+R3HR4)+R4A*¥R6* (R2FR3)

GO TO 111

WRITE (MM2,14)

DO 307 L=1,7

WRITE (MM2,12)L,S(L) ,XX(L)

WRITE (MM2,15)

GO TO 1000

END

5.

7
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5,3 Program No, 3%

C KEY ELEMENT SEARCH
C NONLINEAR TECHNIQUE

DIMENSION G(3),C(3),D(3),S8(5),XX(5)

10 FORMAT (212,14,A1)

11 FORMAT (8F10.4)

12 FORMAT (10X,13,2F25.8)

13  FORMAT (60X,2(12,'/'),14/5X,'Rl=',F9.4,3X,'Gl=",F9.4/5X, 'R2=",F9.4,
23X,'G2=',F9.4/5%X, 'R3="',F9.4,3X,'G3=",F9.4/5X, '"R4=" ,F9.4/4X, 'R5=",
3F9.4)

14 FORMAT (/////)

15 FORMAT ('1")

16 FORMAT ('+',12X,3Al)

MM1=2
MM2=3
READ(MM1,10) M1,M2,M3,STAR
1000 READ(MM1,1l) R2,R3,R4,RS5,R6, (G(L),L~1,3)
KK1=0
WRITE(MM2,13) M1,M2,M3,R2,G(1),R3,G(2),R4,G(3),R5,R6
A=R4+R5+R6
B=(R3+R4)* (R5+R6)+R3*R4
C(1)=R3* (R&+R5+R6)+R4* (R5+R6)
C(2)=R&* (R5+R6)
C(3)=R4&4*R6+R5%R6
D(1)=0.0
D(2)=R3*R4&* (R5+R6)
D(3)=R3*R4*R6+R5*R6* (R3H+R4)
111 KK1=KK1+1
ANUM=0.0
DEN1=0.0
DEN2=0.0
C CHOOS ING .THE. .ROOTPA |-
KLS=0
AMMS=10.0
X2=0.0
Z1=0.0
Do 707 1=1,3
ALA=(A*D(L) -B*C (L)) /€ (D(L)+X2*C(L))**2)

707 Z1=G(L)*ALA-((A*X2+B)/(C(L)*X2D(L)))*ALA+Z1

616 KLS=KLS+1

612 X2P=X2-AMMS
1 22=0.0°

DO 610 1=1,3
OLA=(A*D(L) -B*C (L)) / ((D(L)+X2P*C (L) ) **2)
610 Z2=G(L)*OLA-((A*X2P+B) /(C(L)*X2P+D(L)))*0LA+Z2
TEST=Z1*Z2
X2=X2P
AZ1=Z1
Z21=22
IF (TEST) 611,611,612
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611

613

614

815

816

110

X2=X2-AMMS
Z1=AZ1

GO TO (613,614,815,816,110) ,KLS
AMMS=1.0
GO TO 616
AMMS=0.1
GO TO 616
AMMS=0.01
GO TO 616
AMMS=0.001
GO TO 616
XX (KK1)=X2
S(KK1)=0.0

DO 13DOL¥3Q31=1,3

130

101

102

103

104

S (KK1)=S (KK1)+ (G (L) - (A*X2+B) / (C(L)*X 24D (L)) )** 2
GO TO (101, 102,103,104,105),KK1
B=(R2+R4)* (R5+R6)+R2*¥R4

C (1) =R2* (R4+R5+R6)

C (2)=R4* (R5+R6)

C(3)=R5*% (R4+R5)

D(1)=RZ*R&* (R5+R6)

D(2) =R2%R4* (R5+R6)

D(3) =(R2+R4) *R5*R6+R2*R4*R6
GO TO 111

A=R2-R3+R5+R6
B=(R2+R3)*(R5+R6)
C(1)=R2*(R3+R5+R6)
C(2)=(R2+R3)* (R5+R6)
C(3)=R6* (R2+R3+R5)
D(1)=(R5+R6)*R2*R3

D(2)=0.0

D(3)=(R2+R3)*R5*R6

GO TO 111

A=R2+-R3+R4

B=(R4+R6)* (R2HR3)+R4*R6
C(1)=R&*R2R2*R3

C(2)=R4&* (R2R3)
C(3)=(R2R3+R4)*R6

D (1) =R4*R6*R2+R2*¥R3* (R4+R6)
D(2)=R4*R6* (R24R3)

D(3) =R4*R6* (R2+R3)

GO TO 111

B=(R4+R5)* (R24+R3)+R4*R5
C(1l)=R&*R2+R2*R3

C(2)=R4&4* (R2+R3)
C(3)=(R2+R3H+R4)*R5+R4* (R2+R3)
D(1)=R2¥R4*R5+R2*R3* (R4FRS5)
D(2)=R4*R5* (R2+R3Y

D(3)=0.0

GO TO 111
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105

334

333

388
307

WRITE (MM2,14)

AMAX=100.0

JL=0

DO 333 J=1,5

IF (S (J) -AMAX) 334,333,333
AMAX=S (J)

JL=8

CONTINUE

DO 307 L=1,5
WRITE(MM2,12) L,S(L),XX(L)
1F(JL-L) 307,388,307"
WRITE(MM2,16) STAR,STAR,STAR
CONTINUE

WRITE (MM2,15)

GO TO 1000

END
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5.4 Progrém No, 4*

10
11
12
13

14
15
16

200

111

201

101

KEY ELEMENT SEARCH
LINEAL TECHNIQUE

DIMENSION G(4),Q(4,7),C(4),D(4),VF(4),CM(4),RES(7,2)
FORMAT (212,14,A1)

FORMAT(7F10.4/4F10.4)

FORMAT (4F10.4)

FORMAT (60X, 2(12,'/') ,14/5X, 'R1=",F9.4,3X, 'G1=",F9.4,3X'GM1=",F9.4/
25%,'R2=',F9.4,3X, 'G2=",F9.4,3X, 'GM2=",F9.4/5X, 'R3=",F9.4,3X, 'G3="',
3F9.4,3X,'GM3=",F9.4/5X, 'R4=",F9.4,3X, 'G4=",F9.4,3X, 'GM4=",F9.4/ 5%,
3'R5=',F9.4/5X, 'R6=",F9.4/5X,'R7=",F9.4///9%,'3",21X,'MJ "', 26X,'SJ"'/
2)

FORMAT(5X,15,2F28.8)

FORMAT('1")

FORMAT('+',10X,3A1)

MM1=2

MM2=3

READ(MM1,10) M1,M2,M3,STAR

READ(MM1,11) R1,R2,R3,R4,R5,R6,R7,(G(L),L=1,4)

KK1=0

A=0.0

B=(R3+R2)* (R4+R5+R6)+R4* (R5+R6)

C(1)=B

D (1) =RZ*R3* (R4+R5+R6)+R2*¥R4* (R5+R6)

DO 200 L=2,4

C(L)=0.0

D(2)=(R2+R3)* (R5+R6)*R4

D(3) =(R2t+R3+R4) * (RS*R7+R7*R6+R6*R5)+ (R2FR3)* (R6*R7) *R4
D(4)=R6*R5% (RXHR3+R4)FRG¥R6*{R2+R3)

X1=R1

KK1=KK1+1

DO 201 1=1,4
Q(L,KK1)=(A%D (L) -B*C (L)) /X (D(L)+X1*C (L) ) **2)

GO TO (101,102,103,104,105,106,107) ,KK1

A=R4IR5+R6

B=(R3+R4)* (R5+R6)+R3*R4

C(1)=(RI1+R3)* (R4+R5+R6)+R4* (R5+R6)

C(2)=R4* (R5+R6)

C(3)=R7* (R5+R6)+R4* (R7+R6)+FR5*R6

C(4)=R6¥(R&+R3)

D(1)=R1*R3% RMARBSFBRE6I+RIR (R5KR6).

D(2)=R3*R4&* (R5+R6)

D(3)=R7* (RIHR4)* (R5+R6)+RI*R4* (R7+R6)+R5*¥RE* (RI+R4E)
D(4)=(R3+R4)*R5*R6+RI*R4G*R6

X1=R2

GO TO 111

*IBM 1130
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102 B=¢R2+R4)* (R5+R6)+R2¥R4
C(1)=(R1+R2)* (R4+R5+R6)
C(2)=R4* (R5+R6)
C(3)=R6* (R4+R5+R7)+R2*R4H+R5*R7
C(4)=R6* (R4+R5)
D(1)=RY*R2* (R&4+R5+R6)+ (R1+R2)* (R5+R6) *R4
D(2)=R2¥R&* (R5+R6)
D(3)=(R2-R4)* (R5+R7+R7*R6+R6¥R5)+R2*¥R4* (R6+R7)
D(4)=(R2+R4)*R5*R6+R2¥R4*R6
X1=R3
GO TO 111

103 A=R2+R3+R5+R6

' B=(R2R3)* (R5+R6)
C(1)=R1* (R4+R3}+R5+R6)+R2* (R3+R5+R6)
C(2)=(R2+R3)* (R5+R6)
C(3)=R5*R7+R7*R6+R6*R5+ (R6+R7)* (R2+R3)
C(4)=R6% (R2+R3+R5)
D(1)=(R5+R6)* (R1*R2+R2*R3+R3*R1)
D(2)=0.0
D(3)=(R2+R3)* (R5*R7+R7*R6+R6*R5)
D(4)=€R2+R3)*R5*R6
X1=R4
GO TO 111

104 A=R2+R3+R4
B=(R&+R6)* (R2+R3)+R4*R6
C(1)=R1* (R2+R3)+R4&4* (R1+R2)+R2*R3
C(2)=R4&4* (R2+R3)
C(3)=(R6+R7)* (R2+R3+R4)
C(4)=(R2+R3+R4)*R6
D(1)=(R4&+R6)*R1* (R2+R3)+R4*R6% (R1+R2)+R2¥R3* (R4+R6)
D(2) =R4*R6* (R24R3)
D(3)=R6¥R7* (R2ZR3+R4)+R4*R7* (RZ+R3)+R4*R6* (R2+R3)
D(4)=R&*R6* (R2R3)
X1=R5
GO TO 111

105 B=(R&4+R%)* (R2+R3)+R4*R5
C(1)=R1* (R24+R3)+R&* (R1+R2)+R2*R3
C(2)=P&*(R24R3)
C(3)=(R5+R7)* (RZ+R3+R4)+R4* (R2+R3)
C(4)=(R2-R3+R4)*R5
D(1)=¢R4+R5)*R1* (R24+R3)+R4*¥R5% (R1+R2)+R2*R3* (R4+R5)
D(2)=R&*R5* (R2R3)
D(3)=R5%R7* (R4-R3+R4)+R4*R7* (R2HR3)
D(4) =R4*R6* (R2+R3)
X1=R6
GO TO 111
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106 A=0.0
B=(R2+R3)* (R4+R5+R6)+R4* (R5+R6)
C(1)=0.0
€c(2)=0.0
C(3)=(R5+R6)* (R2+R3+R4)+R4* (R2+R3)
C(4)=0.0
D(1)=(R4+R5+R6) % (R1I*R24R2¥R3IH+R3*R1)+€R14+R2)* (R5+R6)*R4
D(2)=(R2+R3)* (R5+R6)*R4
D(3)=RS*R6* (R2+R3HR4)+R4*R6* (R2+R3)
D(4)=D(3)
X1=R7
GO TO 111

107 READ(MM1,12) (CM(L),L=1,4)
WRITE (MM2,13) M1,M2,M3,R1,G(1),CM(1),R2,G(2),CM(2),R3,G(3),CM(3),
2R4,G(4) ,CM(4) ,R5,R6,R7
VF2=0.0
DO 208 L=1,4
VF(1)=CM(L)~G (L)

208 VF2=VF2-VF(L)**2
DO 220 J=1,7
ANUM=0.0
DENO=0.0
DO 221 L=1,4

. ANUM=ANUMHVF (L) *Q(L,J)

221 DENO=DENO+Q(L,J)*%*2
ANUM=ANUM¥* 2 /DENO
DENO=VF 2-ANUM
RES (J, 1) =ANUM

220 RES(J,2)=DENOC
AMAX=0.0
JL=8
DO 400 J=1,7
IF(RES(J,1) -AMAX) 400,400,401

401 AMAX=RES(J,1)

, JL=J

400 CONTINUE
DO 404 J=1,7
WRITE (MM2,14) J,RES(J,1),RES(J,2)
IF(JL-J) 404,405,404

405 WRITE(MM2,16) STAR,STAR,STAR

404 CONTINUE
WRITE(MM2,15)
GO TO 107
END
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5.5 Program No, 5%

C

ITERATIVE METHOD-LEAD-ILAG NETWORK APPLICATION

DIMENSION FREQ(10),P(10,10),X(4),V0(10),SD(10),F(10,4),ETA(10),
2B(4,4) ,BB(10,4) ,PSI(4), L1(16) ,MMM1(16) ,A(10,4),B2B(4,4),
3C2C(4,4)

DOUBLE PRECISION CC(100),DET

10 FORMAT(212,214,6F10.5/4F10.5)

11 FORMAT (4F10.5)

12 FORMAT(8F10.4/8F10.4/4F10.4)

13 FORMAT(5X,4E9.3,F24.6)

14 FORMAT('l1',60X,2(12,'/"),14///)

DEFINE V(X1,X2,X3,X4,FR)=( SQRT(X3%*2+1./((6.2832¥xFR*X4)*%2))) /
2(SQRT((X1/(1.+(6.2832kFR*X2*X1)** 2)+X3)*% 2+ ((6.2832¥FR¥X 2%X1*X1) /
3(1.+(6.28325¥FR¥X2*X1)**2)+1./(6.2832kFR¥*X4) )%*2))

15 FORMAT(13X, '"NORMAL COMPONENTS',7X, 'FREQUENCIES', 5X, '"MEASUREMENTS',
25X, 'STANDARD DEVIATION'/10X,'Rl= ',F8.5,' MEGOHM',610X,F8.4,8X,F8.4
3,13%X,F6.3/10X%,'cl= ',F8.5,' MICROFARAD',6X,F8.4,8X,F8.4,13X,F6.3/
410X,'R2= ',F8.5,' MEGOHM',10X,F8.4,8X,F8.4,13X,F6.3/10K,'C2= ',F8.
55,' MICROFARAD',6X,F8.4,8X,F8.4,13X,F6.3)

16 FORMAT(39X,F8.4,8X,F8.4,13X,F6.3)

17 FORMAT(5X,5(E18.8,2X))

18 FORMAT(///)

19 FORMAT(//13X, '"NORMAL VALUES'/13X, 'FREQUENCIES',14X,'I/0 RELATION'/
2

20 FORMAT(14X,F8.4,15X,F8.4)

MM1=5
MM2=6
AMMAA=0.000001

READ(MM1,10) M1,M2,M3,MA, (FREQ(L),L=1,MA)

203 WRITE(MM2,14) M1,M2,M3

KK1=1
KKKK1=0

DO 101 J=1,MA

DO 101 I=1,MA

101 P(1,J)=0.0

READ(MM1,11) (X(I),I=1,4)

X1=X(1)*1.E+6
X2=X(2)*1.E-6
X3=X(3)*1.E+6
X4=X(4)*1.E-6

READ(MM1,12) (VO(I),SD(I),1=1,MA)

DO 102 J=1,MA

102 P(J,J)=1./(SD(J)**2)
WRITE (MM2,15) (X(L),FREQ(L),VO(L),SD(L),L=1,4)
IF (MA-4) 1000,1000,150

150 WRITE(MM2,16) (FREQ(L),VO(L),SD(L),L~=5,MA)
WRITE (MM2,19)
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181

1000

103

104

105

301

152

302

153

DO 181 L=1,MA

FR=FREQ(L)*1000.

ACCU=V(X1,X2,X3,X4,FR)

WRITE (MM2,20) FREQ(L) ,ACCU

WRITE (MM2,14) M1,M2,M3

MATRICES F AND ETA

AINI=AMMAA*X1

AIN2=AMMAA*X2

ATIN3=AMMAA*X3

AIN4=AMMAA*X4

DO 103 L=1,MA

FR=FREQ(L)*1000.

ANA=V(X1,X2,X3,X4,FR)
F(L,1)=(V(XI1+AIN1,X2,X3,X4,FR) ~ANA) /AIN1
F(L,2)=(V(X1,X24AIN2,X3,X4,FR) -ANA) /AIN2
F(L,3)=(V(X1,X2,X3+AIN3,X4,FR) -ANA) /ATN3
F(L,4)=(V(X1,X2,X3,X4+AING,FR) -ANA) /AING
ETA (L)=VO(L) -ANA

MATRIX A
DO 104 I=
DO 104 J=
A(I,J)=0.
DO 104 L=1,MA
A(I,J)=A(L,J)+P(I,L)*F(L,J)
MATRIX PSI

DO 105 I=1,4

DO 105 J=1,4

B(I,J)=0.0

DO 105 L=1,MA
B(I,J)=B(I,J)+F(L,I)*A(L,J)
KL=1

DO 301 J=1,4

DO 301 I=1,4

CC(KL)=B(I,J)

B2B(I,J)=B(I,J)

KL=KL+1

DO 152 J=1,4

WRITE(MM2,17) (B(J,I),I=1,4 )
MI=4

CALL MINV(CC,MU,DET,L1,MMM1)
WRITE(MM2,18)

KL=1

DO 302 J=1,4

DO 302 I=1,4

B(I,J)=CC(KL)

KL=KL+1

DO 153 J=1,4

WRITE(MM2,17) (B(J,I),I=1,4)
WRITE (MM2,18)

DO 1002 J=1,4

1,MA
1,4
0
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DO 1002 I=1,4
€2C(1,J)=0.0
DO 1002 L=1,4
1002 C2C(I,J)=C2C(I,J)+B2B(I,L)*B(L,J) .
DO 1003 J=1,4
1003 WRITE(MM2,17) (C2C(J,I),I=1,4)
DO 115 I=1,MA
DO 115 J=1,4
BB(1,J)=0.0
DO 115 1=1,4
115 BB(I,J)=BB(I,J)+A(I,L)*B(L,J)
DO 116 I=1,4
PSI(I)=0.0
DO 116 L=1,MA
116 PSI(I)=PSI(I)+ETA(L)*BB(L,I)
X1=X1+PSI(1)
X2=X2+PSI(2)
X3=X3HPSI(3)
X4=X4+PSI (4)
$2=0.0
DO 117 1=1,MA
FR=FREQ(L)*1000.
117 S$2=S2+((VO(L) ~-V(X1,X2,X3,X4,FR))**2) /(SD(L)**2)
XX1=X1*1.E-6
XX2=X2*1.E+6
XX3=X3*1.E<6
XX4=X4*1.E+6
WRITE(MM2,13) XX1,XX2,XX3,XX4,S2
WRITE (MM2,18)
GO TO (201,202),KK1L
201 KK1=KK1+1
208 S1=S2
WRITE (MM2,14) M1,M2,M3
GO TO 1000
202 IF(ABS(S1-52) »0,00000)) 200320032004
204 KKKK1=KKKK1+1
1F (KKKK1-20) 208,208,203
END :

NOTE

The Subroutine MINV that is call in this program belongs to the math-pack
of IBM/360
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5.6 Program No., 6*

c BODE DIAGRAM TECHNIQUE
C LEAD-LAG NETWORK
REAL MINUS

. DATA PLUS/'+'/MINUS/'-'/ BLK/'0'/

10 FORMAT(2I2,14,F10.4)

11 FORMAT(4F12.6)

12 FORMAT(70X,2(12,"'/'),14///5X, '"TEST FREQUENCY 1=',F6.2,' KC BREAK
2 FREQUENCY 1=',F6.2,' KC R1=',F8.4,' MEGOHM'/5X, 'TEST FREQUENCY
22=',F6.2,' KC BREAK FREQUENCY 2=',F6.2,' KC R2=',F8.4,' MEGOHM
4'/5X,"TEST FREQUENCY 3=',F6.2,' KC BREAK FREQUENCY 3=',F6.2,' KC
5 Cl=',F8.4,' MICROFARAD')

14 FORMAT( 5X, 'TEST FREQUENCY 4=',F6.2,' KC BREAK FR
SEQUENCY 4=',F6.2,' KC C2=',F8.4,' MICROFARAD'/5X, 'TEST FREQUENCY
7 5=',F6.2," KC',3X,'VARIATION =',F6.2,' PC',3X,'AM=",F8.4)

13 FORMAT(9X,5('*',2X,F6.4,2X),'*"' 10X, '*')

20 FORMAT('+',65X, "NORMAL')

21 FORMAT('+',65X,'R1l LOW')

22 FORMAT('+',65X,'R1 HIGH')

23 FORMAT('+',65X,'R2 LOW')

24 FORMAT('+',65X, 'R2 HIGH')

25 FORMAT('+',65X,'Cl LOW'")

26 FORMAT('+',65X,'Cl HIGH')

27 FORMAT('+',65X,'C2 LOW')

28 FORMAT('+',65X,'C2 HIGH')

29 FORMAT(9X, 67('*'))

17 FORMAT(14X %' F7.3,' *',F10.2,' *' 3(F7.2,' *'))

18 FORMAT('1',60X,2(12,'/"),14//14X,54("*"') /14X, "* KC * W
2 % PR * IP * REL *'/14X,54('*')/14X,'*',9X,'*' 12X
3,'%',3(9%, '*")) :

30 FORMAT(14X,54('*'))

31 FORMAT( //9X,67('%')/9X,'* GAIN 1 * GAIN 2 * GAIN 3 * GAIN
8 4 * GAIN 5 * CONDITION*'/9X,67('*')/9X,6('*',10X),'*")

32 FORMAT(9X, '*',5(5X,AL,4X,"'*"'),10X,'*"')

33 FORMAT('1")

MM1=5
MM2=6
TPI=6.2832

100 READ(MM1,10) M1,M2,M3,AMMM
READ(MM1,11) R1,C1,R2,C2
AM=0.10
KK2=]1
T1=C1l*R1l
T2=C2*R2
T12=R1*C2
B=~((T1+T2) /(2.*T1*T2))
C=SQRT((B**2) -(1./(T1*T2)))
SN1=B+C
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SN2=B-C
B==((T1+T2+T12) /(2.*T1*T2)) "
C=SQRT((B**2) -(1./(T1*T2)))
SD1=B+C
SD2=B-C
FREQ(1)=0.0
FREQ(5)=-SD17/TPI
FREQ(9)=-SN1/TP1
FREQ(13)=-SN2/TP1
FREQ(17)=~-8D2/TPI
FREQ(21)=2.*FREQ(17) -FREQ(13)
KBA=1
DO 180 1L=1,5
DIF=(FREQ(KBA+4) -FREQ(KBA)) /4.
FREQ(KBA+1) =FREQ(KBA)+DIF
FREQ (KBA+2) =FREQ(KBA+1)+DIF
FREQ(KBA+3)=FREQ(KBA+2)+DIF

180 KBA=KBA+4
LL=1
DO 102 L=5,17,4
BREAK(LL)=FREQ(L) /1000.

102 LL=LL+1
LL=1
DO 103 1=3,21,4
TEST(LL)=FREQ(L) /1000.

103 LL=LL+1
WRITE (MM2, 33)

305 WRITE (MM2,12) M1,M2,M3,TEST(1),BREAK(1),R1,TEST(2),BREAK(2),R2,
2TEST(3) ,BREAK(3),C1
WRITE (MM2,14) TEST(4) ,BREAK(4),C2,TEST(5) ,AM,AMMM
KK1=1

406 WRITE(MM2,31)
DO 106 J=1,9
GO TO (401,402),KK1

401 T1=C1*R1
T2=C2*R2
T12=R1*C2
DO 105 L=1,5
CM=TEST(L)#*1000.*TPI
ANU=-T1*T25OMx* 2+ 1,
DEN=ANU¥* 2+ ( (T14+T 2+ T12) %% 2) % OM** 2
PR= (ANU¥* 2+ (T1+T2)* (T 14+T2+T12) *OM** 2) /DEN
AIP=((T1+T2)*ANU*OM-ANU* (T1+T2+T12)*0M) /DEN
RELA (L) =SQRT (PR** 24+AIP¥*2)

105 RELU(J,L)=RELA(L)
WRITE(MM2,13) (RELA(JL),JL=1,5)
GO TO 403

402 DO 408 J1=1,5
IF (RELU(J,J1)) 411,412,413
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411 IF (AMMMHRELU(J,J1)) 443,412,412
443 RELA (J1)=MINUS
GO TO 408
412 RELA(J1)=BLK
GO TO 408
- 413 IF (RELU(J,J1)-AMMM) 412,412,444
444 REILA(J1)=PLUS
408 CONTINUE
WRITE(MM2,32) (RELA(J1),J1=1,5)
403 ¢o TO (107,108,109,110,111,112,113,114,115),J
107 WRITE(MM2,20)
RES=R1
R1=R1-AM*R1
GO TO 106
108 WRITE(MM2,21)
R1=RES+AM*RES
GO TO 106
109 WRITE (MM2,22)
R1=RES
RES=R2
R2=R2-AM*R2
GO TO 106
110 WRITE(MM2,23)
R2=RES+AM*RES
GO TO 106
111 WRITE(MM2, 24)
R2=RES
RES=C1
C1l=Cl-AM*C1
GO TO 106
112 WRITE(MM2, 25)
C1=RES+ AM*RES
GO TO 106
113 WRITE (MM2, 26)
C1=RES
RES=C2
C2=C2-AM*C2
GO TO 106
114 WRITE(MM2, 27)
C2=RES+AM*C2
GO TO 106
115 WRITE(MM2, 28)
C2=RES
106 CONTINUE
WRITE (MM2, 29)
GO TO (404,405),KK1
404 KK1=KK1+1
DO 409 J=2,9
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409
1000

405
301

500

181

DO 409 L=1,5
RELU(J,L)=RELU(J,L) -RELU(1,L)
DO 1000 L=1,5

RELU(1,L)=0.0

GO TO 406

GO To (301,301,301, 500) ,KK2
KK2=KK2+1

WRITE (MM2, 33)

AM=AM+0.10

.GO TO 305

WRITE (MM2,18) M1,M2,M3

- T1=C1*R1
T2=C2%R2

T12=R1*C2
DO 181 L=1,21

OM=TPI*FREQ (L)

ANU=-T1#T2%xOM**2+1 .
DEN=ANU** 2+ ( (TI+ T2 T1 2) %% 2) %M+ 2
PR=(ANU** 24 (T14+T2) * (T1+T 2+ T1 2) *OM** 2) /DEN
AIP=( (T14+T2) *ANU*OM-ANU* (T14+T2+T1 2) *OM) /DEN
REL=SQRT( PR** 2+ATP*+2)

FRU=FREQ(L) /1000.

WRITE(MM2,17) FRU,OM,PR,AIP,REL

WRITE (MM2, 30)

GO TO 100

END
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5.7 Program No, 7%

c

10
11
12
13
14

15
16

17
18

19

20
21
22
23
24
25
26
27
30
31

32
33

35
40
41

LEAD-LAG NETWORK (REMNANT METHOD)
REAL K1,;K2,KBB

COMPLEX AA,KB

DIMENSION COEF (6,9),DIFX(6)
FORMAT (212,14)

FORMAT (5F10. 6)
FORMAT('1',T90,2(I2,'/"),14)
FORMAT (2X, '*',7(2X,F11.7,2X,'*"))

FORMAT(///10X, 'Rl =',F9.6,3X,'C1 =',F9.6,3X, 'BETHA=",F9.4/10X%,
2'R2 =',79.6,3%,'C2 =',F9.6/10X, 'Kl =',F9.6,3X,'K2 =',F9.6/
210X,'st =',E9.3,3X,'s2 =',E9.3 /10X,
3'KKB="',F9.6,3X, '"PHASE=' ,F9.6/10X,'RP =',F9.6,3X,'IP =',F9.6)

FORMAT (//10X, '"PROOF 2,*KKB*COS (-PHASE)+K1+K2="',F10.6)

FORMAT(///2X,113('*") /2X,'*' 21X, 'INPUT', 21X, '*"', 21X, 'OUTPUT', 20X,
2% 15X, '%'/2X,97('*'),6X,'SUM’',6X,'"*"'/2X,"*',6X,2HVI, 7X, '*"',6X,3H
3vi',6X,'*' 6X,4HVI'',5X, "*',6X,'V0’',7X, %' ,6X,3HVO"', 6X, '*'6X,4HVO’
4% 5%, %' 15X, "% /2X,113("*")/2X,7("'*"',15%),"*")

FORMAT(2X,113('*"))

FORMAT (10X, 'A2 =',E13.6,2X,'Al =',E13.6,2X,'AD =',E13.6 /10X, 'B2
2 =' F13.6,2X,'Bl =',E13.6,2X,'BC =',E13.6/10X, 'VRI="',F12.6,2X,'V0l
3=',F12.6,2X,'VR2=",F12.6,2X,'V02="',F12.6)
FORMAT('1',70X,2(12,'/'),14//15X, 'ALLOWED COEFFICIENTS VARIATION'/
215X,72('*') /15X, "*COEFF.* LOWER BOUND * HIGHER BOUND *  NORMAL
3VALUE *  PERCENTAGE *'/15X,72('*')/15X,"'*',6X,"*',4(15%,"'*"))

FORMAT(15X, '*',6X,'*' 3(1X,E13.6,'*'),1X,F13.3,"' *")

FORMAT ('+',17X,'A2")

FORMAT('+',17X,'A1")

FORMAT('+',17X,'A0")

FORMAT('+',17X,'B2")

FORMAT('+',17X, 'B1”)

FORMAT('+',17X,'B0")

FORMAT(15X,72("'*"))

FORMAT(/)

FORMAT('1',T90,2(12,'/'),14/10X, 'REMNANT ANALYSIS'//10X,'A2=",E10.
23,3X,'va2="',E10.3,3X,'B2=" ,£10.3,3X, 'VB2="',E10.3/10X, 'Al="',E10.3,3
3X,'VAl=',E10.3,3X, 'B1="',E10. 3, 3%, 'VB1=",E10.3/10X, 'A0=",E10. 3, 3X, '
4vAO0="',E10.3,3X, 'BO=',E10.3,3X, 'VBO="',E10.3,//10X,107("'*") /10X, '*",
56X, '*' 14X, 'INPUT',13X,'*"' 13X, "OUTPUT',13X,'* SCALAR * PARAM,
6 * COEF, *'/10X,'s CASE ',67('*'),3(10X,'*#')/10X,"*',6X,'*', 4X,
7'WI',4X, "% J4X,3HVI",3X, "% ,3X,4HVI "', 3X, "*',4X,'V0"',4X, "* ', 4K, 3HV
80',3X,"*',3X,4HVO"' " ,3X,'"* REMNANT ' STATUS 8 N.R. *'/10X,10
97('*'1/10X, '*',6X,'*"' 9(10X, '*'))

FORMAT (10X,107('*"))

FORMAT(10X, '*',14,' *' 6(1X,F8.5,' *'),E9.3 ,' * ',F5.1,1X,A2
2! -« *l)

FORMAT(F8.2,A2,14)

FORMAT ('+',109X, 'YES")

FORMAT('+',109X,'NO ')

EK1=0

*UNIVAC

1108
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KK2=1
JJ1=1
ALL=0.25
INDICE=0
MAXE=30
TO=1.8
MM1=5
MM2=6
READ(MM1,10) M1,M2,M3
READ(MM1,11) R1,C1,R2,C2,BETHA
RRR1=R1
RRR2=R2
cccl=Ccl
CCC2=C2
VAR1=0.0
VAR2=0.0
VAR3=0.0
VAR4=0.0

1000 T1=R1*Cl
T2=R2*C2
T12=R1%*C2
GO TO (501,502),KK2

501 A=-(TIH+T24+T12)/(2.%¥T1*T2)
B=SQRT(A**2-(1./(T1*T2)))
Al=A+B
A2=A-B
K1=(BETHA/(BETHA**2+-A1%%2) )% (A1%* 2+ ((T1+T2)*A1) /(T1*T2)+1./(T1*T2)
2) /(A1-A2)
K2=(BETHA / (BETHA*¥ 24-A 2%%2) )% (A2%* 2 ((TI+T2)*A2) / (T1*T2)+1./(T1*T2)
2) /(A2-A1)
AA=CMP1X(0.0,-BETHA)
KB=CMPLX (0.0, -2.*BETHA)
KB=(BETHA /KB Y (TLHT 25 AA*%* 24 (T1HT2) *AA+1 ) / (TI*T2%AA**
22+ (TIHT24+T12) *AA+1.)
A11=REA - (KB)
A22=ATMAG (KB)
AA11=A11
AA22=A22
KBB=SQRT (A11%%2+-A 22%%2)
CALL PHA(A11,A22,PHASE)
T=T0+0. 2
" GO TO (1001,1002,3001),JJ1

1001 WRITE(MM2,12) M1,M2,M3
WRITE(MM2,14) R1,C1,BETHA,R2,C2,K1,K2,A1,A2,KBB,PHASE,AA11,AA22
SUM=2.%* (BB*COS ( -PHASE)+K1+K2
WRITE(MM2,15)SUM

. JJj1=2

1002 WRITE(MM2,12) M1,M2,M3




502

203

503

3001

8700

108

6006

150

151

152

153

154

ZZ1=T1*T2

ZZ2=TI1+T2

ZZ3=TI+T24T12

224=1.0

GO TO (203,203,6007),3J1 .
WRITE(MM2,18) 2z1,223,224,221,7Z22,224,VARL ,VAR2,VAR3, VARG
WRITE (MM2, 30)

GO TO (503,504) ,KK2

WRITE(MM2,16)

INDICE=INDICE+1

COEF(1,INDICE)=2Z1

COEF (2, INDICE)=2Z3

COEF (3, INDICE)=2Z4

COEF (4,INDICE)=2Z1

COEF(5,INDICE)=2Z2

COEF (6, INDICE) =ZZ4

DO 108 J=1,MAXE

BET=BETHA*T

VI=SIN(BET)

VI1P=BETHA*COS (BET)

VI 2P=-BETHA** 2%V

VO=2.*KBB*COS (BET-PHASE)+K1*EXP (A 1*T)+K2¥EXP (A 2%T)
VO1P=-2 *BETHA*KBB*SIN(BET- PHASE)+K1*A1*EXP(Al*T)+K2*A2*EXP(AZ*T)
VO2P=-2,*BETHA%% 2*KBB*COS (BET -PHA SE)+K1*A1%* 2XEXP(AL*T)+K 2%A 2% 2%
2EXP (A 2*T)

SUM=T1*T2%VO2P+ (T1+T2+T12) *VO1P+VO-T1*T2*VI 2P~ (T14+T2)*yI1P-VI
GO TO (8700,8700,108),JJ1

WRITE(MM2,13) VI,VI1P,VI2P,VO,VO1P,VO2P,SUM

T=T+0.2

GO TO (6006,6006, 502),JJ1

WRITE(MM2,17)

KK1=KK1+1

GO TO (150,151,152,153,154,155,156,157,158) ,KK1
VAR1=RI*ALL

R1=R1+VAR1

GO TO 1000

R1=R1-2.*VAR1

VARl=-VAR1

GO TO 1000

R1=R1-VARL

VAR1=0.0

VAR2=C1*ALL

C1=C1+VAR2

GO TO 1000

C1=C1-2.*VAR2

VAR2=-VAR2

GO TO 1000

C1=C1-VAR2

VAR2=0.0
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VAR3=R2*ALL
R2=R2+VAR3
GO TO 1000
155 R2=R2-2,*VAR3
VAR3=-VAR3
GO TO 1000
156 R2=R2-VAR3
VAR3=0.0
VAR4=C 2*A1Y,
C2=C24+VAR4
GO TO 1000
157 C2=C2-2.*VAR4
VAR4=-VAR4
GO TO 1000
158 (C2=C2-VAR4
VAR4=0.0
VARI=RI*ALL
R1=R1+VAR1
KK1=0
KK2=KK2+1
WRITE(MM2,12) MI1,M2,M3
GO TO 1000
504 KK1=KK1+1
GO TO (601,602,603,604,605,606,607,608) ,KK1
601 R1=R1-2.*VAR1
VAR1=-VARL
GO TO 1000
602 R1=R1-VAR1
VAR1=0.0
VAR2=C 1*ALL
C1=C1+VAR2
GO TO 1000
603 C1=C1-2.*VAR2
VAR2=-VAR2
GO TO 1000
604 (C1=C1-VAR2
VAR2=0.0
VAR3=R2*ALL
R2=R2+VAR3
GO TO 1000
605 R2=R2-2.*VAR3
VAR3=-VAR3
GO TO 1000
606 R2=R2-VAR3
VAR3=0.0
VAR4=C 2*ALL
C2=C2+VAR4
GO TO 1000



607

608

709
710

711
7C8

720
721
5005
5000
5006
5007

5008

102

103

104

105

101
107

109

100
150

C2=C2-2.*VARL

VARL4=-VARL

GO TO 1000

WRITE(MM2,19) M1,M2,M3

DO 707 J=1,6

AMIN=COEF(J,1)

AMAX=COEF(J,1)

DO 708 1~=2,9

IF (COEF(J,L) -AMIN) 709,710,710
AMIN=COEF (J,L)

GO TO 708

IF (COEF(J,L) -AMAX) 708,708,711
AMAX=COEF(J,L)

CONTINUE

POR=( (COEF (J, 1) -AMIN) /COEF (J,1))*100.
WRITE (MM2,20) AMIN,AMAX,COEF(J,1),POR
DIFX(J)=AMAX-COEF(J,1)

GO TO (720,721,722,723,725,726),J
WRITE (MM2, 21)

GO TO 707

WRITE(MM2, 22)

IF(VVBO) 5000, 5006,5006
JK1L=2

GO TO (5007,5008),JKL

WRITE (MM2, 40)

GO TO 205

WRITE (MM2, 41)

GO TO 205

END

SUBROUTINE PHA(R,I,PHASE)
REAL I

IF(I) 100,101,102

IF(R) 103,104,105

R=-R
PHASE=3,14159265-ATAN(I/R)
RETURN

PHASE=1.57079632

RETURN

PHASE=ATAN(I/R)

RETURN

IF(R) 107,109,109
PHASE=3.14159265

RETURN

PHASE=0.0

RETURN

IF(R) 150,151,152

]’_=..

R=-
PHASE=-3.14159265+ATAN(I/R)
RETURN

.25
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151

152

PHASE=-1.57079632
RETURN

I=-1
PHASE=-ATAN(I/R)
RETURN

END
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