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With so
ware’s increasing scale and complexity, so
ware failure is inevitable. To date, although many kinds of so
ware fault
localization methods have been proposed and have had respective achievements, they also have limitations. In particular, for
fault localization techniques based on machine learning, the models available in literatures are all shallow architecture algorithms.
Having shortcomings like the restricted ability to express complex functions under limited amount of sample data and restricted
generalization ability for intricate problems, the faults cannot be analyzed accurately via those methods. To that end, we propose
a fault localization method based on deep neural network (DNN). 	is approach is capable of achieving the complex function
approximation and attaining distributed representation for input data by learning a deep nonlinear network structure. It also shows
a strong capability of learning representation from a small sized training dataset. Our DNN-based model is trained utilizing the
coverage data and the results of test cases as input and we further locate the faults by testing the trained model using the virtual
test suite.	is paper conducts experiments on the Siemens suite and Space program.	e results demonstrate that our DNN-based
fault localization technique outperforms other fault localization methods like BPNN, Tarantula, and so forth.

1. Introduction

Many e�orts have been made for debugging a generic
program, especially in the stage of identifying where the bugs
are, which is known as fault localization. It has been proved
that fault localization is one of the most expensive and time-
consuming debugging activities. With so
ware’s increasing
scale and complexity, the debugging activities are more dif-
�cult to perform; thus, there is a high demand for automatic
fault localization techniques that can guide programmers to
the locations of faults [1]. In this way, it will facilitate the
so
ware development process and reduce maintenance cost
[2]. At present, many kinds of so
ware fault localization
methods have been proposed. Probabilistic program depen-
dence graph (PPDG) is presented by Baah et al. in [3] and it
gives out the conditional probability of each node to locate
fault. Tarantula, which is proposed by Jones and Harrold
in [4], indicates that a program entity executed by failed
test cases should be suspected and they use di�erent colors
to represent the degree of suspiciousness. SOBER, which is
proposed by Liu et al. in [5], uses the di�erences of predicated
truth value between successful and failed execution to guide

the activities of �nding faults. CBT, namely, crosstab-based
technique, is proposed by Wong et al. [6] to calculate the
suspiciousness of each executable statement as the detected
priority. Meanwhile, other fault localization techniques are
presented in [7, 8], such as delta debugging and predicate
switching. By modifying the variables or their values at a
particular point during the execution to change program
state, these techniques are able to identify the factor that
triggers the program failure. Speci�cally, Zeller and Hilde-
brandt [7] propose the delta debugging to reduce the factors
triggering the failures to a small set of variables by comparing
the program state di�erence between the failed test case and
successful test case. Predicate switching, which is presented
by Zhang et al. [8], alters the program state of failed execution
by changing the predicate. 	e predicate is labeled as critical
predicate if its switch canmake program execute successfully.

Being robust and widely applied, many machine learning
and data mining techniques have been adopted to facilitate
the fault localization in recent years [9].Wong andQi propose
a backpropagation (BP) neural network in [10], which utilizes
the coverage data of test cases (e.g., the coverage data with
respect to which statements are executed by which test case)
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and their corresponding execution results to train the net-
work and, then, input the coverage of a set of virtual test cases
(e.g., each test case covers only one statement) to the trained
network, and the outputs are regarded as the suspiciousness
(i.e., likelihood of containing the bug) of each executable
statement. But the BP neural network leads to problems like
local minima. Aiming to solve this problem, Wong et al.
propose another fault localization method based on radial
basis function (RBF) network in [11], which is less sensitive
to those problems. Although machine learning techniques
exhibit good performance in the �eld of fault localization,
the models they used for fault location are all shallow
architecture.With shortcomings like limited ability to express
complex function under limited amount of sample data as
well as restricted generalization ability for intricate problem,
the faults cannot be analyzed exactly via those methods.

	is paper proposes a fault localization method based
on deep neural network (DNN). With the capability of
estimating complicated functions by learning a deep non-
linear network structure and further attaining distributed
representation of input data, this method exhibits strong
ability to learn representation from minority sample data.
Moreover, DNN is one of the deep learning models that has
been successfully applied in many other areas of so
ware
engineering [12, 13]. For example, the researchers inMicroso

Research adopt DNN to decrease the error rate of speech
recognition in [12], which is one of the greatest breakthroughs
in that �eld in the recent ten years. We use the Siemens suite
and Space program as platforms to evaluate and demonstrate
the e�ectiveness of DNN-based fault localization technique.
	e remainder of this paper is organized as follows. Section 2
provides an introduction of some related studies. 	en, in
Section 3, we elaborate our DNN-based fault localization
method andprovide a toy example to help readers understand
this method. We conduct empirical studies on two suites
(i.e., Siemens suite and Space program) in Section 4. 	en,
Section 5 follows where we report the result of the perfor-
mance (e�ectiveness) comparison between our method and
others and make a discussion. Section 6 lists possible threats
to the validity of our approach. We present our conclusion
and future work in Section 7.

2. Related Work

Recent years have witnessed the successful application of
machine learning techniques in the �eld of fault localization.
However, many models with shallow architectures encounter
drawbacks like their restricted ability to express complex
function under limited amount of sample data, such as BP
neural network and support vector machine. And the gener-
alization ability for intricate problem is also restrained. With
the rapid development of the deep learning,many researchers
begin to adopt deep neural networks to tackle the limitations
of shallow architectures gradually. Before presenting our
DNN-based fault localization technique, we introduce some
related work that contributes to our novel approach.

2.1. Deep Neural Network Model. In 2006, deep neural net-
work is �rstly presented byHinton et al. in the journal Science

[14]. 	e rationale of DNN is that the neural network model
is �rstly divided into a number of two-layer models before we
learn thewholemodel, and thenwe train the two-layer neural
networkmodel layer by layer and �nally get the initial weights
of multilayer neural networks by composing the trained two-
layer neural networks, the whole process of which is called
layerwise pretraining [15].	ehidden layer of neural network
can extract features from the input layer due to its abstraction.
	us, the neural networks with multiple hidden layers are
better at network processing and network generalization and
achieve faster convergence rate. We elaborate on the theory
of deep neural networks which is cited as the basis of our
technique here.

DNN is a sort of feed-forward arti�cial neural network
with multiple hidden layers, and each node at the same
hidden layer can use the same nonlinear function to map the
feature input from the layer below to the current node. DNN
structure is very �exible due to the multiple hidden layers
and multiple hidden nodes, so DNN demonstrates excellent
capacity to �t the highly complex nonlinear relationship
between inputs and outputs.

Generally, DNN model can be utilized for regression or
classi�cation. In this paper, the model is considered to be
a classi�cation model, but in order to output continuous
suspiciousness values, we do not normalize the incentive
value of DNN’s last layer into integer. 	e relationship
between inputs and outputs inDNNmodel can be interpreted
as follows:

V
0 = input,

V
�+1 = � (�� (V�)) ,

�� (V�) = �� (V�) + ��, 0 ⩽ 	 < 
,
output = V

�.
(1)

According to the above formulas, we can obtain the �nal
output by transforming the features vector of the �rst layer

V
0 into a processed feature vector V

� through 
 layers of
nonlinear transformation. During the training process of

DNNmodel, we need to determine the weight matrix �� and
o�set vector �� of 	th layer. By utilizing the di�erence between
the target outputs and the actual outputs to construct a cost
function, we can then train the DNN by backpropagation
(BP) algorithm.

Mainly, the design of DNN model includes steps like
designing the number of network layers, the number of nodes
in each layer, the transfer function between the layers, and so
forth.

2.1.1.�eDesign of the Network Layer. Generally, deep neural
network consists of three parts: the input layer, hidden layer,
and output layer. 	e study of the neural network layers
mainly aims to identify the number of hidden layers to
determine the number of layers of a network. In neural
networks, hidden layer has an e�ect of abstraction and can
extract features from the input. At the same time, the number
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of hidden layers directly determines the processing ability of
network to extract feature. If the number of hidden layers is
too small, it cannot represent and �t the intricate problems
with limited amount of sample data, while, with increased
number of hidden layers, the processing ability of the entire
network will improve. However, too many hidden layers also
produce some adverse e�ects, such as the increased com-
plexity of calculation and local minima.	us, we draw a con-
clusion that too many or too few hidden layers are all unfav-
orable for the network training. We must choose the appro-
priate number of network layers to adapt to the di�erent
practical problems.

2.1.2. �e Design of Number of Nodes. Usually, the nodes of
input layer and output layer can be determined directly when
the training samples of deep neural network are con�rmed;
thus, determining the number of nodes in the hidden layer
is most critical. If we set up too many hidden nodes, it
will increase the training time and train the neural network
excessively (i.e., remember some unnecessary information)
and lead to problems like over�tting, whereas the network is
not able to handle complex problem as its ability to obtain
information gets poorer with too few hidden nodes. 	e
number of hidden nodes has a direct relationship with inputs
and outputs, and it needs to be determined according to
several experiments.

2.1.3. �e Design of Transfer Function. Transfer function
re�ects the complex relationship between the input and its
output. Di�erent problems are suited to di�erent transfer
functions. In our work, we use the common sigmoid function
as a nonlinear transfer function:

� (�) = 11 + �−� . (2)

Here, � is the input and �(�) is the output.
2.1.4. �e Design of Learning Rate and Impulse Factor. 	e
learning rate and impulse factor have an important impact
onDNN as well. A smaller learning rate will increase training
time and slow down the speed of convergence; on the other
hand, it generates network shocks further. For the choice of
impulse factor, we can use its “inertia” to cushion the network
shocks. We choose the appropriate learning rate and impulse
factor according to the size of the sample.

2.2. Learning Algorithm of DNN. 	ere exist various pre-
training methods for DNN and mainly they are divided into
two categories, namely, the unsupervised pretraining and
supervised pretraining.

2.2.1. Unsupervised Pretraining. For the unsupervised pre-
training, it usually adopts Restricted Boltzmann Machine
(RBM) to initialize a DNN. RBM is proposed by Hinton in
2010 [16]. 	e structure of a RBM is depicted in Figure 1. 	e
RBM is divided into two layers: the �rst one is visible layer
with visible units and the second one is hidden layer with
hidden units. Once the unsupervised pretraining has been
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Figure 1: Architecture of a Restricted Boltzmann Machine.
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Figure 2: Architecture of supervised pretraining.

completed, the obtained parameters will be used as the initial
weights of the DNN.

2.2.2. Supervised Pretraining. In order to reduce the inac-
curacy of unsupervised training, we adopt the supervised
pretraining proposed in [17]. 	e general architecture is
shown in Figure 2. It works as follows: the BP algorithm is
utilized to train a neural network, and the topmost layer is
replaced by a randomly initialized hidden layer and a new
random topmost layer a
er every pretraining.	e network is
unceasingly trained again until convergence or reaching the
expected number of hidden layers.

In our work, the number of nodes in the input layer of
DNN model is equal to the dimension of the input feature
vector. 	e output layer has only one output node, that is,
suspiciousness value. A
er a distinctive pretraining, the BP
algorithm is used to �ne-tune the parameters of the model.
Here, 1:� is the training sample, and the goal is to minimize
the squared error sum between the training samples 1:� and
labeling �1:�. 	e objective function can be interpreted as
follows:

� (�, �) = 12∑� ����� (�,�, �) − ������2 . (3)

Suppose that layer index is 0, 1, . . . , 
, node layer is
represented by V0, V1, . . . , �0, �1, . . . , ��−1 denotes the weight
layer, and �� is the index of nodes in the 
th layer and then
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take the derivative of theweightmatrix��−1 ando�set vector��−1:
� (�, �) = 12∑� ������ (��−1 − ��)�����
= 12∑� ∑�� (� (�

�−1
�� ) − ��,��)2

= 12∑� ∑�� (�(∑��−1�
�−1
����−1V

�−1
��−1 + ��−1�� ) − ��,��)

2 .
(4)

Take the derivative for each component of��−1 and ��−1:
�� (�, �)���−1����−1 = ∑� (� (�

�−1
�� ) − ��,��) �� (��−1�� ) (V�−1��−1) ,

�� (�, �)���−1�� = ∑
�
(� (��−1�� ) − ��,��) �� (��−1�� ) .

(5)

	en, take the derivative of the weight matrix��−2 and
o�set vector ��−2:

� (�, �) = 12∑� ������ (��−1 − ��)����� = 12∑� ∑�� (� (�
�−1
�� ) − ��,��)2 = 12∑� ∑�� (�(∑��−1�

�−1
����−1V

�−1
��−1 + ��−1�� ) − ��,��)

2

= 12∑� ∑�� (�(∑��−1�
�−1
����−1� (��−1�� ) + ��−1�� − ��,��)

2)

= 12∑� ∑�� (�(∑��−1�
�−1
����−1�(∑

��−2
��−2��−1��−2V�−2��−2 + ��−2��−1) + ��−1�� − ��,��)

2) .

(6)

Take the derivative for each component of��−2 and ��−2:
�� (�, �)���−2��−1��−2
= ∑
�
∑
��
[(� (��−1�� ) − ��,��) �� (��−1�� )��−1����−1]

⋅ �� (��−2��−1) V�−2��−2 ,�� (�, �)���−2��−1
= ∑
�
∑
��
[(� (��−1�� ) − ��,��) �� (��−1�� )��−1����−1]

⋅ �� (��−2��−1) .

(7)

	e result is as follows:

�� (�, �)��� = ∑
�
��+1 (�) (V� (�))� ,

�� (�, �)��� = ∑
�
��+1 (�) . (8)

Here,

���� (�) = (� (��−1�� ) − ��,��) �� (��−1�� ) ,
��−1��−1 (�) = ∑

��
���� (�)��−1����−1�� (��−2��−1) . (9)

A
er vectorization,

�� (�) = diag (�� (��−1�� )) (� (��−1) − ��) ,
��� (�) = diag (�� (��−2��−1)) (��−1)� �� (�) .

(10)

	e recursive process is as follows:

�� (�) =  � (�) (� (�, (�, �)0) − ��) ,
�� (�) =  � (�) (��)� ��+1 (�) ,
 � (�) = diag (�� (��−1 (V�−1 (�)))) ,
�� (�) = � (�) ⋅ (1 − � (�)) .

(11)

In order to calculate the error between the actual output
and the expected output, we output samples 1:� to DNN
and then execute the forward process of DNN. Meanwhile,
we calculate the outputs of all the hidden layer nodes and

output nodes, and now we can compute to get the error ��(�).
Next, backpropagation procedure is executed and error of
the nodes on each hidden layer is calculated iteratively a
er

obtaining ��(�).	e parameters of DNN can be updated layer
by layer according to the following formula:

(��, ��)	+1 = (��, ��)	 + Δ (��, ��)	 , 0 ⩽ 	 ⩽ 
,
Δ (��, ��)	 = (1 − ") # ( ��� (��, ��))

+ "Δ (��, ��)	−1 , 0 ⩽ 	 ⩽ 
.
(12)
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Table 1: 	e coverage data and execution result of test case.

�1 �2 �3 ⋅ ⋅ ⋅ �	−1 �	 &�1 1 0 1 ⋅ ⋅ ⋅ 0 1 0�2 1 1 1 ⋅ ⋅ ⋅ 0 1 0�3 1 0 1 ⋅ ⋅ ⋅ 1 1 1... ... ... ... d
... ... ...�
−1 1 0 0 ⋅ ⋅ ⋅ 1 0 1�
 1 1 1 ⋅ ⋅ ⋅ 0 0 0

Here, # is the learning rate, " is the impulse factor, and'
denotes the'th iteration. In the process of fault localization,
we input the virtual test matrix * into the DNN model and
then execute the forward process of DNN, and �nally the
output is the suspiciousness value of each statement.

3. DNN-Based Fault Localization Technique

While the previous section provides an overview of the
DNN model, this part will present the methodology of
DNN-based fault localization technique in detail. With a
focus on how to build a DNN model for fault localization
problem, meanwhile, we will summarize the procedures of
localizing faults using DNN and provide a concrete example
for demonstration at the end of this part.

3.1. Fault Localization Algorithm Based on Deep Neural Net-
work. Suppose that there is a program P with ' executable
statements and - test cases to be executed, �� denotes the /th
test case, while vectors 3�� and 4�� represent the corresponding
coverage data and execution result, respectively, a
er exe-
cuting the test case ��, and �� is 5th executable statement
of program P. Here, 3�� = [(3��)1, (3��)2, . . . , (3��)	]. If the
executable statement �� is covered by ��, we assign a real
value 1 to (3��)�; otherwise, we assign 0 to it. If the test case�� is executed successfully, we assign a real value 0 to 4�� ;
otherwise, it is assigned with 1. We depict the coverage data
and execution result of test case through Table 1. For instance,
from Table 1, we can draw a conclusion that �2 is not covered
with failed test case �3, while �3 is covered with failed test case�2 according to Table 1.

	e network can re�ect the complex nonlinear relation-
ship between the coverage data and execution result of test
case when the training of deep neural network is completed.
We can identify the suspicious code of faulty version by
trained network. At the same time, constructing a set of
virtual test cases is necessary, as shown in the following
equation.

�e Virtual Test Set. Consider

[[[[[[[[

3V13V2...3V�

]]]]]]]]
= [[[[[[[

1 0 ⋅ ⋅ ⋅ 00 1 ⋅ ⋅ ⋅ 0... ... d
...0 0 ⋅ ⋅ ⋅ 1

]]]]]]]
; (13)

the vector 3V1 , 3V2 , . . . , 3V� denotes the coverage data of test
cases V1, V2, . . . , V	.

In the set of virtual test cases, the test case V� only covers
executable statement ��. Since each test case only covers
one statement, thus the statement is highly suspicious if the
corresponding test case is failed. For example, �� is very likely
to contain bugs with a failed test case V�, and that means we
should preferentially check the statements which are covered
by failed test cases. But such set of test cases does not exist
in reality; thus, the execution result of test case in the virtual
test set is di�cult to get in practice. So we input 3V� to the

trained DNN, and the output 4V� represents the probability of
test case execution result. 	e value of 4V� is proportional to
the suspicious degree of containing bugs of ��.

Speci�c fault location algorithm is as follows:

(1) Construct the DNN model with one input layer and
one output layer, and identify the appropriate number
of hidden layers according to the experiment scale.
Suppose the number of input layer nodes is ', the
number of hidden layer nodes is -, the number of
output layer nodes is 1, and the adopted transfer
function is sigmoid function �(�) = 1/1 + �−�.

(2) Utilize the coverage data and execution result of test
case as training sample set which is inputted into the
DNNmodel, and then train theDNNmodel to obtain
the complex nonlinear mapping relationship between
the coverage data 3�� and execution result 4�� .

(3) Input the coverage data vector of virtual test set3V� (1 ⩽ 5 ⩽ ') into the DNN model and get the

output 4V� (1 ⩽ 5 ⩽ ').
(4) 	e output 4V� re�ects the probability that executable

statement �� contains the bugs, that is, suspiciousness
value, and then conduct descending ranking for 4V� .

(5) Rank �� (1 ⩽ 5 ⩽ ') according to their corresponding
suspiciousness value and check the statement one by
one from the most suspicious to the least until the
faults are �nally located.

3.2. �e Example of Fault Localization Algorithm Based on
Deep Neural Network. Here, we illustrate the application of
fault localization analysis based on deep neural network by a
concrete example. It is depicted in Table 2.

Table 2 shows that the function of program Mid(⋅) is to
get the middle number by comparing three integers. 	e
program has twelve statements and ten test cases. 	ere is
one fault in the program, which is contained by statement(6). Here, “∙” denotes that the statement is covered by the
corresponding test case.	e blank denotes that the statement
is not covered by test case. P represents that the test case is
executed successfully while F represents that the execution
results of test case are failed.

	e coverage data and execution results of test cases
are shown in Table 2. Table 3 correlates with Table 2. Here,
number 1 replaces “∙” and indicates that the statement
is covered by the corresponding test case, and number 0
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Table 2: Coverage and execution result of Mid function.

Function
Test cases�1 �2 �3 �4 �5 �6 �7 �8 �9 �10

Mid(�, , �){int'; 3, 3, 5 1, 2, 3 3, 2, 2 5, 5, 5 1, 1, 4 5, 3, 4 3, 2, 1 5, 4, 2 2, 1, 3 5, 2, 6
(1)' = � ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙
(2) if ( < �) ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙
(3) if (� < ) ∙ ∙ ∙ ∙ ∙ ∙
(4)' =  ∙
(5) else if (� < �) ∙ ∙ ∙ ∙ ∙
(6)' =  //bug ∙ ∙ ∙ ∙
(7) else ∙ ∙ ∙ ∙
(8) if (� > ) ∙ ∙ ∙ ∙
(9)' =  ∙ ∙ ∙
(10) else if (� > �) ∙
(11)' = �
(12) printf (');} ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙
Pass/fail P P P P P P P P F F

Table 3: Switched Table 2.

�1 �2 �3 �4 �5 �6 �7 �8 �9 �10 �11 �12 4�1 1 1 1 0 1 1 0 0 0 0 0 1 0�2 1 1 1 1 0 0 0 0 0 0 0 1 0�3 1 1 0 0 0 0 1 1 1 0 0 1 0�4 1 1 0 0 0 0 1 1 0 1 0 1 0�5 1 1 1 0 1 1 0 0 0 0 0 1 0�6 1 1 1 0 1 0 0 0 0 0 0 1 0�7 1 1 0 0 0 0 1 1 1 0 0 1 0�8 1 1 0 0 0 0 1 1 1 0 0 1 0�9 1 1 1 0 1 1 0 0 0 0 0 1 1�10 1 1 1 0 1 1 0 0 0 0 0 1 1

replaces the blank and represents that the statement is not
covered by the corresponding test case. In the last column,
number 1 replaces F and indicates that the execution results of
test case are failed, while number 0 replaces P and represents
that the test case is executed successfully.

	e concrete fault localization process is as follows:

(1) Construct the DNN model with one input layer, one
output layer, and three hidden layers. 	e number of
input layer nodes is 12, and the number of hidden
layer nodes is simply set as 4. 	e number of output
layer nodes is 1, and the transfer function adopted is
the sigmoid function �(�) = 1/1 + �−�.

(2) Use the coverage data and execution result of test case
as training sample set to input into the DNN model.
First, we input the vector (1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1)
and its execution result 0 and, next, input the second
vector (1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1) and its execution
result 0 until the coverage data and execution results
of the ten test cases are all inputted into the network.
We then train the DNN model utilizing the inputted

training data, and further we input the next training
dataset (i.e., another ten test cases’ coverage data and
execution results) iteratively to optimize the DNN
model until we reach the condition of convergence.
	e �nal DNNmodel we obtained a
er several times’
iteration reveals the complex nonlinear mapping
relationship between the coverage data and execution
result.

(3) Construct the virtual test set with twelve test cases and
ensure that each test case only covers one executable
statement. 	e set of virtual test cases is depicted in
Table 4.

(4) Input the virtual test set into the trained DNN
model and get the suspiciousness value of each cor-
responding executable statement, and then rank the
statements according to their suspiciousness values.

(5) Table 5 shows the descending ranking of statements
according to their suspiciousness value. According to
the table of ranking list, we �nd that the suspicious-
ness value of the sixth statement which contains the
bug in programMid(⋅) is the greatest (i.e., rank �rst);
thus, we can locate the fault by checking only one
statement.

4. Empirical Studies

So far, the modeling procedures of our DNN-based fault
localization technique have been discussed in the previous
section. In this section, we empirically compare the perfor-
mance of this technique with that of Tarantula localization
technique [4], PPDG localization technique [3], and BPNN
localization technique [10] on the Siemens suite and Space
program to demonstrate the e�ectiveness of our DNN-
based fault localization method.	e Siemens suite and Space
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Table 4: Virtual test suite.

�1 �2 �3 �4 �5 �6 �7 �8 �9 �10 �11 �12�1 1 0 0 0 0 0 0 0 0 0 0 0�2 0 1 0 0 0 0 0 0 0 0 0 0�3 0 0 1 0 0 0 0 0 0 0 0 0�4 0 0 0 1 0 0 0 0 0 0 0 0�5 0 0 0 0 1 0 0 0 0 0 0 0�6 0 0 0 0 0 1 0 0 0 0 0 0�7 0 0 0 0 0 0 1 0 0 0 0 0�8 0 0 0 0 0 0 0 1 0 0 0 0�9 0 0 0 0 0 0 0 0 1 0 0 0�10 0 0 0 0 0 0 0 0 0 1 0 0�11 0 0 0 0 0 0 0 0 0 0 1 0�12 0 0 0 0 0 0 0 0 0 0 0 1

Table 5

Statement Suspiciousness Rank

1 0.0448 11

2 0.1233 2

3 0.0879 5

4 0.0937 4

5 0.0747 7

6 (fault) 0.1593 1

7 0.1191 3

8 0.0758 6

9 0.0661 8

10 0.0436 12

11 0.0650 9

12 0.0649 10

program can be downloaded from [18]. 	e evaluation stan-
dard based on statements ranking is proposed by Jones and
Harrold in [4] to compare the e�ectiveness of the Tarantula
localization technique with other localization techniques.
Tarantula localization technique can produce the suspicious-
ness ranking of statements. 	e programmers examine the
statements one by one from the �rst to the last until the
fault is located and the percentage of statements without
being examined is de�ned as the score of fault localization
technique, that is, EXAM score. Since the DNN-based fault
localization technique, Tarantula localization technique, and
PPDG localization technique all produce a suspiciousness
value ranking list for executable statements, we adopt the
EXAM score as the evaluation criterion to measure the
e�ectiveness.

4.1. Data Collection. 	e physical environment on which
our experiments were carried out included 3.40GHz Intel
Core i7-3770CPU and 16GB physicalmemory.	e operating
systems were Windows 7 and Ubuntu 12.10. Our compiler
was gcc 4.7.2. We conducted experiments on the MATLAB
R2013a. To collect the coverage data of each statement,
toolbox so
ware named Gcov was used here. 	e test case

execution results of faulty program versions can be obtained
by the following method:

(1) We run the test cases on fault-free program versions
to get the execution results.

(2) We run the test cases on faulty program versions to
get the execution results.

(3) We compare the results of fault-free program versions
and results of faulty program versions. If they are
equal, the test case is successful; otherwise, it is failed.

4.2. Programs of the Test Suite. In our experiment, we con-
ducted two studies on the Siemens suite and Space program
to demonstrate the e�ectiveness of the DNN-based fault
localization technique.

4.2.1. �e Siemens Suite. 	e Siemens suite has been consid-
ered as a classical test sample which is widely employed in
studies of fault localization techniques. And, in this paper, our
experiment begins with it. 	e Siemens suite contains seven
C programs with the corresponding faulty versions and test
cases. Each faulty version has only one fault, but it may cross
the multiline statements or even multiple program functions
in the program. Table 6 provides the detailed introduction
of the seven C programs in Siemens suite, including the
program name, number of faulty versions of each program,
number of statement lines, number of executable statements
lines, and the number of test cases.

	e function of the seven C programs is di�erent. 	e
Print tokens and Print tokens 2 programs are used for lexical
analysis, and the function of Replace program is pattern
replacement. 	e Schedule and Schedule 2 programs are
utilized for priority scheduler while the function of Tcas is
altitude separation, and the Tot info program is used for
information measure.

	e Siemens suite contains 132 faulty versions, while we
choose 122 faulty versions to perform experiments. We omit-
ted the following versions: versions 4 and 6 of Print tokens,
version 9 of Schedule 2, version 12 of Replace, versions 13,
14, and 36 of Tcas, and versions 6, 9, and 21 of Tot info. We
eliminated these versions because of the following:

(a) 	ere is no syntactic di�erence between the correct
version and the faulty versions (e.g., only di�erence
in the header �le).

(b) 	e test cases never fail when executing the programs
of faulty versions.

(c) 	e faulty versions have segmentation faults when
executing the test cases.

(d) 	e di�erence between the correct versions and
the faulty versions is not included in executable
statements of program and cannot be replaced. In
addition, there exists absence of statements in some
faulty versions and we cannot locate the missing
statements directly. In this case, we can only select the
associated statements to locate the faults.



8 Mathematical Problems in Engineering

Table 6: Summary of the Siemens suite.

Program Number of faulty
versions

LOC (lines of code) Number of executable
statements

Number of test cases

Print tokens 7 565 172 4130

Print tokens 2 10 510 146 4115

Replace 32 563 175 5542

Schedule 9 412 140 2650

Schedule 2 10 307 115 2710

Tcas 41 173 59 1608

Tot info 23 406 100 1052

4.2.2. �e Space Program. As the executable statements of
Siemens suite programs are only about hundreds of lines, the
scale and complexity of the so
ware have increased gradually
and the program may be of as many as thousands or ten
thousands of lines. Sowe verify the e�ectiveness of ourDNN-
based fault localization technique on large-scale program set,
that is, Space program.

	e Space program contains 38 faulty versions; each
version has more than 9000 statements and 13585 test cases.
In our experiment, due to similar reasons which have been
depicted in Siemens suite, we also omit 5 faulty versions and
select another 33 faulty versions.

4.3. Experimental Process. In this paper, we conducted exper-
iments on the 122 faulty versions of Siemens suite and 33
faulty versions of Space program. For the DNN modeling
process, we adopted three hidden layers; that is, the structure
of the network is composed of one input layer, three hidden
layers, and one output layer, which is based on previous
experience and the preliminary experiment. According to
the experience and sample size, we estimate the number of
hidden layer nodes (i.e., num) by the following formula:

num = round( -30) ∗ 10. (14)

Here, - represents the number of input layer nodes. 	e
impulse factor is set as 0.9, and the range of learning rate is{0.01, 0.001, 0.0001, 0.00001}; we select the most appropriate
learning rate as the �nal parameter according to the sample
scale.

Now, we take Print tokens program as an example and
introduce the experimental process in detail. 	e other pro-
gram versions can refer to the Print tokens.	e Print tokens
program includes seven faulty versions and we pick out �ve
versions to conduct the experiment. 	e experiment process
is as follows:

(1) Firstly, we compile the source program of Print
tokens and run the test case set to get the expected
execution results of test cases.

(2) We compile the �ve faulty versions of Print tokens
program using GCC and similarly get the actual exe-
cution results of test cases and acquire the coverage
data of test cases by using Gcov technique.

(3) We construct the set of virtual test cases for the �ve
faulty versions of Print tokens program, respectively.

(4) 	en, we compare the execution results of test cases
between the source program and the �ve faulty ver-
sions of Print tokens to get the �nal execution results
of the test cases of �ve faulty versions.

(5) We integrate the coverage data and the �nal results
of test cases of the �ve faulty versions, respectively, as
input vectors to train the deep neural network.

(6) Finally, we utilize the set of virtual test cases to test
the deep neural network to acquire the suspiciousness
of the corresponding statements and then rank the
suspiciousness value list.

5. Results and Analysis

According to the experimental process described in the previ-
ous section, we perform the fault localization experiments on
deep neural network and BP neural network and statistically
analyze the experimental results. We then compare the
experimental results with Tarantula localization technique
and PPDG localization technique. 	e experimental results
of Tarantula and PPDG have been introduced in [3, 4],
respectively.

5.1. �e Experimental Result of Siemens Suite. Figure 3 shows
the e�ectiveness of DNN, BP neural network, Tarantula, and
PPDG localization techniques on the Siemens suite.

In Figure 3, the �-axis represents the percentage of state-
ments without being examined until the fault is located, that
is, EXAM score, while the -axis represents the percentage of
faulty versions whose faults have been located. For instance,
there is a point labeled on the curve whose value is (70, 80).
	is means the technique is able to �nd out eighty percent
of the faults in the Siemens suite with seventy percent of
statements not being examined; that is, we can identify eighty
percent of the faults in the Siemens suite by only examining
thirty percent of the statements.

Table 7 o�ers further explanation for Figure 3.
According to the approach of experiment statistics from

other fault localization techniques, the EXAM score can be
divided into 11 segments. Each 10% is treated as one segment,
but the caveat is that the programmers are not able to identify
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Figure 3: E�ectiveness comparison on the Siemens suite.

Table 7: E�ectiveness comparison of four techniques.

EXAM score
% of the faulty versions

DNN BPNN PPDG Tarantula

100%-99% 12.29% 6.56% 41.94% 13.93%

99%–90% 61.48% 43.44% 31.45% 41.80%

90%–80% 21.31% 24.59% 13.71% 5.74%

80%–70% 4.10% 11.48% 2.42% 9.84%

70%–60% 0.00% 7.38% 2.42% 8.20%

60%–50% 0.82% 3.28% 5.65% 7.38%

50%–40% 0.00% 3.28% 1.61% 0.82%

40%–30% 0.00% 0.00% 0.00% 0.82%

30%–20% 0.00% 0.00% 0.80% 4.10%

20%–10% 0.00% 0.00% 0.00% 7.38%

10%–0% 0.00% 0.00% 0.00% 0.00%

the faults without examining any statement; thus, the abscissa
can only be in�nitely close to 100%. Due to that factor, we
divide the 100%–90% into two segments, that is, 100%–99%
and 99%–90%. 	e data of every segment can be used to
evaluate the e�ectiveness of fault localization technique. For
example, for the 99%–90% segment of DNN, the percentage
of faults identi�ed in the Siemens suite is 61.48% while
the percentage of faults located is 43.44% for the BPNN
technique. From Table 7, we can �nd that, for the segments
50%–40%, 40%–30%, 30%–20%, 20%–10%, and 10%–0% of
DNN, the percentage of faults identi�ed in each segment is
0.00%.	at indicates that the DNN-basedmethod has found
out all the faulty versions a
er examining 50% of statements.

We analyzed the above data and summarized the follow-
ing points:

(1) Figure 3 reveals that the overall e�ectiveness of our
DNN-based fault localization technique is better than
that of the BP neural network fault localization tech-
nique as the curve representingDNN-based approach
is always above the curve denoting BPNN-based

method. Also, the DNN-based technique is able to
identify the faults by examining fewer statements
compared with the method based on BP neural net-
work. For instance, by examining 10% of statements,
the DNN-based method is able to identify 73.77% of
the faulty versions while the BP neural network fault
localization technique only �nds out 50% of the faulty
versions.

(2) Compared with the Tarantula fault localization
technique, the DNN-based approach dramatically
improves the e�ectiveness of fault localization on
the whole. For example, the DNN-based method
is capable of �nding out 95.08% of the faulty ver-
sions a
er examining 20% of statements while the
Tarantula fault localization technique only identi�es
61.47% of the faulty versions a
er examining the
same amount of statements. For the score segment
of 100%–99%, the e�ectiveness of the DNN-based
fault localization technique is relatively similar to that
of Tarantula; for instance, DNN-based method can
�nd out 12.29% of the faulty versions with 99% of
statements not examined (i.e., the abscissa values are
99), and its performance is close to that of Tarantula
fault localization technique.

(3) Compared with the PPDG fault localization tech-
nique, the DNN-based fault localization technique
re�ects improved e�ectiveness as well for the score
range of 90%–0%. Moreover, the DNN-based fault
localization technique is capable of �nding out all
faulty versions by only examining 50% of statements
while PPDG fault localization technique needs to
examine 80% of statements. For the score range
of 100%–99%, the performance of DNN-based fault
localization technique is inferior to PPDG fault local-
ization technique.

In conclusion, overall, the DNN-based fault localization
technique improves the e�ectiveness of localization con-
siderably. In particular, for the score range of 90%–0%,
the improved e�ectiveness of localization is more obvious
compared with other fault localization techniques as it needs
less statements to be examined to further identify the faults.
	e DNN-based fault localization technique is able to �nd
out all faulty versions by only examining 50% of statements,
which is superior to BPNN, Tarantula, and PPDG fault
localization technique, while, for the score segment of 100%–
99%, the performance of our DNN-based approach is similar
to that of Tarantula fault localization method while it is a bit
inferior to that of PPDG fault localization technique.

5.2. �e Experimental Result of Space Program. As the exe-
cutable statements of Siemens suite programs are only about
hundreds of lines, we further verify the e�ectiveness of DNN-
based fault localization technique in large-scale datasets.

Figure 4 demonstrates the e�ectiveness of DNN and
BP neural network localization techniques on the Space
program.

From Figure 4, we can clearly �nd that the e�ectiveness
of our DNN-based method is obviously higher than that
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Figure 4: E�ectiveness comparison on the Space program.

of the BP neural network fault localization technique. 	e
DNN-based fault localization technique is able to �nd out all
faulty versions without examining 93% of statements while
BP neural network identi�es all faulty versions with 83% of
the statements not examined.	at comparison indicates that
the performance of our DNN-based approach is superior as
it reduces the number of statements to be examined. 	e
experimental results show that DNN-based fault localization
technique is also highly e�ective in large-scale datasets.

6. Threats to the Validity

	eremay exist several threats to the validity of the technique
presented in this paper. We discuss some of them in this
section.

We empirically determine the structure of the network,
including the number of hidden layers and the number of
hidden nodes. In addition, we determine some important
model parameters by grid search method. So probably there
exist some better structures for fault localization model. As
the DNN model we trained for the �rst time usually is not
the most optimal one, thus empirically we need to modify
the parameters of the network several times to try to obtain a
more optimal model.

In the �eld of fault localization, we may encounter
multiple-bug programs and we need to construct some new
models that can locatemultiple bugs. In addition, because the
number of input nodes of the model is equal to the lines of
executable statements, thus when the number of executable
statements is very large, the model will become very big as
well. 	at results in a limitation of fault localization for some
big-scale so
ware and wemay need to control the scale of the
model or to improve the performance of the computerwe use.
Moreover, virtual test sets built to calculate the suspiciousness
of each test case which only covers one statement may not
be suitably designed. When we use the virtual test case to
describe certain statement, we assume that if a test case is
predicated as failed, then the statement covered by it will
have a bug. However, whether this assumption is reasonable
has not been con�rmed. As this assumption is important for

our fault localization approach, thus we may need to test this
hypothesis or to propose an alternative strategy.

7. Conclusion and Future Work

In this paper, we propose a DNN-based fault localization
technique as DNN is able to simulate the complex nonlinear
relationship between the input and the output.We conduct an
empirical study on Siemens suite and Space program. Further,
we compare the e�ectiveness of our method with other
techniques like BPneural network, Tarantula, andPPDG.	e
results show that our DNN-based fault localization technique
performs best. For example, for Space program, DNN-based
fault localization technique only needs to examine 10% of
statements to fully identify all faulty versions, while BP neural
network fault localization technique needs to examine 20% of
statements to �nd out all faulty versions.

As so
ware fault localization is one of themost expensive,
tedious, and time-consuming activities during the so
ware
testing process, thus it is of great signi�cance for researchers
to automate the localization process [19]. By leveraging the
strong feature-learning ability of DNN, our approach helps
to predict the likelihood of containing fault of each statement
in a certain program. And that can guide programmers to
the location of statements’ faults, with minimal human inter-
vention. As deep learning is widely applied and demonstrates
good performance in research �eld of image processing,
speech recognition, and natural language processing and in
related industries as well [13], with the ever-increasing scale
and complexity of so
ware, we believe that our DNN-based
method is of great potential to be applied in industry. It
could help to improve the e�ciency and e�ectiveness of the
debugging process, boost the so
ware development process,
reduce the so
ware maintenance cost, and so forth.

In our future work, we will apply deep neural network
in multifaults localization to evaluate its e�ectiveness. Mean-
while, we will conduct further studies about the feasibility
of applying other deep learning models (e.g., convolutional
neural network, recurrent neural network) in the �eld of
so
ware fault localization.
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