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I. INTRODUCTION

Prompt and accurate location of the faults in a large-
scale transmission system is critical when system
reliability is considered and usually is the first step in
the system restoration. The accuracy of fault location
estimation essentially depends on the information
available. While there have been some successful
algorithms for fault location utilizing two-end or three-
end data, the satisfactory solutions are harder to
formulate if only the local information or only the data
at limited substation locations are available [Girgis et al
(1), Waikar et al (2)].

To improve the accuracy for fault location when only
limited recorded data are available, the “waveform
matching" based approach may be used. In this
approach, simulation studies are carried out to obtain
simulated waveforms under specified fault conditions.
The simulated waveforms are then compared with the
recorded ones. By iteratively posing faults in the
system, running simulations, and comparing the
simulated waveforms with the recorded ones, an optimal
estimate of the fault location may be obtained. It may be
determined as the one specified in the simulation studies
that allows simulating the waveforms that best match
the recorded ones. The matching is made at the phasor
level presently.

In this paper, the fault location estimation is
mathematically formulated as an optimization problem
of  which the  fault  location and   fault   resistances   are
unknown variables. An efficient GA based searching
scheme is developed for obtaining the solution that is
globally optimal [Goldberg (3)].

The rest of the paper is organized as follows. The
problem statement is presented first. Key concepts,
namely “sparse data” and “waveform matching” are
illustrated. The proposed new genetic algorithm based
implementation approach is illustrated next. Finally,
evaluation studies are carried out to verify the accuracy
and feasibility of the proposed approach.

II. PROBLEM STATEMENT

The proposed approach will make use of the “waveform
matching” based methodology. The two key concepts,
namely the “sparse data” and “waveform matching” are
illustrated as follows.

A. Sparse data

Sparse data, in our work, is referred to the data obtained
from recording devices sparsely located at various
substation locations. Examples of recording devices
may include digital fault recorders (DFR), digital relays,
or other intelligent electronic devices (IED) [Kezunovic
(4)]. The data captured by recording devices may
include analog quantities such as voltage and current
waveforms and digital quantities such as breaker status
and relay operation status. Both analog and digital
quantities may be useful for locating the fault [4].

If only sparse data are available for fault location, in
many cases, none of the one-end, two-end and three-end
algorithms may be applicable for locating the faults with
satisfactory accuracy [1-2, 4]. To solve the fault location
problem utilizing sparse data, the “waveform matching”
based approach may be used as illustrated next.

B. Waveform matching

For improved accuracy of fault location by utilizing
sparse data, the waveform-matching based approach
may be utilized. The model of the power system is
utilized to carry out simulation studies. The matching is
made between the voltage and current waveforms
obtained by recording devices and those generated in
simulation studies. The fault is searched through the
system by utilizing an iterative searching process. The
searching process may consist of the following steps.
First an initial fault location is assumed. Second, the
simulation studies are set up according to the specified
fault. Third, the simulation studies corresponding to the
specified fault are carried out utilizing appropriate
simulation tools. Fourth, simulated waveforms of
quantities of interest are obtained. Fifth, the simulated
waveforms are compared with recorded ones, and the
matching degree of the simulated and recorded
waveforms is evaluated by using appropriate criteria.
Sixth, the initial fault location is modified according to
certain approaches, and then the process proceeds to the
second step and continues. The above steps are iterated
until the simulated waveforms that best match the
recorded ones are produced. The fault location will be
determined as the one specified in the simulation studies
when generating simulated waveforms that best match
the recorded ones.

To evaluate the matching degree of the simulated and
recorded waveforms, two different criteria may be
employed. The first one utilizes phasors for matching.
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The other one utilizes transients for matching. Only the
phasor matching is investigated in this paper. The short
circuit studies may be carried out to obtain the phasors
under the specified fault conditions. Then the phasors
are compared with those derived from the recorded
waveforms.

To run simulation studies, short-circuit model of the
system is needed. Among other existing software
packages, Power System Simulator for Engineering
(PSS/E) may be used for carrying out short circuit
studies [PTI (5)].

So far, the “waveform matching” based approach for
fault location has already been employed manually by
some engineers. The matching is made at the phasor
level. There may be certain difficulties involved in the
manual-matching based methods. First, it may be time-
consuming and even difficult to manually pose faults,
run simulations and compare the simulated and recorded
phasors. The tedious process may be prone to human
errors. Second, there is no accepted approach for
guiding the searching process. The engineers usually
have difficulty in knowing where to pose faults in the
next iterative step, and may have to pose faults
randomly. Third, since the fault resistance is unknown,
a zero fault resistance usually has to be assumed in
manual methods when posing faults. This may introduce
undesirable errors. Due to the limitations of manual
matching, the “waveform matching” based approach has
not been widely used in practice. It has not received
wide research attention either. There has not been a
systematic approach available in the literature for
automatically implementing the concept. Our research
aims at proposing a new implementation method for
automated “phasor matching” that may facilitate the
entire searching process and lead to improved accuracy.

III. PROPOSED IMPLEMENTATION
      APPROACH FOR PHASOR MATCHING

To effectively guide the searching process, a genetic
algorithm (GA) based searching approach based on
“phasor matching” is proposed. In the following
sections, the fault location is first formulated as an
optimization problem, and then the application of GA
for fault location estimation is illustrated.

A. Formulation of the fault location searching
process as an optimization problem

In the fault location problem discussed so far, there may
be two possible unknown parameters, namely the fault
location and the fault resistance. In our work, the type of
the fault is assumed to be obtained by another fault type
classification program.

To search for the fault location by phasor matching, the
two unknown parameters, i.e. fault location and
resistance, need to be varied. By specifying faults with
various fault resistances and locations, a number of

short-circuit studies can be carried out and the
corresponding voltage and current phasors obtained.
The most probable solution to the problem may be
determined as the one specified in the simulation studies
when producing the phasors that best match those
derived from the recorded waveforms.

The formulation of the problem can be presented as
follows:
Find the value of x  and fR that minimize
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where
),( fc Rxf : the defined cost function

),( ff Rxf  : the defined fitness function. The larger the

value of the fitness function, the better the matching of
the simulated and recorded phasors, and the better the
solution is.
x : the fault location

fR : fault resistance

ksV and krV : the during-fault voltage phasors obtained

from short-circuit simulation studies and from recorded
waveforms respectively.

ksI  and krI : the during-fault current phasors obtained

from short-circuit simulation studies and from recorded
waveforms respectively.
k : the index of the voltage or current phasors

vN  and iN : the total number of the voltage and current

phasors respectively.

It is noted that the largest possible fitness value defined
by (2) is equal to zero and can be reached if the phasors
obtained from simulation studies exactly match those
obtained from recorded waveforms. Therefore, the best
fault location estimate would be the one that maximizes
(2). Appropriate optimization techniques need to be
selected to solve this problem.

To obtain a clear picture of the nature of the fitness
function, various simulation studies have been carried
out to obtain the fitness value versus the fault location
and resistance using the sample power system shown in
Fig. 1. For convenience of presentation, all the data are
assumed to be obtained by DFRs in this work [4]. The
depicted system represents a portion of the 138 kV
Reliant Energy HL&P transmission system. In our
work, the commercial software package PSS/E is
utilized to carry out the short circuit studies [5]. The
fitness value is obtained by specifying the faults with
various fault resistance on each line throughout the
system, running simulations, and applying (1-2).

Now assume that a phase-A to ground fault with fault
resistance 0.1 p.u. occurs on the line between bus 13



and 12 that is 9.1 miles away from bus 13. If only the
recorded data at bus 1 are available for fault location,
the fitness value versus the fault location and fault
resistance for this specific fault can be obtained as
depicted in Fig. 2.

Figure 1: A sample power system

Figure 2: The fitness surface for an a-g fault using data
at bus 1 and (2)

It is seen from Fig. 2 that the maximum fitness value
occurs at point (312.7, 0.1), which is the optimal
solution for the phase A to ground fault.

It is noted that the fitness surface is not regular and
contains saddle points and local maximum points.
Simulation studies evince similar characteristics for
other types of faults. Hence, it is rather difficult to use
the gradient-based method to find the global maximum
point. Exhaustive search through every possible solution
may be too time-consuming and hence impractical.

The GA based optimization approach is good at finding
the globally optimal solution and avoiding the local
optima. The nature of the fitness function, as depicted in

Fig. 2, prompts the attempt of the GA based
optimization method as described next [3].

B. Proposed genetic algorithm based searching
approach

Figure 3: The flowchart for the GA based fault location
estimation

In GA based optimization approach, (2) will be chosen
as the fitness function. Fault location x  and the fault
resistance fR are the two variables. The flow chart of

the algorithm is shown in Fig. 3. The ranges for varying
x  and fR  can be decided as follows. fR can be

selected according to the typical possible fault
resistance values. x  can be simply selected as ranging
from zero to the sum of the length of all the possible
faulty lines, or estimated by other suitable algorithms [2,
4].

In the step “Posing faults and running PSS/E”, the short
circuit studies are carried out by using the software
package PSS/E according to the specified fault
conditions [5]. In “Fitness evaluation”, (2) is applied to
evaluate the matching degree of the simulated and
recorded phasors. Steps related to initialization,
selection of parents, crossover and mutation are
standard GA steps, as illustrated in [3].

By iteratively posing faults, running short circuit
simulations, evaluating the fitness value, updating the
fault location and resistance, the GA based searching
engine guides the searching process for a globally
optimal solution.



IV. EVALUATION STUDIES

This section presents simulation studies utilizing the
sample system depicted in Fig. 1. Results obtained by
the existing approach have also been presented for
comparison purposes [2]. The GA uses the following
parameters: population size: 30, crossover probability:
0.85, mutation probability: 0.05, coding binary string
length for fault location: 9, and coding binary string
length for fault resistance: 8 [3]. Fault location ranges
from 0 to the sum of the length of all the lines, as shown
in Fig. 1. Fault resistance ranges from 0 to 0.4 p.u.

Results for various case studies are listed in Table 1. In
comparison, results obtained by the existing algorithm
assuming the fault resistance as zero are also reported
[2]. In the table, ax  is the actual fault location, ex the

estimated fault location by GA, faR  the actual fault

resistance, feR the estimated fault resistance by GA, and

tx  the fault location yielded by [2]. The second column

of the table indicates the names of the buses that have
DFR recordings available for fault location estimation.
The sixth, ninth and twelve columns of the table
indicate the actual faulty lines, and the faulty lines
estimated by the GA and existing approaches
respectively. In these columns, the first and second
numbers represent the starting bus and the end bus of
the line, respectively.

Note that the fault location listed in the table refers to
the distance of the fault from the starting bus of the
faulty line. For example in case 1, it is shown that the
actual fault is on the line from bus 13 to 12 and is 9.1
miles away from bus 13. The estimated fault location by
GA is on the line from bus 13 to 12 and is 8.8 miles
away from bus 13, and the fault location obtained by [2]
is 550.4 miles from bus 1. “N/A” in the last column
indicates that the corresponding approach is not able to
reliably identify the faulty line. It is seen that for all the
cases, the GA approach is able to pinpoint the fault
location quite accurately irrespective of the fault type
and fault resistance, while the existing approach does
not give reliable results

V. CONCLUSIONS

To improve the accuracy for fault location estimation
when “sparse data” are available, the “waveform
matching” concept may be utilized. A new GA based
approach for implementing this concept has been
introduced in this paper. Evaluation studies utilizing
simulated data have shown that the proposed approach
may lead to improved accuracy over existing ones for
fault location when only “sparse data” are available.
Software implementation issues and the test results
using field data will be reported in future papers.
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TABLE 1 - Fault location estimated by the proposed approach and the existing approach.


