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Abstract:

The subject of this thesis is the development of concepts and techniques to be used in the testing of
cellular logic arrays. In particular, the subject is to develop techniques to locate, detect, and isolate
failures in cellular logic arrays.

The primary purpose of the thesis is to develop the most general fault location theory for
two-dimensional cellular arrays consisting of two-input, one-output cells. The theory presented utilizes
a physical basis to assume a maximum set of allowable errors and thus realistically accounts for the
appearance of cell failures.

The content of the thesis is summarized as follows: First, a physical basis for the assumption of the
maximum error set is given.

The assumption of the maximum error set assures that the most general solution will be obtained.
Second, the problem of testing a two-dimensional cellular array is expressed in terms of testing a
Maitra cascade. Third, a necessary and sufficient condition for the location of a single error in a Maitra
cascade is given and proven. Also, a least upper bound on the number of tests needed to test the array is
derived. Fourth, an algorithm is given, based on the necessary and sufficient condition, for error
location, which allows testing of arrays for either location or detection of errors. Fifth, error detection
and error location methods are given for certain very important proper subsets of the maximum error
subset. Sixth, examples are given that 1) illustrate the various error location and. detection methods that
were proposed, and 2) illustrate that location of some multiple errors is possible utilizing single error
location theories.
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ABSTRACT

- The subject of this thesis is the development of concepts and
techniques to be used in the testing of cellular logic arrays. In par-
ticular, the subject is to develop technigues to locate, detect, and
isolate failures in cellular logic arrays. ‘

The primary purpose of the thesis is to develop the most general
fault location theory for two-dimensional cellvlar arrays consisting of
two-input, one~output cells., The theory presented utilizes a physical
basis to assume & maximum set of allowable errors and thus realistically
accounts for the asppearance of cell failures.

The content of the thesis is summarized as follows: First, a
physical basis for the assuvmption of the maximum error set is given.
The assumption of the maximum error set assures that the most general
solution will be obtained. Second, the problem of testing a two-
dimensional celluvlar array is expressed in terms of testing a Maitra
cascade. Third, a necessary and sufficient condition for the location
of s single error in a Maitrs cascade is given and proven. Also, a least
upper bound on the number of tests needed to test the arrsy is derived.
Fourth, an aTgorlohm.lo given, based on the necessary and sufficient con-
dltlon for error location, which allows testing of arrays for either
locaulon or debection of errors. Fifth, error detection and error loca-
tion methods are given for certain very important proper subsets of the
maximumn error subset. Sixth, exemples are given that 1) illustrate the
various error location and detectlon methods that were proposed, and 2).
illustrate that location of some multiple errors is possible uwtilizing
single error location theories. -




Chapter 1

INTRODUCTION TO THE TESTING OF INTEGRATED

CELLULAR LOGIC ARRAYS




1.1 Introduction -

Testing of complex integrated cellular logic circuits fabricated
using LSI techniques has become a source of concern to users and manu-
facturers. Since no economically feasible solution to testing problems
is visible for the complex arrays qonﬁemplated'for the near future,
manufacturers have acknowledged the seriousness>of this problem. Cur-
rently some observers believe.that ST cannot be tested because general
procedures for testing and diagnosing digital circuits are gpplicable
to rather small networks of spproximately 30 gates, while cellular arrays
are contemplated as containing hundreds or thousands of gates on one
chip. However, if arrays are constrained to be in a celluvlar form, then
testing problems can be simplified and test schedules can be’produced

which utilize the interconnection structure of cellular arrays.

In some cases, the iterative interconnection structure of cellu-
lar arrays enables derivation of test'schedﬁles which élso exhibit an
iterative nature, thus reducing the complexity of the testing problem in
comparison to testing problems encountered in testing a non~iterative
structure containing an equal number of gates. It will b¢ ghown that
the structure of single-rail cascades can be utilized to great advantége
in derivation of test algorithms for Maitra and general function cas-
cades {10 } and that this testing can be accomplished from the edge of
the cascade. These results are extendsble to a large class of arrays.
However, Kautz {8, 91 has shown that there exist cellular arrays

which cannot be tested from their edge terminals.




1.2 Problem Definition

" The iterative interconnection structure of cellular arrays allows
decomposition of testing problems for LSI cellular arrays into several
sub—probiems. One sﬁb~problem is testing of single-rail cascades such
as shown in Figure 1.l. These cascades can be utilized in the produc-
tion of more complex cellular arrays and téchniques can be derived
such that if a single~rall cascade can be tested then certain complex
arrays can be tested. Examination of problems encountered during solu-
tion of the problem of testing single-rasil cascades utilizing only in-
put and output terminals of cascades produces methods that can be
utilized to test more complex arrays. = Specifically, solution of prob-
lems involved in testing single-rail cascades lends insig_tﬂﬁo methods
useful in testing cellular arrays from their edge terminals by computers

utilizing only an average of 2 or 3. tests per cell contained in the array.

Figure -1.2 indicates the manner of construction of an important
class of cellular arreys. An example of an important class of arrays
that has this interconnection structure is a cutpoint array {12} ;
however, cutpcoint arrays do not have a buss running lengthwise through
each vertical cascade. This array consists of collector rows and ver-
tical cascades. There is a buss running the length of each vertical
cascade and. all busses extend across all collector rows, while busses
distribute every variéble to every vertvical cascacde. This construction

reduces testing this array to testing a single-rail cascade since each

collector row can be tested as a cascade and each vertical cascade can
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Figure 1. 2. Construction of a Testable Cellular Array.
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be likewise tested. One problem in this spproach is that the vertical
bugses must be guaranteed to bhe error~fr§e 5r alternatively the ability
‘to.place both a 0 and a 1 on the inpub into the busses that exbtend
acr%ss the collector rows must be guaranteed. Oﬁtput values of vertical’
cascades are measured at the bottom of the array; whe%eas, collector row

output values are measured on the right-hand side of the array.

1.3 Practical Counsiderations

Testing LSI circuits is a poﬁentially difficult task’> however, cir-
cuits of today are tested and they presented complex problems a few
years ago. A consideration of testing problems currently solved leads
to a conclusion thal possibly meny problems inherent in testing of LSI
arrays have been4éolved while reaching for solutions to test problems
caunsed by printed circuit beards and today's integrated circuits. To-
day's coﬁplex printed circuit boardé may become £omorrow's elementary
LSTI chips. 'Consideration of testing problems produced by LSI chips may
help develop test algorithms that could be used to test today's complex
printed circult boards. However, cbm@lex cellular arrays in practice
will be harder to test than printed'circuit boards. Consider tﬁat not

only must exact error locations be indicated, but a decision must be made

based on the number of errors and theixr locations-as to what can be done
with iwmperfect arrays. Are imperfect arrsys discarded. or can they be
salvaged in some manner? Minnick {11} and Speadorfer {16} have sug-

gested that at predetermined intervals in arrays such as in Figure 1.2,
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extra vertical cascades and collector rows be installed. If a vertical

cascade or collector row has an error, then the extra cascade or row

could be used to produce the correct function.
|

Before any test procedures can be established an error or circuit
failure criterion must be established which allows definition df possible
error types that may appear in LSI construction. In Chapter 3, a logicai
method of deciding on an allowable set of errors for certain types of

cellular arrays will be pfesented.

élacing an accessible test pad on an interconnection between‘cells
reduces the effective area usaple for the cells. For this reason abtemphts
should be made to accomplish all testing and location of faulty cells
from the terminals of fhe array without any test pads being included in
the array. Actval testing of arrays is to be accomplished utilizing a
computer. A test schedule could verify the complete truth table, trans-
fer function, or state table for any given device; however, this pro-
cedure would require too much computer time and add greatly to the ex-
pense of the array. Instead of a complete verification procedure, another
solution could be to test certain input conditions on a probabalistic or‘
expected utilization vbasis; however, this method is still very unsatis-~

factory. A feasible approach is to decide on a dominant failure mode

“from which a set of allowsble errors can be derived for each cell type

used in arrays under consideration. With this knowledge, manufacturers
could construct arrays utilizing certain interconnection strucltures and

design cells with redundant properties causing an dincrease in the proba~
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pility that if a failure occurs which was one of the dominant failure
types, then the cell error that occurs is a cell error which is contained

in the set of allowable errors.

1.4 Testing

Redundant design, failure modes, allowable errors and requifed
confidence level contribute to debermination of the number of tests re-
guired, but the array's structure cen determine the number of tests al-
most independently of these factors. To test arrays of the type shown
in Figure 1.2, the most complex array to 5e tested is-a single~rail cas-~
cade; Admittedly, it would be desirsble to test all collector rows
(vertical cascades) simultaneously; however, in order to accomplish this
restrictions on the array structure mist be made that restrict the class

of testable arrays until the procedure becomes practicaily useless,

In Figure 1.1, cell n is tested fi?st, then cell n-1, ebe. TIf an
errof appears in cell n~j, "its propagation may be stopped by one of cells
n-1, n-2,..., n-jsl, thereby enabling cell n to be tested. Once cell n
is bested, it may be set such that it transmits the output of cell n-1
to the output terminal of the cascade. In this manner‘(under cervain
efror assumptions) the cells may be tested in the foilowing order until
error location results: n, n-l,..., 1. Tt is shown in Chapter 3 that
the maximun number of tests needed to locate errors under certain assuﬁpm
tions is a linear funcbion of n, namely 2(n+l), wheré n-is the number of

cells comprising the single-rail cascade. Hence, assuming that all
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vertical cascades aie teéted implies the number of tests does not exceed
p(2(a+l)) + 2(p+1l) (where p equals number of vertical cascades and n
equals number of cells per vertical cascade) to test aﬁ array with one
collector row. If there are m collector rows, i.e., array produées T
function of n+l variables, then verifying complete truth tables of m
functions of n+l variableé would require not more than p(2(n+l)) +
m(2(p+1)) tests. A considerable savings in the number of tests is noted
due to construgtion and structural interconnections of the arrasy of
Figure 1.2 if n is large. It is noted that the number of tests was pro-~

portional to the number of input pins.

1.5 Generation of Tests and Test Equipment .

Test schedules are éonstructed to verify whether each cell is pro-
ducing its specified function. This mefhod of testing was chosen in pre-~
ference to verifying an array's truth table because in general the number

'of tests needed is less than m(2n+l), where m functions of n+l variables
are produced. Under‘certain assumptions chooging test schedules capable
of accomplishing the task of locating everyierror in arrays such as shown
in Figure lﬁ2 is plausible (see Chapter 3) and these test schedules can
be programmed for testing uitilizing digiltal compubers. Iterative sﬁTQCw
tures of cellulaf arrays simplifies problems connected with detection of
feults.  Certain forms of exhaustive test schedules ére practical and

can be implemented on computers for a small number of variables. |
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Since test schedules can be programmed in the case of single-rail

‘cascades, computers will be able to test many bypes of arrays with very

minér,software input changes. In particular, for the single-rail casg~
cad; under the assumptions of Chapter 3, a general fault location pro-
gram can be written. In order to test a'cascade, the only neéded input
information would'be the cell types and their location in the cascade.
With this information the general program 1s able to test all cascades
of one type. When the type of cascade changes this information can be
given the computer as input data and all cascades of the ﬁew type can
then be tested. Due to the structural interconnection of arrays shown
in Figure 1;2, no reprogramning of the test computef is needed when a
new type of arréy'appears. Structure of the test computers.is deter-

mined by structural complexity of arrays.

Computer testing of arrays could‘bg very éostly if a large number
of tests are required. IFf the number of required testé is large enocugh,
it ié concelvable that compuber time could be the largest cost factor in
production of cellular arrays. A procedure of éxhgustive testing such as
verifying complete truth tables of every function in an array will be
very costly if the number of variables is large; however, a high level
of confidence can be placed on arrays so tested. Alternately, if re-
quired tests were few in number, then computer time could be kept from
becoming such a dominant cost factor. Use of computer testing could

allow test time to be less thap handling time end thereby reduce prices,
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Conceptually, the actual test system contains several testers,
one of which is an initial tester to determine if an array has.an error.
If it does have an error, then it is tested by a computer specifically
designed for exror lobation} otherwise it is prepared for shipment.

Once the computer has found all errcrs, thé array is placed in a com-
puter which attempts to correct and reroute the logic. If the array is
correctable it is corrécted and prepared for shipment. All other arrays
are checked by a fourth computer which detefmines if the array is sal-
vagable or not. An array will be salvagable if it can ﬁe used to pro-
'&uce non-trivial functions. If there is a large enough number of errors
in an array and these errors have coﬁsiderable effect on performance,
then it might be advisable to considgr using the array to pfbduce func-~

tions other than those originally specified for the array.

1.6 Conclusions

Although prior work on actually testing cellular arrays is re-
stricted to very few papers, noticeable progress hasg been made on the
theoretical aspect of fault detection and location in cellular arrays.
It is seen that test schedules for cellular arrsys can test complete
arrays with a number of tests proportidnal to the number of‘inpuﬁ ter~
minals to the array. Detailed consideration of the struétﬁre of raxrrays
can yield significant concepts gnabling derivation of very short test
schedules for cellular arrays. Utilizing computers and testing f%om ﬁhé
array‘s-pins seems to be a solution to. the testing problems of'cellular

arrays worth considerable detailed study.




Chapter 2

SURVEY OF PUBLISHED WORK IN THE FIELD OF

FAULT DETECTION
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2.1 Introduction

As the title suggests, the purpose of this chapter is to survey
-work done in the field of fault detection. However, it is to be noted

that the work to be reported differs from previous work in that previous

investigators were interested in fault detection and not in fault loca-

tion.

The relation of the previous problems studied to the problem-conm
gidered here is that one must ascertain. that a failure exists in order
to locate it. Most previous investigations have only considered deter-
mining whether a circuit contains a faultb aﬁd not where the foult is
located. Most of the work surveyed allows pnly two error types; ife.,
s~a~1 (stuck at 1) and s-a-~0 (stuck at 0); whereas, this work allows

more than two error types.

2.2 General Strategy

The genersl strategy employed in most of the papers studied is to
assume a cerbain set of allowable failures and to allow only one'element
to fail. The system in qgestion is then analyzed ﬁtilizing a2 fanlt table.
A test is said to detect a fault if and only if the output of the system

differs from the correct theoretical output of the system.

A test is any combinational input. .Analysis of the circuit allows
the fault table to be constructed as follows: Rows of the table will
correspond to a possible test whereas columns of the table will corres-

pond to a possible fault. A ftable with every possible fault and test is
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constructed such that a. 1(0) at the intersection of a row and column
corresﬁonds to detection (failure to detect the given fault by the cor-
responding tést) of the given fault bj the corresponding test. After
the table is constructed a minimal set of rows is selected such that
this set of rows hasg a 1 in every column. One notes that this set of
tests generally gives some indication of where the error is located and

in some cases could lead to error location.

2.3 Some Disgnostic Techniques

2.3.1 Boolean Graphs

Galey et al, { 5} consider the Boolean graph method. In
eneral, a Boolean graph is a set 6f nodes together with several
input and output lines., Fach input line corresponds to a variable
whereas each output line corresponds to a function. These building
blocks are connected together to forﬁ a system with no feedbsack.
The functions in the system have defined for them on and off arrays,

a procedure is established which allows one to construct the in-

Jective word of the graph, and derive a set of tests for the graph.

Galey et al. consider the problems of finding whether a cir-
cuit had an element s~a-0 or s-a-l énd then of isolabting this ele-
nent if‘possiblé. (Isolation to0 a single element is fawlt location;
however, thefe exist circuits iﬁ wbich location is impossible in
certain cases.' For example, if any gate in Figure 2.1 is s-a-l;

then the error cannct be located.)
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The following is an outline of the general strategy of

Galey et al.:

A Boolesn graph is a set of nodes
along with input lines and output lines.
Each input (output) line has an argument
(Boolean function) attached. The output
lines of some nodes could be the input

lines of other nodes.’

First the injective word, on, and

off arrays of the graph‘are constructed.
The on arrsy for a node is the values for
which the function is 1; i.e., 1 AND2 has
the on array 11 and off arrays OX end X0,

wnere X stands for a don't care condition.

The injective word is just a list of the

injection operators; i.e., s list of the
functions in the graph (read from right to
left) where the rightwost (leftmost) enbry
is the function of the node nearegt the
oufput (inputs). TFigure 2.2 is an example

of the construction of the on. and off

arrays from a Boolean graph and its in-

jective word taken from { 5 }.
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Next, the set of tests that dis-
tinguish a machine that is goodlfrom a
machine in which the iiﬁ branch is s-a-1
is computed. (A similar procedure holds
for s-a-0 in the it braﬁch.) Consider
the iEE node as en input and ignore.the
subgraph feeding it. Thig forms a new
graph with a new injective word. Compute
the on and off arrays foxr thié new graph
deleting a1l on (ggi)'arrays with a don't
care condition in vosition i. For every
cube in the on array with a 1 in position
i, change the 1 to a O and intersect this
cube with gll cubes in the off array.

This set (denoted P(0,1)) represents the
totality of inputs for which the good
machine gives a 0 output and a bad machine
(node i s-a-1) gives a 1 output. This set
must now be translated iﬁto a primary in- .
put representation. To do this, one con-
siders the subgraph feeding node i and '
finds the set of all inputs that produce

"a 0 at node i.
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Geley et al. then give the "Algorithm for Computing
“Totality of All Tests." This algorithm mey be simply ex~

plained as follows:

A matrix is constructed in which a
column is labeled for each possible s-a-1
failure and a rOW'i§ labeled for each
test.. A 1 is placed in row i column j if
and only if failure j 1s detected by test
.i. Two matrices are constructed in this
manner;.i.é., oné for s-a~1l faults and one
for s-a-0 faults. The remaining problem
is to select a minimal test set which

covers both matrices.

An example problem, which consgists of testing an eight-
bit .parity-check circuit for s-a-1 andAs~a—Q failures, is
worked {5} by Galey et al. The s-a-L and s-a-0 matrices each

_had foﬁr rows and 102 columns. Four tests were needed to de-

tect any failuvre in the circuit.

This algorithm could be applied to cellular cascades wiﬁh
only two faults aliowed; however,'since the Corollary to
Theorem H.i of Chapter 4 of this thesis shows that at most two
tests are needed to detect a cascade which has faults fo(s—a~0),

fl5(s~a—l), end f, - (where fp is the cell function) the

P
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application of the above algorithm would not seem logical

considering its complexity.

2.3.2 Armstrong's Method

Armstrong {1} describes s pfocedure for detection of
s-a-l and s-a~0 faults in gate networks with the following
gate functions: AND, OR, NAND, NOR, and NOT. Armstrong's
method if best suited for large circuits in which the fault

table methods are unwieldy due to-the size of the fault table.

Armstrong calculates the equivalent normal fdrm for
the circuit. Since the eguivalent normai form is a sum of
products form, the circuit anow corresponds fo a hypothetiéal
circuit of AND gates feeding an OR gate, Utilizing the con-
cept of path sensitizing, an algorithm is describéd.whiqh will
allow one to obtain a set of tests which detects faults in
the equivalent normal form. It is shown that this set also

deteects all faults in the original circuit.
The following is an outline of Armstrong's method:

The equivalent normal form (enf)
of the circuit is derived. This is
done utilizing two criteris: (1) The i-
dentity of every path from the inpudb to
the output is maintained, and (2) no:fe»

dundant terms are discarded. In the eanf
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if input X goes through gates 1,6,12,19,
20, and 21 in one path from input to out-
put, a term will'appegr in the enf with

le6912,l9,2052]_ as a literal involved..

Next, two tables are formed; one
for the enf and one for the complement of
the enf. Thesevtwo tables are used to de-
rive s-a-) and s-a-0 tests. One notes
that a s-a~0(1) test for a literal in thé
enf is a s-a-1(0) test for the corres-
ponding literal in the complement of the
enf. Armstrong's method selects s-a-l
tests for both the enf and its complement;
Both tgbles»are conétructed as follows:
Row 1 gives.the ent, roﬁ 2 gives the score
from the s-a-1 scoring function, row 3
gives the order of all literal appearances
based on the highést ksecond highest)
scbré being number 1(2), and the remaining
rows contain the binary values agsigned
the literals by the s-a-1 tests that are
generated., .

To generate the s-a-1 tests: (1)

The literal appearance with the highest
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score is selected (from either table) and
assigned the value O. (2) All other lit-
erals in the same texm of thelenf with the
preceding literal are assigned the value 1.
:(3) Every other a@pearance of these lit-
erals are assigned the appropriate value
of 0 or L. (4) One now checks to see if
any values must‘be "forced" to stop the
test from failing. (A test fails if the
previous dssignment causes another term

to have all 1l's assigned to its varisbles).
(5) Oﬁce all literals have been assigned
the test is complete. (6) AlL literals
tested by a test are labeled. (7) The
highest scoring literal (that is not
labeled) is selected ana a second test is
congtructed. (8) This process continues

until all literals are -tested.

The scoring function is given for
reference. It is derived on the basis of
the following two propérties: A term has’
the -fewest number of literals (property
A) and a literal in that term that ngs |

the largest number of complimented forms
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appearing in other terms (property B).

This scoring function seems to give about

fhe appropriate weights to properties A

and B to enable derivstion of near minimal

test schedules with much less effort than

needed by the fault table method.

U AN
G D = (- )+ F
where
(SC )k = the s-a-~1 score for the kEE
l S

literal of the enf, .

V. =
J

the number of wvariables in the

,j—JEE term of the enf, where the

kﬂﬁ literal is in the jEE-term,

V = total number of literal sppeax-~

ance

in the enf,

1 .
Ai’ if the kﬁg-literal is un-
primed
A., if the kﬁg-liﬁeral,is

primed

= number -of unprimed appearances
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of the i’ varisble in the enf, and

1
Ai = number of primed appesrances

of the iEE-variable in the enf.

One notes that if literal k is
_ being considered Ai(A;) for literal
ik is used. The scoring function
would probably be clearer if Ak were
uséé in its statement instead of Ai'
Armstrong works an example and compares it to the same
examble worked utilizing.fault table methods. The minimal -
test set has six tests; whereas, Armstrong's method calculates
eiéhh tests.
This algorithm could be épplied to cascades with cell
functions of AND, OR, NAND, NOR, and WOoT; however, utilizing

the Corollary to Theorem 4.1 of Chapter I of this thesis one

‘could produce the minimal test schedule with much less -effort.

2.3.3 Redundant Circuilts

Friedmsn {4} considers fault detection in redundant
circuits of the same type as those considered by Armstrong.
éeveral examples are presented which illustrate the problems
encountered in redundant circﬁits; however, no algoritﬁm for

testing redundant circuite is given. Friedman does state that

"With redundancy present, it is necessary to verify that every
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test remains valid if preceded by any sequence of undetectable
faults,"” where "test" means a detection test derived by single-.

fault analysis techniques.

2.3.h Keutz's Method

| Kautz {7} considers the general problem of fault test-
ing. He presents several solutions to the problem.of fault
testing. ¥Fixed test schedule procedures and serial tést Pro-

cedures are both .considered.

For the fixed test schedule problen, a specific set of
errors 1s not assumed; instead, it is assumed that the network
can produce certain erroneous functions‘ Since no - errors have
been specified, Keutz should assume that any of the 22n func-
_tions of n variables could be produced, but with this assump-
tion the test schedule would hafe 2" tests. Kautz dées nqt say
what the total number of functions are, but that they can be
reduced to m distinguishable errﬁneous functions, - A.fault ma-
trix F consgisting of the correct function in column 1 and the
m possible erroneous functions in columns 2,3,...,m*l is con-
structed. Next, as many rows as possible are deleted froi the
fault matrix subject to the condition that'every column is dis-
tinguishable, This gi&es a minimal test schedule for detecting

all the erroneous functions.
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Kautz shows how sérial testing may be generalizea froﬁ
fault testing with fiked test schedule procedures. Actually,
the tests are always applied serially, but these are derived
serially. The algorithm is as follows: Given the fault matrix
P (described in the preceding paragraph), delete the row p
where the ﬁumber of (0,1) pairs are maximum; split F into FO
end F,, vhere FO(Fl) is the set of columns having O's (1's) in
row p; repeat the algorithm utilizing the previous results,-

In order to effectively utilize Kautz's method to test
cellular srrays, one would have to translate the maximum error
set into a maximum set of possible erroneous functions; how-
ever, fhis would be an exceedingly difficult task. Since
Theorems 3.1 and 3.2 give the minimal test schedule for any
cellular array gonsidered in this thesis, it would not seem

logical to utilize Ksutz's method to test for faulis in these

cellular arrays.

2.3.5 An Adavtive Solution

| Cohn‘ahd 0tt {3} explain an sdaptive épproach to fault
detection. Tﬁe problem they solve is desién of minimum~ex-
pected-cost testing procedures for both detegﬁion aﬁd iso-
lation of single failures. In certain speclal cases the prov-
-lem is related to the design of a minimum redundancy binary
code for a source whose messages are sﬁatistically independent

(Huffman {6} ) and %o the problem of deciding which test to
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omit and the sequence in which.the femaining tests are pér~.
formed in a tree structure with‘one limb where the number of
nodes is less than the number of elements intﬁhe system, The
problem formulation is given here becsuse it is & very inter-
esting way in which to consider fault testing. The system is
to consist of parts which may be single elements or medules.
The elements are define& so that each element has associated
with it a probability of failure with the probabiiity of mul-
tiple failures assumed to be negligible, while each test has
associated with it the cost to perform fhe tests . The problem
is to find a minimum cost test schedule. This is a very com-
plex apprbach to fault detection an@ location; hoﬁéver, it
would seem to be the most unique serial type te§t concept a-
vailable at present. The algorithm is very good if one is
intefested in test procedure; in which there are probabilistic

failure assumptions. The algorithm procedes as follows:

The conditibn no fault is ré—
placed by an €lement SO-With all O's in
.every test &ector in fhe OEE component,
The elements are arranged in rows with all

components in a row having the same num-

ber of- elements in each set. For example:
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(012)
(0 1) (12) (0 2)
(0) ‘ 1) ()
‘ The evsgluation ED of & suﬁset D is
'min (PDCA,B + Byt EB)
where D=AUB, AAB =¢, Pp is the sum of
proﬁabilities of elements in D, and CA,B
is the cost of the least expensivé test
partitioning D into non-trivial subsets
A and B. The subsets in the lowest row
" have EU=O since they represent single ele~l
ments and thus have no ambiguity. ¥From
the fact.that for every element in the

lowest row E_ -0 and the expression E

Iy D’

the arrgy can be evgluated and z test

‘schedule found.

2.3.6 Programmed Algorithms

Roth et al. {15} have programmed two algorithms for fault
detection .in combinational 1ogic.circuits. Roth {5,l3~15} has
written several papers on fault detection in combinationalAlogic
circuifs. The two algorithms programmed ip {15} are based on

the other papers Roth published on fsult detection problems.
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The first algorithm'is DALG-II. DALG-IT is a test gen~
eration procedure which guarantees finding a test for a‘failm
ure (s-a-l and s-a-0 are the allowsble failures) if such-a
test exists. .The second algori%hm is called TEST-DETECT.
TEST«DETECT is.an algorithm to ascertain all failures detected
by’aﬂgiven test. TEST~DETECT and DALG~II are used in conjunc~‘
tion with each other o produce test schedules for combina-
tional logic circuits; however, strategies for their use to-

gether need to be worked out so that a small number of tests

‘can be quickly generated which detect all faiiures in the cir-

cuilt and after all faults have been detected, a larger set of
tests can be generated which isolate the error to within the
smallest replaceable module. Roth et al.. discuss three such

strategies.

The glgorithms are given in the'form éf APL (A Program-
ming Language, Iverson's notation) programs. DALG~II has thir»
teen subroutines wheress TEST-DETECT has one subroutine. -Since
the detection problem for three errors (s—a~0, s~a¥i, comple~
menfation) is solved in a minimal ménner by Corolisry 1 to
Tﬁeorem L.1 of this thesis, Roth's algorithms are not repro-

duced.
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2.4 Testing of Cellular Arrays

Kautz {8,9} and Yeu and Orsic {17} have considered testing cellu-
lar arrays. kautz looks at general arrays whereas Yau and Orsic look at
cutpoint cellular arrays. The results of Kasutz tend to be necessary and
sufficient conditions fof an array to be testable. These results are of
a very general nature and no algorithm is given to determine the test

schedules which have been shown to exist.

Yau and Orsic consider cutpoint arrays; howeyer; in testing cut-
point arrays there are problems because s-a-0 (s~a-1) appear to ook like
cell functions O (1) which are allowed in cutpoint arrays. The purpdse
of Yau aﬁd Orsic is to locate faulty columns and collector rows, Their
approach 1is to constrict two fault matrices somewhat analogou; to fault

tables previously discussed.

The algorithm of Yam and Orsic is not given in this thesis for the
following two reasons: (1) Since the purpose of Yau ané Orsic is to lo-
cate faulty rows and columns with two aliowéble faults (s-a-1 end s-2-0),
an agplication of Corollary 1 to Theorem 4,1 of this thesis gives loce-
tion of the faulty rows end columns in 2 (m+l) tests; however, Yau and
Orsic's algorithm needs 2m(n+N+1) tests (where m,n, and I are the number
of columng, input variables, and rowé of the'array). (2) Two'(n+N) X n
matrices are ﬁtilized in the algorithm and the construction of these two

. matrices is Jjust one out of eight steps in the -algorithm.
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2.5 Digitsl Simulation of Failures in Digital Systems

This section is concerned with a paper by Chang {2 }. In his
paper Chang gives a method for simulating shorted input diode failures
other than the s$-a-0 and s-a-l faults. The method is extendsble to simu-
late all modes of faillure that are describable by truth tables and Boolean'

algebra.

The importance of Chang's work is that while experience has shown
that s-a~1 and s-a~0 are common faults, there are many types of faiiure
modes that may occﬁr in integrated éircuits‘that did not occur in cur-
rent discrete logic circuit technology. Also, in gate networks it is
possible for shorted diode faillures o occur and for that reason the
problem of fault detection and location should not be restricted to con-

gideration of only s-a-0 and s-a-l failure models.

The method Chang uvtilizes is to change the theoretical truth table.
For example, if the function flMCX’Y) can heve asg & possible error a con-
dition described by shorting diode Y to 0,- then this error can be describ-

ed by the truth table function flECX,Y).

The implication of Chang's work {2} is that as testing procedures
become more sophisticated, more faults will be added -to the allowable
error sebts; however, this trend will have no effect on this thesis since

2

it uwtilizes ¥The maximum possible error setl.
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2.6 Conclusion
The usual problen congidered in the field of fault detection and
location is the detection in an arbitrary digital network of two failure

modes, i.e., s-a~0 and s-a-l. A fault table is a common solution to the

_problem; however; there exist other methods of solving the problem.

That most researchers concern themselveé with detection éf faults
and allow only two failure modes ‘o exist points out the complexities of
the‘problems involved in this field. Location of a fault after it has
been detected is in most cases an impossible problem; however, some re-
sults can be used to isolate thé failure to a certain part of the system.
It is interesting to note that work has been done on simulating faults

other than s-a-0 and s-a-1 {2} .

In the future, more work should be done in systems in which more
than two possible errors are allowed to exist, since these systems can
be simulated if only by hand calculation° It is the purpose of the fol-
lowing. sections of this thesis to attempt a solution of the prcblem of
faplt location in cellular arrays with an expanded error get- and develop
an algorithm that will allow one to test cellular arrays of certain inter-

connection structures.




Chapter 3

FAULT LOCATION IN CASCADES
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3.1l Introduction

This section is a review of Chapters 1 and 2. Production of
practical, reliable, and economical batch-fabricated circuits is an im-
portant trend in the field of digital circuits. However, usé of these
complex integrated circuit modules increases the chance that some of the
components in the circuit will be faulty. Construction of these cir-
cuits in the form of a cellular array has the following advantages:
uniform interconnection structure makes the circuits easy to manufacture,
reduces the number ofvpins, and increases reliability. Since there are
no test pads in the array, all testing must be accomplished_using only
the input and output terminals; therefore, fauvlt locétion is a very im~
portant problem if_cellular arrays are o be utilized in pra;tical cir-

cuits.

Tﬁe current frends in fault detection in érbitrary digital cir-
cuits are due to Armstrong {1} and Roth {5,13-15} . Béth Roth and Arm-
strong allow only two types of errors; i.e.,'s~a~l (stuck at one) or
s-a-0 (stuck at zero). Keutz {8,9} has studied fault detection in many

different types of cellular arrays.

This research studied a specific cellular array called the
cascade. In 1962, Maitra {10} studied a very fundemental cellular array
vhich may be described as a single-rail caséade. Cells in this array
are connected as shown in Figure 1.1l. Each cell in the cascadeé under

considersgtion produces a function selected from the following 12 func-
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tions: Y , X + YK, <y or.X*GB' v. (See Definition 3.6, page 40.)

One notes that current work is based on fault detection on a very

limited set of alldwable errors whereas this research is concerned with

fanlt location on an allowable set of errors which will contain more

than two failure types.

In general, the reiationship between current work‘aﬁd this re-~ (-
search is that the fault must be detected before it can be located. For
arbitrary digital circuits it is hard to decide on an allowsble set of
errors; however, in cascades there exists a natural manner in which to

determine the set of allowed faults.

3.2 Assumptions

The physical structure of the ce}ls of the cascadé furnisheé a
basis to obtain a maximum allowable set of errors:/ Since every cell has
’two inﬁut iea&s it is logical to assume that if a cell—}éils, it produceé
one of the remaining 15 functions of two vaiiablesi\therefore, it is
.assumed that every cell has 15 poésible modes of failure. 1In accordance
with assumptions implicit in previous work done in fault detection, it
is assumed that the interconnections between cells do not fail, that the
failure is time independent, i.e., if cell ﬁ i§ in error at time tl thgn
cell m is‘still in error at time t, > tl, the error in cell m has not

>
changed, and that the input and output leads of the system do not fail.

It is assumed that every cell is a two-input, one-output cell and

cascades are constructed as indicated in Figure 1.1, if a cascade has a °
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faulty cell, then only one cell may produce an erroneous function and
whether a cascade is redundant or irredundant, the variables are num~

bered as shown in Figure 1.l.

3.3 Objectives

The objective of_the research‘ié to obtain and prove a necessary
and‘sufficient condition kTheorem 3.1) for single failure location in
cascades.. A least upper bound on the numbér of tests needed to verify
‘whether a-cascade has a failure will be obtained (Theorem 3.2). Thé
proof of Theorem 3.1 ﬁill be constructive and an algofithm will be obtain-
ed from this proof which will allow location of a fault in a cascade
subject to the gssumptions of Theorem 3.1. B . ;, |

~

3.1 General Concepts

—

As explained in Section 1.4, the cells ﬁiii be tested in érder n,
n-l, ..., 2,1 as indicated on figure 1.1. Utilizing this teétiﬁg pro-
cedvre, the cascade may be thouéht of in the following manner: a tested
section (cells n, n—i, ceesy it1), 2 cell being tested (cell i), and an
untested section (cells i-1, eees i). A set.of constants C_ , C .4,

‘news Ci;l nay be chogen and applied*tb thé cascade .shown in Figure 1.1
(where C‘_:| is applied to input Xj) such fhét the oubput of the cascade
will be equal to the output of cell i (or its complement). In order to

“test cell 1, ¥, o (where Y, 5 is defined to be the value on the inter-

connection between cells i and i-1) must be determined. Cell 1 is'a
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speclal case because the tester has access to both XO = YO and Xl and

therefore there is no uncertainty in testing cell 1.

‘In order to completely test cell i, the two~variasble truth table
for cell i must be verified. Since Xi.is accessible, both a 0 and a 1 -

may be placed on the input lead Xi; however, no direct access to Yi-l

is available.
By careful testing procedures Yi—l can be consistently produced

" and determined (under appropriate assumptions). If Cos Cyo wees C5 5

are applied to the inputs XO, Xl, ooy Xi—l in the untested portion of

the cascade and if they theoretically set Yi-l to a particular value, C,

then the actual Yi’ is either correct or not correct; however, if

1

Yi—l = C 1s needed for another test.in the test schedule, then CO, Cl’

s Ci-l will be used (since the error has been'a;sumed to be tine

¢, - produce Y, =Fat

¢ i-1

independent, it is noted that if Cy, Cis +vey

time t,, then Cy, Cy, .., C; _y Droduce Y, , = Fat any time t,.) t;)

OJ

_.for this test. Although Yi—

| ey not equal C, at least it has the same

value as it had previously.
Assume that the seme constants Cos Cys eees Ci—l(bo’ Dys vees
Di—l) are used to produce every Yi—l.z 0(1), then there will be only

four possible receivable Y. . sequences, as shown in Figure 3.1.

e .
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Xi Yi—l Desired Yi”l Possible Yi—l
0 0 0 O"lOl
o 1 . 1 1001
1 0 0 : 0101

1 1 ‘ 1 1001

Figure 3.1. Determination of Yi-l'
One notes from Figure 3.1.that there are only four possible

Yi~l sequences that can be received. These are: O, 1, 0, 15 1, 0, 1, O;

0, 0, 0, 05 1, 1, 1, 1. These four sequences come about because the

’Yi_l = 0 (1) setting is either right or wrong, but if one O (1) is wrong,

then so is the other O (1) because the same éet of constants was used

to producé both 0's {(1's) and the system is time independent. Once the

test scheme is understood, the problem reduces to somehow being eble

to account for the three possible bad sequences that are capable of

being received.

The effect of this testing procedure will be illustratéd; If the
Yi—l sequences are not produced ﬁtilizing the same gettings for both Ofs
(1's) then since either O (1) could be correct or incorrect, but the O's
(1's) are not neceséariiy_both correct or incorrect, there are 2 pos-
sible receivable sequences and this means instead of three incof}ect

sequences to be accounted for, there are fifteen. In some special cases

this number ig only seven imncorrect sequences; i.e., the same constants ‘
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are used to produce either the 0 or the 1 value But,npt both, thereby
giving 23 possible sequences. Theorem 3.l.utilizes the previously dis-
cussed test procedures and illustrates under Whaf assumptions”faults

can be located.

3.5 Definitions

The following definitions are standsrd for the rest of the dis-

cussion on fault location.

Definition 3.1 An error occurs in a cell whenever the cell produces
a function that is not the.same as the function

specified for that particular cell.

no

Definition 3. ) The set of sixteen functions of two wvariables is

denoted G.

Definition 3.3 I_ denotes 1, 2, 3, 4, ..., p.
!

Definition 3.4 The. error function E is a mapping from G x In to G,

where E(fi,j) = £ denotes that cell 'j was theoreti-

k

cally to produce fiézG, but instead it produced
fk-e G. Clearly, E(fi,j) = fi indicates that cell j

does not have an error occurring in it.

Definition 3.5 . The céll functions are humbered as Tollows:




£, £, £, F

o 1 o0 1 o 1 ©

* . 1
Definition 3.6 X means either X or X but not both.

1
0

1

0

1

1

fe T; g Ty Tig Fyy Tip fy5 Ty Tys

1

1

1

3.6 A Necessary and Sufficient Condition for Location of Faults in a

Cascade and g Least Upper Bound for the Number of Tests.

It is to be noted that the allowable cell functions for a cascade

* * ¥ KX *
are X + Y , XY, Y, and X @ Y.

Theorem 3.1

‘Given a cascade (12 possible cell func-

—

tions) of length n, then the error can be

located if and only if for every i€ In- {]%

(1)
(@)
(3)

(&)
(5).

(6)

E(flh’i) # flS’ 100 f13
E(fll,i) # fl5, f7, fé
E(fg,1) # %45 fie, ), .
E(fa,i) # £y f3, £,

_IE(f6,i) # f9,,f12, f3

E(fg,i) # oo Tyos f3




Proof of Theorem 3.1

~hl-

(7) E(fl3,i)'% £105 f130 £15
(8) Eﬁwij¢fy f195 Ty5
(9)  E(f),1) # £, Ty, T,
(10) E(fl,13 £ L5 £55 g
(11) E(flo,i) # fo fl5, f5

(12) E(f5,i) # 190 Too Tis

The proof is an induction proof, Clesr-
ly, the theorem is true for the case n= 1,
Assume the theorem is true for a positive
integer k and consider & cascade with
¥+ 1 cellé; Given %he cell function for
cell k + 1, if it can be—shown that the
error can be located in cell k + 1 if and
onl& if assumptions (1) - (12) are valid

for cell k + 1, then the proof is complete.

Assume conditions (1) ~ (12). This part

of the proof is .now completed in Figures

3.2 - 3.13.
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The proof of the other half of the
theorem will be by contradiction, Assume;
the error can be located, but that the re-
strictions (1) - (12) are not needed.

Then it cén be verified that the following
pai?s of conditions give the same ocutput at
the terminals. Since the two conditions
give the same outputs, the error cannot be
located, which is a contradiction of the
assumption; thereforé, the assumption that
the restrictions are not needed is incorrect

and the ?roof is completed. After (1) an

abbreviated notation is used.
K= l,l,l,landEC%Aﬁfﬂ = £3), is equiva-
lent to Y, =0, 1, 0, 1 and E(flu,k+l) = f15 at the

cascade's oulput terminal,

Y, =0, 0, 0, 0and E(flh,k+l) = f), is equiva-

lent to Y, = 0, 1, 0, 1 and E(f;),k*.) = £, at the

cascade's output terminal.

Ykzl,o,l,OamiE@

lent to ¥, = 0, 1, O, 1 and E(f

lh,k*i) =1f,), is equiva-

k+l) = fl at the

ke 3

cascade's output terminal.
= O} .lJ

(2) Y, =0,0,0,0 and_E(fll,k+;) = 1.5 ¥,




(3)

0, 1

()

0, 1

(5)

0, 1

and

Yy

and

. E(flu,k+l)

_55_

E(f., ,k+1) =

!
Hy

142

=1, 1, 1, 1 and

I
s

E(flh,kkl) =

=1, 0, 1, O and

£

7

=1, 1, X, 1 and

E(f8,k+1) = £,

= 0, 0, 0, O and
E(f8,k+l) = £
=1, 0, 1, O and

E(f8,k+l) = £),.

=1, 1, 1, 1 and
E(f,,k+1) = £q:
= 0, 0, 0, O and
E(fe,k+i) = £
=1, 0, 1, O and
E(f,,k+l) = £,
=1, 1, 1, 1 and
E(f6,k+1) :.f3.
=0, 0, O, O and

E(f6;k+l).=-f12.

15°

(1,

E(fll,

‘E(f8,k+l)

E(fs,k+l)
E(f8,k+l)
E(fz,gfl)
E(f2,k+l)

E(fz,k+l)

Eﬁ%ﬂwl)

I (f69 k+1 )

k+1.)

k+1) =

il

T3 Yy

f

f8; Y. =

-F‘ .
27 "k

118 Y =

0, 1,




(6)

0, 1

(7)

0, 1

(8)°

0, 1

Ty

and

Ty

and.

. E(fg,k+l) = f

] E(f7,k+l) = f

-56-

=1, 0, 1, O and
E(f6,k+l) = f9.
=1,1, 1, 1 and

E(f9,k+l) = fyp.
= 0, 0, 0, O and
3°

=1, 0, 1, O and

E(fg,k+l) = fg.

= 1, l; 1, 1 and
! E(fl3,kfl) = £,

=0, 0, o,'o and

E(fl3,k+l) = fig

=1, 0, 1, 0 and

E(fl3,k+l) = £,

1, 1, 1, 1 and

I

E@}ﬂﬁl): fg

0, 0, 0, O and

fl

15°

=1, 0, 1, O and

E(f7,k+l) = -

=1, 1, 1, 1 and

E(fu?k+l) = £

E(flg,k+l)

B(f. . ,k+1)

13’

E(f7,k+l)

E(f,ktl) =

E&ﬁﬂwl)

E(fh,k+l) =

k+1) =




Li_L

~(10)

0, 1

(22)

0, 1

Ty

B T = I
and. (f”,k4l) £,

Ty

and

..57...

= 0, 0, 0, 0 and E(f),k+1) = £); Y=

o*

=1, 0, 1, 0 and

E(fhjk+l)

=1,1,1, 1

] E(fl,k+l) =

= 0,0, 0,0
E(f,k+1) =
=1, 0,1, 0

E(fl,k+l) =

=

—
+h
=
+
|-

~—
|

B (

€1 o%+L)

E(f

It

)y

10°571)

=1, 1, 1, 1

E(f5,k+l) =

=0, 0, 0, 0

E(fB,k+1) =

f8.
and
fot
and
..
3
and.

12.

and

and

and

and

.
0

and

f15'

=1, 0, 1, O and

E(fs)lé""l) =

flO’

15°

E(f) k1) = £,,5 Y, =
E(f,k#1) = £,3 7 =

B(f, kM) = £33 ¥, =

E(fl,k+l) = £ Y T

E(f]gpktl) = £45 ¥y
E(f k1) = £ ¥
E(f)k*L) = £33 Y

E(f5,k+1) =T
E(fy,k+l) = f

E(fs,k+l) = fg3 Yy =

=0, 1,
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Before Theorem 3.2 is stated and proved, it is interesting to

note that by wtilizing Figures 3.2 - 3,13 and the contradiction half of

the proof it is obvious what the received values of Yk were even though

they could not be messured.

Theorem 3.2

Proof of Theoren

Given a cascade with n cells, then the error can be
+
located in 2" tests or less if and only if it cen

be located in 2(n+l) tests or less.

3.2
Clearly, if the error can be located in 2{(n+l)

: +
tests or less, it can be locabed in o1 + tests or less.

Aésume the error can be lpcated in 2n4l tests or
less and consider cell n. Four‘tesfs are required to
characterize cell n. If.celi n is funetioning properly,
then cell n-1 is tested, and so on. For any cell i
(vhere i # n) only two additional tests ere reguired
since two distinct settings of éell i were utilized 1o
test cell 1 + 1 and the assumption that the error can
be located allows Theorem 3.1 to be ulilized so that
the values of Yi are known for the two‘distinct feéts,
Therefore, 4 + (n~1) 2 = 2(n+l) tests (or less) are

needed to locate the error.
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3.7 Test Algorithm

The test algorithm in Figure 3.14 is a result of Theorems 3.1
'.,ané 3.2 and is applicable to cascades satisfying their assumptions. It
shéuld be noted that even if conditions (1) - (12) of Theorem 3.i can
not be met, fault detection of any single error is poésible and the
test algorithm of Figure 3.1k is still valid. Also, Theorem 3.2 is

" valid for detection of faults utilizing the theory presented in Section

3.k,

3.8 Conclusion

A new approach to fault testing in digital systems is presented.
A specialized digital system (cascades and certain arrays) is considered
in order to obtain a condition that will enable the locatioé of a single
favlt in the-system (each cascade). Since elements of the system are
all two-input, one-output cells, a physical basis exists to choose g
maximum set of possible errors. All testing is eccomplished utilizing

only the input and output terminals of the system under consideration

becavse no test pads have been placed belween cells.

Consideration of the interconnection of the systems to be tested
yields a highly efficient test algorithﬁ which under certain assumptions
yields location of any one of twelve posgible cell erforé; however, one
particularly notes from the proof of Theorem 3.1 that if the agsumptions
restricting the possible errors ffom fifteen per cell to twelve pef ceil
are relaxed, fault dgtection'can still be accomplished. However, in

general the fault could only be isolated. According to the algorithm




Determine the tests
still to be applied

to cellii=1

i

Order

Test cell i.
the tests as follows:
11

R0, (BRI

1 -1

Obtain the value f_ of E(f i
q P> q

from the appropriate test

Decision M ap

G, i

Match Y.

i

1=1 “i=1

tests.

-

_, with the appropriate

From the proof of
t

Theorem III.
determine Y

1

1

-

Yes

Isi=1? |——= Stop

- oo
SS———— — >
L .............J

Figure 3.1L.

Flow Chart for the Test Algorithm.
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the cells &are to be tested in the following order: n, n-t,..., 2, 1,
This order is chosen on the basis that if cells n, n-1,..., i+l are
knovn to be fault~free, then thg output of ceil i caun be measured at the
output,términal whereas the.-only uncertainty in. testing cell i is in the
are minimized utilizing

actual value of Yi— Uncertainties in Yi

1
the fact that the error is time independent, thereby allowing the fault

-1

to be located. If certain minor assumptions of Theorem 3.1 cannot be
met, then all errors are detectable; however, the error may be only

isolated to within a group of cells and possgible cell errors.

Careful testing procedures and the interconnection structure
under study has considerable é&ffect on the number of tests needed to

locate a large number of possible single faults. TFor a n-cell cascade -

n+1

and n large 2(n+l) << 2 , and therefore computerized testing of cag-

cades can be done quickly and efficiently.

Finally, the simplicity of the actual test qlgo?ithm makes this
nethod of testing. especially suibable for computeriied testiﬁg, gince a
master program could be written so that the -cell functiocnsg and their
location can be putb in'as data and the cascades tested without altering

the master program.

If the remaining four functions are desired in a cascade, a good
uvnderstanding of the method discussged in Chapﬁer 3 will allow one to
extend the results of Theorem 3.1, however,‘when these functions are

allowed one must be careful not to sllow trivial cascades to be tested.
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If one allows certaln trivial cascades to be tested meny unusuval prob-

lems may occur.

'

i Since one error can be located in a -cascade under assumptions of

Theorem 3.1, one error can be located in each vertical cascade and
collector réw of an array. The theories presented are applicable to
use in any array that cdn_be decompo§ed into s, series of cascade struc~
tures; therefore, even cobweb arrays can be‘considered, becausé to ob-~
tain a cascade doesn't imply that physically each cell lies directly

below the previous cell, but that a structure such as shown in Figure

1.1 can be obtained.
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TRIBUTARY CASCADES
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4.1 Introduction

An important set of cascades can be built utilizing the fqllow~
iné three functions: AND (fg), OR (£)),), and EXOR (£.). Also, if the
se% of possible errors is restricted, some interesting properties and
results can be derived.A

In this chapter, tributary cascades will be considered from the
viewpoint of obtaining interesting results that méy be extended to
more general cases. However, the results will tend to be most inter-

esting in the context thaﬁ they are derived.

The allowable set of errors for the function fp will be f15mp,

The number of tests needed to test these

£ 10° and f

0? flS’ fl2’ f3, £ 5°
cascades will not be calculated since Theorem 3.2 gives a very good
bound on the number of tests. The proofs of theorems in this section

will be argumentative since the detailed proof of most of these the-

orems can be obtained from Theorem 3.1 under suitable modifications.

h.,2 (Classification of Tributary Cascades

The purpose of this section is to utilize two ﬁésﬁs to classify
tributary .cascades. Theorem 4.1 and its corollary are the samé whethexr
a tributary cascade or a cascade (see Chapter 3) are under considera-
tion. In order that the special case of cell 1 need not be considered
the theoren is stated in terms of XO, but it could be easily modif%ed

to utilize Xl.
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Theorem 4.1,

Let the cascade have n cells., If (., 025 Cohevay
4 3

*

c, a?e such that f(xo,cl,cg,.,.,cn) = X,

then:

. b3
(1) f(l}Cl,...,Cn) =1 and f(o,cl,..f,cn) =0

imply there is no error in the .cascade or there exists
one cell i such that E(fp,i) =L

1 1
(@) £(1,¢;,...5¢ )= (A7) and £(0,C,...,C ) =(0")

imply there exists a cell i suck that E(f ,i) = f_ or
. D

5
f .
15-p
“(3) £(1,¢,,...,C )= £(0,C.,...,C ) implies there
1 n 1’ n

exists a cell j such that h(fp,g) = £ le’ f,, or f3.

Theorem 4.1 will not be proven; however, the Corollary %o Theorem 4.1
will be proven. The corollary has an error sat that is restricted to

f s ¥ where £ 1is the cell function.
15-p D

0’ f15

Corollary to Theorem 4.1

Let the cascade have n cells. If Cl""’cn are

¥
such thet £(X ,C ,...,C )= X, then:

1°°
l’f"’Cn) = f(O,Cl,...,Cn) implies there

exists a cell i such that b(;b,l) = f, or fl5'

(1) £,
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T 1

. * *
(2) I(l,cl,ooo,cn) = (1_ ) and f(o,cl,c,egcn) = (07)

imply there exists 1 i tha F i) = .
imply there exists a cell i such that E(fpjl) fl5—p

* %
(3) f(l,Cl,,oo,Cn) =1 and f(o,cl,,ac, cn) = 0

imply there is no error in the cascade.

"Proof of the Corollary to Theorem L4.1

4,3 Subcascades

Definition k.1

Theoremn 4,2

In part (1) £ does not depend on Xy therefore, .
there is a cell i such that E(fp,l) = f, or f15°
. .ot
In part (2) f depends on (XO ) ; therefore, there
is a cell i such that E(fp,i) = flS"P; whereas, the

proof of part (3) should now be obvious.

P

A subcascade of a cascade is any subset of agd-

Jacent cells. ' ) -

A casgcade can be tested and the error located if
and only if any subcascade can be tested and the

error located.

Proof of Theorem 4.2

If any subcascade can be tested and the error

located, then the cascade can be tested and the error .
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located since the cascade is a subcascade of itself.

Assume the cascade can be tested and the fault
located. This sssumption implies that every cell in
the cascade can be tested, which implies any subset of
cells oflthe casca@e can be tested. Therefore, any
subcascade can be tested and since the fault can be
Jocated, if it is in the subcascade ig can be located.\
However, it should be noted that if'%he subcascade

doesn't start with cell n, more than just the sub-

cascade under consideration may have to be tested.

Assume that a cascade is given in which the subcascade consigt-
ing of célls 1, 2, and 3 is to be tested, but that cell 4 is producing
E(fj,h) = fo. In order to test the subc§§cade, cell 4 is tested and it
is determined +that celi L is producing E(fj,h) = £, is this 2 contra-
diction of Co;ollary 2? TNo, because there is only one error in the
cascade end it is not in Tthe subcascade; therefore, it may be goncluded
that the subcascade is error-free without ever actually tes@ing the

subcascade.

.Theorem 4.2 is true for any cascade,even multi-rail cascades,
since no actual mention was made of the cell functions or structure

other than that it was a cascade interconnection structure.
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4.4 Location and Isolation of Faults in Tributary Cascades

Three theorems will be presented in this sectidn pertaining to
tributary cascades. Theorem 4.3 is concerned with location of the
seven possible errors in tributary cascades; whereas, Theorem L)L is
concerned with the location of three possible errors in tributary cés»
cades. Theorem 4.4 leads to Theorem 4.5 which is concernéd with iso-
lation of the errors allowed in Theorem L.Y4 when the hypothesis of
Theorem 4.4 are relaxed; Theorems 4.3 and k.4 can be proven utilizing
Thebrem 3.1 since they are special cases of Theorem 3.1 or they can be
proven directly. A discussion of Theorem 4.3 is provided ﬁhich will
allow one to construct the proof directly. Theorems 4.3 and 4.4 can
be easily extended to encompass cascades more complex than'%ributary
caséades; however, although Theorem 4.5 can be exteﬁded to encompass
cascades, if more possible errors are allowed_in Theoren 4.5, the

theorem becomes too complex to warrant further attention.
Theorem 4.3
Given a tribubary cascade with n cells, then the

error can be located if and only if for every i-€

1 - 13
(1) EB(£y),1) # fgs £y
(@) - B(fg,1) # £, 'fl2 |
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Discussion of Theorem 4.3

Consider the EXOR (OR; AND) cell. If a sequence
of all O's is received, then this would appear the
same as if the function £y, (fy,; fo) was produced
when the correct test sequence was received. If a
sequence of all 1's is received, then this would appear

the same gs if the function f3 (£ was produced

155 Tip)
when the correct test sequence wag received. If the
actually received test sequencé was the compliment of
the desired test sequence, then this ﬁould appear the
sgme as 1if the function f9, (fl3; fh) wa.s Produced
when the correct test sequence was received; however,

by assumption fl and fh were not possible errors.

3

Therefore, it is clear how the conditions for this

theorem can be verified.

For the purpose of Theorem 4.4 it will be assumed that there are
oniy three possible errors for 8 cell functign fp; i.e., flS—p’ fl5’
and fo. It should be noted that this is the standard sllowable set of

other investigators {1,4,5,7-9,13-15,17} augmented by fls_p,

Theorem L.k

Given a tribubary cascade with n cellz, then the

error can be located if and only if for every i€

I - £13




Qe

(L) Bley) # 1y,
I'. ) (2) E(fBai) # fo

(3) BlEgi) # 1,

In order to consider isolation of errors when the hypotheses of

Theorem U.4 are relaxed, the following definitions are helpful.

Definition 4.2 An error is said to be isolated within k cells if
and only if there exists a set of exactly m . 1

error functions with the property that E(fp,j) = fe

(where p # e) capable of producing the results obtain-
ed from the test schedule and k is the number of the

distinct values in In that J is assigned in this
set of error functions.,
Since it is impossible to distinguish between certain error
functions from the output terminal if the hypoltheses of Theorem 4.k are
relaxed, the following definition explains the concept of a cell

appearing to have a certain error.

Definition L.3 Cell i appears to heve the following error function
(E(flu,l) = fls (E(f8,1) = £y E(f6,1) = f9) if |
and only if to the observer at the output terminal of

the cascade, the test schedule indicates that E(flh5i) _




Theorem 4.5

" appears  to have the error function E(flh’i) = f

. =Tl-
= f15 (E(f8?i) = fO’ E(f6,i) = f9) is a possible error
function to be included in the set of error functions
producing the results of the test schedule. (It should
be noted, however, that the test schedule used nay
have to be supplemented with more tests in some cases
in order to establish that cell i does appear to be~
have as if E<flh’l) = flS‘(E(fB’l) = £ E(f6,1) = f9)
is a possible error function. Examples of this are

given in the proof of Theorem 4.5.)

Given a tributary cascade of n cells, then cell i

15
(BE(fq,1i) = f., B(f,,1) = £ ) if and only if the error
: 0 6" 9

can be isolated to within the set of 1 + 1 cells in
€1, i-1,..., i-m3 where cells in §£i, i-1,...,
i-—mﬂ_% all have the cell function f,) (f8,f6) and
;eil i-m is the first cell such that it has the cell

fugctlon f8 or f6 (flh or fy, flh or f8) and m > O.

Proof of Theorem L.5

Case I.

The proof consists of considering three cases.

Assume cells in Ei,idq“.,iﬂmlg h%mjﬁe
cell function f8’ cell i-m has the cell function_fiu

(f6) and it appears that E(f8,i) = £,
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T2

If X. = O was used in the test, then set X,
1 -1 I~

= 1 and run the test again. IT E(f8,i) = fO still
appears a8 a possible error, then the error lies in
one of the cells in éi, i-1,..., iﬂng because if
there exists a cell j such that j < i-m and E(fp,j)
= f + s s E .

Afo or fi5.9 is causing a O to be received by cell
i-m, then cell i-m is producing a 1 because itsg cell
function is fl# (f6) and in this case E(f8,1) # Ty is
the conclusion. Therefore, since cells in érh.;.,

3

i+13 have already been tested, the errbr is isolated

to the m + 1 cells in %_i,..,, i~m%.

Case 1T ' If cell i is a cell with cell function f “the

1h°
conclusidn can be reached in a dual manner in the case
where cell i-m has the cell function f8; however, the
case in which cell i-m has the cell funcﬁion f6 is

not obvious. In the test scheduvle for cell i-m having
a cell function f6’ the cells must be set as follows:
Xi = Xi~l = ';'Xi—m+1.= Xi~m'::o gnd the copstant Pro-
. duced by cell i-m-l is set such that it is 0. If it
appears that E<flh’i>f: f15 (i.e., when X, was set ‘o

1 without anything else being changed, the output from
cell i rémained at 1) then set X; = 1 in the original

test (instead of 0) and test again. If £= 1 for both
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of these tests,‘then the error lies in the cells gij
i-1,..., iﬂné since if there exists a cell jJ such
that J < i-m and E(fp,j) = fl5 or fl5"P is causing
cell i-m to receive g 1, then setting Xi~m.= 1 causes
cell i-m to produce a O output, since in the previous
case it.had to be producing a i output, otherwise
cell i would not have appeared as if E(flh’i) = fl5
and allowed the conclusion that E(fm,i) = £,

The case'for cell i having the cell functionif6
and cell i-m having the cell function f8 is trivial;
however, the case fof cell i-m having the’cell‘func—

tion flﬁ is nbt obvious but can be obtained from the

proof of Case II with suitable modifications.

To prove the other half of tﬁe ﬁheorem, assume
the error is isolated within tﬁe cells in gi,...,.
i-m § , then the error could noi- be located. There-
fme;mmtﬁfhecdlspﬁ'giy.q Lm% with eell
funcﬁion fd must have the error function E(fd5p>f:fl5
(E(fd,p) = £o; E(fd,p) = fg)'and when any one of those

cells has this error function it sppears as if

E(flu,i) = flS (E('f8,i) = £ E(f6,j.) = f9).
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4.5 Coneclusion

| Several concepts were presented in this chapber which allow

f

certain facts to be ascertained about faults>in cellular cascades. A

i
¥
i

reduced set of possible errors is asgsumed; although the theorems are
concerned with tributary cascades, they can be extended to encompass

cascades with more possible errors,

It is interesting to note the resulis of cascade classification
and error isolstion. Depending on the types’of cascades and error
sets under consideration in a specific problem it may be useful to
utilize these sections in the testing procedure; however, thege results

are too complex in the general cases to be useful.




Chapter 5

EXAMPLES
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5.1 Introduction and Description of Examples

The purpose of this chapter is to present thirty-one examples
of the use of the previously presented theorems.
B

- For a1l  examples f,, denotes the theoretical value of the func-
tion of the cascade under consideration; whereas,'fA denotes the actu-~
ally measured value. The specificetion of the error that is in the

cascade has been placed immediately following the example number. The

specification of the error is given in the notation of ‘this paper.

Examples 5.1 - 5.14 are direct applications of Theorems 3.1 and
3:2. Examples 5.1 - 5.14 are worked on the basis of the hypothesis of
Theorem 3.1 éoncerning the restriction of errors. The details of the
application of the test algorithm are not given, the conclusions of
the tests are given in the notation previously developed, and the tests
are grouped as they would be in actval application of the test al-
gorithm; i.e., four tests are applied to cell n'and a conclusion is
then made, the two remeining tests are applied to cell n-l and a con-

clusion 'is then made, etc.

Examples 5.15 and 5.16 were included to illustrate that there
do exist test schedules based on theories of single~fault lqcation
that can locate multiple faults in a system., The multiple faults were
located by assuming that there was only onelfaplt and when this fault
was locabed the tests were continued as if looking fof another single

fault, ebtc. The notation for Examples 5.15 and 5.16 is the same as
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the notation for Exsmples 5.1 - 5.1k4. Examples 5.15 and 5.16 utilize
the hypothesis of Theorem 3.1 except that they have multiple faults.
The tests schedules for Examples 5.15 and 5.16 are taken from Theorem

3.1 just as if only one fault was being searched for.

Examples 5.17 - 5.20 are examples of the use of Theorem U.k.
Only three errors are allowed in Theorem 4.4 énd the cascade under
considerstion satisfies the hypothesis of Theorem 4.4 on the restric-
tion of errors. In utilizing Theorem 4.4 it has been found that the
following tests will usually be sufficient: OR céll (00, 10), AND cell
(11, 01), and EXOR cell (00, 10), where CD means X, =C and ¥i~l': D.
Usually these are the tests oné wants to utilize 1f posgib}e when

using Theorem 4.4, It is also noted that with suvitable care the test

schedule length should be n+l (or léss) for this situation.

Examples 5.21 - 5.24 are éxamples of the use of Tﬁeorem_h.h on
a cascade other than s tributary cascade. Suitable modificatiéns in
the assunptions of Theorem 4.4 have been made and with this éxample
and Theorem L.U4 the reader should be able to construct the general

case of Theorem 4.k,

Examwples 5.25 - 5.27 are examples of the general case of The-
. orem 4.5, With Theorem 4.5 and Examples 5.25 -~ 5.27 the interested

reader should be able to construct the generél case of Theorem h;5.

Examples 5.28 - 5.31 are examples of. the use of Theorem h.l.'
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Some of the theorems given may easily be extended. TFor ex ample,
if Xi~b Yi»l is a cell function in a cascéde, then one can construct
t?e proper result utilizing‘Xi-f Yiwl and. then compliment the values
o% Xi. Examples of this procedure can be seen by comparing Exsmples -
5.5 and 5.9 or Examples 5.21 and 5.25. This procedure makes it useful

for some considerations to list the cascade functions as follows:

% % v % % * *
X+ Y, X +Y,%X Y, Y,X@®Y, and Y .

It should be noted that Theorem 3.1 allows serial, hybrid, or
tabular testing. If one wants, the testing may be accomplished in the
serial mode (Exemples 5.17 - 5.27), in the hybrid mode (Examples 5.1 -

5.16, or in a tabular mode (no examples).

L The figures for this ohapter appear at the end of Lhe chapter
beginning with page 107.
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5.2 Examples
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Exémple 5.1: Assume there is no fault in the cascade shown in

i
|
i
!

Test

X5 Xy
0 0

0 0

0 0

0 0

1 1

1 1

0 1

1 0

Figure 5.1.
X, X
0 1
0 0
1 0
1 1
1 1
0 1
0 1
0 1

T

T . Conclusion

E(f8; 3) = f8

B(fpp 1y =ty
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Example 5.2: et E(f6, 2) = fo in the cascade in Figure 5.1.

Test
XO Xl . X2 X3 fT lA Conclusion
0 0O 0 0. 0 0
0) 0 0 1 0 0
0 0 1 1 1 0 .
0 0 1 0 0 0
"E(f89 3) = f8
0 1 0 1 1 0
0 1 1 1 0 0

E(f6, 2) = L
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Example 5.3: Let E(f8, 3) = f2 in the cascade shown in Figure 5.1.

Test

X, X, KX, Xy £, f A Conclusion
0 0 0 1 0 0

0 0 0 0 0 0 ’
0 0 1 0 0 1

0 0 1 1 1 0




Example 5.4: Let E(flu, 1) = 7F

Test

|_.J
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"in the cascade shown in Figure 5.1.

Conclusion

E(f8; 3) =

I
Hh
(e ¢]

E(f,, 2) =

!
)
[0)

63

E (flbr,-. 1) = f5
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Example 5.5:

Test

XO Xl X
0 0
0 0
0 0
0 0
0 1
0 1
0 0
0 1
0 0
0 .l-
1 0
] 1.

;83~ -

Assume there is no fault in the cascade shown in

Figure 5.2.

X, X,
0 0
0 0
0 1
0 1
1 0
1 1
1 0
0 0
1 0
1 0
1 0
1 o -

5 )
0 0]
S 1
1 0]
0 R
0 1
0 1

0 0 -
0 0
0 0]
0 1
0 1
0 0

£ Conclusion

E(fg, 5)=
E(fg, 3) =fg

E(fJ_O’ 2) = f

E(fé: 1) = f6

10 -
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_Example'5e6: Let E<flh’ ) =fi in the cascade shown in Figure 5.2.

Test

Xo ¥ Xy XpoX X5 £y
0 0 0 0 0 0] 0
0 0 0 0 0 1 1
0 0 0 0 1 1 0
0 0 0 0 1 0 1
0 1 0 1 0 0 1
0 1 0 1 1 0 1

Conclusion




Example 5.7: Let E(f6, 1)

Test

XO Xl X2 X3 Xﬁ
0 0 0 0 0
0 0] 0 0 0
0 0 0 0 1
0 0 0 0 1
0 1 0 1 0
0] 1 0] 1 1
Q 0 0] 1 0
0 1 0 0] 0
0 0 1 1 0
0 1 1 1 0
1 0 1 ! 0
1 1 1 1 0

-85~

= flh in the cascade shown in Figure 5.2.

Conclusion

"10

E(I6, 1) = flh
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- Example 5.8: Let E('f.‘85 3) = f35 in. the cagcade shown in. Figure 5.2.

Test

X, X5 £y
0 0 0
0 1 1
1 1 0
1 0 1
0 0 1

Conelusion

E(f6, 5)= fg¢

E(fy),, W)= 1),

E<f8> 3) = f‘lS
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.Example 5.9: Assume there is no fault in the cascade shown in

Figure 5.3.
Test
XO _ Xl X2 X3 XM X5 fT fA Conclusion
0 1 0 1 0] 1 0 0
0 1 0 1 0 0 1 1
0 1 0 1 1 0 0 0
0 1 0 1 1 1 1 1
E(f = F
0] 0 0 0 0 1 1 1
0 0 0 0 1 1 1 1 -
E(fy), 4)= 1),
0 ] 0 0 0 1 0 0
0 0 0 X 0 1 0 0
E(—a) 3)= f2
0 1 1 0 0 ] 0 0
0 0 1 0 0 1 1 1.
E(f19, 2)7 T4
1 1 1 0 o) 1 1 1
1 0 ] 0 0 1 0 0

Eﬁ§,1)=f
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Exsmple 5.10: Let E(fjhf by - fg in the cascade shovn in Figure 5.3.

Test
XO Xl X2 X3 Xh X5 fT ?A Conclusion
0 1 0 1 0 1 6] 0
0 3 0 1 0 0] 1 1
0 1 0 1 1 0 0 0 )
0 1 0 1 1 1 1 1

| EKf9’ 5) = Tg
0 o) 0 0 o 1 1 1
0] 0 0 0 1 1 i 0

E(fy,> ¥)-= 14
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Exsmple 5.11: Let E(fg, 5) = fO in the cascade shown in Figure 5.3.

Test

XO Xl X2 X3 Xh X5 fT , fA Conclusion
0 1 0 1 0 1 0 0

0] 1 0 1 0 0] 1 0

0 1 0 1 1 0 0] o) -
0 1 6] 1 1 1 1 0
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Example 5.12: Let E(fz,.3) = f6 in the .cascade shown in Figure 5.3.

Test
X . ; i,
XO Xl o X3 XM X5 fT fA Conglus1on
0 1 0 1 0 1 0 1
0 1 0 1 0 0 1 0
0 1 0 1 1 0 0 o)
0 1 0 1 1 1 1 1
E(L =7
0 0 0 0 0 1 1 1
0 0 0 0 1 1 1 1
E(fy), W)= 1,
0 1 0 0 0 1 0 0
0 0 0 1 0 1 0 0
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Example 5.13: Assume there is no fsault in the cascade shown in

- Figure 5.4.
]
‘l .
Test
XO Xl | X2 XB fT' ?A Conclugion
0 0 1 0 0 0
0 0 1 ] 1 1
0 0 0 1 1 1
0 0 0 0 1 1 .
B(fyp 3) = 1y
1 0 0 0 0 0
1 0 1 0 1 1
B(f , 2 f
( 9? ) 9
1 1 1 0 0 0
0 1 1 0 0 0
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Example 5.14: Let E(fz, 1) = T, in the. cascade shown in Figure 5.%,

[
|
i

Test

=

Conclusion

E(f,, 1).=¢F

29
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Example 5.15: ILet E(flh’ 3) = f6 and. E(fg, 1) = flO in the cascade

shown in Figure 5.L4.

Test

XO Xl X2 XS fT fA
0 0 1 0] 0] 0
0 0 1 1 1 1
0 0 0 1 1 0
0 0 0 0] 1 1
1 0 0 0 0 0
1 0 1 0 1 ]
1 1 1 0 0 1
0 1 ] 0 0 0

Conclusion

E(fg, 2)=f

E(f., 1) = 0
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Example 5.16: Let E(fl'l{., 3) = f9, E(f9, 2) = f., and E(f,, 1) = fe

in the cascade shown in Figure 5.4,

Test

XO Xl Xé X3 fT fA Conclusion
0 0 1 0 0 1
0 0 1 1 1 0]
0 0 0 1 1 1 i
0 0 0 0 1 0
E I =
1 0 0 1 0 0]
1 0 1 1 1 o]
o ) =
L(fg, 2 £y
1 1 0 1 1 1
0 1 0 1 1 0
E(f2, 1) = fe




Lixample 5.17:
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Assume there is no error in thé cascade shown in

Figure 5.5.

0 0
0 1
1 0
1 0
1 1

Conclusions

£ £,

0 0 E(f6, ) ;éfls
E(fgs 3)# fy5
or f7 )

1 L E(f6, W) £ £,

1 1 E(f)),> 2) A1y
or fo

0 0 E(fl}+, 1) ;éf_j
or'fl

1 1
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Ixample 5.18: Assume E(f8, 3) = fl5 for'the cagcade shown in

Figure 5.5.

2 X3- %),
0 0
0 1
1 0

fT - fA Conclusions
o fao I - e
0 1 E@6,L) 115 or
E(f8, 3) =.f7 or £,
) -
1 | 0 E(f6, L) # fl5.

1 -1 E(fg, 3) 7 £,

5
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Example 5.19: Assume E(flh’ 1) = f15 for the cascade shown in

Figure 5.5.

Test

XO Xl X2 XB, ' XM | fT "fA,', Conélusions

0 0 1 0 0 0 0 ’ E(fg 5 4) # £15
'E(f8, 3) A £, 0r f5

0 Ao 1 0 1 1 ) E(fg5 Wy o £

0 0 11 o 1 ! E(f),, 2) # £, or T,

0 'o | O. 1 0 o 1 ' E(?lh, 1) = fl5 or £,

o' 1 0 1 0 1 1 - E(flbr,-l)‘;! £,
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Example 5.20: Assume E(fIM’ 2) =L, for the cescade shown in

Figure 5.5.

Test

XO Xl X2 X3 XM fT fA Concluéions

0 0 1o 0 0 0 E(f,, ) A2
-E(f8,l 3)# £, 0 Ty

0 0 1 0 1 S 1 1 E(fg, 1) #flS

0 0 1 1 0 1. o0 E(f),, 2) =, or £;

0 0 0 1 o 0 0 E(J‘:‘lbr, 2) £ 1,
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Example 5.2): Assume there is no error in the cascade shown in

Figure 5.6.

Test.

Xy X % XB X, X5 £, £ Conclusions

0 0 1 0 0 0 0 0- E(f6; 5) # £15
E(:f‘u, ) # £ Qr‘ f15

0 0 1 0. 0 1 1.1 E(fgs 5) # £

0 0 1 0 1 0 1 1‘ El(fl?), 3)# £,
E(£),, 2) ;r-"fo"or £,

0o 0 1 1 1 o. 0o 0 ' E'(fls, 3) # £,

0 ] 0 0 0 1 0 _0_ 0 E{fg, 1)';! £ or £,

0 1 0 0 1 - 0 1 1 E(fg, 1) # 1,
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Example 5.22: Assune E(flh’ 2)= fl for the cascade showm in

Figure 5.6.

Test

XO Xl X2 X3 Xh | X5 fT fA Conclusions

0 0 1 0 0 0 0 0 E(I6, 5) 7!3‘.‘15
E(Lh, W) ;!fll ox fl5

0 0 1 0 0 1 1 1 B(fg, 5) #£,

0 0 1 0 1 0 1 o E(fy55 3)= £, or

‘ E(f),, 2)= £, or

E(f8, 1)= f7 or fl5

o) 0 1 1 1 0 0 0 E(fls, 3) ;'-‘fe

0 0 0 0 1 0 0 1 E(fg, 1) %f7 or £




=] 0% -

Exemple 5.23: Assume E<f6, 5) =‘fo for the cascade showm in

Figure 5,6,

Test
XO Xl X2 X3 Xh X5 fT fA Conclusions
0 0 1 .0 0 0 0 o E(f6, 5)# £5

E(f), 4)# £ o fi5

0 0 1 0 0 1 1 o 'E(f6, §)= £,
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Example 5.24: Assume E(f8, 1) ='f,7 for the cascade shown in

Test

Figure 5.6.

£ by

T A
0 0
1 1
1 0
0 0
1 0
1 0

Conclusions

E(fg, 5) Af)5

E(flﬁ L) # £1.

. .

15

E(f6, 5)# £,

E(f f, or-

130 3) = 2

E(flh’ 2) = £, or

E(fBQ.l) = f_ or

7
b

15
E(£),5 2) ALy

E(fg, 1) ;{-‘fl5
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Example 5.25: Assume there is no error in the cascade shown in
: » z

Tigure 5.7.

1 1 0
1 1 0
1 1 1
1 0 1
o) 1 1

?A Conclusions

0 E(fzs 5) # £15

E(f),, U) # £, or £15

=

E(fg, 5) f‘ 25
1 E(le, 3) # £,

. - B(fy),, 2) £ £y or £

0 E(fy,, 3) # £,
0 E(fy),, 1) 7 £, or g
1 E(fg, 1) # £,
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Example 5.26: Assume E(f7, 3) = fl5 for the cascade shown in
Figure 5.7.
Test
XO Xl X2 X3 Xk X5 fT fA Conclusions
0 o 1 1 o' 0 0 0 E(fgs 5) %fls
" ; £ 0 f
(£y, ) Agyq or L5
0 0 1 1 0 1 1 1 .E(f6; 5) ;r-‘fo or £
0 0 1 1 1 ) 1 0 E(fbr, L) = £, or

E(f7, 3)= fl5 or

E(f

ik 2) = To
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‘Example 5.27: Assume E(f6, 5) = f9 for the cascade shown in

i Figure 5.7.
|

Test

Xo Xl X2 X3' Xh
0 0 1 1 0
0 0 1 1 0

E(f6> 5)=f

Conclusions

E(fu, L) = fl5 or fll

E(f6, 5) = f9 or fls'

E<f4’ ) = £, or

9
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For Examples 5.28 - 5,31, the cascade shown in Figure 5.8 is con-
sidered. The Pfunction for this cascade is fon = X5 + Xy (X3 (X2 + XlXO) )

and the chosen constants are C. = 1, C, = 0, C, = O, Cy = 1, and C 0.

1 2
This yields fr, (XO Cy s 02, Cgs Cps 05) = Xy

3 57

Example 5.28: Aséume there is no error in the cascade shown in Figure
5.8.
£, (1, ¢, Cys Cgs s C5) = 1 agd £, (05 Cy5 Cpy Cqy €y Cg) =0

imply that there is no error in the casgcade.

Example 5.29: Assume E(fl3, 3) = fo for the cascade shown in Figure
5.8.
£, (1, Cys Cps Cgs Cys 05) = 1 and fA(o, 5 Cpo 03, Cy, 5 05) = 1

imply there exists an 1 € I_ such that E(fp,i) = £, or £

5 15°

Example 5.30: Assume E(fl3, 3)= ¢ ~for the cascade shown in Figure

15
5680
fA(l, Cqs Cyo 03, Cy,5 05) =-0 and :A(o, Cq5 Cps c3, Cy,» 05) =0

imply there exists sn 1+ I. such that E(fp,i) = fO or f. ..

> 15

Exemple 5.31: Assume E(flh’ 2) = fl for the cascade shown in Figure

8.

1

fA(l, Cys Cos Cgs Cys 05) = 0 gnd fA(O, Cys Cos Ca5 Cys 05) =1

imply there exists sn 1< I such that E(fp,i) = f15.p°
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Figure 6ao;

Figure 5,3

Figure 5,1,

Test Example.

Test Example.

Test Example.
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Figure 5.7. Test Example.

e . .
Figure 5.0. Test Example.
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6.1 Summary

Fault location in cellular arrays éomposed of two-input, oné
output cells is examined in this research. It is shown that arrays of
this type can be decomposed so that the actual problem to be solved is
fault location in a singlemraii cascade. A physical basis for the _
assumption of a maximum allowable set of possible errors is given and

it is seen that each cell could have fifteen possible errors.

An algorithm is given for testing a cellular cascade. If the
algorithm is followed.it is seen that three of the possible fifteen

errors cannot be allowed to occur if fault location is to result.

This information is invaluable to the designer of the circuits
to be used in cellular arrays; Since if he cen design the circuits
using redundancy techniques such that the probability that these three
errors can occur is decreased, then the tésting problems for cellular
arréys can be simplified. Also, once the circuits are designéd this
‘way &1l errors will be loéatable, thus providing more reliable circuits
thén would otherwise be poséible. N

If fault detection and isolation is to resuit5 it can be easily
seen that any of the fifteen errors can be detected., A necessary and
sufficient condition for the location of faults (Theorem 3.1) is given.
From the proof of Theorem 3.1l one can easily deduce that any of the fif~
teen possible errors can.be detected. -Theorem 3.2 gives a firm least

upper bound on the rmimber of tests needsd to locate a fault in a cas-
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cade, One notes that fault detection is a much simpler problem to solve
than fanlt location especially if only two failure types (s-a-l and

s-a~0) are allowed.

Chapter 4 examines classification (detection) of cascades, location
of faults, and isolation of‘faults on restricted gets of possible errors.
The Corollary to Theorem 4.1 is especially interesting because it points
out & method that will allow detection of s-a-~0 and s-a-l faults in
cellular arrays in fewer tests than any method examined by other re-
searchers. Although the corollary is not wfitten for the set of cut~
point functions, it can be easilylaltered to apply to cutpoint arrays if
certain trivial cascades are allowed. Locatién of faults in sub-~cag-
cades is considered in Theorem 4.2, Theorems 4.3 and 4.5 deal with the
problem of fault location on restricted error sets. Theorem 4.6 con-
cerns isolation of errors when the h&pothéses of Theorem 4.5 are re~
laxed. It is shown that with the addition of a few extra tests the
fault can be isolated to within a set of cells tﬁat can be-specified

analyticéllyu

A test algorithm is given; however, the given algorithm is only
one of several possible algorithms. If tﬁe tester desirves, a.compleﬁe
test schedule could be derived or the tesiiﬁg could be done in a serial
mode., Thirty~one examples of various test procedures are worked with
emphasis-given to examples of the utilizaltion of Theorems 3.1 and 3.2

"and the given test algorithm.




~112~

Since cells are tested individvally, the given test algorithm is
the most natural because it gives a conclusion as soon as a cell hasg

been tested.

6.2 Suggestions for Further Study

Five topigs worthy of further comsideration are evident from

this research.

1. The method of Chapter 3 should be extended
to n-input one-outpul cascades in which Xi 13
2
-Xijz,.oo, Xi,n&l yould take the place of X,l in
the single-rail cascades. This extension should

be easy since all that needs to be done is to try

,1° Xi,2’°°°’ Xi,n»l for

all combinations of Xi

Yi~1-= O and 1.

2. Extension of single fault ibcation Pro=-
cedures should be considered. Exsmples 5.15
and 5.16 show that some multiple faults are lo-
catable ﬁtilizing single- fault location tech-

niques.

3. The test algorithm given in Figure 3.14
should be programmed to see how fast computer

testing could be.

L, Fault location in myltiple-rail cascades
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should be considered. In opder to test a mﬁlm
tiple-rail cell one should apply the same method
as used for single-rail cascades. For a n-rail
cascade there are (2n)2n-1 possible bad sé-
guences because one would like to test all 2?
possible n-rail combinations any of thesé‘comf
binations could be inporréct, and there is a
possible oH ways for the sequence to be incor-’

rect,

However, some of these sequences are equi-
valent; i.e., 1f the desired test seguence for
a two-rail cascade cell Y. =X, + Y, +

1,1 i i-1,1
Y0 (Yi’2 is not being considered) is Y

Y 00, 01, 10, 11, then the following bad

i-1,2 ‘
sequences give the same oubpub Yi,13
10, 00, 00, OL
10, 00, 00, 10
10, 00, 00, 11
01, 00, 00, OL
o1, 00, ob, 10
0L, 00, 00, 11
11, 00, 00, Ol

11, 00, 00, 10
11, 00, 00, 11
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All of the above sequences give the Yi se-

51

duence.l, Xi, Xi 1 so that they are all ter-~
- 3

minally indistinguishable with respect to Yi 7
3

" There is an added complication; however, due to

the large number of functions available in the

multiple~rail cascades it is suggested that the

research vtilize equivalence clasges.,

5. In all types of cascades isolation of errors
should be considered because as the complexity
of cells increases the.locafiﬁh problem may be~-
come insolvable due tO'nbtationél complexities;
whereas, these difficulties may not appear.in

favlt-isolation considerations.
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