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Abstract:
The subject of this thesis is the development of concepts and techniques to be used in the testing of
cellular logic arrays. In particular, the subject is to develop techniques to locate, detect, and isolate
failures in cellular logic arrays.

The primary purpose of the thesis is to develop the most general fault location theory for
two-dimensional cellular arrays consisting of two-input, one-output cells. The theory presented utilizes
a physical basis to assume a maximum set of allowable errors and thus realistically accounts for the
appearance of cell failures.

The content of the thesis is summarized as follows: First, a physical basis for the assumption of the
maximum error set is given.

The assumption of the maximum error set assures that the most general solution will be obtained.
Second, the problem of testing a two-dimensional cellular array is expressed in terms of testing a
Maitra cascade. Third, a necessary and sufficient condition for the location of a single error in a Maitra
cascade is given and proven. Also, a least upper bound on the number of tests needed to test the array is
derived. Fourth, an algorithm is given, based on the necessary and sufficient condition, for error
location, which allows testing of arrays for either location or detection of errors. Fifth, error detection
and error location methods are given for certain very important proper subsets of the maximum error
subset. Sixth, examples are given that 1) illustrate the various error location and. detection methods that
were proposed, and 2) illustrate that location of some multiple errors is possible utilizing single error
location theories. 
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ABSTRACT
■ The subject of this thesis is the development of concepts and 

techniques to be used in the testing of cellular logic arrays„ In par­
ticular/ the subject is to develop■techniques to locate, detect, and 
isolate failures in cellular logic arrays«

The primary purpose of the thesis is to develop the most general 
fault location theory for two-dimensional cellular arrays consisting of 
two-input, one-output cells. The theory presented, utilizes a physical 
basis to assume a maximum set of allowable errors and thus realistically 
accounts for the appearance of cell failures,

The content of the thesis is summarized, as follows: First, a
physical basis for the assumption of the maximum error set is given.
The assumption of the maximum error set assures that the most general 
solution will be obtained. Second, the problem of testing a two- 
dimensional cellular array is expressed in terms of testing a Maitra 
cascade. Third, a necessary and sufficient condition for the location 
of a single error in a Maitra cascade is given and proven. Also, a least 
upper bound on the number of tests needed to test the array is derived. 
Fourth, an algorithm is given, based on the necessary and sufficient con­
dition, for error location, which allows testing of arrays for either 
location or detection of errors. Fifth, error detection and error loca­
tion methods are given for certain very important proper subsets of the 
maximum error subset. Sixth, examples are given that l) illustrate the 
various error location and detection methods that were proposed, and 2). 
illustrate that location of some multiple errors is possible utilizing 
single error location theories.



Chapter I

INTRODUCTION TO THE TESTING OF INTEGRATED

CELLULAR LOGIC ARRAYS
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Testing of complex integrated cellular logic circuits fabricated 
using LSI techniques has become a source of concern to users and manu­
facturers . Since no economically feasible solution to testing problems 
is visible for the complex arrays contemplated for the near future, 
manufacturers have acknowledged the seriousness of this problem. Cur­

rently some observers believe that LSI cannot be tested because general 
procedures for testing and diagnosing digital circuits are applicable' 

to rather small networks of approxima/fcely 30 gates, while cellular arrays 
are contemplated as containing hundreds or thousands of gates on one 
chip. However, if arrays are constrained to be in a. cellular form, then 

testing problems can be simplified and test schedules can be produced 
which utilize the interconnection structure of cellular arrays.

In some cases, the iterative interconnection structure of cellu­

lar arrays enables derivation of test schedules which also exhibit an 

iterative nature, thus reducing the complexity of the testing problem in 

comparison to testing problems encountered in testing a. non-iterative 

structure containing an equal number of gates. It will be shown that 

the structure of single-rail cascades can be utilized to great advantage 

in derivation of test algorithms for Maitra and general function cas­

cades {10 } and that this testing can be accomplished from the edge of 

the cascade. These results are extendable to a large class of arrays. 

However, Kautz { 8, 9 } has shown that there .exist cellular arrays 
which cannot be tested from their edge terminals.

1.1 Introduction ■
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1.2 Problem Definition

' The iterative interconnection structure of cellular arrays allows 

decomposition of testing problems for LSI cellular arrays into several 

sub-problems, One sub-problem is testing of single-rail cascades such 

as shown in Figure 1.1. These cascades can be utilized in the produc­

tion of more complex cellular arrays and techniques can be derived- 

such that if a single-rail cascade can be tested then certain complex 
arrays can be tested. Examination of problems encountered during solu­

tion of the problem of testing single-rail cascades utilizing only in­

put and output terminals of cascades produces methods that can be 

utilized to test more complex arrays. ' Specifically, solution of prob­

lems involved in testing single-rail cascades lends insight to methods 

useful in testing cellular arrays from their edge terminals by computers 

utilizing only an average of 2 or 3- tests per cell contained in the array

Figure 1.2 indicates the manner of construction of an important 

class of cellular arrays. An example of an important class of arrays 

that has this interconnection structure is a outpoint array { 12} ;

however, outpoint arrays do not have a buss running lengthwise through 

each vertical cascade. This array consists of collector rows and ver­

tical cascades. There is a buss running the length of each vertical 

cascade and all busses extend across all collector rows, while busses 

distribute every variable to every vertical cascade. This construction 

reduces testing this array to testing a single-rail cascade since each 

collector row can be tested as a cascade and each vertical cascade can
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Figure I. 2. Construction of a Testable Cellular Array.
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be likewise tested. One problem in this approach is that the vertical 

busses must be guaranteed to be error-free or alternatively the ability 
to place both a 0 and a I on the input into the busses that extend 

across the collector rows must be guaranteed. Output values of vertical 
cascades are measured at the bottom of the array; whereas, collector row 
output values are measured on the right-hand side of the array.

1.3 Practical Considerations

Testing LSI circuits is a potentially difficult task) however, cir­

cuits of today are tested and they presented complex problems a few 

years ago. A consideration of testing problems currently solved leads 

to a conclusion that possibly many problems inherent in testing of LSI 

arrays have been solved while reaching for solutions to test problems 

caused by printed circuit boards and today's integrated circuits. To­

day's complex printed circuit boards may become tomorrow's elementary 
LSI chips. Consideration of testing problems produced by LSI chips may 

help develop test algorithms that could be used to test today's complex 
printed circuit boards. However, complex cellular arrays in practice 

will be harder to test than printed circuit boards. Consider that not 

only must exact error locations be indicated, but a decision must be made 

based on the number of errors and their locations-as to what can be done 

with imperfect arrays. Are imperfect arrays discarded, or can they be 

salvaged in some manner? Minnick {ll) and Spandorfer (16) have sug­

gested that at predetermined intervals in arrays such as in Figure 1.2,
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extra vertical cascades and collector rows "be installed. If a vertical 
cascade or collector row has an error, then the extra cascade or row 
could be used to produce the correct function.i -

Before any test procedures can be established an error or circuit 

failure criterion must be established which allows definition of possible 
error types that may appear in LSI construction. In Chapter 3, a logical 
method of deciding on an allowable set of errors for certain types of 
cellular arrays will be presented.

Placing an accessible test pad on an interconnection between cells 
reduces the effective area usable for the cells. For this reason attempts 

should be made to accomplish all testing and location of faulty cells 

from the terminals of the array without any test pads being included in 

the array. Actual testing of arrays is to be accomplished utilising a 

computer. A test schedule could verify the complete truth table, trans­

fer function, or state table for any given device; however, this pro­

cedure would require too much computer time and add,greatly to the ex­

pense of the array. Instead of a complete verification procedure, another 

solution could be to test certain input conditions on a probabalistic or 

expected utilization basis; however, this method is still very unsatis­

factory. A feasible approach is to decide on a dominant failure mode 

from which a set of allowable errors can be derived for each cell type 

used in arrays under consideration. With this knowledge, manufacturers 

could, construct arrays utilizing certain interconnection structures and 
design cells with redundant properties causing an increase in the proba-
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M l i t y  that if a failure occurs which was one of the dominant failure 

typesj then the cell error that occurs is a cell error which is contained 

in the set of allowable errors.

1.4 Testing
Redundant design, failure modes, allowable errors and required 

confidence level contribute to determination of the number of tests re­

quired, but the array's structure can determine the number of tests al­

most independently of these factors. To test arrays of the type shown 

in Figure 1.2, the most complex array to be tested is a single-rail cas­

cade . Admittedly, it would be desirable to test all collector rows 

(vertical cascades) simultaneously; however, in order to accomplish this 

restrictions on the array structure must be made that restrict the class 

of testable arrays until the procedure becomes practically useless,

In Figure 1.1, cell n is tested first, then cell n-l, etc. If an 

' error appears in cell n-j, its propagation may be stopped by one of cells 

n-l, n-2,..., n - j t h e r e b y  enabling cell n to be tested. Once cell n 

is tested, it may be set such that it transmits the- output of cell n-l 

to the output terminal of the cascade. In this manner (under certain 

error assumptions) the cells may be tested in the following order until 

error location results: n, n-l,..., I. It is shown in Chapter 3 that

the maximum number of tests needed to locate errors under certain assump­

tions is a linear function of n, namely 2 (n-i-1 ), where n - is the number of 

cells comprising the single-rail cascade. Hence, assuming that all
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vertical cascades are tested implies the number.of tests does not exceed 

p (2(n+1)) + 2 (p+1) (where p equals number of vertical cascades and n 

equals number of cells per vertical cascade) to test an array with one 

collector row. If there are m collector rows, i.e., array produces m 

function of n+1 variables, then verifying complete truth tables of m 

functions of n+1 variables would require not more than p (2(n+l)) + 

m (2(p+1)) tests. A considerable savings in the number of tests is noted 

due to construction and structural interconnections of the array of 

Figure 1.2 if n is large. It is noted that the number of tests was pro­

portional to the number of input pins.

1.5 Generation of Tests and Test Equipment

Test schedules are constructed to verify whether each cell is pro­

ducing its specified function. This method of testing was chosen in pre­

ference to verifying an array's truth table because in general the number 

of tests needed is less than m (2~~ ), where m functions of n+1 variables

are produced. Under certain assumptions choosing test schedules capable 

of accomplishing the task of locating every error in arrays such as shown 

in Figure 1.2 is plausible (see Chapter 3) and these test schedules can 

be programmed for testing utilizing digital computers. Iterative struc­

tures of cellular arrays simplifies problems connected with detection of 

faults.■ Certain forms of exhaustive test schedules are practical and 

can be implemented on computers for a small number of variables.
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Since test schedules can be programmed in the case of single-rail 
'cascades, computers will be able to test many types of arrays with very 

minor .software input changes« In particular, for the single-rail cas­

cade under the assumptions of Chapter 3, a general fault location pro­
gram can he written. In order to test a cascade, the only needed input 

information would be the cell types and their location in the cascade. 
With this information the general program is able to test all cascades 
of one type. When the type of cascade changes this information can be 

given the computer as input data and all cascades of the new type can 
,then be tested. Due to the structural interconnection of arrays shown 

in Figure 1.2, no reprogramming of the test computer is needed when a 

new type of array appears. Structure of the test computers is deter­

mined. by structural complexity of arrays.

Computer testing of arrays could be very costly if a large number 
of tests are required. If the number of required tests is large enough, 

it is conceivable that computer time could be the largest cost factor in 

production of cellular arrays. A procedure of exhaustive testing such as 

verifying complete truth tables of every function in an array will be 
very costly if the number of variables is large; however, a high level 

of confidence can be placed on arrays so tested. Alternately, if re­

quired tests were few in number, then computer time could be kept from 
becoming such a dominant cost factor. Use of computer testing could 

allow test time to be less than handling time and thereby reduce prices.
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Conceptually, the actual test system contains several testers, 

one of' which is an initial tester to determine if an array has an error. 

If it does have an error, then it is tested by a computer specifically 

designed for error location; otherwise it is prepared for shipment,

Once the computer-has found all errors, the array is placed in a com­

puter which attempts to correct and reroute the logic. If the array is 

correctable it is corrected and prepared for shipment. All other arrays 

are checked by a fourth computer which determines if the array is sal- 

vagable or not. An array will be salvagable if it can be used to pro­

duce non-trivial functions. If there is a large enough number of errors 

in an array and these errors have considerable effect on performance, 

then it might be advisable to consider using the array to produce func­

tions other than those originally specified for the array.

1.6 Conclusions
Although prior work on actually testing cellular arrays is re­

stricted to very few papers, noticeable progress has been made on the 

theoretical aspect of fault detection and location in cellular arrays.

It is seen that test schedules for cellular arrays can test complete 

arrays with a number of tests proportional to the number of input ter­

minals to the array. Detailed consideration of the structure of arrays 

can yield significant concepts enabling derivation of very short test 

schedules for cellular arrays. Utilizing computers and testing from the 

array1s pins seems to be a solution to.the testing problems of cellular 

arrays worth considerable detailed study.



Chapter 2

SURVEY OF PUBLISHED WORK IN THE FIELD OF

FAULT DETECTION
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2.1 Introduction

As the title suggests, the purpose of this chapter is to survey 
• work done in the field of fault detection. However, it is to be noted.

i
that the work to be reported differs from previous work in that previous 

investigators were interested in fault detection and not in fault loca­
tion.

The relation of the previous problems studied to the problem con­
sidered here is that one must ascertain.that a failure exists in order 

to locate it. Most previous investigations have only considered deter­
mining whether a circuit contains a fault and not where the fault is 

located. Most of the work surveyed allows only two error types; i.e., 

s-a-1 (stuck at l) and s-a-0 (stuck at 0); whereas, this work allows 

more than two error types.

2.2 General Strategy

The general strategy employed in most of the papers studied is to 
assume a certain set of allowable failures and to allow only one element 

to fail. The system in question is then analyzed, utilizing a fault table. 

A test is said to detect a fault if and only if the output of the system 

differs from the correct theoretical output of the system.

A test is any combinational input. . Analysis of the circuit allows 

the fault table to be constructed as follows: Rows of the table will

correspond to a possible test whereas columns of the table will corres­

pond to a possible fault. A table with every possible fault and. test is
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constructed such that a. I (O) at the intersection of a row and column 
corresponds to detection (failure to detect the given fault by the cor­
responding test) of the given fault by the corresponding test. After 

the table is constructed a minimal set of rows is selected such that 
this set of rows has a I in every column. One notes that this set of 

tests generally gives some indication of where the error is located and 
in some cases could lead to error location.

2.3 Some Diagnostic Techniques 

2 .3.1 Boolean Graphs
Galey et al, { 5 } consider the Boolean graph method. In 

general, a Boolean graph is a set of nodes together with several 

input and output lines. Each input line corresponds to a variable 
whereas each output line corresponds to a function. These building 
blocks are connected, together to form a system with no feedback.

The functions in the system have defined for them on and .off arrays 

a procedure is established which allows one to construct the in- 

jactive'word of the graph, and derive a set of tests for the graph.

Galey et al. consider the problems of finding whether a cir­
cuit had an element s~a~0 or s-a-1 and then of isolating this ele­

ment if possible. (isolation to a single element is fault location 

however, there exist circuits in which location is impossible in 

certain cases. For example, if any gate in Figure 2.1 is s-a-lj 

then the error cannot be located.)
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In general, the procedure is to express the set of all pos­

sible tests for any element in terms of the primary inputs of the 

circuit. This is accomplished by means of starting at the output 

of the circuit and working back to the inputs of the circuit. The 

totality of inputs that are capable of distinguishing between a 

good and bad machine are then calculated. Some of the tests may 

also give fault isolation or location depending on the circuit 

under consideration.

Figure 2.1. Circuit in Which a Gate s-a-1 Cannot Be Located.

f
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The following is an outline of the general strategy of 
Galey et al.:

A Boolean graph is a set of nodes 
along with input lines and output lines, 
Each input (output) line has an argument 

(Boolean function) attached. The output 
lines of some nodes could be the input 
lines of other nodes.

First the injective word, on, and 
off arrays of the graph are constructed. 

The on array for a node is the values for 
which the function is I; i,e,, I M D  2 has 

the on array 11 and off arrays OX and XO, 
where X stands for a don't care condition 

The injective word is just a list of the 

injection operators; i.e., a list of the 

functions in the graph (read from right to 

left) where the rightmost (leftmost) entry 

is the function of the node nearest the 

output (inputs). Figure 2.2 is an example 

of the construction of the on. and off 

arrays from a Boolean graph and its in­

jective word taken from {' 5 } •
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'Next, the set of tests that dis­

tinguish a machine that is good from a
"tiimachine in which the r—  branch is s-a-1

is computed. (A similar procedure holds
"tiifor s-3.-0 in the i—  branch. ) Consider 

"tilthe i—  node as an input and ignore the 

subgraph feeding it. This forms a new 

graph with a new injective word. Compute 

the on and off arrays for this new graph 

deleting all on (off) ■ arrays with a don't 

care condition in position i. For every 

cube in the on array with a I in position 

i, change the I to a 0 and intersect this 

cube with all cubes' in the off array.

This set (denoted P(O3I)) represents the 

totality of inputs for which the good 

machine gives a 0 output and a bad machine 

(node i s-a-l) gives a I output. This' set 

must now be translated into a primary in­

put representation. To do this, one con­

siders the subgraph feeding node i and 

finds the set of all inputs that produce

a 0 at node i.
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Galey et al.' then give the "Algorithm for Computing 

Totality of All Tests." This algorithm may be simply ex­

plained as follows:

A matrix is constructed in which a 

column is labeled for each possible s-a-1 

fallure and a row is labeled for each 

test., A I is placed in row i column j if 

and only' if failure j is detected by test 

i. Tvro matrices are constructed in this 

manner; i.e., one for s-a-1 faults and one 
for s-a-0 faults. The remaining problem 

is to select a minimal test set which 

covers both matrices.

.An example problem, which consists of testing an eight- 

bit .parity-check circuit for s-a-1 and s-a-0 failures, is 

worked {5} by Galey et al. The s-a-1 and s-a-0 matrices each 

had foul1 rows and 102 columns. Four tests were needed to de­

tect any failure in the circuit.

This algorithm could be applied to cellular cascades with 

only two faults allowed; however, since the Corollary to 

Theorem 4.1 of Chapter 4 of this thesis shows that at most' two 

tests are needed to detect a cascade which has faults f0 (s-a-0), 

f (s-a-1), and f ^  ^ (where fy is the cell function) the



application of the above algorithm would not seem logical 
considering its complexity.

2.3.2 Armstrong1s Method

Armstrong {1} ' describes a procedure for detection of 
s-a-1 and s-a-O faults in gate networks with' the following 
gate functions: AMD, OR, NAM'D, NOR, and MOT, Armstrong's

method if best suited for large circuits in which the fault 

table methods are unwieldy due to the size of the fault table.

Armstrong calculates the equivalent normal form for 

th.e circuit. Since the equivalent normal form is a sum of 
products form, the circuit now corresponds to a hypothetical 

circuit of AI-TD gates feeding an OR gate. Utilizing the con­
cept of path sensitizing, an algorithm is described which will 

allow one to obtain a set of tests which detects faults in 

the equivalent normal form. .It is shown that this set also 

detects all faults in the original circuit.

The following is an outline of Armstrong's method:

The equivalent normal form (enf) 
of the circuit is derived. This is 

done utilizing two criteria: (l) The i-
dentity of every path from the input to 

the output is maintained., and (2) no. re­

dundant terms are discarded. In the enf
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if input X goes through gates 1,6,12,19, 
20, and 21 in one path from input to out­

put, a term will' appear in the enf with

%1,6,12,19,20,21 ^  a literal involved..

Next, two tables are formed: one 
for the enf and one for the complement of 
the enf. These two tables are used to de­

rive s-a-1 and.s-a-0 tests. One notes 

that a s-a-O(l) test for a literal in the 

enf is a s-a-1(O) test for the corres­
ponding literal in the complement of the 
enf. Armstrong's method selects s-a-1 

tests for both the enf and its complement. 

Both tables are constructed as follows:
Row I gives the enf, row 2 gives the score 
from the s-a-1 scoring function, row 3 

gives the order of all literal appearances 
based on the highest (second highest) 

score being number I (2), and the remaining 

rows contain the binary values assigned 

the literals by the s-a-1 tests that are 

generated.

To generate the s-a-1 tests: (l)
The literal appearance with the highest
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score is selected (from either table) and 
assigned the value 0. (2) All other lit­
erals in the same term of the enf with the 
preceding literal are assigned the value I 
(3) Every other appearance of these lit­

erals are assigned the appropriate value 

of 0 or I. (4) One now checks to see if 
any values must be "forced" to stop the 

test from failing. (A test fails if the 
previous assignment causes another term 
to have all I's assigned to its variables) 

(5) Once all literals have been assigned 

the test is complete. (6) All literals

tested by a test are labeled. (?) The 

highest scoring literal (tha,t is not 

labeled) is selected and a second test is 

constructed, (8) This process continues 

until all literals are tested.

The scoring function is given for 

reference. It is derived on the basis of 

the following two properties: A term has' 

the-fewest number of literals (property 

A) and a literal in that term that has 

the largest number of complimented forms
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appearing in other terms (property B ).

This scoring function seems to give about 

the appropriate weights to properties A 

and B to enable derivation of near minimal 

test schedules- with much less effort than 

needed by the fault table method.

= (I- -y) + "Ir

where

(Sc = the s-a-1 score for the k- 

literal of the enf,■

th

V. = the number of variables in the 

thj—  term of the enf} where the
+V1 4“ Vk

k—  literal is in the j—  term,

V = total number of literal appear­

ance in the enf,

k= A_. , if the k— - literal is un-

primed

I
hr

f Yi
A j-, if the k—  literal, is 

primed

A^ number of unprimed appearances
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of the i—  variable in the enf, and
I
= number of primed appearances 

thof the i—  variable in the enf.

One notes that if literal k' is
I

being considered A.(A.) for literalI I
i=k is used. The scoring function 
would probably be clearer if A^ were 
used in its statement instead of .

Armstrong works an example a;nd compares it to the same 

example worked utilizing fault table methods. The minimal• 

test set has six tests; wherea,s, Armstrong's method calculates 

eight tests.

This algorithm could be applied to cascades with cell 

functions of AND, OR, NAND, NOR, and MOT; however, utilizing 
the Corollary to Theorem 4.1 of Chapter 4 of this■thesis one 

could produce the minimal test schedule with much less effort,

2.3.3 Redundant Circuits
Friedman {4} considers fault detection in redundant 

circuits of the same type as those considered by Armstrong, 

Several examples are presented which illustrate the problems 
encountered in redundant circuits; however, no algorithm for 

testing redundant circuits is given. Friedman does state that 

"With redundancy present, it is necessary to verify that every
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test remains valid if preceded by any sequence of undetectable 
faultswhere "test" means a. detection test derived by single- 
fault analysis techniques.

2.3.4 Kautz1s Method
Kautz {7} considers the general problem of fault test­

ing. He presents several solutions to the problem of fault 
testing. Fixed test schedule procedures and serial test pro­
cedures are both - considered.

For the fixed test schedule problem, a specific set of

errors is not assumed; instead, it is assumed that the network

can produce certain erroneous functions. Since no errors have
2nbeen specified, Kautz should assume that any of the 2 func­

tions of n variables could be produced, but with this assump­

tion the test schedule would have 2n tests. Kautz does not say 

what the total number of functions are, but that they can be 
reduced to m distinguishable erroneous functions, - A .fault- ma­

trix F consisting of the correct function in column I and. the 

m possible erroneous functions in columns 2,3,.-r,m+1 is con­

structed. ' Next, as many rows as possible are deleted from the 

fault matrix subject to the condition that every column is dis­

tinguishable.- This gives a minimal test schedule for detecting 

all the erroneous functions.
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Kautz shows how serial testing may be generalized from 
fault testing with fixed test schedule procedures - Actually, 
the tests are always applied serially, but these are derived 
serially. The algorithm is as follows: Given the fault matrix
F (described in the preceding paragraph), delete the row p 

where the number of (0,l) pairs are maximum; split F into Fq 

and F^5 where Fq (F1) is the set of columns having 0's (l's) in 
row p; repeat the algorithm utilizing the previous results,

In order to effectively utilize Kautz's method to test 

cellular arrays, one would have to translate the maximum error 
set into a maximum set of possible erroneous functions; how­
ever, this would be an exceedingly difficult task. Since 

Theorems 3.1 and 3.2 give the minimal test schedule for any 

cellular array considered in this thesis, it would not seem 
logical to utilize Kautz's method to test for faults in these 

cellular arrays.

2.3.5 An Adaptive Solution
Cohn and Ott {3} explain an adaptive approach to fault 

detection. The problem they solve is design of minimum-ex­
pected-cost testing procedures for both detection and iso­

lation of single failures. In certain special cases the prob­

lem is related to the design of a minimum redundancy binary 

code for a source whose messages are statistically independent 

(Huffman' {6} ) and to the problem of deciding which test to
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omit and the sequence in which the remaining tests are per-, 
formed in a tree structure with one limb where the number of 

nodes is less than the number of elements in the system. The 

problem formulation is given here because it is a very inter­
esting way in which to consider fault testing. The system is 
to consist of parts which may be single elements or modules.
The elements are defined so that each element has associated 
with it a probability of failure with the probability of mul­

tiple failures assumed to be negligible, while each test has 

associated with it the cost to perform the test?. The problem 
is to find a minimum cost test schedule. This is a very com­

plex approach to fault detection and location; however, it 

would seem to be the most unique serial type test concept a- 

vailable at present. The algorithm is very good if one is 

interested in test procedures in which there are probabilistic 

failure assumptions. The algorithm precedes as follows:

The condition no fault is re­

placed by an element -with all O's in
thevery test vector in the O— - component,

The elements are arranged in rows with all 

components in a row having the same num­

ber of- elements in each set. For example:
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(0 I 2)
(0 I) (I 2) (0 2)

(0) (I) ' (2)

The evaluation Ey of a subset D is

Bln (PDCA,B + =A + 15B)

where D=AUB, AAB =$, is the sum of
probabilities of elements in D', and CA.) B
is the cost of the least expensive test 

partitioning D into non-trivial subsets 
A and B. The subsets in the lowest row 
have E^=O since they represent single ele­

ments and thus have no ambiguity. From 
the fact that for every element in the 

lowest row E ^ O  and the expression E^5 

the array can be evaluated and a test 
schedule found.

2.3 ._6 Programmed Algorithms

Roth et al.' {15} have programmed two algorithms for fault 

detection.in combinational logic circuits. Roth {5,13-15} has 

written several papers on fault detection in combinational logic 
circuits. The two algorithms programmed in {l5  ̂are based on 

the other papers Roth published on fault detection problems.
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The first algorithm is DALG-II. DALG-II is a test gen­
eration procedure which guarantees finding a test for a fail­
ure (s-a-1 and s-a-0 are the allowable failures) if such a 
test-exists. .The second algorithm is called TEST-DETECT.
TEST-DETECT is an algorithm to ascertain all failures detected 

by a given test. TEST-DETECT and DALG-II are used in conjunc­
tion with each other to produce test schedules for combina­
tional logic circuits; however, strategies for their use to­

gether need to be worked out so that a small number of tests 

can be quickly generated which detect all failures in the cir­
cuit and after all faults have been detected, a larger set of 

tests can be generated which isolate the error to within the 
smallest replaceable module. Both et al. discuss three such 
strategies.

The algorithms are given in the form of APL (A Program­

ming Language, Iverson's notation) programs. DALG-II has thir­

teen subroutines whereas TEST-DETECT has one subroutine, -Since 
the detection problem for three errors (s-a-O, s-a-l, comple­
mentation) is solved in a minimal manner by Corollary I to 

Theorem 4.1 of this thesis, Roth's algorithms are not repro­

duced.
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2.4 Testing of Cellular Arrays

Kautz {8,9} and Yau and Orsic {17} have-considered testing cellu­

lar arrays. Kautz looks at general arrays whereas Yau and Orsic look at 

outpoint cellular arrays. The results of Kautz tend to be necessary and 
sufficient conditions for an array to be testable. These results are of 
a very general nature and no algorithm is given to determine the test 
schedules which have been shown to exist.

Yau and Orsic consider cutpoint arrays; however, in testing cut- 

point arrays there are problems because s-a-0 (s-a-l) appear to look like, 

cell functions 0 (l) which are allowed in cutpoint arrays. The purpose 

of Yau and Orsic is to locate faulty columns and collector rows, Their 
approach is to construct two fault matrices somewhat analogous to fault 

tables previously discussed.

The algorithm of Yau and Orsic is not given in this thesis for the 

following two reasons: (l) Since the purpose of Yau and. Orsic is to lo­

cate faulty rows and columns with two allowable faults (s-a-l' and s-a-0), 

an application of Corollary I to Theorem 4,1 of this thesis gives loca­
tion of the faulty rows and columns in 2 (m+N) tests; however, Yau and 
Orsic's algorithm needs 2m(n+N+1) tests (where m,n, and M are the number 

of columns, input variables, and rows of the- array). (2) Two (n+N) x m 
matrices are utilized in the algorithm and the construction of these two 

matrices is just one out of eight steps in the algorithm.



I

2.5 Digital Simulation of Failures in Digital Systems

This section, is concerned with a paper by Chang { 2 } . In his 

paper Chazig gives a method for simulating shorted input diode failures 

other than the s-a-0 and s-a-1 faults, The method is extendable to simu­

late all modes of failure that are describable by truth tables and Boolean 
algebra.

The importance of Chang’s work is that while experience has shown 
that s-a-1 and s-a-0 are common faults, there are many types of failure 

modes that may occur in integrated, circuits that did not occur in cur­
rent discrete logic circuit technology. Also, in gate networks it is 
possible for shorted diode failures to occur and. for that reason the 

problem of fault detection and location should not be restricted to con­

sideration of only s-a-0 and s-a-1 failure models.

The method Chang utilizes is to change the theoretical truth table. 

For example, if the function f^(X,Y) can have as a possible error a con­
dition described by shorting diode Y to 0,- then this error can be describ­

ed by the truth table function (X,Y).

The implication of Chang's work { 2 } is that as testing procedures 

become more sophisticated, more faults will be added to the allowable 

error sets; however, this trend will have no effect on this thesis since 

it utilizes the maximum possible error set.

-31-
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2.6 Conclusion

The usual problem considered in the field of fault detection and 
location is the detection in an arbitrary digital network of two failure 
modes5 i.e,, s-a-0 and s-a-1. A fault table is a common solution to the 
problem; however, there exist other methods of solving the problem.

That most researchers concern themselves with detection of faults 
and allow only two failure modes to exist points out the complexities of 
the problems involved in this field. Location of a fault after it has 

been detected is in most cases an impossible problem; however, some re­
sults can be used to isolate the failure to a certain part of the system. 
It is interesting to note that work has been done on simulating faults 

other than s-a-0 and s-a-1 {2} .

In the future, more work should be done in systems in which more 
than two possible errors are allowed to exist, since these systems can 

be simulated if only by hand calculation. It is the purpose of the fol­
lowing. sections of this thesis to attempt a solution of the problem of 

fault location in cellular arrays with an expanded error set- and develop 

an algorithm that will allow one to test cellular arrays of certain inter­

-3 2 -

connection structures.



Chapter 3

FAULT LOCATION IN CASCADES
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3.1 Introduction

This section is a review of Chapters I and 2. Production of 

practical, reliable, and economical batch-fabricated'circuits is an im­

portant trend in the field of digital circuits. However, use of these 

complex integrated circuit modules increases the chance that some of the 
components in the circuit will be faulty. Construction of these cir­
cuits in the form of a cellular array has the following advantages: 

uniform interconnection structure makes the circuits easy to manufacture, 
reduces the number of pins, and increases reliability. Since there are 

no test pads in the array, all testing must be accomplished using only 
the input and output terminals; therefore, fault location is a very im­

portant problem if cellular arrays are to be utilized in practical cir­

cuits .

The current trends in fault detection in arbitrary digital cir­

cuits are due to Armstrong {1} and Roth {5,13-15} • Both Roth and Arm­

strong allow only two types of errors; i.e., s-a-1 (stuck at one) or 

s-a-0 (stuck at zero). Kautz {8,9} has studied fault detection in many 
different types of cellular arrays.

This research studied a specific cellular array called the 
cascade. In I$62, Maitra {10} studied a very fundamental cellular array 

which may be described as' a single-rail cascade. Cells in this array 

are connected a.s shown in Figure 1.1. Each cell in the cascades under 

consideration produces a function selected from the following 12 f'unc-
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One notes that current work is based on fault detection on a very- 
limited set of allowable errors whereas this research is concerned with 
fault location on an allowable set of errors which will contain more 
than two failure types.

In general, the relationship between current work and this re- (_ 
search is that the fault must be detected before it can be located. For 

arbitrary digital circuits it is hard to decide on an allowable set of 
errors; however, in cascades there exists a natural manner in which to 
determine the set of allowed faults.

3.2 Assumptions

The physical structure of the cells of the cascade furnishes a 

basis to obtain a maximum allowable set of- errors. Since every cell has 

two input leads it is logical to assume that if a cell fails, it produces 

one of the remaining 15 functions of two variables; therefore, it is 

.assumed that every cell has I5 possible modes of failure. In accordance 

with assumptions implicit in previous work done in fault detection, it 

is assumed that the interconnections between cells do not fail, that the 

failure is time independent, i.e., if cell m is in error at time t^ then 

cell m is still in error at time tg > t^, the error in cell m has not
• -xchanged, and that the input and output leads of the system do not fail.

It is assumed that every cell is a two-input, one-output cell and 

cascades are constructed as indicated in Figure 1.1, if a cascade has- a

-35-

tions : Y*, X* + y"X, X*Y* or X* ©• Y. (See Definition 3.6, page 40. )
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faulty cell, then only one cell may produce an erroneous function and 

whether a cascade is redundant or irredundant, the variables are num­
bered as shown in Figure 1.1.

3.3 Objectives
The objective of the research is to obtain and prove a necessary 

and sufficient condition (Theorem 3.1) for single failure location in 

cascades. A least upper bound on the number of tests'needed to verify 

whether a cascade has a failure will be obtained (Theorem 3.2). The 
proof of Theorem 3.1 will be constructive and an algorithm will be obtain 
ed from this proof which will allow location of a fault in a cascade 

subject to the assumptions of Theorem 3.1. .

3.4 General Concepts
As explained in Section 1.4, the cells will be tested in order n, 

n-1, ...,'2, I as indicated on Figure 1.1. Utilizing this testing pro­

cedure, the cascade may be thought of in the following manner: a tested

section"(cells n, n-1, ..., i+l), a cell being tested (cell i), and an 

untested section (cells i-1, ..., l). A set of constants C^, C^_^,

■..., C. may be chosen and applied to the cascade.shown in Figure 1.1 14-1
(where C . is applied to input X .) such that the output of the cascade 
will be equal to the output of cell i (or its complement). In order to 

test cell i, ^ (where ^ is defined to be the value on the inter­
connection between cells i and i-l) must be determined. Cell I is a
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special case "because the tester has access to both Xq = Yq and X1 and 
therefore there is no uncertainty in testing cell I.

In order to completely test cell i, the two-variable truth table 
for cell i must be verified. Since X1 is accessible, both a 0 and a I 
may be placed on the input lead X1J however, no direct access to Y1 1 
is available.

-37-

By careful testing procedures Y1 1 can be consistently produced 
and determined (under appropriate assumptions). If Cq, C1, ..., C1 1 

are applied to the inputs X_, X1, ..., X1 1 in the untested portion of 

the cascade and if they theoretically set Y1 1 to a particular value, C, 

then the actual Y1 1 is either correct or not correct; however, if 

Y1 1 = C is needed for another test in the test schedule, then Cq , C1,
..., C1 £ will be used (since the error has been assumed to be time 

independent, it is noted that if C^, C1, ..., C1 ^ produce Y1 1 = F at 

time ^1, then Cq, C1, ..., Cĵ 1 "produce Y1 _1 = F at any time t2 > t ^
. for this test. Although Y1 1 may not equal C, at least it has the same 

value as it had. previously. . '

Assume that the same constants C^, C1,'..., ^ ^ ( D q , D1, ..., 

D1 i ) are used to produce every Y1 1 = 0(l), then there will be only 

four possible receivable Y ^ 1 sequences, as shown in Figure 3«1-
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X.I Yi-1 Desired Yi Possible Y,

0 0 0 0 1 0  1

0 I I 1 0  0 1

I 0 0 0 1 0  1

I I I 1 0  0 1

Figure 3*1? Determination of

One notes from Figure 3•I ■that there are only four possible 

Yf ^ sequences that can be received. These are: 0, 1, 0, I; I, 0, I, 0;

0, 0, 0, 0; I, I, I, I. These four sequences come about because the 

Yf i = 0 (l) setting is either right or wrong, but if one 0 (l) is wrong3 

then so is the other 0 (l) because the same set of constants was used 

to produce both 0's (1’s) and the system is time independent. Once the 

test scheme is understood, the problem reduces to somehow being able 

to account for the three possible bad sequences that are capable of 

being received.

The effect of this testing procedure will be illustrated; If the 

Y i -j sequences are not produced utilizing the' same settings for "both 0's 

(I'.s) then since either 0 (l) could he correct or incorrect, but the 0's 

(1's) are not necessarily.both correct or incorrect, there are 2  ̂pos­

sible receivable sequences and this means instead of three incorrect" 

sequences to be accounted for, there are fifteen. ' In some special case's 

this number is only seven incorrect sequences; i.e., the same constants
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are used to produce either the 0 or the I value hut.not both, thereby 
3giving 2 possible sequences. Theorem 3.1 utilizes the previously dis­

cussed test procedures and illustrates under what assumptions faults 
can be located.

3.5 Definitions

The following definitions are standard for the rest of the dis­
cussion on fault location.
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Definition 3-1 An error occurs in a cell whenever the cell produces
a function that is not the.same as the function 

specified for that particular cell.

Definition 3.2 ' ' The set of sixteen functions of two variables is

denoted C-.

Definition 3.3 denotes I, 2, 3, , p.
I

Definition 3*4 The. error function E is a mapping from C- x I to Cr,

where E(f^,j) = f^ denotes that cell j was theoreti­

cally to produce f̂ -£ G, but instead it produced 

f̂ -€ G. Clearly, E (f̂ , j ) = f indicates that cell j 
does not have an error occurring in it.

Definition 3.5 The cell functions are numbered as follows:
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xi Yi-1 fO fI f2 f3 f4 f5 -f6 f7 f8 f9 f f 10 11 f f 12 113 f14 f.

0 0 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I
0 I 0 0 I I 0 0 I I 0 0 I I 0 0 I ' I
I 0 0 0 0 0 I I I I 0 0 0 0 I I I I
I I 0 0 0 0 0 0 0 0 I I I I . I I I I

* ■ IDefinition 3-6 X means either X or X but not both.

3.6 A Necessary and Sufficient Condition for Location of Faults in a 
Cascade and a least Upper Bound for the Number of Tests.

It is to be noted that the allowable cell functions for a cascade
-K" -X- "X- -Xi -X- -X-are X + Y , X Y, Y , and X $  Y. -

Theorem 3.1
Given a cascade (12 possible cell func­
tions) of length n, then the error can be 

located if and only if for every i-e I^- £l3

(I) E(fl4,i) * f15, f12, f.

(2) E Cf11. i) / f15, f7, I'3

(3) E(f8,i) / f0, f12, f4

(4)- E(f2,i) ^ f0, ty  If1

(5). E(f6,i) / f9, fl2J f3

(6) E(fg,i) / f6, f12, f3



(7) E ( ^ 33I) / f12, f15

(8) E(fy,1 ̂ ^ fg) I—I f15

(9) E(f4,i) ^ ^8' f12
(10) E(f^, f2. f3

(11) E <fic,,1) / fg:' fl5 ’ f5
(12) -1) / fXO11 fO5 fl5

Proof of Theorem 3.1
The proof is an induction proof. Clear­

ly, the theorem is true for the case n= I. 
Assume the theorem is true for a positive 

integer k and consider a cascade with 
k + I cells .■ Given the cell function for 

cell k + I, if it can he shown that th,e 

error can be located in cell k + I if and 

only if assumptions (l) - (12) are valid 
for cell k + I, then the proof is complete.

Assume conditions (l) - (12). This part 

of the proof is.now completed in Figures

3.2 - 3.13.
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(fI2) (fI2) (fI 5 )

14'F i g u r e  3*2.  T e s t  D e c i s i o n  Map for  f.



k+1) = f,

(f̂ ) (f̂ ) (f^)

ll'F i g u r e  3 o -  T e s t  D e c i s i o n  Map for  f.



(fQ) ('4) (fl2)

F i g u r e  3»^- T e s t  D e c i s i o n  Map for  fg.
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E (f2 ik+1) i fQ , Jf1, or fg

IC (f%, k+1) = f;,, f&,
f8 ’ fIO ’ f12’ or f14

(f2, k+1) =
or

E (f2 , k+1) = 
iZ' f6’ fIO ' or f14

orfg

of i i

^4 1̂2 ^2 îol ̂ 6 1̂4

0 I I 01 it ol I

f f f f f „ f/ f8 4 12 2 10 6 14

0 0

^ktl ^k

0 I

I 0

11

(fl) (f3 )

F i g u r e  3. 5. T e s t  D e c i s i o n  Map for  f^ .



(fiz) (fg) (fg)

I-FrONI

F i g u r e  3.6. T e s t  D e c i s i o n  Map for



o r  f

9'F i g u r e  3.7. T e s t  D e c i s i o n  Map for  f



k+1) = f. k+1) = £k+1) = f,

(f12' (fI4 ) (fI5 )

F i g u r e  3,8. T e s t  D e c i s i o n  Map for  f^  •



(f 3 ) (fn ) (f15)

F i g u r e  3.9. T e s t  D e c i s i o n  Map for f „ .
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4 •F i g u r e  3.10 .  T e s t  D e c i s i o n  Map for  f



o r  f.

(fo) (fz) ^ 3)

F i g u r e  3 - H - T e s t  D e c i s i o n  Map for  f  ̂.
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(f5) (f15}

F i g u r e  3 -12 .  T e s t  D e c i s i o n  Map for .

-gf
,-



o r  f.

(Iq) (f10) ( f I 5 )

IVlLO
I

5 *F i g u r e  3-13- T e s t  D e c i s i o n  Map for  f
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The proof of the other half of the 
theorem will be by contradiction. Assume ' 
the error can be located, but that the re­

strictions (l) - (12) are not needed.

Then it can be verified that the following 
pairs of conditions give the same output at 
the terminals. Since the two conditions 

give the same outputs, the error cannot be 

located, which is a contradiction of the 
assumption; therefore, the assumption that 

the restrictions are not needed is incorrect 

and the proof is completed, After (l) an 

abbreviated notation is used. 1 2

(1) Yfc= I, I, I, I and E(f^^,ktl) - f ^  is equiva­
lent to = 0, I, 0, I and E(f^,k+l) = f ^  at the 

cascade's output terminal,

Yk = 0, 0, 0, 0 and Eff^jk+l) ~ is equiva­
lent to Yk= 0, I, 0, I and E (f-^jk+l) = at the 

cascade's output terminal.

Yk =1, 0, I, 0 and E(Ylĵ ktl) is equiva­

lent to Yk = 0, I, 0, I and E(f1jJ,k+l) = f ^  at the 
cascade's output terminal.

(2) Yk = 0, 0, 0, 0 and Eff^ik+l) = Yk = 0, I,
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O5 I and E ( f ^ 5k+l) f3’
Yk = I5 I5 I5 I and E (I115 k+l) fIli Yk = O5

O 
. 

H and E(f^,kH) — f1
15

Yk = I5 O5 I5 0 and E(fll5k+1) = fI l Yk = O5
O5 I and E(fl45k+1) = f?.

(3)' Yk = I5 I5 I5 I and'E(fg,k+l) = f8; Yk - O5 I5
O5 I and E(fg,>k+l) == f12*

Yk = O5 O5 O5 0 and E(fg5k+1) = fB^ Yk = O5 I5
O5 I and E(fg:>k+l) == fo-

Yk = I5 O5 I5 0 and E(fg5k+1) = f8' Yk \ O5 I5
O5 I and E(fg,.k+l) =; f4-

(4> Yk = I5 I5 I5 I and E(f25k+1) = f2 ; Yk = O5 I5
O5 I and Effg:,k+l) =1 f3--

Yk = O5 O5 O5 0 and E(f2,k+1) = f25 Yk = O5 I5

O H and E(fg,,k+l) = fO'

Yk = I5 O5 I5 0 and E(f2,k+1) = f «"4 2 ̂ Yk = O5 I5

O5-I and E(f2;,k+l) 1̂ fI'

(5) Yk = I5 I5 I5 I and E(f6,k+l) = f6^ Yk = O 5 I5
O5 I and E(fg5k+l) =.

= O5 O5 O5 0 and %(f^5k+l) = = O5 I5
O5 I and E(f^5k+l) =■f .
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Yk = 1} 0> 0 and = fgj Yk = 0, I3
O3 I and E(fg,k+l) =

(6) Yk = I, I, I, I and. E(fg,k+1) = f ; Yk = 0, I,
O3 I and E(f^,k+l) = flg.

Yk = 0, 0, 0, 0 and E(fg3k+l) = f Yk = 0, I,
O3 I and E(Y931AH-I) = Y3.

Yk = I, 0, I, 0 and E(f ,k+l) = f ; Yk = O3 I,
)3 I  and E ( f o3k + l)  =

(7 ) Y, = I 3 I 3 I 3 I  and. E(Yi q 3Eh-I) = Y1Q; Y1 = O3 I■13 1 3 ’ k
O3 I  and E(Y133En-I) = Y1 2 ,

Yk = O3 O3 O3 0 and E ( f  3k+ l)  = Y1 3 ;- Yr = O3 I 3 

O3 I  and E(Y133En-I) = Y1 9 .

Yv = I 3 O3 I 3 0 and E(Yj33k+l)  = Y1, ;  Yv = O3 I 3'13' k
O3 I  and E(Y133k + l)  = Y-^.

(8) ' Yk = I 3 I 3 I 3 I  and E(Y73k+l)  = Y ; Yfc = O3 I 3 

O3 I  and E(Y73EKl) = Y3 .

. Yk = O3 O3 O3 0 and E ( Y 3E f l )  = Y ; Yk = O3 I 3

O3 I  and E(Y73E f l )  = Y1 9 .

Yk = I 3 O3 I 3 0 and E(Y73E-H) = Y7 ; Yfc = O3 I 3 

O3 I  and E(Y73E f l )  = Y1 1 -

(9) Yv = I 3 I 3 I 3 I  and E(Y43E f l )  = Yh V Yv = O3 I 34 s xk
O3 I  and E(Y43E fl)  = Yq .

1



0, I

O3 I

(10)
O3 I

O3 I

O3 I

(11) 
O3 I

O3 I

O3 I

(12)
O3 I

O3 I  

O3 I

-5 7 -

Yk = .0, O3 O3 0 and E ( f ]+3k + l)  = f ^ ; Yfc = O3 I 3 

and E(Ei^fckL) = ^ 1 2 -

Yk = I 3 O3 I 3 0 and "E (f^ 3k + l)  = Ei 3̂ Y  ̂ = O3 I 3 

and E(E1̂ k-KL) Eg.

Yfc = I 3 I 3 I 3 I  and E(E^3k + l)  = E^; Y, = O3 I 3 

and E(E 3k+l)  = Eq , '

Yfc = O3 O3 O3 0 and E (f^ 3k+l)  = E^; Yk = O3 I 3 

and E(f‘l 3 k + l)  = Eg.

Yk -  I ;

I—IO

0 and e H k+1) = f r  Yk = O3 I 3

and E (E1 3k + l)  == i'2 ’

Yk = 1> I 3 I 3 I and E ff10 ,k+1) f IO; Yk = O3 I 3

and EXf1Q3E+!) = f 15'

Yk = O3 O3 O3 0 and E ff10 3k + l) f IO; Yk -  O3 I 3

and E(E1Q3EKl) f O'

Yk = I , O3 I 3 0 and E (f io , k+ l) f IO; Yk ” O3 I 3

and E ff1Q3E+!) = 1V
Yk = I j I 3 I 3 I and E f f 5 , k+1) = "k = O3 I 3

and E(Ec3Eh-I) = f  .5 0
Yk = O3 O3 O3 0 and E(E^,k+l) = Yk = O3 I 3 

and E(E^3k+l) =

Yk = I 3 O3 I )  0 and E(E53E-H) -  E5 ; Yfc = O3 I 3 

and E(E53E-Hl) = E^0 .
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Before Theorem 3.2 is stated and proved, it is interesting to 
note that by utilizing Figures 3.2 - 3.13 and the contradiction half of 
the proof it is obvious what the received values of were even though 
they could not be measured.

Theorem 3-2

Given a cascade with n cells, then the error can be
n+llocated in 2 tests or less if and only if it can 

be located in 2 (n+l) tests or less.

Proof of Theorem 3-2

Clearly, if the error can be located in 2 (n+l)
n+itests or less, it can be located in 2 " tests or less.

n+lAssume the error can be located in 2 * tests or 
less and consider cell n. Four tests are required to 

characterize cell n. If cell n is functioning properly, 

then cell n-'l is tested, and so on. For any cell i 

(where i / n) only two additional tests are required 

since two distinct settings of cell i were utilized to 

test cell i + I and the assumption that the error can 

be located allows. Theorem 3.1 to be utilized so that 
the values of Y_. are known for the two distinct tests. 

Therefore, 4 + (n-l) 2 = 2 (h +1) tests (or less) are
needed to locate the error.
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3.7 Test Algorithm

The test algorithm in Figure 3.14 is a result of Theorems 3.1 

. and 3.2 and is applicable to cascades satisfying their assumptions. It
i ■ 'should be noted that even if conditions (l) - (12) of Theorem 3.1 can 

not be met, fault detection of any single error is possible and the 
test algorithm of Figure 3*14 is still valid. Also, Theorem 3 .2  is 
valid for detection of faults utilizing the theory presented in Section
3 .4 .

3 .8 Conclusion . .

A new approach to fault testing in digital systems is presented.

A specialized digital system (cascades and certain arrays) is considered 

in order to obtain a condition that will enable the location of a single 
fault in the system (each cascade). Since elements of the system are 

all two-input, one-output cells, a physical basis exists to choose a 

maximum set of possible errors. All testing is accomplished utilizing 

only the input and output terminals of the system under consideration 

because no test pads have been placed between cells.

C onsideration  o f  th e  in terc o n n ec tio n  o f  the system s to  be t e s t e d  

y ie ld s  a h ig h ly  e f f i c i e n t  t e s t  a lgorith m  which under c e r ta in  assum ptions 

y ie ld s  lo c a t io n  o f  any one o f  tw elve  p o s s ib le  c e l l  e r r o r s ; however, one 

p a r t ic u la r ly  n o tes  from th e  p roof o f  Theorem 3-1  th a t  i f  th e  assum ptions 

r e s t r i c t in g  th e  p o s s ib le  errors from f i f t e e n  per c e l l  to  tw elve p er c e l l  

are r e la x e d , f a u l t  d e te c t io n  can s t i l l  be accom plished. However, in  

g en era l th e  f a u l t  cou ld  o n ly  be i s o la t e d .  According to  th e  a lgorithm
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S e t  i

D e t e r m i n e  t h e  t e s t s

s t i l l  t o  b e  a p p l i e d

t o  c e l l  i - I

t h e  t e s t s  a s  f o l l o w s :

T e s t  c e l l  i .  O r d e r

F r o m  t h e  p r o o f  of  

T h e o r e m  III .  I

d e t e r m i n e  Y

O b t a i n  t h e  v a l u e  f  o f  E ( f  i) = fq p,
f r o m  t h e  a p p r o p r i a t e  t e s t  

D e c i s i o n  M a p

M a t c h  Y w i t h  t h e  a p p r o p r i a t e  

, Y. , t e s t s .

Figure 3.1.4.
F l o w  C h a r t  f o r  t h e  T e s t  A l g o r i t h m .
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the cells are to be tested in the following order: n, n-1,,.., 2, I.
This order is chosen on the basis that if cells n, n-1,..., i+1 are 

known to be fault-free, then the output of cell i can be measured at the 

output terminal whereas the. only uncertainty in,testing cell i is in the 
actual value of Uncertainties in ^ are minimized utilizing
the fact that the error is time independent, thereby allowing t'he fault 

to be located. If certain minor assumptions of Theorem 3.1 cannot be 
met, then all errors are detectable; however, the error may be only 

isolated to within a group of cells and possible cell errors.

Careful testing procedures and the interconnection structure 
under study has considerable effect on the number of tests needed to 

locate a large number of possible single faults. For a n-cell cascade ■ 

and n large 2(n+l) << 2n+^, and therefore computerized testing of cas­

cades can he done quickly and efficiently.

Finally, the simplicity of the actual test algorithm makes this 
method of testing, especially suitable for computerized testing, since a 

master program could be written so that the cell functions and their 

location can be put in as data and the cascades tested without altering 

the master program.

If the remaining four functions are desired in a cascade, a good 

understanding■of the method discussed in Chapter 3 will allow one to 

extend the results of Theorem 3-1; however, when these functions are -

allowed one must be careful not to allow trivial cascades to be tested.
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If one allows certain trivial cascades to be tested many unusual prob­
lems may occur.

. I Since one error can be located in a cascade under assumptions of 
Theorem 3-I5 one error can be located in each vertical cascade and 
collector row of an array. The theories presented are applicable to 
use in any array that can.be decomposed into a series of cascade struc­
tures ; therefore, even cobweb arrays can be considered, because to ob­
tain a cascade doesn't imply that physically each cell lies directly 

below the previous cell, but that a structure such as shown in Figure
1.1 can be obtained.



Chapter 4

TRIBUTARY CASCADES
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4.1 Introduction

■ An important set of cascades can be built utilizing the follow­
ing three functions: ATO (fg), OR ( f ^ ), and EXOR (f/). Also, if the

I
set of possible errors is restricted, some interesting properties and 
results can be derived.

In this chapter, tributary cascades will be considered from the 
viewpoint of obtaining interesting results that may be extended to 

more general cases. However, the results will tend to be most inter­
esting in the context that they are derived.

The allowable set of errors for the function f will be f, „ ,p 15~p’
Iq , f Cj5l f^p, fg? f^g, and f^. The number of tests needed to test these 
cascades will not be calculated since Theorem 3-2 gives a very good 

bound on the number of tests. The proofs of theorems in this section 
will be argumentative since the detailed proof of most of these the­

orems can be obtained from Theorem 3-1 under suitable modifications.

4.2 Classification of Tributary Cascades

The purpose of this section is to utilize two tests to classify 

tributary.cascades.' Theorem 4.1 and its corollary are the same whether 

a tributary cascade or a cascade (see Chapter 3) are under considera­

tion. In order that the special case of cell I need not be considered 

the theorem is stated in terms of Xq , but it could be easily modified

1’to utilize X.
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Theorem 4 .1 .

Let th e  cascade have n c e l l s  „ If C.,, C55 C9», = 5

are such that T(XQjC^)Cg,...,C^) = X^*
then:

(1) f(l,C^,...,C^} = I* and f(0,C ,...,C^) =0*
imply there is no error in the .cascade or there exists 

one cell i such that E(f ,i) = T q*.
t I

(2) f(I,C^,...,C^)= (I*) and f(0,C^,...,C^) =(6*)
imply there exists a cell i such that E(f^,i) = f or

^15-p"

(3 ) T(I)C1 , . . . ,Cn ) = T(O)C1 , . . . ,Cn ) im p lie s  th ere

e x i s t s  a c e l l  j such th a t  E(T ,5)= fQ, Tj 2 , or f .

Theorem 4 .1  will not be proven; however, the Corollary to Theorem 4 .1  

will be proven. The corollary has an error set that is restricted to 

T0, Ti , T1^ where T^ is the cell function.

C oro llary  to  Theorem 4 .1

Let the cascade have n cells. If Cn,...,C areI n
such that T (X ,C1 ,...,C ) = Xn*' th e n :0 '-L n u
( l )  T-(I5C1 ) . . .  ,Cn.) = T(O)C1,...,Cn ) im p lie s  th ere

e x i s t s  a c e l l  I such th a t  E‘(f , i )  = Tn or T1 c ..p 0 15



-66-
t i

(2) f (I5C^5 0 0» )  = (]_ ) and f (O5C-̂ 5», „ ) = ( O )

I imply there exists a cell i such that E(f ,i) = f__ .: P IP“P
I (3 ) f(l,C^,...,C^) = I* and C^) = 0*

imply there is no error in the cascade.

Proof of the Corollary to Theorem 4.1

In part (l) f does not depend on XQ; therefore,,
there is a cell i such that E(f ,i) = f^ or f^.

In part (2) f depends on (XQ*) ; therefore, there

is a cell i such that E(f ,i) = f ; whereas, theP -Ly*~P
proof of part (3) should now be obvious.

4 .3  Subcascades

Definition 4 .1  A subcascade of a cascade is any subset of ad­
jacent cells.

Theorem 4 .2  A cascade can be t e s t e d  and th e erro r  lo c a te d  i f

and on ly  i f  any subcascade can be t e s t e d  and the 

error  lo c a te d .

Proof of Theorem 4 .2

If any subcascade can be tested and the error 
located, then the cascade can be tested and the error



lo c a te d  s in c e  th e  cascade i s  a subcascade o f  i t s e l f .

Assume th e cascade can be t e s t e d  and th e  fa u lt

located. This assumption implies that every cell in

th e cascade can be t e s t e d ,  which im p lie s  any su b set o f

c e l l s  o f  th e  cascade can be t e s t e d .  T h erefore, any

subcascade can be t e s t e d  and s in c e  th e  f a u l t  can be
v

located, if it is in the subcascade it can be located. 
However, it should be noted that if the subcascade 
doesn’t start with cell n, more than just the sub- 

cascade under consideration may have to be tested.

Assume th a t  a cascade i s  g iv en  in  which th e subcascade c o n s is t ­

in g  o f  c e l l s  I ,  2 , and 3 i s  to  be t e s t e d ,  but th a t c e l l  4 i s  producing  

E (f^ ,4 )  f y  In order to  t e s t  th e  subcascade, c e l l  4 i s  t e s t e d  and i t

i s  determ ined th a t  c e l l  4 i s  producing E (f  ,4 )  = f^ , i s  t h i s  a co n tra ­

d ic t io n  o f  C oro llary  2? No, because th ere  i s  on ly  one error in  the  

cascade and. i t  i s  not in  th e subcascade; th e r e fo r e , i t  may be concluded  

th a t  th e  subcascade i s  e r r o r - fr e e  w ith ou t ever a c tu a lly  t e s t in g  the  

su bcascad e.

. Theorem 4 ,2  i s  tru e  fo r  any cascad e,even  m u lt i - r a i l  ca scad es, 

s in c e  no a c tu a l m ention was made o f  th e  c e l l  fu n ctio n s  or s tru ctu re

o th er  than th a t  i t  was a cascade in terc o n n ec tio n  s tr u c tu r e .
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4 .4  Location and Isolation of Faults In Tributary Cascades
Three theorems will be presented in this section pertaining to 

tributary cascades. Theorem 4 .3  is concerned with location of the 

seven possible errors in tributary cascades; whereas, Theorem 4 .4  is 

concerned with the location of three possible errors in tributary cas­
cades. Theorem 4 .4  leads to Theorem 4 .5  which is concerned with iso­

lation of the errors allowed in Theorem 4 .4  when the hypothesis of 
Theorem 4 .4  are relaxed. .Theorems 4 .3  and 4 .4  can be proven utilizing 

Theorem 3*1 since they are special cases of Theorem 3.1 or they can be 
proven directly. A discussion of Theorem 4 .3  is provided which will 

allow one to construct the proof directly. Theorems 4 .3  and 4 .4  can 

be easily extended to encompass cascades more complex than tributary 
cascades; however, although Theorem 4 .5  can be extended to encompass 

cascades, if more possible errors are allowed in Theorem 4 . 5 ,  the 
theorem becomes too complex to warrant further attention.

Theorem 4 . 3

Given a tributary cascade with n c e l l s ,  then the 

error can be located, if and only if for every i-€

L  - W

a) fi2

(2)

(3) E(fQ,i) / fg, fg



D iscu ss io n  o f  Theorem 4 .3

C onsider th e  EXOE (OR; AND) c e l l .  I f  a sequence 

o f  a l l  0 's  i s  r e c e iv e d , then t h is  would appear the  

same as i f  th e  fu n ctio n  f ±2  ( f ^ ;  f  ) was produced 

when th e  co r r e c t  t e s t  sequence was r e c e iv e d . I f  a 

sequence o f  a l l  1 's  i s  r e c e iv e d , then t h is  would appear 

th e  same as i f  th e  fu n ctio n  f  (f^^; ) was produced

when th e  c o r r e c t  t e s t  sequence was r e c e iv e d . I f  th e  

a c tu a lly  r e c e iv e d  t e s t  sequence was th e compliment o f  

th e  d e s ir e d  t e s t  sequence, then t h i s  would appear th e  

same as i f  th e  fu n c tio n  f Q, (f^^; f ^ ) was produced  

when th e co r r e c t  t e s t  sequence was r e c e iv e d ;  however,

"by assum ption f ^  and f^  were not p o s s ib le  erro rs . 

T h erefore, i t  i s  c le a r  how th e  co n d itio n s  fo r  t h is  

theorem can be v e r i f ie d .

For. th e  purpose o f  Theorem 4 .4  i t  w i l l  be assumed th a t  th ere  are

o n ly  th ree  p o s s ib le  errors  fo r  a c e l l  fu n c tio n  f  ; i . e , ,  f  ̂_ , f^^,p ' Ip-p 15
and f y .  I t  should  be noted  th a t  t h i s  i s  th e  standard a llo w a b le  s e t  o f

o th er  in v e s t ig a to r s  { 1 ,4 ,5 ,7 - 9 ,1 3 - 1 5 ,1 7 }  augmented by f^ ^15-p

Theorem 4 .4

Given a tr ib u ta r y  cascade w ith  n c e l l s ,  th e n 'th e  

error can be lo c a te d  i f  and on ly  i f  fo r  every  i-€



, (I)

(2) E(fg,i)/fQ
I ■

(3) E(^,i) / f g

In order to  co n sid er  i s o la t io n  o f  errors when th e  hypotheses o f  

Theorem 4 .4  are r e la x e d , th e  fo llo w in g  d e f in it io n s  are h e lp fu l .

D e f in it io n  4 .2  An error i s  sa id  to  be i s o la t e d  w ith in  k c e l l s  i f

and on ly  i f  th ere  e x i s t s  a s e t  o f  e x a c t ly  m  ̂ I  

error fu n c tio n s  w ith  th e  property  th a t  E (f  , j )  =

(where p /  e )  capab le o f  producing th e  r e s u lt s  o b ta in ­

ed from th e  t e s t  schedu le and k i s  th e  number o f  th e  

d is t in c t  v a lu e s  in  I  th a t j i s  a ss ig n ed  in  t h is  

s e t  o f  error fu n c t io n s .

S in ce i t  i s  im p o ssib le  to  d is t in g u is h  between c e r ta in  error  

fu n c tio n s  from th e  output term in a l i f  th e  hypotheses o f  Theorem 4 .4  are  

r e la x e d , th e  fo llo w in g  d e f in i t io n  ex p la in s  th e  concept o f  a c e l l  

appearing to  have a c e r ta in  erro r .

D e f in it io n  4 .3  C e ll  i  appears to  have th e  fo llo w in g  error fu n ctio n

(E(f^,i) = (E(fg,i) = f^, Eff^,!) = fg) if 
and on ly  i f  t o  th e  observer a t  th e  output term in a l o f  

th e  ca scad e, th e  t e s t  schedule in d ic a te s  th a t E ( f ^ , i )
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Theorem 4.5

Proof of Theorem.

Case I.

“ f^5 ~ fQ5 - f^) is a possible error
function to be included in the set of error functions 
producing the results of the test schedule. ' (it should 

be noted, however, that the test schedule used may- 

have to be supplemented with more tests in some cases 
in order to establish that cell i does appear to be- 

have as if E(f^,i) = f ^ . (E(fg,i) = f^, Eff^i) = f^) 
is a possible error function. Examples of this are 
given in the proof of Theorem 4.5.)

Given a tr ib u ta r y  cascade o f  n c e l l s ,  th en  c e l l  i

appears' to  have th e  erro r  fu n ctio n  E ( f ^ , i )  = f ^ .  

( E ( f g , i )  = f y ,  E ( f g , i ) = f  ) i f  and o n ly  i f  the error  

can be i s o la t e d  to  w ith in  th e s e t  o f  m + I  c e l l s  in  

^ .i ,  i - 1 , . . . ,  i~m§ where c e l l s  in  ^ i , i - 1 , . . .  , 

i-m +l B  a l l  have th e  c e l l  fu n ctio n  f  ^ ( f g , f g )  and 

c e l l  i-m  i s  th e  f i r s t  c e l l  such th a t  i t  has th e  c e l l  

fu n c tio n  fg  or fg  ( f ^  or f g ,  f ^  or f g )  and m > 0.

4.5 '

The proof consists of considering three cases.

Assume cells in £i, i-1,..., i-m+1^ have the .
c e l l  fu n ctio n  f g ,  c e l l  i-m  has th e  c e l l  fu n ctio n  f j^  

( f g )  and i t  appears th a t  E ( f g , i )  = f Q.

, -71-
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!■

Case I I

If X. = O  was used in the test, then set X.i-in i ~m
= I and run the test again. If E(fg,i) = fQ still
appears as a possible error, then the error lies in
one of the cells in §i, i-I,... , i~m§ because if
there exists a cell j such that j < i-rn and E(f ,j)

. - P
= f*̂  or is causing a 0 to be received by cell

i-rn, then cell i-m is producing a I because its cell 

function is f ^  (fg) and in this case E(fg,i) / fQ is 
the conclusion. Therefore, since cells in ^n,..., 

i+l§ have already been tested, the error is isolated 
to the m + I cells in- ^ i , ..., i-m I .

If cell i is a cell with cell function f ,'the

conclusion can be reached in a dual manner in the case

where cell i-m has the cell function f ; however, the8
case in which cell i-m has the cell function fg is 
not obvious. In the test schedule for'cell i-m having 

a cell function f/, the cells must be set as -follows: 

X. = X. , = ...X. n = X .  =0 and the constant pro- 
• duced by cell i-m-I is set such that it is 0, If it

, when was s e t  toappears th a t  E(T1^ i ) = :  f ^  ( i . e .

I  w ith ou t anyth ing e l s e  b ein g  changed, th e  output from

c e l l  i  remained a t  l )  then  s e t  X. = I  in  th e o r ig in a l  

t e s t  (instead , o f  0 ) and. t e s t  aga in . I f  f  -  I  fo r  both
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of these tests, then the error lies in the cells ^i,

1-1,..., i-m^ since if there exists a cell j such
that j < i-m and E(f ,j) = f or f. _ is causingP -L? -Lp-p
cell i-m to receive a I, then setting X. = 1  causesx ~m
cell i-rn to produce a 0 output, since in the. previous 
case it had to be producing a I output, otherwise 
cell i would not have appeared as if E(f^,i) = f^ 
and allowed the conclusion that E(f^,i) =

Case III The case for cell i having the cell function fh
and cell i-m having the cell function fg is trivial; 
however, the case for cell i-m having the cell func­

tion f ^ is not obvious but can be obtained from the 
proof of Case II with suitable modifications.

To prove the other half of the theorem, assume 

the error is isolated within the cells in ^i,..., . 

i-m § , then the error could not- be locafed. There­

fore, one of the cells p-S i--mB with cell

function f^ must have the error function E;(.fpp) = f ̂ ̂  

(E(f^,p) = fy, E(f^,p) = f ) and when any one of those 
cells has this error function it appears as if 

E(f^,i) = (E(fg,i) = fg, E(f^,i) = fg).
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4.g> Conclusion

i Several concepts were presented in this chapter which allow 
certain facts to be ascertained about faults in cellular cascades. A
i

reduced set of possible errors is assumed; although the theorems are 
concerned with tributary cascades 5 they can be extended to encompass • 
cascades with more possible errors.

It is interesting to note the results of cascade classification 
and error isolation. Depending on the types of cascades and error 

sets under consideration in a specific problem it may be useful to 
utilize these sections in the testing procedure; however, these results 
are too complex in the general cases to be useful.



Chapter 5

EXAMPLES
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$ .1  In tro d u ctio n  and D escr ip tio n  o f  Examples

The purpose of this chapter is to present thirty-one examples 
of the use of the previously presented theorems,I

. For all' examples f . den otes th e  th e o r e t ic a l  v a lu e  of the func­
tion of the cascade under consideration; whereas/ f  denotes'the actu­
ally measured, value. The specification of the error that is in the 

cascade has "been placed immediately following the example number. The 
specification of the error is given in the notation of this paper.

Examples 5-1 - 5-I^ are direct applications of Theorems 3-1 and 
3.2. Examples 5*1 - 5-l4 are worked on the basis of the .hypothesis of 
Theorem 3*1 concerning the restriction of errors. The details of the 

application of the test algorithm are not given, the conclusions of 
the tests are given in the notation previously developed, and the tests 

are grouped as they would be in actual application of the test al­

gorithm; i.e., four tests are applied to cell n and a conclusion is 

then made, the two remaining tests are applied to cell n-1 and a con­

clusion 'is then made, etc.

Examples 5»15 and p.l6 were included to illustrate that there 

do exist test schedules based on theories of single-fault location 

that can locate multiple faults in a system. The multiple"faults were 

located by assuming that there was only one fault and when this fault 

was located the tests were continued as if looking for another single 

fault, etc. The notation for Examples 5-15 and 5-16 is the same as
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the notation for Examples 5 .I - 5 .1U. Examples 5 .15  and 5.16 utilize 
the hypothesis of Theorem 3 .I except that they have multiple faults.

The tests schedules for Examples 5.15 and 5.16 are taken from Theorem 
3.1 just as if only one fault was being searched for.

Examples 5»17 -  5»20 are examples of the use  of Theorem 4 . 4 .

Only three errors are allowed in Theorem 4 . 4  and the cascade under 

consideration satisfies the hypothesis of Theorem 4 , 4  on the restric­
tion of errors. In utilizing Theorem 4 . 4  it has been found that the 
following tests will usually be sufficient: OE cell (00 , 1 0), AND cell
(ll, 0 1 ) ,  and. EXOR cell (00, 1 0 ) ,  where CD means X. = C  and Y. , =D.X ' 1-JL
Usually these are the tests one wants to utilize if possible when ' 

using Theorem 4 . 4 .  .It is also noted that with suitable care the test 

schedule length should be nil (or less) for this situation.

Examples 5»23. - 5-24 are examples of the use of Theorem 4 . 4  on 

a cascade other than a tributary cascade. Suitable modifications in 

the assumptions of Theorem 4 . 4  have been made and with this example 

and Theorem 4 . 4  the reader should be able to- construct the general 
case of Theorem 4 . 4 .

Examples 5»25 - 5»27 are examples of the general case of The­

orem 4.5» With Theorem 4 . 5  and Examples 5»25 - 5-27 the interested 
reader should be able to construct the general case of Theorem 4 . 5 .

Examples 5»28 - 5»31 are examples of.the. use of Theorem 4 . 1 .
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Some of the theorems given may easily be extended. F o r  example.
I

if Y is a cell function in a cascade, then one can construct
the proper result utilizing Xi + and then compliment the valuesi-1
of Xi. Examples of this procedure can be seen by comparing Examples • 
5•5 and 5«9-or Examples $.21 and 5-25. This procedure makes it useful 
for some considerations to list the cascade functions as follows:

‘X- 1 -X- 1 -X- -XX + Y, X t Y , X Y ,  X Y , X ( f ) Y ,  a n d Y .

It should be noted that Theorem 3-1 allows serial, hybrid, or 

tabular testing. If one wants, the testing may be accomplished in the 

serial mode (Examples 5-17 - 5-27), in the hybrid, mode (Examples 5-1 - 
5-16, or in a tabular mode (no examples).

"L The .figures for this chapter appear at the end of the chapter 
beginning with page 107«
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5 . 2  Examples

Example 5.1; Assume there is no fault in the cascade shown in 
I Figure 5-1-

Test

X O xI

Xcm X3 fT fA Conclusion

0 0 ' 0 I. 0 0 '
0 0. 0 0 0 0
0 0 I 0 0 0 -

0 0 I I I I

E(fg, 3)= fg

I I I I 0 0

I I 0 I I I

E(l> 2) = fg

0 I 0 I I I
I 0 0 I I I
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Example 5.2: Let E(f^, 2) = f. in the cascade in Figure 5.1.

■ Test

Xn Xn Xn f f0 I  • 2 3 T A

0 O O O . 0 0

0 0 0 I ■0 0
0 O I I I 0
0 0 I 0 0 0

0 I 0 I I 0

0 I I I 0 0

Conclusion

■E(fg, 3) = fg

E(f6, 2) = f0
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Example 5-3: Let E(fg, 3) = fg in the cascade shorn in Figure 5.1

Test

0
0

0

0

xI X2 CO
X

fT fA
0 0 I ■ 0 0
0 0 0. 0 0.
0 I 0 0 I
0 I I I 0

Conclusion

Effg, 3) = fg
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Example 5 . 4 :  L et E ( f ^ ,  l )  = ^  ’ in  th e  cascade shown in  F igure 5.1.

Test

xO xI X2 CO
X

fT fA Conclusion

0 0 • 0 I 0 I
0 0 0 0 0 0
0 0 I 0 0 0
0 0 I . I I 0 - ■

E(fg, 3) = fg

I I I I 0 0 -

I I 0 I I I
E(f6, 2) = JT6

0 I 0 I I r

I 0 0 I I i
E (f̂ ,,-.I) = f15
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Example 5-5: Assume there is no fault in the cascade shown in
Figure 5.2.

Test

X2 X3 x4 X5 fT fA Conclusion

O O O O O 0 0 0
O O O O O . I I I
O O O O I I 0 0
O O O O I 0 . I I

E(f6> 5)= f6

O I ■ O I O 0 I ■ I.
O I O I I O I I

EtfiV 4 >= 1Xb

O O O . I O 0 0 • O

O I O O . O 0 0 0

E(f8, 3) =fg '

O O I I O 0 0 • 0

O I I I O 0 I I

Stfio- 2) = fIO

I 0 I I O 0 I I .

I I . I I O • 0 0 0

ECf6, I) = fg
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Example 5.6: Let 4) = in the cascade shovm in Figure 5.2

Test

x O xI X 2 x 3 x4 x 5 fT fA

0 0 0 0 . 0 0 0 I

0 0 0 0 0 I ' I 0

0 0 0 ' 0 L I 0 I

o • 0 0 0 I 0 I 0

0 I 0 I 0 0 I ' 0

0 I 0 I I 0 I 0

Conclusion

E ( V  5) - f6

E(fl4» 1O  = E1
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Example 5.7: Let E(f^ I) ~ fi4 in the cascade shown in Figure

Test

xo X1 X2 X3 x4 5S fT fA Conclusion

0 0 0 0 0 0 0 0
0 0 0 0 0 I I I
0 0 0 0 i I 0 . 0 .
0 0 0 0 I 0 I I

ECfg,, 5) =

0 I 0 I 0 0 I I
0 I 0 I I 0 I I "

B(fl4, 4) =

Q 0. 0 I 0 0 0 0
0 I 0 0 0 0 0 0

E(fg, 3) = fg

0 0 I I 0 0 0 0
0 I I I 0 0 I I

E(fi0J 2) = f10

I 0 I I 0 0 I I

I I I I' 0 0 0 I

E(f6, D  = fl4
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Example 5.8: Let E(fg, 3) = f15 in., the cascade shown in.Figure

Test

%0 %1 X2 X3 x4 x5 fT fA Conclusion

O O • O O O O O I
O O O O • O I I O
O O O O I I O O

O O O O I O I I

Btf6, 5)= f6
O I ■ O I O O I I
O _ I O I I O I I

E (f!4> 1,)= fi4
O O O I O O O I

O I O O O O O I

2%, 3)=
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Figure 5.3.

.Example 5=9: Assume there is no fault in the cascade shorn in

Test

xO . X1 X2 x3 x4 X1

0 I 0 I 0 I
0 .1 0 I 0 0

0 I . 0 I I 0

0 I 0 I I. I

0 0 0 0 0 I
0 . 0 0 0 I I

0 I 0 0 0 I

0 0 0 ■ I 0 I

0 I I 0 0 I

0 0 . I 0 0 I

I I I 0 0 I

I 0 I 0 0 I

fT Conclusion

0 0
I I

0 0

I I

E(fg, 5)= fg

I I
I I . '

0 0

0 Q

Sffg, 3)= fg
0 0

1 I

E f̂IO5 - fIO
I I
0 0

E(fg, I) =fg
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Example 5»10: Let E ( f 4) - in the cascade shovm in Figure 5 = 3.

Test

OX xI X2 CO
X

x4 X5 fT fA

0 I 0 I 0 i 0 0

0 I 0 I 0 0 I I

0 I 0 I I 0 0 0

0 I 0 I I . I I I

0 0 0 0 0 I I I

0 0 0 0 I . I I 0

Conclusion

B(fg, 5) = f9

E(fl4, 4) = f6
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Example 5 .1 1 :  L et E ( f_ ,  5)  = Lq in  th e  cascade shorn in  F igure 5.3

Test

xI X2 on
X

x4 X5 fT • fA Conclusion

I 0 1 0 I 0 0
I 0 1 0 0 I 0
I 0 1 1 0 0 0 -
I 0 1 1 I I 0

S(fy 5) = f0
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Example 5 .1 2 :  L et E (fg , 3) = in  th e  -cascade shorn in  F igure 5.3,

Test

X x_ X X), X . f fO I 2 3 4 5 T A

O I O I O I O I
O I O I O O I O
O I O I I O °. O
O I O I I I I I

O O O O O I I I
O O O O I I I I

0 ■ I O O O I O O
O O O I O I O O

Conclusion

Etf9, 51= f9

E(fl4» 4) = fl4

Effg, 3) = Cf
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Example $ .1 3 : Assume th ere  i s  no f a u l t  in  th e cascade shown in

■ i !I ■

Test

Figure $.4.

Xx X1 X0 X0 frn f. Conclusion0 I 2 3 T A

0 0 I 0 0 . 0

0 0 I I I I

0 0 0 I I I

0 0 0 . 0 I I

E(f^, 3) =

I 0 . 0 0 0 0

I 0 I 0 I I
. 2 ) = fg

I I I 0 0 0

o. I I 0 0 0 '

EKfg, I) = fg
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Example 5 . l 4 :  L et E ( fg , l )  = f Q In the. cascade sho>m in  Figure 5 .4

Test

xO xI x2 x3 fT fA Conclusion

0 0 I 0 0 0

0 0 I I I I .
0 0 0 I I I
0 0 0 6 I I •

E (flU’ 3’ = fl4
I 0 0 0 0 I - '

I 0 I 0 I 0 .

S(f9, 2) - f9

I I I 0 0 0

0 I I •0 0 0

E(fg, l).= fg
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Example 5.15: Let E(f^, 3) = fg and E(Lg, l) = f in the cascade
shovm in Figure

Test

xO X3 f,

O 0 I O 0
0 0 I I I
0 . 0 0 I I
0 0 0 . 0 I

I . 0 O 0 0
I O I 0 I

I I I 0 0
0. I I 0 0

Conclusion

0

I'
0

I

' E(f^, 3) =

0

I

E(fg, 2) = fg

I

Bffg' D  = ^lO

0
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Example 5.16: Let E(f^, 3) = L95 E(f , 2) = and E(fg, I) = fg
i • in the cascade shown in Figure 5.4,

xO xI X2 *3 fT fA Conclusion

O O I O O I
O O I I I O
O ■ O ■ 0 I I I '

O O O O I O

. 3) =

I O O I O O
I O I I I O

E(f9, 2) =

I I ■ O I I I
O I O I I O

Effg, I) =
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Example 5.17: Assume there is no error in the cascade shown in
Figure 5,5.

Test

xo xI X2 x3 x4 fT . fA Conclusions

0 0 I 0 0 0 0

0 0 I 0 1 I I

E(fg, 3)/

or f

Etf6, 4)/ f0

0 0 .1 I 0 I I Efrl4, 2) ^ f 1

0 0 0 I 0 0 0

. orfO
Etfilf, I) ^f 15

0 I 0 I 1 I I
°r fI

E(fl4, D Zf 0



I

Figure 5.5.

/

Test
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Example 5 .1 8 : Assume E (fg , 3) = f  fo r  th e  cascade shown in

xO xI x2 x3 x4 fT - fA Conclusions

0 0 I 0 0 0 I E(f6, 4) = f15 or

E(fg, 3) =.f_ or f

0 0 I 0 I I 0 E(fg, 4) / f^_

0 ' "Q I I 0 I - ■ I Eff8, 3) Z f 7
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Example 5•19? Assume E(f^, l) 
Figure 5«5«

Test

X0 X1 X2 x3. x4
0 0 ' I 0 0

0 0 I 0 i

0 0 I ' I 0

Q 0 0 I 0

0 I 0 I 0

f-̂c- for the cascade shorn in
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fT V . Conclusions

0 0 E(f&  , 4 )  /

E ( f g ,  3 )  / f y  o r  f ^

I I E(fg, 4) / fg

I I E ( f ^ ,  2 )  / o r  f ^

0 " I E (fl4» -*-) = or.

I I E (fl4, D V f i  '
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Figure 5.5.
Example 5 .2 0 :  Assume E ( f ^ ,  2) = f ^ fo r  th e  cascade shown in

Test •

xo xX X2 X3 x4 fT fA Conclusions

0 0 I 0 0 0 0 E(f6, 4) ^f15

E(fg, 3)/ fy or f ^

0 0 I 0 I ' I I E(f6, »  ^f15

0 0 I I 0 I 0 E (-'-l4? ^ ) 3̂Q or

0 0 0 I 0 0 0 E(f^, 2) /
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Example 5.21: As sume there is no error in the cascade shown in ■
Figure 5.6.

Test

%0 X 2 X3 x4 X5 . fT fA Conclusions

O O I O O 0 0 0 5)/

E (£4 > M  / ^11 or I11,

O O I O O I I . I 5) / fo

O O I O I 0 I I E(f^, 3)? fg

E(f^, 2 ) ̂  £q or

O O I I I o. 0 0 3) ̂  fo
O O O O I 0 0 0 E(fg, I) / or

O I O O I 0 I I EffQ, I)/ fo
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Figure 5.6.
Example 5 -2 2 : Assume E ( f ^ ,  2 ) = f  fo r  th e  cascade shorn in

Test

xO xI X 2 x3 x4 x5 fT fA Conclusions

0 0 I 0 0 0 0 0 5)

iO ^f11 or f15

0 0 I 0 0 I I I E(f6, 5) / fQ

0 0 I 0 I 0 I 0 E(f13? 3)= fg or
' .ECflll, 2)= T1 or
E(fg, I)= fy or f15

0 0 I I I 0 0 0 E(f13, 3) /fg

0 0 0 0 I ' 0 0 I E (fo, I) ^f 7 or f  -

I
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Iwcample 5«23r Assume 5) - Iq for the cascade shown in
Figure 5.6.

Test

X. x_0 I 2 3

0 0 I . o

0 ' 0 I 0

x4 X5 fT fA

0 0 0 0.

0 ' I I 0

Conclusions

E (f4» ^ or f 15

B(f6' 5)= fo
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Example 5«24: Asstune E(Ig5 I) =, f,j fox the cascade shown in
Figure 5.6.

Test

xO xI X2 X3 x4 X5 fT fA Conclusions

0 0. ' I 0 0 0 0 0 K f 6. S W f 15

®(f4. 1W  fjj.
- - - f -

- 15 .
0 0 I 0 o ■ I I I 5)^ fo

0 0 I 0 I 0 I'" 0 E(f^, 3) = fg

E-Cf1^ 5 2 ) = T1 or

E(fg, I)= fy or
f _15

0 0 I I I 0 0 0 3)/ fg

0 0 0 0 I 0 I 0 E(f^, 2)

0 I 0 0 I ■ 0 I 0 E(fg, I)
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; Example 5 I .2$: Assume there is no error in the cascade shown, in
ii
I

Figure 5.7.

Test

Xo- X2 X3 X5 fT fA Conclusions

0 0 I I 0 . 0 0 0 E <f6’ 5 ) / f 15

E (f45 ^  ^ fH  or fi5

0 0 I I 0 I I I 3(^6' ^ fo
0 0 I I I 0 I I 3) / fg

- ■ E(fl4, 2 ) / fQ or F1

0 0 I 0 I 0 0 0 Effig, 3) / fQ

0 0 Q I I 0 0 0 E(f^, I) / or f ^

0 I 0 I I 0 I I E(fg, I) / f^
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Figure 5.7 .
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Example 5 .2 6 :  Assume E (f  , 3) = fo r  th e  cascade shown in

Test

xO xI X2 X3 x4 X5 fT fA Conclusions

0 0 ' I I 0 0 0 0 5) Z f 15

.
E(f%, 4) or fI5

0 0 I I 0 I I I 5) ^ fO or f9
0 0 I I 1 0 I 0 Effh, 4) = tO °r

E(f?, 3)= f15 or 

®(fl4, 2) = f0
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■ Example 5.27: Assrmie E(f^, 5) = for the cascade shown in 
j Figure 5.7.

Test

xo xI X2 X3 x4 X5 fT fA Conclusions

0 0 . • I I 0 0 0 I E(f4, 4) = fi5 or fH

E(f&, 5)= f9 or f15
0 0 I I 0 I I 0 . E(f4, 4)= fXl or

Effg,, 5) = f9
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For Examples 5«28 - 5«Sl5 the cascade shorn in Figure 5.8 is con­
sidered. The function for this cascade is + X1̂ (X_ (Xg + X1Xq) )
and the chosen constants are = I, Cg = O5 = O5 = I5 and CL = 0. 
This yields Flj (Xq C1 , C^5 C35 C^ 5 C5) = XQ.

Example 5«28: Assume there is no error in the cascade shown in Figure
5.8.

t^(l> C^5 Cg5 C35 C45 Cj-) = I and f^ (O5 C^5 Cg5 C35 C45 C^) =0 
imply that there is no error in the cascade.

Example 5 • 29: As suine E (f  ̂513: 3) = fQ for the cascade shown in Figure
5.8.

^(1, C1, Cg, C35 C4,
imply there exists an

C5) = I and fA (05 C1, Cg5 C35 C45 C5) = I
i •€ Ic such that E(f ,i) = fA or L r..5 p 0 15

Example 5*30: Assume E(f , 3) = F1  ̂for the cascade shown in Figure
5*8.

Oj5 Cg5 C35 C45 
imply there exists an

Example 5*31: Assume E(f 4,

5.8.

^ 5 ^i? ^25 C35 
imply there exists an

C^) = 0 and fA (0, C1, Cg, C3, C4, C^) = 0
i It- such that E(f .,i) = f A or f .5 p 0 15
2) = F1 for the cascade shown in Figure

CK) = 0 and f,(0, C,, C., C, C j'5/ " ^  "A'"' "I' "2' "3' 4' "5
i -£ Ik such that E(f ,i) = F1c 5 p 15-P
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F ig u r e  5 .1. T e s t  E x a m p le ,

4

F i g u r e  5 . 2 . T e s t  E x a m p l e  .

F i g u r e  5 . 3 . T e s t  E x a m p l e .

F ig u r e  5 , 4 .  T e s t  E x a m p le .
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X I X 4

X 0

F i g u r e  5*5» T e s t  E x a m p l e .

F i g u r e  5«6 . T e s t  E x a m p l e  .

X I %3 %4 X
5

X 0

F i g u r e  5*7* T e s t  E x a m p l e .

X I X 2 X 3 X 4 X
5

F i g u r e  5*8 .  T e s t  E x a m p l e .



C h a p t e r  6

CONCLUSION
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6.1 Sixnmary

Fault location in cellular arrays composed of two-input, one 
output cells is examined in this research. It is shorn that arrays of 
this type can be decomposed so that the actual problem to be solved is 
fault location in a single-rail cascade. A physical basis for the 
assumption of a maximum allowable set of possible errors is given and 

it is seen that each cell could have fifteen possible errors.

An algorithm is given for testing a cellular cascade. If the 
algorithm is followed it is seen that three of the possible fifteen 
errors cannot be allowed to occur if fault location is to result.

This information is invaluable to the designer of the circuits 
to be used in cellular arrays. Since if he can design the circuits 

using redundancy techniques such that the probability that these three 

errors can occur is decreased, then the testing problems for cellular 

arrays can be simplified. Also, once the circuits are designed this 

way 8.11 errors will be locatahle, thus providing more reliable circuits 

than would otherwise be possible. x

If fault detection and isolation■is to result, it can be easily 

seen that any of the fifteen errors, can be detected. A necessary and 

sufficient•condition for the location of faults'(Theorem 3.1) is given. 

From the proof of Theorem S-I one can easily deduce that any of the fif­

teen possible errors can.be detected. Theorem 3-2 gives a firm least 

upper bound on the number of. tests needed to locate a fault in a cas-
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cade. One notes that fault detection is a much simpler problem to solve 
than fault location especially if only two failure types (s-a-1 and 
s-a-O) are allowed.

Chapter 4 examines classification (detection) of cascades5. location 
of faults, and isolation of faults on restricted sets of. possible errors.. 
The Corollary to Theorem 4.1 is especially interesting because it points 
out a. method that will allow detection of s-a-0 and s-a-1 faults in 
cellular arrays in fewer tests than any method examined by other re­
searchers. Although the corollary is not written for the set of cut- 
point functions, it can be easily altered to apply to outpoint arrays if 
certain trivial cascades are allowed. Location of faults in sub-cas­
cades is.considered in Theorem 4.2. Theorems 4.3 and 4.5 deal with the 
problem of fault location on restricted error sets. Theorem 4.6 con­
cerns isolation of errors when the hypotheses of Theorem 4.5 are re- ' 
laxed. It is shown that with the addition of a few extra tests the 
fault1 can be isolated to within a set of cells that can be- specified 
analytically.

A .test' algorithm, is given; however, the given algorithm is only- 
one of several possible algorithms. If the tester desires, a complete 
test schedule could be derived or the testing could be done in a serial 
mode. Thirty-one examples of various test procedures are worked with 
emphasis•given to examples of the utilization of Theorems 3=1 and 3-2 
^and the given test algorithm.



S

Since cells are tested individually, the given test algorithm is 
the most natural "because it gives a conclusion as soon as a cell has 
been tested.
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6.2 Suggestions for Further Study

Five topics worthy of further consideration are evident from 
this research.

I. The method of Chapter 3 should be extended 
to n-input one-output cascades in which 

Xi g , . . . ,  Xi would take the place of Xi in 
the single-rail cascades. Tliis extension should 

. be easy since all that needs to be done is to try 
all combinations of X. n 9 X. X. n for"1,1' Xi,n-1
Yi = 0 and I.

2. Extension of single fault location pro­

cedures should he considered. Examples 5«15 
and 5.16 show that some1 multiple faults are -Io- 

catable utilizing single■fault location tech­

niques .

3. The test algorithm given in Figure 3«1^ 

should be programmed to see how fast computer 

testing could be.

4. Fault location in multiple-rail cascades
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should be considered. In order to test a mul­
tiple-rail cell one should apply the same method
as used for single-rail cascades. For a n-rail

n 2ncascade there are (2 ) -I possible bad se­
quences because one would like to test all 2n 
possible n-rail combinations any of these.com­
binations could be incorrect, and there is a 
possible 2n ways for the sequence to be incor­
rect .

However, some of these sequences are equi­
valent ; i.e., if the desired test sequence for
a two-rail cascade cell Y. , = X. + Y. n n ,+i,l i 1-1,1
Yi~l 2 (Yi 2 is no* t>eing considered) is Y ^ ^  . 
Y^^^ q ~ 01, 10, 11, then the following bad
sequences give the same output Y^

1 0, 0 0, 0 0, 01

1 0, 0 0, 0 0, 10

1 0, 0 0, 0 0, 11

0 1, 0 0, 0 0, 01

0 1, 0 0, 0 0, 10

0 1, 0 0, 0 0, 11

1 1, 0 0, 0 0, 01

1 1, 0 0, 0 0, 10

1 1, 0 0, 0 0, 11



All of the above sequences give the Y. . se-I .,-I
quence.lj X^5 I so that they are all ter­

minally indistinguishable with respect to Y. ^. 
There is an added complication; however, due to 

the large number of functions available in the 

multiple-rail cascades it is suggested that the 
research utilize equivalence classes.

5. In all types of cascades isolation of errors 
should be considered because as the complexity 
of cells increases the location problem may be­

come insolvable due to n'otational complexities; 
whereas, these difficulties may not appear in 

fault-isolation considerations.
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