
Fault Location in FPGA-Based Reconfigurable Systems

Subhasish Mitra, Philip P. Shirvani and Edward J. McCluskey

Center for Reliable Computing
Departments of Electrical Engineering and Computer Science

Stanford University
Stanford, California  94305

Abstract
In this paper, we describe a new technique for locating

faulty Lookup Tables (LUTs) in FPGA-based
reconfigurable systems.  The technique is in-place (does
not alter the routing structure of the LUT network) and is
based on pseudo-exhaustive Built-In Self-Test where each
configured LUT is tested exhaustively.  Our technique
involves selective reprogramming of the LUTs and takes
advantage of partial reconfiguration when it is available.

1. Introduction
Programmable logic devices (PLDs) have long been

used as rapid and economical means to prototype digital
logic designs.  Field programmable devices (FPDs) are
becoming more prevalent in end products because they can
drastically reduce system cost and time-to-market by
allowing for economical, last-minute system
enhancements, performance improvements, and bug fixes.
With the production of FPDs that can be reprogrammed in-
system, multiple times, it is now feasible to implement
adaptive computing systems (ACS) [Lach 98][Rupp
98][Saxena 98].  These systems can adapt to rapidly
changing environmental and computational requirements
by reconfiguring themselves on the fly, allowing for
significant cost and performance advantages over a fixed
implementation of the same system.

Due to the increased dependability (availability,
reliability, maintainability, testability and fault tolerance)
requirements in harsh and unusual operating environments,
it was impossible to execute safety critical applications on
low-cost commercial technology.  However, executing
these applications on adaptive hardware means that the
system can now be both low-cost and highly dependable.
Moreover, an adaptive system allows each application to
adapt its level of fault tolerance to changing dependability
requirements.  Thus, these systems should be able to:
1. Detect run-time errors by using innovative on-line
checking techniques, and detect manufacturing and
configuration defects by using off-line Built-In Self-Test
(BIST) techniques.
2. Precisely locate defects by reconfiguring themselves
to include additional checkers and BIST logic.
3. Rapidly reconfigure themselves to avoid the
located defects, and depending on the extent of the defects,
operate with less on-line checking or in a degraded
functional mode.

In this paper, we address the problem of locating the

faulty unit once the on-line checkers detect errors.  The
platform under consideration is a field programmable gate
array (FPGA) based system — specifically, we consider the
SRAM-based FPGAs (e.g., the Xilinx FPGAs [Xilinx
96]).  In the following paragraphs, we briefly describe the
SRAM-based FPGA architecture and introduce the
terminology — this will help in describing the problem
under consideration.

An FPGA has a number of Configurable Logic Blocks
(CLBs) interconnected by wires and switch boxes (shown
by small black boxes in the diagram) with each other and
to the input/output blocks.  The architecture is shown in
Fig. 1.1.  The CLB contains logic function generators,
flip-flops (latches), and a number of multiplexers and
associated circuitry.  Wires within the FPGA are connected
through pass transistors.  The pass transistor is turned on
or off by loading a binary value into the configuration
SRAM cell connected to its gate.
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Figure 1.1.  Architecture of a Field
Programmable Gate Array (FPGA).

The CLBs contain function generators which are also
made up of SRAMs.  A function generator has a Lookup
Table (LUT) made out of SRAM cells, together with some
addressing circuitry. The LUT is mostly used for
implementing combinational logic, although in the Xilinx
XC4000 series it can also be used as a RAM. The function
is implemented in the LUT by storing the corresponding
truth table inside the LUT.

In this paper we address the fault location problem.
For an FPGA-based reconfigurable system, faults can occur
both in the logic blocks (LUTs, CLBs, etc.) and in the
interconnects that provide connection between the different



logic blocks.  A typical fault in a logic block may be a
stuck-at fault in any LUT location.  A typical interconnect
fault may be a stuck-at fault in the configuration SRAM
cell whose content turns a pass transistor on or off,
providing interconnection between two leads.  Both of
these types of faults are equally important.  In this work,
we will address the fault location problem for the FPGA
logic blocks.

For the entire reconfigurable system to have high
dependability, there are some stringent requirements for any
fault location procedure.  First of all, the diagnostic
resolution should be fine-grained.  For example, consider
fault location technique A that identifies a faulty CLB in a
design and technique B which locates a faulty LUT in the
same design.  So far as diagnostic resolution is concerned,
technique B is generally more preferred than technique A
because, typically a CLB contains three LUTs and when a
faulty CLB is identified, all the three LUTs inside it will
be discarded; however, if a faulty LUT is located, we can
still use the other two LUTs in the CLB.  Moreover, with
a finer resolution, it may be easier for the synthesis tool to
re-map the original design to the set of LUTs excluding the
faulty one identified.

So far as highly dependable reconfigurable systems are
concerned, it is not very desirable to shut the entire system
down when fault location is being carried out in one part of
the system.  Thus, it is desirable that some part (possibly
the critical part) of the system still functions even though
fault location is being carried out in other parts of the
system.  We call these type of fault location techniques
partially on-line.  With the availability of partially
reconfigurable FPGAs (e.g. the Xilinx XC6200 [Xilinx
96] and Atmel AT6000 [Atmel 97] families), it is
becoming quite feasible to devise fault location techniques
that are partially on-line.  As an example, consider a case
where a circuit has been mapped in such a way that it
spans multiple FPGA modules.  In that case, we can
selectively reconfigure some CLBs (or LUTs) of the FPGA
modules without bringing the entire module off-line.
Finally, a fault location technique should be expected to be
fast enough to cope with the stringent requirements of the
system’s responsiveness to a failure.

In this paper, we will focus on combinational logic
circuits built out of the LUTs.  In the future, we will
extend this work for sequential circuits.  Given a
combinational logic network mapped onto a collection of
LUTs with defined interconnection among the LUTs, our
goal is to locate a faulty LUT when errors have been
detected at the output of the given combinational logic
circuit.  The fault model under consideration is not
restricted to a single stuck fault — later in this paper, we
will discuss more about the fault model.  Our technique
utilizes the reconfigurability of the LUTs to perform the
diagnosis.  In addition, we rely on pseudo-exhaustive BIST
[McCluskey 81] for pattern generation — hence, minimal
external interaction is required.  A novel aspect of our
technique is the way the concept of pseudo-exhaustive
BIST has been applied for fault-location purposes.

Another novelty of our approach lies in the fact, that we do
not alter the routing structure among the different LUTs
(CLBs) of our design, i.e., it is an in-place fault location
technique.  This is an important feature, because typically
designs mapped to FPGAs are routing-limited.  Also,
modifying the existing routing configuration during each
fault location step is time consuming.

Another advantage of our technique is that, with
partially reconfigurable FPGAs, while the circuit under
consideration is being diagnosed, the remaining part of the
system whose inputs are not connected to the outputs of
this circuit, can still be operational (i.e., it is partially on-
line) .  Our technique can be extended to locate faulty
CLBs rather than LUTs — i.e., the diagnostic resolution
of our technique is flexible.

In Sec. 2 of this paper, we review recently published
techniques related to diagnosis in FPGAs.  In Sec. 3, we
review the basic concepts related to pseudo-exhaustive
BIST.  Section 4 describes our basic scheme for fanout-free
LUT networks and provides bounds on the reconfiguration
complexity associated with our technique.  In Sec. 4.A, we
analyze the reconfiguration complexity of our algorithm.
In Sec. 5, we extend the algorithm of Sec. 4 to handle
general LUT networks.  Section 6 presents experimental
results.  Finally, we provide a summary of this work in
Sec. 7.
2. Previous work

Testing the logic blocks of reconfigurable FPGAs has
been studied by many researchers [Jordan 93][Liu
95][Stroud 96].  Testing the interconnects was discussed in
[Renovell 97][Renovell 98].  Techniques to locate faulty
FPGA interconnects are described in [Huang 96][Lombardi
96].  Since our focus is on FPGA logic blocks, we will
describe the techniques for logic block diagnosis only.

The testing technique described in [Stroud 96] requires
a fixed number of reconfiguration sessions.  It reconfigures
some of the logic blocks as pattern generators or response
analyzers, while testing the other blocks and vice-versa.
The technique does not use any knowledge of the
application that was implemented in the FPGA.  Hence, it
requires a set of configurations that cover all the faults
under consideration for all possible configurations.  This
technique is extended in [Stroud 97] for diagnosis to locate
the faulty logic blocks in an FPGA.

The method discussed in [Wang 97] can be used to
locate multiple faults in an FPGA.  The basic idea is
similar to that of [Stroud 97].  Typically, a part of the
FPGA is reconfigured to test another part and vice-versa.
For example, the FPGA is divided into three sets of CLBs
and each set tests another set according to a diagnostic
graph.  The test time in this method depends on the
number of faults and is independent of the array size.  The
techniques in [Stroud 97] and [Wang 97] are based on
BIST.

Another application independent diagnostic technique
is presented in [Inoue 98].  The technique consists of two
test steps: horizontal diagnostic and vertical diagnostic.
These two steps identify the row and column respectively



that contain a faulty CLB.  The C-testability concept
[Friedman 73] is used to improve this technique such that
the test time is independent of the array size.

All the mentioned techniques are application
independent and can be used for both production test and
field test.  However, when diagnostic is needed for an
FPGA that implements a fixed application, the diagnostic
procedure can be accelerated by using the design
information rather than testing for all possible
configurations (as will be seen in Section 4).
3. Pseudo-exhaustive BIST technique

A BIST technique based on Pseudo-Exhaustive (PE)
testing was presented in [McCluskey 81].  An n-input
combinational network can be tested thoroughly by
applying all 2n input combinations and verifying that the
correct output is obtained for each combination.  This
technique is sometimes called Exhaustive Testing.
However, most combinational networks have more than
one output, and for many cases, each of these outputs
depends on only a subset of the inputs.  Thus, it may be
possible to exhaustively test each output by applying all
combinations of only those inputs on which the output
depends — this is called pseudo-exhaustive testing.  A
simple example of a pseudo-exhaustive testing technique
has been illustrated in Fig. 3.1.
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Figure 3.1  Pseudo-exhaustive BIST example.
The f output depends only on inputs w and x while the

g output depends on x and y.  The four input patterns
shown in the figure are such that all possible combinations
of values are applied to w and x, and also all combinations
of x and y are present.  Thus both f and g  are tested
exhaustively using only four input patterns.  In fact, only
four test patterns are used for pseudo-exhaustive testing of
the example circuit instead of eight patterns required for
full exhaustive testing of the circuit.  Techniques for
generating the minimal length pseudo-exhaustive test
patterns have been described in [McCluskey 82].  The
advantages of pseudo-exhaustive testing are:
(i) It is a BIST technique and does not require an expensive
tester for storing the patterns to be applied.  The memory
requirement for storing the output responses can be
eliminated by using a compaction technique such as
signature analysis [McCluskey 85].
(ii) This technique does not rely on an explicit fault model
and is thus not limited to any specific class of faults such
as single stuck at faults.
(iii) This technique provides high fault coverage.

If any output of a given combinational logic circuit
depends on all inputs, then the pseudo-exhaustive testing
technique described above is not applicable.  For this case,
we have to use some segmentation  (partitioning)
techniques, described in [McCluskey 82].  If partitioning
can be carried out such that the number of input lines to
each subcircuit is significantly fewer than in the original
circuit, it will be possible to test each subcircuit
exhaustively.  There are two ways of achieving
partitioning: (i) multiplexer partitioning and (ii) sensitized
partitioning.

In multiplexer partitioning, access to the embedded
inputs and outputs of a subcircuit under test can be
achieved by inserting multiplexers and connecting the
embedded  inputs and outputs of each subcircuit to those
primary inputs and outputs that are not used by the
subcircuit under test [McCluskey 81].

The multiplexers used for multiplexer partitioning
may reduce the speed of operation and are costly to
implement.  However, it is possible to achieve
partitioning without actually inserting any multiplexer at
all.  Circuit partitioning and subcircuit isolation can be
achieved by applying the appropriate input pattern to some
of the input lines.  The effect achieved is similar to that of
hardware partitioning: paths from the primary inputs to the
subcircuit inputs and paths from the subcircuit output to
the primary output can be sensitized.  Using these paths,
each subcircuit can be tested exhaustively.  Extensive
research has been conducted to propose various
segmentation techniques for pseudo-exhaustive testing
[Udell 87].

Research related to pseudo-exhaustive testing has
typically focused on fault detection.  However, in an
FPGA based reconfigurable system, pseudo-exhaustive
BIST (PE-BIST) can be advantageous for locating faulty
modules (FPGA modules or CLBs or LUTs).  In fact, the
reconfigurability of the FPGAs provides an added advantage
— we do not need to have any multiplexer or sensitized
partitioning.  We can just reprogram (reconfigure) a few
logic blocks to achieve the effects of partitioning.  We
describe our technique in the next section.
4. Fault location using PE-BIST: fanout-
free LUT networks

In this section, we will describe our basic fault
location technique using pseudo-exhaustive BIST.  The
diagnostic resolution will be the LUTs, i.e., we try to
locate the faulty LUTs.  Also, we will assume that only a
single LUT among a set of LUTs to which a given
combinational circuit is mapped, can fail. However, we do
not have any assumption about the number of faults inside
a faulty LUT.  For the ease of explanation, we will first
focus on single-output LUT networks with no fanout.
Later on, we will show how to handle general LUT
networks with fanouts.

For example, let us consider the combinational circuit
in Fig. 4.1.  The circuit implements an output function z
= (ac+ bc + def)g.  Let us suppose, that the circuit has
been mapped to three lookup tables (LUTs) as shown in



Fig. 4.1.  LUT1 implements the function w = ac+bc,
LUT2 implements x = def, and LUT3 implements z =
wg+xg.  As mentioned earlier, the LUTs are SRAMs
which store the truth tables of the functions they
implement.  For example, for the given implementation,
LUT1 stores the truth table corresponding to ac + bc.
Note that, typically LUTs have four to six inputs.  For the
purpose of illustration, we have used LUTs with three
inputs in Fig. 4.1.  We assume that the system is equipped
with some on-line checkers, e.g., parity checkers, which
perform concurrent error detection.  Suppose, from the
response of the on-line checkers, we found that the
response z of the given network is erroneous.  Now, it is
our aim to locate the faulty LUT in the given network.
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z = wg+xg
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Figure 4.1  An example combinational circuit
mapped to LUTs.

To achieve our goal, we use a pseudo-exhaustive BIST
technique.  We do not alter the interconnection structure
among the different LUTs.  However, we assume that a
few CLBs can be configured as Linear Feedback Shift
Registers (LFSRs) to generate all possible patterns of
length 3.  We also assume that the output z is either
directly observed or compacted using some signature
analysis technique with negligible aliasing.

The given interconnection of LUTs forms a natural
partition (segmentation) of the circuit under consideration.
Each LUT forms a segment.  Note that, due to the
reconfiguration capability of the LUTs, we do not require
any multiplexer or sensitized partitioning.  An LUT can be
configured into pass modes such that it passes a single
input signal to the output.  For example, for a 3 input
LUT with inputs a, b and c and output w, the LUT will be
configured as shown in Table 4.1 to pass the input a to
output w.

Table 4.1 Configuration to pass input a to w .
abc 000 001 010 011 100 101 110 111
w 0 0 0 0 1 1 1 1

In Session 1, LUT1 of Fig. 4.1 is tested exhaustively,
by applying all possible patterns of length 3 at the inputs
a, b and c and configuring LUT3 in the pass mode to pass
input w  to the output z — we can then observe the
response of output z.  Similarly, in Session 2, in order to
test LUT2 exhaustively, we apply all possible patterns of
length 3 to the inputs d, e, f and configure LUT3 in the

pass mode to pass input x to output z.  Finally, in Session
3, for testing LUT3 exhaustively, we apply all possible
patterns to input a, d and g and configure LUT1 and LUT2
in pass mode to pass signals on inputs a and d to outputs
w and x, respectively.  A De-Bruijn counter [McCluskey
86] can be used to generate all possible patterns of a given
length (3 in this case).

Now, let us consider the responses obtained by
applying pseudo-exhaustive tests to the three LUTs under 3
possible cases: (i)  LUT1 is faulty, (ii) LUT2 is faulty and
(iii) LUT3 is faulty.  This is shown in Table 4.2.  We call
this table a fault table.  An entry C (Correct) means that
the response of z is the same as the fault free response.  An
entry E (Error) means that the response of z is faulty.  An
entry U (Unknown) means that the response of z may be
faulty or fault-free depending on the fault.

Table 4.2 Fault table.
Faulty Test Sessions
Unit LUT1 LUT2 LUT3
LUT1 E C U
LUT2 C E U
LUT3 U U E

When LUT1 is faulty and we apply exhaustive
patterns to LUT1, obviously, the response at z will be an
E.  When LUT1 is faulty and we test LUT2 exhaustively,
the response must be the same as fault-free response
because there is no chance that the inputs or output of
LUT2 get corrupt due to the interference of a faulty LUT.
However, when LUT1 is faulty, the response obtained
during exhaustive testing of LUT3 may or may not be
faulty.  For example, if the location in LUT1,
corresponding to a = 0, b = 0 and c = 0 is only faulty (say
stuck at 1), and while testing LUT3, we apply b = 1 and c
= 1 (and LUT1 configured in pass mode), then the response
obtained at z will be fault-free.  However,  if the location
of LUT1 corresponding to a = 1, b = 1 and c = 1 becomes
faulty then the response of z, while testing LUT3, can
become faulty.  The case of LUT2 being faulty is similar.

Now consider the case where LUT3 is faulty.  It is
obvious that the we obtain an erroneous response on z in
Session 3.  However, the response on z may be faulty or
fault-free, when we test LUT1 and LUT2 in Session 1 and
Session 2.  Hence, the third row of Table 4.2 has entries U
in the first two columns.  A response is consistent with a
particular row i of the fault-table if and only if for each test
session, if row i contains an E (or C) then the response
also contains an E (or C) for the same test session.  Now,
suppose that the response from the three sessions is <E,
C, E>.  This is consistent with the first and the third rows
of Table 4.2.  Hence, we have to decide whether LUT1 or
LUT3 is faulty.

If we restrict ourselves to cell stuck faults (not
necessarily single), i.e., the cells in the LUTs can be stuck
at 0 or 1, then there is a straightforward way of finding out
whether LUT1 or LUT3 is faulty.  We first reconfigure
LUT3 in all 0’s mode; i.e., 0s are written to all the
locations of LUT3.  LUT1 is configured in the pass mode
to pass the signal on input a  to w .  Similarly, LUT2



passes the signal on input d to x.  We exhaustively test
LUT3 in this configuration.  Next, we reconfigure LUT3
in all 1’s mode and perform exhaustive testing of LUT3.
If no faulty response is generated in any one of these test
sessions, then it means that, with respect to cell stuck
faults, LUT3 is not faulty — otherwise it is faulty.  This
is because, if LUT3 is fault-free, then the response out of
LUT3 is always correct, because all its locations contain
the same value (0 or 1).  If LUT1 or LUT2 is faulty, the
result will be that some patterns applied to the inputs of
LUT3 will be corrupt.  Nevertheless, the response on
output z will still be correct.

We can perform the same procedure for LUT1.  Table
4.3 shows the corresponding fault table.  As we can see,
the two rows in Table 4.3 are distinct.  Hence, we can
locate the faulty LUT with respect to cell stuck faults.
This second step introduces some adaptivity in our
algorithm.

Table 4.3 Fault table.
Faulty Test Sessions
Unit LUT1 LUT2 LUT3
LUT1 E C C
LUT3 U U E

Our basic algorithm (the first step) is shown in
Algorithm 1.  The definition of post-order traversal,
mentioned in Step 4 of Algorithm 1 can be obtained from
[Cormen 89].  Algorithm 2 presents the technique to locate
the faulty LUT with respect to cell-stuck faults on the path
that contains the faulty LUT.  In the next sub-section (Sec.
4.A), we derive some bounds on the reconfiguration
complexity associated with our technique and prove the
correctness.
4.A Reconfiguration complexity and correctness

In this section, we will first derive bounds on the
reconfiguration complexity of the diagnosis procedure for a
fanout-free network of LUTs, described in Sec. 4
(Algorithm 1).  For the following discussion, we introduce
the following notation.  Suppose that there are n LUTs in
the given network.  p of these LUTs are driven only by
primary inputs and are called input LUTs.  The remaining
LUTs are called internal LUTs.  Let there be m internal
LUTs.  Then, n = m + p.  Now, the number of inputs of
LUTi is written as fi.
Theorem 1:  For a fanout-free single output network of
LUTs, an upper bound on the total number of
reconfigurations required in Algorithm 1 is given by:
U1 = (Σi ∈  internal LUTs fi) + 2m + p.
Proof:  Let us consider the following situation. In the
worst case, each internal LUT has to be configured to pass
each of its inputs to the output — this contributes to the
term (Σi ∈  internal LUTs fi) in the above expression.
Now, each internal LUT has to be configured in the normal
functional mode to get tested pseudo-exhaustively.
Moreover, after getting tested pseudo-exhaustively, the
same LUT has to be reconfigured into a pass mode to test
the LUTs which are on a path from that LUT to the
output.  This contributes to the term 2m  in the above
expression.  Finally, the term p comes from the fact that

ALGORITHM 2
Input:  A path p in the LUT network containing the
faulty LUT
Output:  The faulty LUT

Procedure:
1. Consider the LUT i on p whose output is the primary
output
2. Configure LUT i to contain 0 in all locations
3. Test LUT i exhaustively
4. Configure LUT i to contain 1 in all locations
5. Test LUT i exhaustively
6. If any of the responses is faulty

LUT i is faulty, break
7. Consider the LUT j on p which is a direct predecessor
of LUT i
8. Configure LUT i to pass its input that is connected to
the output of LUT j, to its output
9. Repeat lines 2-8 for LUT j (i taking the value of j)
until we have considered all LUTs on p.
end

ALGORITHM 1
Input:  A fanout-free network of LUTs for a single-output
combinational logic circuit
Output:  A reconfiguration schedule for testing each LUT
exhaustively

Procedure:
1. Configure input LUTs (LUTs whose inputs are
connected to primary inputs only) in normal functional
mode
2. Configure each internal LUT to pass its leftmost input
(connected to a LUT output) to the output (pass mode)
3. while (all LUTs not visited)
4 . Consider the next LUT j in the post-order
traversal of the network
5 . If LUT j is not an input LUT, reconfigure it into
functional mode
6 . If output of LUT j is connected to input k of LUT
m, reconfigure LUT m to pass input k to its output
7 . Test LUT j exhaustively
8 . Reconfigure LUT j to pass one of its inputs to
the outputs
9. endwhile
end

after the input LUTs are tested pseudo-exhaustively, they
should be reconfigured in a pass mode to pass test patterns
to the inputs of internal LUTs.  The bound can also be
written as U2 = n-1+ 2m + p.  The formula for U2 can be
derived from the formula for U1 by observing the fact that
if an input of an internal LUT is connected to a primary
input, then we need not consider that particular input in the
first expression in the formula for U1.  Thus, for a LUT
network having no internal LUT whose input is connected
to a primary input, U1 = U2.  Otherwise, typically U2 <
U1.          Q.E.D.
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Figure 4.2  An example to illustrate proof of
Theorem 1.

Typically, fi is constant (say, f).  Then, the
reconfiguration complexity is O(n), where n is the number
of LUTs in the network.  Moreover, the actual number of
reconfigurations required can be reduced, if we take the
advantage of sensitized partitioning — however, that
increases the overhead of the software to control the
diagnosis.  We explain the proof of Theorem 1 with the
help of the following example (Fig. 4.2).  There are six
LUTs which are interconnected.  There are 4 input LUTs
and 2 internal LUTs — i.e., n  = 6, p  = 4 and m  = 2.
Initially, LUT1, LUT2, LUT3 and LUT5 are configured in
their functional mode, while LUT4 is configured to pass k
to w  and LUT6 is configured to pass w  to x.  In this
configuration, we can test LUT1 exhaustively.  Next,
LUT4 has to be configured to pass m to w to test LUT2
and n  to w  to test LUT3.  Thus, LUT4 requires 3
reconfigurations.  Next, LUT1, LUT2 and LUT3 must be
configured in the pass mode to test LUT4 exhaustively (in
that case LUT4 has to be reconfigured into functional
mode).  Finally, for testing LUT6, we need to reconfigure
LUT4 and LUT 5 in pass mode and LUT6 in normal
functional mode.  Thus, the total number of
reconfigurations required is (3 + 2) + 2 × 2 + 4 = 13.  The
corresponding test schedule is LUT1, LUT2, LUT3,
LUT4, LUT5 and LUT6.  Note that, in this case, n-1 +
2m + p also evaluates to 6-1 + 2 × 2 + 4 = 13.
Theorem 2:  After the execution of the first step
(Algorithm 1), we can either locate the fault or isolate a
path where the fault lies.
Proof:  Suppose that at the end of the first iteration we
have two candidate LUTs, LUT1 and LUT2 which may be
faulty and also, LUT1 and LUT2 do not lie on the same
path from the primary input to the output.  This implies,
there was no interference by LUT2 when LUT1 was tested
and vice-versa.  This, in turn, implies that both LUT1 and
LUT2 must be faulty (because no other LUTs are faulty).
However, our basic assumption was that there can exist a

single faulty LUT.          Q.E.D.
Since after the execution of the first step, we get
information about the path containing the faulty LUT, we
can directly apply Algorithm 2.

Table 4.4 Fault table.
Faulty Test Sessions
Unit LUT1 LUT2 LUT3 . . . LUTn-1 LUTn
LUT1 E C C . . . C C
LUT2 U E C . . . C C
LUT3 U U E . . . C C

. . . . . . . . . . . . . . . . . . . . .
LUTn-1 U U U . . . E C
LUTn U U U . . . U E
Theorem 3:  Algorithm 2 can locate the faulty LUT on a
path with respect to cell-stuck faults.
Proof:  Consider a path p of LUTs LUT1, LUT2, ...,
LUTn, where the output of LUTn is the primary output.
If LUTn is faulty with respect to cell stuck faults, we can
detect that when we test LUTn in all 0's and all 1's mode.
However, if LUTn is not faulty (i.e., some other LUT on
p is faulty), the response out of LUTn is always the correct
response (since all locations of LUTn contain the same
value).  For the case where LUTn-1 is not faulty and LUTn
is faulty, the response of LUTn-1 may get corrupt.  Hence,
in a fault table, the corresponding entry will be a U.  When
LUTn-1 is faulty, we will obtain a faulty response and the
entry in the fault table will be E.  However, if neither
LUTn nor LUTn-1 is faulty, then we will always obtain a
correct response when we test LUTn-1.  Thus, the fault
table is shown in Table 4.4.  We find that each row the
fault table is distinct, and hence, we can locate the faulty
LUT.          Q.E.D.
5. Fault location: general LUT networks

In this section, we extend our basic faulty LUT
location technique to general LUT networks.  However, we
restrict ourselves to only single-output networks.  For
multi-output LUT networks, we can extract the cones from
each individual output to the primary inputs and apply the
fault-location procedure for each cone.  For a general LUT
network, there can exist multiple paths from an LUT
output to the primary output and also from the primary
inputs to the LUT inputs.  For the current work, we have
chosen a simple heuristic for choosing one single path
when there are a number of possible choices.  The heuristic
is to use the shortest path from the primary inputs to the
LUT input and from the LUT output to the primary
output.  The basic intuition behind using this heuristic is
that, by choosing the shortest paths we reduce the
probability that the response from (patterns to) a fault-free
LUT gets corrupt due to the presence of a faulty LUT on
the path from the LUT output (primary input) to the
primary output (LUT input).  Also, the shortest path can
be computed easily using well-known algorithms [Cormen
89] in time polynomial in the number of LUTs in the
network.

The existence of multiple paths from an LUT output
(primary input) to the primary output (LUT input) has
some added advantages.  Consider a particular LUT i



Table 6.1  Experimental Results.
Design # LUTs # reconfiguration

sessions
Total # LUT

reconfigurations
Average # LUT reconfigurations per

session
example1 640 640 1525 2.38
example2 41 41 90 2.19
example3 587 587 1310 2.23
example4 172 172 513 2.98
example5 64 64 176 2.75
example6 56 56 139 2.48
example7 176 176 513 2.91
example8 680 680 1590 2.34
example9 141 141 423 3
example10 107 107 299 2.79
example11 70 70 184 2.62
example12 82 82 219 2.67
example13 70 70 188 2.68
example14 88 88 263 2.98
example15 88 88 253 2.87
example16 86 86 237 2.75
example17 96 96 279 2.9
example18 104 104 302 2.9
example19 101 101 293 2.9
example20 108 108 318 2.94
example21 118 118 364 3.08
example22 71 71 196 2.76
example23 89 89 245 2.75
example24 194 194 577 2.94
example25 84 84 215 2.55

having m  distinct paths from its output to the primary
output.  Suppose that, after the first step, the faulty LUT
could not be located but it was found that a path p
containing LUT i  is faulty.  If we test the LUT
exhaustively and propagate the results along each of the m
paths by configuring the corresponding LUTs, then, in the
second step, we have to examine only the LUTs which lie
on all these m paths.  Thus, there is a high possibility that
the faulty LUT is located in the first step (after considering
all the paths from LUT i), or the second step will be
applied to a very small set of LUTs.  This enhances the
quality of the algorithm.  However, this scheme may be
expensive because it spends more time during the first
step.  For our implementation, we considered only a single
path (the shortest path) instead of considering all possible
paths.  Although we considered only LUT faults, some
interconnect faults (stuck faults on LUT inputs or outputs)
are also covered by our technique.
6. Experimental results

In Sec. 4.A, we have derived bounds on the total
number of reconfigurations, over all reconfiguration
sessions for fanout-free LUT networks.  Each time an LUT
is tested, some LUTs have to be reconfigured.  This partial
reconfiguration constitutes a reconfiguration session.
However, it is difficult to derive similar bounds for general
LUT networks.  So, we have conducted experiments on a
set of general LUT networks.  We generated the LUT
networks from the MCNC combinational logic

benchmarks by mapping each individual output function to
FPGAs.  We used the act_map command in Sis [Sentovich
92] to generate the networks and treated the blocks as
LUTs.  Since this command targets Actel FPGAs, we also
generated LUT networks for Xilinx XC3100 FPGAs using
the Synopsys FPGA compiler [Synopsys 98].  Table 6.1
reports the total number of reconfigurations over all
reconfiguration sessions for some of these networks.  Note
that, the number of reconfiguration sessions is always the
same as the number of LUTs in the given network.

In Table 6.1, we have also reported the average
number of LUTs reconfigured per reconfiguration session
which is computed by dividing the entry in column 4 of
the table by the entry in the column 3.  This particular
metric is extremely important in order to measure the
reconfiguration complexity of any fault location technique.
In conventional FPGAs (with no partial reconfiguration
capability), the major goal of any such technique should be
to minimize the number of reconfiguration sessions
because in each such session all the logic blocks in the
FPGA are configured even if we want to change the
configuration of a single logic block.  However, for
FPGAs with partial reconfiguration capability, since we
can reconfigure a single logic block without having to
reconfigure the remaining logic blocks, the metric of
reconfiguration complexity should be the total number of
reconfigurations (each reconfiguration implies
reconfiguration of a single logic block) performed during



the execution of the entire technique.  As shown in Table
6.1, the total number of reconfigurations is equal to 2 to 3
times the total number of LUTs in the networks; i.e., on
average, around 2 to 3 LUTs need to be reconfigured in
each reconfiguration session.  This shows the effectiveness
of our technique when partially reconfigurable FPGAs (e.g.
the Xilinx 6200 and the Atmel AT6000 families) are used
in the system.
7. Conclusions

In this paper, a novel fault location technique for
FPGA-based reconfigurable systems is presented.  This
technique takes advantage of partial reconfiguration when it
is available.  The method uses the pseudo-exhaustive BIST
technique and is hence thorough.  Moreover, the technique
is in-place and preserves the original interconnection
structure of the LUTs.  The technique has an extra
advantage that it is not necessary to bring the whole
system down while fault location is carried out.  It is a
two-step approach, where the first step does not use any
specific fault model.  However, cell-stuck fault model is
used for the cases where the second step is needed.
Moreover, the technique is adaptive during the second step.
For fanout-free LUT networks, it can be proved that the
upper bound on the total number of LUT reconfigurations
is linear in the number of LUTs.  Experimental results
show that this number is linear (2 to 3 times) in the total
number of LUTs even for general LUT networks.  This
implies that, in a system with partial reconfiguration
capability, only a few LUTs need to be reconfigured during
each session.  These reconfiguration steps can be generated
during the compilation of the original design.

The technique has a disadvantage that all the LUTs in
the network have to be tested during the first step of our
technique (Algorithm 1).  However, this disadvantage can
be handled by making the first step of our technique
adaptive.  In that case, we stop when we obtain a faulty
response during the first step (Algorithm 1) and apply
Algorithm 2 on the path along which we observed the
response of the LUT that produced faulty response.  For
multi-output circuits, our technique can be further enhanced
to allow exhaustive test of multiple LUTs at the same
time along independent paths.
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