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Abstract 
We focus in this paper on the problem of modeling faults located in a given component 

embedded within a composite system. The system is represented as two communicating FSMs, 

a component FSM and a context machine that models the remaining part of the system which is 

assumed to be correctly implemented. We elaborate various fault models for testing in context. 

The existing FSM-based methods are assessed for their applicability to derive tests complete 
w .r.t. the fault models appropriate for testing in context. 
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INTRODUCTION 

There have been many research efforts on conformance test derivation for protocols based on the 

FSM model and the black-box representation of an implementation under test (IUT). In this 

testing scenario, the fault model consists of a reference machine, fault domain and conformance 

relation. The reference machine is a given specification. The fault domain represents a finite set 
of possible implementations that is the set of mutant (faulty) machines. The conformance relation 
determines what is a conforming (or non-conforming) implementation. A test suite is to be 

considered as complete, w.r.t. a given fault model, i.e. having complete fault coverage, if it can 
detect nonconformance of any implementation from the predefined fault domain to the reference 

machine (Bachmann, Petrenko, and Yao, 1994). Testing an FSM implementation in isolation is 
usually the classical FSM equivalence problem. It is required to determine by testing if an 

implementation and the reference FSMs are equivalent. The fault domain is usually defined by 
an upper bound on the number of states in all potential implementations, since no assumptions 

are usually made about the internal structure of an IUT (Gill, 1962), (Petrenko and Bachmann, 

1996). 
In practice, however, an IUT is often embedded within a complex system under test, see, 

e.g. the embedded test method defined for conformance testing (Rayner, 1987). In this paper, 
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we model a composite specification by two communicating FSMs. One FSM, called a 
component machine, represents the behavior of a certain component embedded within the 
system, while the other machine, called a context (machine), models the remaining part of the 
system. The context may be viewed as a lumped, i.e. composed machine of all components of 
the system, except the component at hand. The context of the component serves as its 
operational or testing environment (Heerink and Brinksma, 1995), (Dam, Kloosterman, and 
Kwast, 1991), (Petrenko, Yevtushenko, and Dssouli, 1994), (Petrenko, Yevtushenko, 
Bachmann, and Dssouli, 1996). We are required to test the component machine via the context 
which itself is assumed to be correctly implemented. The problem of testing an FSM in context 
is more complicated than that in isolation. The final goal is to provide systematic methods for 
deriving tests with fault coverage guarantee for a component at hand. To reach this goal, fault 
models adequate to implementation errors in the embedded component should first be 
developed. In this paper, we elaborate various fault models for testing in context. Based on 
these models, complete test suites can be derived once an appropriate method is devised. The 
existing FSM-based methods are assessed for their applicability to derive tests complete w.r.t. 
the fault models discussed in this paper. 

The rest of this paper is structured as follows. Section 2 contains several notions related to the 
FSM model. Section 3 discusses fault models used for local testing of a single component for 
later use within a context. Section 4 presents an explicit fault model for testing in context. In 
Section 5, we analyze different fault models based on the composed machine of a given system. 
Fault models based on the so-called approximation of the component are considered in Section 
6. In Section 7, we give a simple comparison of the proposed models. 

2 PRELIMINARIES 

2.1 Finite state machines 
A finite state machine (FSM), often simply called a machine throughout this paper, is a 
completely specified initialized (possibly nondeterministic) Mealy machine which can be 
formally defined as follows. A finite state machine A is a 5-tuple (S, X, Y, h, so), where Sis a 
set of states with so as the initial state; X- a finite set of input symbols; Y- a finite set of output 

symbols; and h -a behavior function h: SxX -tlP(SxY), where JP(SxY) is the powerset of 

SxY (Starke, 1972). The machirre A becomes deterministic when lh(s,x)l=l for all (s,x)E SxX. 
In a deterministic FSM, instead of the behavior function which is required for expressing a 

nondeterministic behavior, we use two functions: the next state function 8, and the output 

function A. 
We extend the behavior function to a function on the set X* of all input sequences containing 

the empty sequence e, i.e., h: SxX*-tlP(SxY*). For convenience we use the same notation h 

for the extended function, as well. Assume h(s,e) = { (s,e)) for all sE S, and suppose that h(s,{J) 

is already specified. Then h(s,fjx) = { (s',yy) 13s"eS [(s",f? Eh(s,/3) & (s',y) eh(s",x)] ). 

The function hi is the next state function, while h2 is the output function of A, hi is the first 

and h2 is the second projection of h, i.e., hl(s,a) = { s' 1:3 f3 E Y* [(s',/3) E h(s,a)] }, h2(s,a) 

= {/31 :3 s' E S [(s',{J) E h(s, a)] ) for all aE X*. 

Given two states s of the FSM A and r of the FSM B= (T, X, Y, H, to), and a set VsX*; 

state r is said to be a V-reduction of s, written r~v s, if for all input sequences a E V the 

condition H2(r,a) s h2(s,a) holds; r is not a reduction of s, dv s, if there exists an input 

sequence a E V such that H2(r,a) ~ h2(s,a). States s, and rare V-equivalent states, written 

s=v r, iff s~v rand ~v s. On the class of deterministic machines, the above relations coincide. 
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We denote~ the V-reduction in the case where V=X*, similarly, = denotes the equivalence 

relation. 
Given two machines, A and B, B is a reduction of A, written B~, if the initial state of B is a 

reduction of the initial state of A. If B::;A. and B is deterministic then it is referred to as a D
reduction of A. We denote the set of all D-reductions of a given FSM A with at most m states as 
D-redm(A). 

Similarly, the equivalence relation between machines is defined. B=A, iff B~ and AgJ. The 

equivalence relation between FSMs is sometimes called trace equivalence. The traces of a 
machine are UO sequences defined for its initial state. Equivalent machines exhibit identical 
behaviors, i.e. they execute the same traces. In this context, the reduction can be viewed as a 
trace preorder. 

Given an input alphabet X and output alphabet Y, there exists a special nondeterministic FSM 
such that any machine, deterministic or not, is its reduction. In particular, consider a chaos 

machine Ch(X,Y) = ({p}, X, Y, H, p), where H(p,x) = {p}XY for all xEX. Clearly, A~Ch 

(X, Y) for all A over the alphabets X and Y. 
An NFSM B = (S', X. Y, h', so) is said to be a submachine of the NFSM A= (S, X, Y, h, 

so) if S' ~ Sand h'(s,x) ~ h(s,x) for all (s,x) E S'x X. Obviously, all submachines of A are 

reductions of A, but the converse is not true. If a submachine of A is deterministic then it is said 
to be a D-submachine of A. We denote D-sub(A) the set of all D-submachines of A. 

Given an input alphabet X, an output alphabet Y, and the number of states m, there exists a 
special nondeterministic FSM such that any machine, deterministic or not, with up to m states 
defined over X andY, is isomorphic to one of its submachines. In particular, consider another 

chaos machine Chm(X, Y) = (P, X, Y, H, po), where IPI=m, H(p,x) = PxY for all (p,x)E PxX. 

Clearly, any machine A over the alphabets X and Y is isomorphic to a submachine of Chm(X. Y) 

provided that the number of states of A does not exceed m. The two types of chaos machines 
Ch(X, Y) and Chm(X, Y) are equivalent, both have the same set of reductions; however, all the 
submachines of the machine Ch(X, Y) have only one state and submachines of Chm(X, Y) may 
have up tom states. We will be using both chaos machines to compactly represent either sets of 
reductions or sets of submachines whenever convenient. 

2.2 Fault models 
The equivalence and reduction relations serve as conformance relations between implementations 
and their FSM specifications for deriving test suites with guaranteed fault coverage. 

We define a fault model as a triple <A,~, 5 >,where A is a (reference) specification, a finite 

set 5 is the fault domain that is a set of possible implementations (mutant machines) defined over 

the same input alphabet as the specification, and- is a conformance relation, - E {=:, :0::}. 

A test suite w.r.t. a given fault model is a finite set E of finite input sequences of the reference 

machine A. A test suite E is said to be complete w.r.t. the fault model iff for all BE 5, B+A 

implies B+£A. 

Let 5m(X, Y) denote the universal set of all deterministic FSMs over input and output 

alphabets X and Y with at most m states. The fault model <A,=:, 5m(X, Y)> is a classical black

box fault model for testing deterministic FSM implementations in isolation (Gill, 1962). It 
reflects a black-box representation of an IUT and is used in a number of methods for deriving 

test suites that provide complete fault coverage, for example, (Vasilevski, 1973), (Chow, 1978), 

(Fujiwara et a!, 1991 ). 

2.3 The model of a system with an embedded component 
Many compound systems are typically specified as a collection of communicating components. 
Assuming that the behavior of each component of a given system is known and can be described 
by an FSM, we can use a system of communicating machines as the model of the given system. 
The composition of two communicating FSMs, connected as shown in Figure I a, is general 
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enough to discuss problems related to testing an embedded component. Further we assume for 
the sake of simplicity that the sets X, U, Z, and Y of actions are pairwise disjoint. 

(a) (b) 

X y 

Figure 1 Composition of two communicating FSMs (a) and test architecture (b). 

One FSM, called a component machine Spec, represents the behavior of a certain component 
embedded within the system, while the other machine, called a context (machine) C, models the 
remaining part of the system. The context may be viewed as a lumped, i.e. composed machine 
of all components of the system, except the component Spec. 

Two FSMs are communicating asynchronously via bounded input queues where actions are 
stored. Bounded queues are usually assumed in order to obtain a finite state model of the global 
system. In addition, we impose an I/0 ordering constraint on a manner the environment interacts 
with the system. Specifically, a next external inputx is only submitted to the system after it has 
produced an external output y in response to the previous input. In other words, the system at 
hand has a single message in transit. Under these assumptions, the number of global states of 
~he system is finite. A global state consists of states of input queues and states of the component 

and context machines and can be represented in the form of a 2x2 matrix, where the first row 

contains states of each input queue and the second row contains current states of the two 
machines. According to the I/0 ordering constraint, global states fall into the two categories, 
stable and transient states. A stable state has empty input queues, and thus it is ready to accept an 
external input action. Accepting such an action, the system changes its current state from a stable 
to a transient state where it cannot accept any external action. The system returns to a stable state 
after it has produced an external output action. Note that the number of stable states in the 
system is bounded by the product of the numbers of states of the two machines, whereas the 
number of the transient states may exceed that of stable states by the factor of the total number of 
internal and external inputs. 

The collective behavior of the system of two communicating FSMs can be described by 
means of a product machine and composed machine. The former describes the behavior of all 
component machines in terms of all actions within the system, whereas the latter describes the 
observed behavior in terms of external inputs and outputs. 

The product machine Specx C is customary represented by a graph of global states, obtained 

by performing reachability computation (West, 1978), (Bachmann and Sunshine, 1980), 
(Merlin and Bachmann, 1983), (Brand and Zafiropulo, 1983), (Luo, Bachmann, and Petrenko, 
1994). It can be deemed as a labeled transition system (LTS). The action set of this LTS is the 
union of all alphabets of the communicating machines. 

Based on the product machine SpecxC, a composed machine SpecoC can be obtained. Here 

'o' is a hiding operation on all internal actions in the product machine. However, SpecoC 
becomes an FSM under certain assumptions only, viz. the product machine should have no 
livelocks. Hiding internal actions usually amounts to determinizing the LTS (an automaton), and 
coupling external inputs and external outputs into labels of transitions between stable states. 

The feedback composition of FSMs shown in Figure 1 a generalizes the cascaded composition 
of two machines considered in the previous work (Petrenko, Yevtushenko and Dssouli, 1994 ). 
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In particular, the context machine for the serial composition of two FSMs is transparent either to 
actions X (the component is the head machine) or to actions Z (the component is the tail 
machine). 
Example. Consider an example system of deterministic context and component machines, 

shown in Figure 2. The initial states are a and I. The composed machine SpecoC obtained from 
the product machine (not shown here) has initially five states (Figure 3a), among which states 
(a2) and (a3) are equivalent states. Merging these two states, we obtain the reduced form of the 
composed machine (Figure 3b). 

x2/ul zl/ul 
(a) 

xl/ul ~xl/u2 
z2/u2 ~zl/yl 

x2/y2 z2/yl 

3 LOCAL TESTING OF A COMPONENT MACHINE 

u2/zl 

In a number of situations, it is possible to assume that, for testing purposes, the component of 
interest can be tested locally, before being integrated with the context or, equivalently, by taking 
it out of a composite system. Such a local testing of implementations of a given component 
machine reduces to the classical black-box testing in isolation. In this paper, we assume that no 
fault in the embedded component can increase the number of states compared with its 
specification. A number of test derivation methods can directly be applied to local testing. In this 
section, we expose some hidden problems of local testing of the component which is intended to 
be used within the given context. 

:;!.1 Testing for equivalence to the specification 

~
iven a specification machine Spec and the set Sn( U,Z) of its possible implementation machines 
he fault domain), the equivalence relation is a natural candidate for the conformance relation. 
ereinafter n is the number of states of Spec. We have thus the classical black-box fault model 

1 Spec, =, Sn( U,Z)>, as in Section 2.2. Based on this fault model, a complete test suite can be 

tlerived by employing any known method. 
Example. The machine Spec (Figure 2b) can completely be tested in isolation with seven test 
cases of a total length of 35, obtained by applying the Wp-method (Fujiwara eta!, 1991). The 

test suite is complete w.r.t. the fault model <Spec,=, S3(U,Z)>. It detects any machine with at 

most three states that is not equivalent to the FSM Spec. 

When we derive a test suite complete w.r.t. the fault model <Spec,=, Sn(U,Z)>, we ignore 

the context which may not require that all the facets of the specification are implemented exactly 
as described. Intuitively, this is the case when certain features of the implemented component 
cannot be exercised at all (there is no need to test them) or the context is tolerable to certain 
faults. The conclusion is that the equivalence relation is too strong for the embedded machine 

LOCAL TESTING OF A COMPONENT MACHINE 

LOCAL TESTING OF A COMPONENT MACHINE 
LOCAL TESTING OF A COMPONENT MACHINE LOCAL TESTING OF A COMPONENT MACHINE 
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and there may exist a shorter complete test suite than that derived w.r.t. the black-box fault 

model <Spec,:, Sn(U,Z)>. We use our example system shown in Figure 2 to illustrate the 

redundancy of tests based the above fault model. 

Example. Consider the machine Imp in Figure 4a. The FSMs Spec and Imp are not equivalent. 

However, the machine lmpoC is equivalent to SpecoC (Figure 3), that is, embedded in the 

context, Imp provides the same externally visible behavior as Spec. One may view the FSM Imp 

as a mutant of Spec representing certain faults that are tolerated by the context machine. From 

this viewpoint, any complete test suite for the Spec in isolation may be redundant. A test case 

distinguishing such an Imp from the Spec can be deleted from any given test suite. 

(a) (b) 

u2/z1 
ul 
z1,z2 

Figure 4 A machine Imp non-equivalent to Spec (a) and the FSM G (b). 

~.2 Testing for equivalence in context 

u2/z1 

To avoid this redundancy of tests we can refine the fault model by relaxing the conformance 

relation. The idea is to treat as conforming any implementation machine that combined with the 

given context leads to a composed machine equivalent to SpecoC. 

We say that the Imp is a conforming implementation in a given context if and only if 

( 1) the composed machine lmpoC exists and 

(2) the two composed machines lmpoC and SpecoC are equivalent (Petrenko, Yevtushenko, 

Bochmann, and Dssouli, 1996). 
Assume (1) holds, then the equivalence in context, written lmp=cSpec, is defined as follows: 

lmp=c Spec iff lmpoC=SpecoC. 

We write lmp*cSpec if Imp and Spec are not equivalent in the context C. Obviously, 

equivalent FSMs are also equivalent in any context, that is lmp::Spec implies lmp=cSpec for 

any context C, but the converse is not true. 

We will also use a weaker relation, the V-extemal equivalence for a given V!::X*. It is 

defined based on the ¥-equivalence of the composed machines: 

lmp=c, v Spec iff lmpoC:v SpecoC. 

In fact, all machines equivalent to Spec in context can be captured by a single machine. 

Specifically, we consider the equation GoC=SpecoC with G being a free variable. The general 

solution to the equation is a nondeterministic FSM G (Petrenko, Yevtushenko, Bochmann, and 

Dssouli, 1996). Any deterministic reduction of the FSM G that together with the context gives 

the composed machine is equivalent to Spec in context, i.e. it is a conforming implementation 

machine. 
This leads us to the following fault model. The reference machine is the machine G, the fault 

domain is the set Sn(U,Z) and the conformance relation is the reduction relation. The fault model 

<G, ~. Sn(U,Z)> is, however, not accurate. There may exist a deterministic reduction of the 

machine G such that the corresponding product machine exhibits livelocks, i.e. no composed 

machine exists. 

Assume that the fault domain Sn(U,Z) has no machine of this kind. This is usually the case, 

for example, for compositions without feedback. Under this assumption, local testing provides 

complete fault coverage if tests complete w.r.t. the fault model <G, ~. Sn(U,Z)> are used. 

There exists a systematic method for deriving tests complete w.r.t. this fault model (Petrenko, 
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Yevtushenko, and Bochmann, 1996). A test suite complete w.r.t. <G, <::;, Sn(U,Z)> avoids the 

redundancy of tests complete w.r.t. <Spec,:=, Sn(U,Z)> by excluding test cases used in the 

latter to detect FSMs that are not equivalent to Spec in isolation, but equivalent in context. 
Example. For our working example the FSM G representing the general solution to the 
equation is shown in Figure 4b. Here a black hole corresponds to a so-called trap state that 
produces all the outputs for all the inputs (Petrenko, Yevtushenko, Bochmann, and Dssouli, 
1996). Intuitively, it indicates that any behavior of the component trapped to this state is 
conforming in context since it cannot be exercised. To derive a complete test suite w.r.t. the fault 

model <G, .::;, S3(U,Z)>, we follow the approach (Petrenko, Yevtushenko, and Bochmann, 

1996). The resulting tests contain five test cases with the total length of 28. Recall that the test 

suite complete w.r.t. the fault model <Spec,:=, S3(U,Z)> obtained in Section 3.1 has 35 test 

events. As expected, a less stringent conformance relation requires a shorter complete test suite. 
In the case where the fault domain includes an implementation machine that falls into livelocks 

with the given context, local testing based on the above outlined approach is insufficient. To 
ensure the correct external system behavior, integration testing has yet to be performed. Another 

possible solution to the problem is to identify the implemented reduction of the FSM G and to 
check whether or not the identified machine may have livelocks when it is combined with the 

given context. 

3.3 Using local tests for testing in context 
As discussed in the previous section, tests derived for local testing can ensure complete coverage 
of faults in the embedded component. The above tests are expressed in terms of the actions of 
internal inputs U and outputs Z. We call them internal tests. A natural question arises on whether 
internal tests can be reused for testing in context, i.e. in the case where local testing itself is 
unfeasible. We have no access to the internal interface, so we need external tests, i.e. tests 
expressed in terms of external actions X and Y. An internal test should be translated into an 

appropriate external test such that the internal test is applied to the component under test and 
moreover the effect of an internally detected fault is propagated through the context. The general 
answer to the question is negative. 
Example. Consider the FSM G of Figure 4b. Assume that the input UJ is applied to the initial 
state 1. Any conforming implementation should produce the output ZJ. Assume, however, that 
there is a fault, and an implementation produces the internal output zz instead of ZJ. The context 

(Figure 2a) in the state b outputs just Yl· no matter which internal signal comes from the 
component. The fault is latent, though. The context moves to a wrong state a and in response to 
the next external input xz it eventually propagates an error on the external output. Such a latent 
fault is detected internally by a simple internal test case u 1, but can be externally observed when 
a longer external test case xzxz is applied. 

As this example shows, translation of test cases does not necessarily preserve the length of 
tests. Moreover, different implementations may require distinct external test cases to excite the 
same internal test, since the same external input sequence causes various sequences of internal 
actions for different implementation machines in the presence of feedback signals, unlike serial 
compositions of FSMs (Petrenko, Yevtushenko, and Dssouli, 1994). There is even no 
guarantee that the translation problem is decidable at all. It may well happen that no external test 
can excite a required internal test for an implementation in context. 

The test translation problem is thus obscure and local tests are not easy to reuse for testing in 
context. There is a need for fault models tuned for testing in context. 

4 EXPLICIT FAULT MODEL FOR TESTING IN CONTEXT 

Testing in context is based on the test architecture shown in Figure I b. It can be considered as a 
detailed view of the one described in (ISO, 1995). An IUT is the component that needs to be 
tested for conformance to its specification through the context. Further we assume that a given 
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composite specification consists of deterministic components, moreover their implementations 

are deterministic, as well. The verdict machine compares every pair of actions in the observed 

traces. If actions are identical then the machine produces the verdict pass which also indicates 

that a next test event can be executed. As soon as a discrepancy occurs, the machine produces 

the verdict fail, terminating further test execution. We also require that the verdict machine 

produces the verdict fail when the system under test falls into livelock. A timeout mechanism 

can be used to detect such behavior (tests related to timed behavior are not considered here). 

Based on the test architecture (Figure lb), we now can define what constitutes a fault of the 

embedded component, i.e. a fault model for deriving complete test suites. Since our tester is 

equipped with a proper timer for detecting livelocks, we further assume that En( U,Z) denotes the 

set of machines with at most n states such that ImpoC exists. Given two FSMs Spec and C, the 

composed machine SpecoC is the reference system RS. Similarly, the composed machine 

/mpoC=IS models the system under test (implemented system). Outputs of the two composed 

machines are compared and a corresponding verdict is produced by the verdict machine. 

Producing the verdict fail, the verdict machine indicates that the two composed machines IS and 

RS are not equivalent. 
Similar to the case of an isolated FSM, we can use the fault model consisting of the reference 

machine RS, the equivalence relation as conformance relation and the fault domain {lmpoC I 

lmpESn(U,Z)}=En(U,Z)oC, in other words, the triple <RS, :::, En(U,Z)oC>. We call it the 

explicit fault model since all possible implemented systems are explicitly included within the fault 

domain En(U,Z)oC. 

With respect to the fault domain En(U,Z)oC, there are two possible cases. In the first case, a 

given context is dummy and the fault domain En(U,Z)oC is the universal set of possible 

deterministic FSMs over X and Y within a certain number of states. Testing in such a context is 

nothing more than black-box-based testing in isolation. In the second case, a given context is not 

trivial and the fault domain may be a proper subset of the universal set. We need to derive a test 

suite complete w.r.t. the fault model <RS, :::, En(U,Z)oC>, however, we are unaware of any 

systematic method except for a brute force search. Nevertheless, it is worth to outline such a 

straightforward approach. 

Assume that we could enumerate all machines in the set En(U,Z) while not taking into 

account isomorphic machines. For each FSM we construct a composed machine. Comparing the 

result with the FSM RS=SpecoC, we can derive at least one input sequence that distinguishes 

them whenever they are not equivalent. The union of distinguishing sequences for all machines 

in En(U,Z)oC gives a desired test suite. We may try to minimize it, since a single sequence can 

distinguish several composed machines from the FSM RS. The last problem reduces to a 

classical set cover problem (Johnson, 1974). 
Because of its complexity, such a solution is feasible only for a small number of faults to be 

detected by testing in context, for example for single output faults of the embedded component. 

All the machines of the set En( U ,Z)oC are simply not possible to explicitly construct in a realistic 

situation. Since we have no other method for deriving tests complete w.r.t. the above fault 

model, we shall look for another fault models. 

5 FAULT MODELS BASED ON THE COMPOSED MACHINE 

5.1 Classical black-box fault model 

The straightforward approach to the problem of deriving a test suite for an component embedded 

within a system, as discussed above, faces a potential explosion of the number of possible 

mutant composed machines. An attempt to avoid the necessity of enumerating all these machines 

could be made based on the fact that they constitute a subset of all machines over the alphabets X 
and Y with a certain number of states. An upper bound on the number of states in any composed 
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machine can be, in fact, established as follows. The product of the number of states of Spec and 
the number of states in the context gives the upper bound m on the number of states in any 

composed machine. The fault domain becomes 5m(X, Y) = D-sub(Chm(X,Y)). Now any 

complete test suite w.r.t. the fault model <RS, :::, D-sub(Chm(X,Y))> is also complete w.r.t. 

the explicit fault model. The reason is that the fault domain 5n( U,Z)oC is a subset of 5m(X, Y). 
The latter fault model is used in a number of existing test derivation methods for an FSM in 
isolation, so test derivation is feasible. Such an approach has, however, several drawbacks. 

First, the bound m may not be tight, in other words, the question is whether there exists a 
faulty implementation machine Imp such that the composed machine ImpoC has exactly m states 
in its reduced form. It is well-known that the size of a test suite required to test a machine with m 
states with respect to a specification machine with k states (k~m) grows exponentially as (m-k) 
increases (Vasilevski, 1973), (Chow, 1978), (Fujiwara et al, 1991 ). Any overestimation of the 
increase in the number of states due to faults results in a huge redundancy in the obtained test 
suite. We are unaware of any systematic method that can establish the least upper bound for the 
problem. 

Second, the set of all machines with up to m states includes machines that do not correspond 
to any system with the given context. We call such machines unfeasible for a given context. The 
context is a fault-free machine in any implemented system by our assumption. A complete test 
suite w.r.t. the above mentioned fault model even for a tight bound m, is redundant. 
Example. To illustrate the results of treating the system a' a black-box, we derive a complete 
test suite for the composed machine (Figure 3b) with four states w.r.t. all FSMs with at most six 
states (m=6). The Wp-method (Fujiwara eta!, 1991) delivers a test suite containing 41 test cases 
of total length 294. Completeness of the obtained test suite means that it detects non-equivalence 

of any out of (6x2)(6x2) = J212 possible machines with two inputs, two outputs and up to six 
states. These are exactly all submachines of the chaos machine Ch6(X,Y). 

To decrease the size of a test suite required to test the component in context, unfeasible 
machines should somehow be excluded from the fault domain. 

5.2 Deleting unfeasible machines 
It is in fact possible to exclude at least some of the unfeasible machines from the fault domain 
represented by all D-submachines of the chaos machine Chm(X,Y). The idea is to combine a 
given context machine C with a compressed representation of all possible implementations of a 
component machine Spec. As mentioned in Section 2, the chaos machine Ch(U,Z) contains all 

machines of the set 5n( U,Z) as its D-reductions. Intuitively, this chaos machine can be seen as 
the loosest description of the behavior of an embedded component. Using such a compressed 

representation of the set 5n( U,Z) of deterministic machines, we can obtain a composed machine 
that describes the external behaviors of all possible implementation machines with the given 
context. Unlike the straightforward method of Section 4, the necessity of processing 
deterministic machines one by one is now avoided. Specifically, we construct the product 
machine Ch(U,Z)oC in a usual way. As discussed before, constructing the composed machine 
from the product machine we can neglect livelocks, as they are detected by the tester equipped 
with a timer. The resulting composed machine Ch(U,Z)oC becomes nondeterministic and any 
feasible composed machine is its reduction. We use our working example to illustrate the idea of 
constructing such a nondeterministic composed machine. 
Example. The chaos machine Ch(U,Z) has a single state as shown in Figure Sa. The context 
machine (Figure 2a) has two states, the composed machine Ch( U,Z)oC shown in Figure 5b has 
two states, as well. 

ul,u2/zl,z2 (a) 

CD;::> 

(b) xI, x2/yl x2/y2 

~ xi, x2/yl xllyl xl/yt 

Figure 5 The chaos machine Ch(U, Z) (a) and the composed machine Ch(U,Z)oC (b). 
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Intuitively, the machine Ch(U,Z)oC describes the external behavior of any implemented 
system of the component machine Spec with the given context C, no matter how many states a 

component Imp has. The reference system RS = SpecoC is aD-reduction of Ch( U,Z)oC. 

Speaking more formally, we have the following fact. 

Proposition 5.1. For any implementation machine lmpE Sn(U,Z), the composed machine 

ImpoC is aD-reduction of Ch(U ,Z)oC. 

Among all D-reductions of Ch( U ,Z)oC there are machines with more than m states, where m 
is the upper bound on the number of states in any implemented system. In our example, m=6. 

The chaos machine Ch6(X,Y) used in the previous section contains J212 D-submachines. Now 

we estimate the number of D-reductions of Ch(U,Z)oC (Figure Sb) with up to six states. Any D

reduction of this machine may have an outgoing transition to any of six states, for any particular 

state and any input, provided that an output equals to that of Ch(U,Z)oC. The total number of 

such machines is 612. We conclude that in our example, approximately J212- 612 unfeasible 

machines are removed when the fault domain is represented by the set D-red6(Ch(U,Z)oC) 

instead of D-sub(Ch6(X,Y)). 

We define the following fault model <RS, =, D-redm(Ch(U,Z)oC)>. 

Proposition 5.2. A complete test suite w.r.t. the fault model <RS, =· D-redm(Ch(U,Z)oC)> 

is a complete test suite w.r.t. the explicit fault model <RS, =· Sn(U,Z)oC>. 

In an extreme case, the two machines Ch(U,Z)oC and Ch.(X,Y) become equivalent. 

Intuitively, it means that the context is dummy. In cases where Ch(U,Z)oC and Ch(X,Y) are not 

equivalent, the machine Ch( U ,Z)oC is 'less nondeterministic' and thus more precisely represents 

the fault domain than Chm(X,Y). 
The question arises now on how a test suite satisfying Proposition 5.2 can be constructed. 

This is an open problem, since in general, not much is yet known about complete test suites for 
nondeterministic machines. The solution of this problem may have various applications, 
however, in the context of this study, we refrain from further elaborating this approach because 

of the following reason. 

Take our example system, there exist (3x2)(3x2) = 66 possible component machines with two 

inputs, two outputs and up to three states. At the same time, the set D-red6(Ch(U,Z)oC) has 612 

machines. This means that the set D-red6( Ch( U ,Z)oC) is not the best possible approximation of 

the fault domain, since it contains, along with the interesting machines, as much as 612- 66 
unfeasible FSMs that are superfluous and should be further excluded from the fault domain. 

5.3 Further refinement of the fault domain 
It is known that the set of D-submachines of an FSM often is a proper subset of the set of its D
reductions with the same number of states (Petrenko, Yevtushrenko, Lebedev, and Das, 1993). 
It is therefore worth to use D-submachines instead of D-reductions. The idea is then to replace 
the chaos machine with a single state by another chaos machine with several states. It is known 

that every FSM of Sn( U,Z) is isomorphic to a D-submachine of the chaos machine Chn( U,Z). 

Similar to the approach of the previous section, we combine the nondeterministic FSM 

Chn(U,Z) and the deterministic context machine C into the composed machine Chn(U,Z)oC. 

Example. The chaos machine has three states, as the component machine Spec (Figure 2b). 
The composed machine should have six states, as the context has two states. Table I gives the 

state table of Chn(U,Z)oC. Bold symbols in the table label transitions of the composed machine 
RS shown in Figure 3a. Faults cannot alter outputs, but can change the tail state of nine 
transitions, as shown in this table. 

Intuitively, the machine Chn(U,Z)oC describes all possible deviations in the behavior of the 
composed machine due to potential faults in any implementation of the machine Spec with the 
given context C. Speaking more formally, we have the following fact. 



Fault Models for Testing in Context 173 

T bl 1 h a e T e non etenmmstlc compose mac me d d h" Ch n(U.z;)oC. 
·nput 1 2 3 4 5 6 

XJ 3/yl 5/yl 3/yl 2/yt 2/yt 6/yl 
1,2,4,5,6 1,2,3,4,6 1 ,2,4,5,6 1,3,4,5,6 1,3,4,5,6 1,2,3,4,5 

X2 2/yl 4/yz llyz 3/yl 3/yl 51Y2 
1 ,3,4,5,6 1,2,4,5,6 1 ,2,4,5,6 

Proposition 5.3. For any implementation machine lmpE gn(U,Z), the composed machine 

lmpoC is isomorphic to a D-submachine of Chn( U,Z)oC. 

The machines Ch(U,Z)oC and Chn(U,Z)oC are equivalent but have different sets of 

submachines. If the set of D-submachines of Chn( U .z;)oC is a proper subset of the set of its D-

reductions up tom states then the set D-sub(Chn(U,Z)oC) contains fewer unfeasible machines 

than the set D-redm( Ch( U .z;)oC. 

Example. The FSM Ch3(U,Z)oC (Table 1) has 69 D-submachines, since there are nine cells in 
the state table each of which contains six different transitions. Recall that the fault domain based 

on the machine Ch(U,Z)oC contains 612 machines. Thus, approximately, 612- 69 machines are 
further excluded as unfeasible. 

Based on the obtained fault domain, the fault model can now be defined as <RS, =, D

sub( Chn( U,Z)oC)>. 

Proposition 5.4. A complete test suite w.r.t. the fault model <RS, =, D-sub(Chn(U,Z)oC)> 

is a complete test suite w.r.t. the explicit fault model <RS, =, gn(U,Z)oC>. 

To derive a complete test suite w.r.t. this fault model we can now apply the FF-method (fault
function-based method) developed in (Petrenko and Yevtushenko, 1992), since the 

nondeterministic machine Chn(U,Z)oC containing the reference machine RS can be interpreted 
as a fault function of the FSM RS. The method is proven to deliver a complete test suite. 
Example. We use the FF-method to derive a complete test suite for the composed machine RS 
(Figure 3) and the fault function in Table 1. The resulting complete test suite w.r.t. the fault 

model with the fault domain D-sub(Ch3(U,Z)oC) has 32 test cases of the total length 235. Recall 

that the test suite complete w.r.t. the fault model considered in Section 5.1 has 294 test events. 
A more accurate description of the fault domain decreases the length of a necessary test suite. 

Unfortunately, the machine Chn(U,Z)oC may still contain some D-submachines that do not 
correspond to any composed machine with a faulty component machine. In our example, the set 

g3(U,Z) contains 66 possible machines. It indicates that in the worst-case situation, the machine 

Chn(U,Z)oC has 69 - 66 unfeasible D-submachines. A complete test suite for testing in context 
may yet be redundant. 

5.4 Discussion 
Summarizing this section, we note that based on the composed machine RS = SpecoC, four 
different fault models can be devised. All of them have the same reference machine, the same 
conformance relation and only differ in their fault domains. Specifically, we have 

D-sub(Chm(X,Y)) ~D-redm(Ch(U,Z)oC) ~D-sub(Chn(U.z;)oC) ~gn(U,Z)oC. 

In this case, we say that one fault model refines the other if strong inclusion between their fault 

domains holds. For a non-trivial context, the fault model based on D-sub(Chn(U,Z)oC) is the 

best approximation of the explicit fault model among the three considered so far. Moreover, it 
seems to be nearly impossible to exclude all the unfeasible machines from any fault domain with 
a reference machine defined only over external input and output alphabets. 
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6 FAULT MODELS BASED ON THE APPROXIMATION OF THE 

COMPONENT 

We wish to come up with a fault model such that the reference specification represents 
component's properties controlled and observed through the context and the fault domain is the 

set Sn(U,Z) of all possible implementation machines of the component Spec augmented by an 

external inputs and an output null. In other words, we make the additional assumption that the 
FSM Spec as well as all its possible implementation machines ignores all external inputs x by 
producing the null output while maintaining its current state. This is similar to a particular 
completeness assumption widely used in the context of protocol conformance testing. We refer 

~o an Imp augmented in this way as to an X-augmentation of Imp and denote it as lmpa. The set 

()fall augmented machines of Sn(U,Z) is denoted by .s:i~(U,Z). The idea of determining a 

porresponding reference specification is to find the loosest behavior of any embedded 

~omponent keeping the information on the correctness of external outputs produced by a given 

1context in response to every external input sequence. Depending on the current stable state and 
external input x, the context and a component at hand may involve in various interactions 
generating an internal I/0 sequence before an external output is produced. All sequences which 
can be produced by any Imp conforming to Spec w.r.t. x at the current stable state result in the 

~arne expected external output y. Once internal sequences leading to a wrong external output are 

k}iscarded, it is possible to exclude actions Y from our description. The loosest description of the 
ponforming behavior of a component in context w.r.t. all possible external input sequences is 

ealled the approximation of the specification machine Spec in context C (Petrenko, 
jYevtushenko, Bochmann, and Dssouli, 1996). It is in fact, a nondeterministic machine defined 

~ver the input alphabet XuU, the output alphabet Zu{null,fail). We use [[Spec]]c to denote 

~e approximation of the specification. 

kt Construction of approximation of the embedded component in context 
The method for constructing the approximation is based on the test architecture shown in Figure 
1lb. Assume that an IUT is replaced by a chaos machine that does whatever any feasible 
implementation can. The first verdict fail produced by the verdict machine Ver in response to a 
given external input sequence simultaneously applied to the system under test containing the 
chaos machine and to the reference system indicates that a certain output produced by the chaos 

machine is an error. The current external input x is paired with the null output when there exists 
at least one machine Imp externally equivalent to Spec with respect to the accepted input 
sequence. An internal input u to the component should then be paired with all internal outputs z 
that do not force the context to produce a wrong external output. By doing this we can obtain the 
loosest description of the conforming behavior of the component in context in response to each 
external input sequence. When an external input sequence becomes longer, fewer 
implementations remain conforming, i.e. externally equivalent to Spec with respect to this 
sequence. To handle this situation, the current input x should be paired with a designated output 
signal fail informing us that an expected output can no longer be produced. It means that a 
conforming behavior of any possible implementation is no longer possible. Intuitively, an 
external input sequence resulting in the output fail can later be used as a test that reveals certain 

faulty implementations. 
We note that some internal I/0 sequences cannot be excited at the input of any implementation 

machine in response to a given external input sequence. Nonexecutable sequences correspond in 
a sense to 'unfeasible' machines. The trap state, as in Section 3.2, accepts all nonexecutable 
sequences. Separating executable internal I/0 sequences from nonexecutable ones we eventually 

tune our fault model to the explicit fault model. 
Now we demonstrate how the approximation can be constructed. Given a specification 

machine Spec and a context machine C, the reference system is RS =SpecoC. Let Ch be a chaos 

machine with a single state in alphabet U and Z. We construct first a product machine ChxCXRS 
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xVer. The machine [[Spec]]c is then derived from the product machine in alphabets XuU and 

Zu{null,fail). In other words, constructing [[Spec]]c we hide in ChxCXRS xVer all actions Y 

and verdicts pass. The chaos machine is nondeterministic, therefore for a particular input u it 
produces all possible outputs z. Some of them result in the verdict fail, while others result in 
pass. The former actions are deleted and the input u is paired with the remained actions. A 
current external input xis coupled with fail only when all internal actions result in fail. The 
input x is coupled with the output null otherwise. We illustrate the constructions on our working 
example system. For more details, the reader is referred to (Petrenko, Yevtushenko, Bochmann, 
and Dssouli, 1996). 
Example. To obtain the approximation [[Spec]]c of the FSM Spec in context C (Figure 2) we 

have to first construct the product machine ChxCXRS xVer. Figure 6 shows the approximation 
[[Spec ]]c obtained from the product machine. Here a black hole is a trap state that has incoming 
transitions from all states labeled with an input not specified at a particular state with 
corresponding outputs: U! or u2 with outputs Z!, Z2, or X!, x2 with the output n (null). These 
transitions are not shown in this figure. As an example, the initial state I has additional 
transitions to the trap state labeled with u!lz! ,Z2 and u2/z1 ,Z2, and state 2 has three transitions 
labeled with x1/n, x2/n and U2/zJ,Z2· Stable states 1, 5, 6, 8, 9, 13, 14 are depicted in bold 
circles, thick lines represent their outgoing transitions. 

1Figure 6 The approximation [[Spec]]c. 
The approximation in context enjoys the following nice properties. 

,Proposition 6.1. Given the approximation [[Spec]]c of the specification Spec in context C, 

we have Imp=cSpec iff lmpa~[[Spec]]c for all/mpE Sn(U,Z). 

The proof is given in (Petrenko, Yevtushenko, Bachmann, and Dssouli, 1996). 
Moreover, for every implementation machine that is not a reduction of the approximation, 

there exists an external input sequence that distinguishes the augmented implementation from the 

specification in the given context. For a given aE (XuU)* we denote ax projection of a onto 
the alphabet X (X-projection). 
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Proposition 6.2. Given an implementation machine lmpE Sn(U,Z) and the approximation 

[[Spec]]c of the specification Spec in context C, there exists a sequence aE (XuU)* such that 

lmpll~a[[Spec]]c iff lmp*-c,aX Spec. 

For the proof we refer again to (Petrenko, Yevtushenko, Bochmann and Dssouli, 1996). 

6.2 Fault models 
Proposition 6.2. indicates that the approximation in context of the specification can serve as a 

proper characterization of faults of the component in context. This leads us to propose the fault 

model <[[Spec]]c, ~. ~~(U,Z)>. The fault model seems to be precise since Proposition 6.2 

establishes both, necessary and sufficient conditions. 

Proposition 6.3. The X-projection of a complete test suite w.r.t. the fault model <[[Spec]]c, 

~. ~~(U, Z)> is a complete test suite w.r.t. the explicit fault model <RS, =:, Sn(U,Z)oC>. 

Once a test suite complete w.r.t. the fault model <[[Spec]]c, ~. ~~(U,Z)> is obtained, it can 

easily be converted into a corresponding external test suite by making the X-projection of every 
test sequence. Unfortunately, the problem of deriving tests complete w.r.t. this fault model 

remains open. 
Example. The test suite derived for our working example based on the fault model 

<[[Spec]]c, ~. ~~(U, Z)> has II test cases of length 67. The machine Spec (Figure 2b), if 

tested in isolation, would require seven test cases of length of 35. This test suite is shorter than 
that for testing in context since several external input sequences may be needed to deliver a 
single internal test case to different implementations and to propagate an internally detected fault 
to the external output, as we have demonstrated in the Section 3. 

Replacing the fault domain ~~( U,Z) by the universal set Sn(Xu U,Z) of deterministic 

machines over the alphabets XuU and Z, we can obtain the fault model <[[Spec]]c, ~. 

Sn(XuU,Z)>. Clearly, Sn(XuU,Z)::)~~(U,Z). For this fault model there exists a suitable test 

derivation technique (Petrenko, Yevtushenko, and Bochmann, 1996). 
Example. The test suite derived for our working example based on the above fault model has 
21 test cases of length 120. 

Unlike ~~(U,Z), the fault domain Sn(XuU,Z) contains unfeasible machines, therefore a test 

suite complete w.r.t. <[[Spec]]c, ~. Sn(XuU,Z)> may be redundant, as it is in our example. 

7 COMPARING FAULT MODELS 

The following models of faults in an embedded component are proposed in this paper: 

- <RS, =:, Sn(U,Z)oC>, the explicit fault model; 

- <RS, =:, D-sub(Chm(X,Y))> that is based on a black-box representation of an implemented 

system; 

- <RS, =:, D-redm(Ch(U,Z)oC)>, based on deterministic reductions of the chaos machine with a 

single state; 

- <RS, =:, D-sub(Chn(U,Z)oC )>,based on deterministic submachines of the chaos machine 

with n states; 

- <[[Spec]]c, ~. ~~(U, Z)>, based on the approximation in context of the specification Spec and 

the fault domain ~~(U,Z) of all X-augmented implementations of the component; 
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- <[[Spec]]c, .::;, 3n(XuU,Z)>, using the universal set 3n(XuU,Z) as the fault domain. 

Table 2 Characteristics of the fault models. 

RS conf. relat. fault domain any method? accuracy TS length 

RS = 3n(U,Z)oC - + 67 -
RS = D-sub( Chm(X, Y)) + - 294 -

RS - D-redm( Ch( U,Z)oC) - - ? 

RS D-sub(Chn(U,Z)oC) + - 235 -

[[Spec]]c .::; 3~(U, Z) - + 67 

[[Spec]]c .::; 3n(XuU,Z) + - 120 

8 CONCLUSION 

We have considered in this paper the problem of modeling faults located in a given component 
embedded within a composite system. Various fault models appropriate for test derivation in 
context have been elaborated. All of them rely on the assumption that faults do not increase the 
number of states of the specification but can easily be adjusted to the case when the number of 
states in any implementation of the embedded component machine exceeds that of the 
specification. The existing FSM-based methods can be applied to derive test suites complete 
w.r.t. some fault models. Devising fault models appropriate for testing in context is the first step 
towards systematic methods for deriving test suite with guaranteed fault coverage. A Jot of work 
remains to be done in this direction. 
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