
FAULT-ORIENTED TEST

GENERATION FOR MULTICAST

ROUTING PROTOCOL DESIGN
Ahmed Helmy, Deborah Estrin, Sandeep Gupta

University of Southern California

Los Angeles, CA 90089

{ahelmy,estrin }@usc.edu, sandeep@boole.usc.edu

Abstract: We present a new algorithm for automatic test generation for mul

ticast routing. Our algorithm processes a finite state machine (FSM) model of

the protocol and uses a mix of forward and backward search techniques to gen

erate the tests. The output tests include a set of topologies, protocol events and

network failures, that lead to violation of protocol correctness and behavioral

requirements. We target protocol robustness in specific, and do not attempt to

verify other properties in this paper. We apply our method to a multicast rout
ing protocol; PIM-DM, and investigate its behavior in the presence of selective

packet loss on LANs and router crashes. Our study unveils several robustness

violations in PIM-DM, for which we suggest fixes with the aid of the presented

algorithm.

1.1 INTRODUCTION

Network protocol errors are often detected by application failure or perfor

mance degradation. Such errors are hardest to diagnose when the behavior is

unexpected or unfamiliar. Even if a protocol is proven to be correct in isolation,

its behavior may be unpredictable in an operational network, where interaction

with other protocols and the presence of failures may affect its operation.

The complexity of network protocols is increased with the exponential growth

of the Internet, and the introduction of new services, such as IP multicast. In

addition, researchers are observing new and obscure, yet all too frequent, fail

ure modes over the internetsj such as routing anomalies [1, 2], and selective

loss over LANs [3]. Such failures are becoming more frequent, mainly due to

the increased heterogeneity of network components.

The original version of this chapter was revised: The copyright line was incorrect. This has been

corrected. The Erratum to this chapter is available at DOI:

© IFIP International Federation for Information Processing 1998

S. Budkowski et al. (eds.), Formal Description Techniques and Protocol Specification, Testing and Verification

10.1007/978-0-387-35394-4_29

http://dx.doi.org/10.1007/978-0-387-35394-4_29

94

Many researchers have developed protocol verification methods, to ensure

that certain properties of a protocol hold. Much of this work, however, was

based on abstract mathematical models, with assumptions about the network

conditions that may not always hold in today's Internet. To date, little effort

has been exerted to formulate practical methods and tools that aid in the

systematic testing of multicast protocols.

In this study, we propose a new method for automatic test generation, geared

towards the study of protocol robustness in the presence of packet loss and

network failures. In particular, we try to answer the question "is the protocol

robust to specific failures ?" However, we do not attempt to develop a general

verification method.

We borrow from well-established chip testing technologies and apply them

to network protocols. We refer to our method as the fault-oriented test gener

ation (FOTG). Starting from a given fault, the necessary topology and event

sequences are established, that drive the protocol into error states, using for

ward and backward search techniques. As a case study, we apply FOTG to a

real multicast routing protocol; PIM-DM [4], that has been deployed in parts

of the Internet. We are particularly interested in multicast routing protocols,

because they are vulnerable to failure modes, such as selective loss, that have

not been traditionally studied in the area of protocol design [3].

The rest of this paper is organized as follows. Related work is discussed in

section 1.2. Section 1.3 provides method overview and definitions. Section 1.4

describes our algorithm in detail, and summarizes the results of our case study.

Conclusion is given in section 1.5.

1.2 RELATED WORK

There is a large body of literature dealing with verification of protocols. Ver

ification systems typically address well-defined properties -such as safety (e.g.

deadlock freedom), liveness (e.g. livelock freedom), and responsiveness (e.g.

timeliness) [5]- and aim to detect violations of these properties.

In general, the two main approaches for protocol verification are theorem

proving and reachability analysis [6]. Theorem proving systems define a set

of axioms and relations to prove properties mathematically. Theorem proving

includes model-based (e.g. Z [7]) and logic-based formalisms (e.g. Nqthm [8]). In

general, however, the number of axioms and relations grows with the complexity

of the protocol. We believe that these systems will be even more complex, and

perhaps intractable, for multicast protocols. Moreover, these systems work with

abstract specifications, and hence tend to abstract out some network dynamics

that we will study; such as selective packet loss and router crashes.

Reachability analysis algorithms [9], on the other hand, try to generate and

inspect all reachable protocol states. Such algorithms suffer from the 'state

space explosion' problem, especially for complex protocols. To circumvent this

problem, state reduction and partial search techniques [10] could be used. These

algorithms, however, do not synthesize network topologies. Reduced reachabil

ity analysis has been used in the verification of cache coherence protocols [11],

95

using a global FSM model. We adopt a similar FSM model and extend it for

our approach in this study.

In [3] we have proposed a simulation-based STRESS testing method, based

on heuristics and topological equivalences to reduce the number of simulated

scenarios. However, we did not address automatic generation of topologies

and events. Work in this paper complements our previous work, and may be

integrated with the STRESS framework as part of its scenario generation.

VLSI chip testing [12] uses test vector generation to detect single-stuck

faults. Test vectors may be generated based on circuit and fault models, using

the fault-oriented process, that utilizes implication techniques for line justifi

cation. We adopt some implication concepts for our method, and transform

them to the network protocol domain. We note that chip testing is performed

for a given circuit, while a protocol must work over arbitrary and time varying

topologies, adding a new dimension to the test generation problem.

1.3 METHOD OVERVIEW AND DEFINITIONS

The input to our method is the specification of a protocol, its correctness re

quirements, and a definition of its robustness. In general, protocol robustness is

the ability to respond correctly in the face of network failures and packet loss.

Usually robustness is defined in terms of network dynamics or fault models.

A fault model represents various component faults; e.g. packet loss, or ma

chine crashes. The desired output is a set of test-suites that stress the protocol

mechanisms according to the robustness criteria.

Our method produces tests based on a model of the protocol. This section

describes the model used and gives an overview of the case study protocol;

PIM-DM.

1.3.1 System Model and Test Definition

The system consists of network and topology elements and a fault model.

Elements of the network consist of multicast capable nodes and bi-directional

symmetric links. Nodes run same multicast routing, but not necessarily the

same unicast routing. The topology is a N-router LAN modeled at the network
level; we do not model the MAC layer.

A fault, is a low level (e.g. physical layer) anomalous behavior, that may

affect the protocol under test. An error is the failure of a protocol to meet its

design requirement (e.g. duplicate packet delivery).

Faults include: a) Loss of packets due to queue congestion or failure. b)

Loss of state, e.g. uni/multicast tables, due to failures or crashes. Loss duration

varies with the nature of the failure. c) Delays due to transmission, propagation,

or queuing delays. Some delay problems may be translated into sequencing

problems (see section 1.4.6).

Usually, a fault model is defined in conjunction with the protocol's robustness
criteria. A design requirement for PIM is to be robust to single protocol message

loss, which implies correct transitions from one stable state to another, even

96

in the presence of single message loss. We also study the momentary loss of

state. To analyze erroneous behavior, we consider single message loss per test

sequence.

A test input pattern is defined as a 3-tuple '< Topology, Events, Faults >'j

where Events is a sequence of host eventsj e.g. join, leave, Or send packet, and

the topology and faults as defined above.

Test Sequence Definition. Given sequences T =< el,e2, ... ,en > and

T' =< el,e2, ... ,ej,j,ek, ... ,en >, where ei is an event and j is a fault.

Let P(q, T) be the sequence of states and stimuli of protocol P under test

T starting from the initial state q. T' is a test sequence if final P(q, T') is

incorrectj Le. the stable state reached after the occurrence of the fault does

not satisfy the protocol correctness conditions (see section 1.3.2) irrespective of

P(q,T). In case of a fault-free sequence, where T = T', the error is attributed

to a protocol design error. Whereas when T:f: T', and final P(q,T) is correct,

the error is manifested by the fault. This definition ignores transient protocol

behavior.

1.3.2 PIM-DM

As a case study, we apply our method to a version of the Protocol Independent

Multicast-Dense Mode (PIM-DM) [4] protocol.

Multicast routing protocols deliver packets efficiently to group members by

establishing distribution trees. PIM-DM uses broadcast-and-prune to establish
the tree. In this mode of operation, a multicast packet is broadcast to all leaf
subnetworks. Subnetworks with no local members send prune messages towards

the source{s) of the packets to stop further broadcasts. Routers with new

members joining the group trigger Graft messages towards previously pruned
sources to re-establish the branches of the delivery tree. Graft messages are

acknowledged explicitly at each hop using the Graft-Ack message. PIM-DM

uses the underlying unicast routing tables to obtain the next-hop information,

which may lead to situations where there are multiple forwarders for a LAN.

The Assert mechanism resolves these situations and ensures there is at most

one forwarder for the LAN.

In this study we target protocol robustness errors. We are interested mainly

in erroneous stable (Le. non-transient) states. We assume that protocol errors

and correctness conditions are provided by the specification.

PIM Protocol Errors: A protocol error may manifest itself in one of the

following ways: 1) black holes: consecutive packet loss between periods of packet

delivery. 2) packet looping. 3) packet duplication. 4) join latency: excessive time

taken by a receiver to start receiving packets. 5) leave latency: excessive time

taken after a receiver leaves the group to stop the packet flow down pruned

branches.

Correctness Conditions: These conditions are necessary to avoid errors dur
ing stable states in a LAN environment: 1) If there exists routers expecting

packets from the LAN then there must exist a forwarder for the LAN, to pre-

97

vent data loss (e.g. join latency or black holes). 2) The LAN must have at most

one forwarder at a time, to prevent duplicates. 3) If there exists no routers ex

pecting packets from the LAN there must not exist a forwarder for the LAN,

to prevent leave latency. 4) The delivery tree must be loop-free. We do not

consider looping in this study, as it is not a local behavior.

1.3.3 The Protocol Model

We represent the protocol by a finite state machine (FSM), and the LAN by a

global FSM model (GFSM), as follows:

I. FSM model: A deterministic finite state machine modeling the behavior

of a router Ri is represented by the machine Mi = (Q, 8i), where: Q is

a finite set of state symbols, is the set of stimuli causing state transitions;

and, Oi is the state transition function Q x -t Q,

II. Global FSM model: With respect to a particular LAN, the global state

is defined as the composition of individual router states. The behavior of a

LAN with n routers may be described by the global FSM Mg = (Qg, 8g)
n

where: Qg: Ql x Q2 X ... x Qn is the global state space, U is the set of
i==l

stimuli causing the transitions; and 8g : is the global state transition function

Qg x -t Qg,

1.4 APPLYING THE METHOD

Fault-oriented test generation (FOTG) targets specific faults. Starting from a

given fault, FOTG attempts to synthesize topology(ies) that may experience

an error, and a sequence of events leading to the error.

The faults studied here are single message loss, and loss of state:
1. For a given message, the algorithm uses the protocol model to identify

a set of stimuli and states needed to stimulate that message, and the possible

states and stimuli elicited by the message. This set of states form the global

system state to be inspected. The algorithm is repeated for each message.

For loss of state, the global state is constructed from the mechanisms neces

sary to create the state, and the algorithm is repeated for each state.
2. Subsequent system states are obtained, through a process called forward

implication, after the fault is included in the implication rules. Forward im

plication is the process of inferring subsequent states from a given state. The

subsequent stable state is checked for errors.

3. If an error occurs, an attempt is made to obtain a sequence of events

leading from an initial state to the error state, if such state is reachable. Such

process is called backward implication.

Details of these algorithms are presented in section 1.4.5.

1.4.1 PIM-DM Model

Following is the model of a simplified version of PIM-DM.

98

I. FSM model. Mi = (Qi, Oi)

For a specific source-group pair, we define the states w.r.t. a specific LAN

to which the router Ri is attached. For example, a state may indicate that a

router is a forwarder for (or receiver expecting packets from) the LAN.

A. System States (Q). Possible states in which a router may exist are:

State Symbol

Fi

Fi_Timer

NFi

NHi

NHLTimer

Nei

EUi

EDi

Mi

NMi

Meaning

Router i is a forwarder for the LAN

i forwarder with Timer Timer running
Upstream router i is not a forwarder, but has entry

Router i has the LAN as its next-hop

same as N Hi with the Timer Timer running
Router i has a negative-cache entry pointing to the LAN

Upstream router i does not have an entry; i.e. is empty

Downstream router i does not have an entry; i.e. is empty

Downstream leaf router with no state, and an attached member

Downstream leaf router with no state and no attached members

The possible states for upstream and downstream routers are as follows:

Qi = {{Fi,FLTimeTl NFi , EUi} router upstream,

{N Hi, N HLTimer, NCi, Mi , N Mi , EDi} If the router IS downstream.

B. Stimuli The stimuli considered here include transmitting and re

ceiving protocol messages, timer events, and external host events. Only stimuli

leading to change of state are considered. For example, transmitting messages

per se (vs. receiving messages) does not cause any change of state, except

for the Graft, in which case the Rtx timer is set. Following are the stimuli

considered in our study:

1. Transmitting messages: Graft transmission (GraftTa,)

2. Receiving messages: Graft reception (GraftRcv), Join reception (Join),

Prune reception (Prune), Graft Acknowledgement reception (GAck), Assert

reception (Assert), and forwarded packets reception (FPkt).

3. Timer events: these events occur due to timer expiration (Exp) and in

clude the Graft re-transmission timer (Rtx), the event of its expiration (RtxExp) ,

the forwarder-deletion timer (Del), and the event of its expiration (DelExp).

The expiration of a timer is implied as (Timer Implication) when the timer is

set.

4. External host events (Ext): include host sending packets (SPkt), host

joining a group (H Join or H J), and host leaving a group (Leave or L).

= {Join, Prune, GraftTx, GraftRcv, GAck, Assert, FPkt, Rtx, Del, SPkt, H J, L}

II. Global FSM model. An example global state for a topology of 4 routers

connected to a LAN, with router 1 as a forwarder, router 2 expecting pack

ets from the LAN, and routers 3 and 4 have negative caches, is given by

{Fl,NH2' NC3 ,NC4 }.

99

1.4.2 Transition Table

The global state transition may be represented in several ways. Here, we choose

a transition table representation that emphasizes the effect of the stimuli on the

system, and hence facilitates topology synthesis. The transition table describes,

for each stimulus, the conditions of its occurrence. A condition is given as

stimulus, and state or transition, (denoted by stimulus. state/trans); where the

transition is given as startState -t endState. At least one pre-condition is

necessary to trigger the stimulus. In contrast, a post-condition for a stimulus is

an event and/or transition that is triggered by the stimulus, in the absence of

faults (e.g. message loss). A '(p)' indicates a possible transition or stimulus, and

represents a branching point in the search space. orig, dst, and other indicate

the origin of the stimulus, its destination, and other routers, respectively. For

example, a Join reception: a) is caused by the reception of a Prune from

another router, with the originator of the Join in N H state, and b) causes dst

to transit into Fdst if it exists in FDel or N F state (other transitions are left out

for simplicity). Following is the transition table for the global FSM discussed

earlier.

Stimulus Pre-cond (stimulus.state/trans) Post-cond (stimulus.state/trans)

Join Pruneother·N H orig Fdst_Del --t Fdst , N Fdst --t Fdst

Prune L.NC, F Pkt.NC Fdst --t FdsLDel·(p)Joinother

Grajtrx HJ.(NC --t NH), GrajtRcv·(NH --t NH_Rtx)

RtxExp.(NH_Rtx --t NH)

GrajtRcv Grajtrx·(NH --t NH_Rtx) GAck.(NFdst --t Fdstl

GAck GrajtRcv·F N Hdst_Rtx --t N Hdst

Assert FPktother·Forig, (p) Fother --t N Fother,

Assertother .Forig (p)Assertother

FPkt Spkt.F Prune.(N M --t NC),

ED --t NH,M --t NH,

EVother --t Fothe,,(P) Assert

Rtx RtxExp Grajtrx.(NHorig_Rtx --t NHorig)

Del DelExp ForigJJel --t N Forig

SPkt Ext FPkt.(EVorig --t Forig)

HJoin Ext NM --t M,Grajtrx.(NC --t NH)

Leave Ext M --t NM,Prune.(NH --t NC),

Prune.(NHRtx --t NC)

1.4.3 State Dependency Table

To aid in test sequence synthesis through the backward implication procedure,

we construct what we call a state dependency table. This table does not con

tain additional information about the protocol behavior to that given by the

100

transition table, and is inferred automatically therefrom. We use this table to

improve the performance of the algorithm and for illustration.

For each state, the dependency table contains the possible preceding states

and the stimulus from which the state can be reached or implied. To obtain this

information for a state S, we search the post-condition column of the transition

table for entries where the endState of a transition is S. In addition, a state

may be identified as an initial state (1.8.). The initial states for this study

include {EU,ED,NM}.
Following is a partial state dependency table:

State

Fi

NFi

NHi

NOi

Possible Backward Implication(s)

Fpktother EU Join F Join NF GraftRcv NF,', EU,'
(i, f----- i_Del, f----- i, f-(----'-'-'--

Del F Assert F
f-- i_Del, f----- i

Rtx,GAck NH HJ NO FPkt M FPkt ED
(i_Rtx,f---- i,+-- i,+-- i

FPkt L L
+-- N Mi, f--- N HLRtx, f--- N Hi

In some cases, multiple states need to be simultaneously implied in one
backward step, otherwise an I.S. may not be reached. To do this, the transitions

in the post-conditions of the stimulus are traversed, and any states in the global

state that are endStates are replaced by their corresponding startStates. For
FPkt

example, {Mi,NMj,Fk} +---- {NHi,NCj,Fk}.

1.4.4 Defining stable states

As mentioned earlier, we are concerned with stable state (i.e. non-transient)

behavior. To obtain erroneous stable states, we need to define the transition

mechanisms between such states. We introduce the concept of transition clas

sification and completion to distinguish between transient and stable states.

Classification of Transitions. We identify two types of transitions; exter

nally triggered (ET) and internally triggered (IT) transitions. The former is

stimulated by events external to the system (e.g. H Join or Leave), whereas

the latter is stimulated by events internal to the system (e.g. FPkt or Graft).

We note that some transitions may be triggered due to both internal and

external events, depending on the scenario. For example, a Prune may be

triggered due to forwarding packets by an upstream router FPkt (which is an

internal event), or a Leave (which is an external event).

101

A global state is checked for correctness at the end of an externally triggered

transition after completing its dependent internally triggered transitions.

Following is a table of host events, their dependent ET events and their

dependent IT events:

Host Events SPkt H Join Leave

ET events F Pkt Graft Prune

IT events Assert, Prune, GAck Join

Join

Transition Completion. To check for the global system correctness, all

stimulated internal transitions should be completed, to bring the system into

a stable state. Intermediate (transient) states should not be checked for cor

rectness (since they may violate the correctness conditions set forth for stable

states, and hence may give false error indication).

The process of identifying complete transitions depends on the nature of the

protocol. But, in general, we may identify a complete transition sequence, as

the sequence of (all) transitions triggered due to a single external stimulus (e.g.

H J Din or Leave). Therefore, we should be able to identify a transition based

upon its stimuli (either external or internal).

At the end of each complete transition sequence the system exists in either

a correct or erroneous stable state. Event-triggered timers (e.g. Del, Rtx) fire

at the end of a complete transition, satisfying the Timerlmplication.

Also, according to the above completion concept, the proper analysis of be

havior should start from externally triggered transitions. For example, analysis

should not consider a Join without considering the Prune triggering it and its
effects on the system. Thus the global system state must be rolled back to the

beginning of a complete transition (i.e. the previous stable state) before ap
plying the forward implication. This will be implied in the forward implication

algorithm discussed later, to simplify the discussion.

1.4.5 FOTG details

As previously mentioned, our FOTG approach consists of three phases: I) syn

thesis of the global state to inspect, II) forward implication, and III) backward

implication. These phases are explained in more detail in this section.

FOTG starts from a given fault. The faults we address here are message

and state loss.

Synthesizing the Global State.

Starting from a fault (i.e. the message or state to be lost), and using the

information in the protocol model (i.e. the transition table), a global state is

chosen for investigation. We refer to this state as the global-state inspected
(G I), and it is obtained for message loss as follows:

1. The global state is initially empty and the inspected message is initially

set to the message to be lost.

102

2. For the inspected message, the state (or the startState of the transition)

of the post-condition is obtained from the transition table. If the state does

not exist in the global state, and cannot be implied therefrom, then it is added

to the global state.

3. For the inspected message, the state (or the endState of the transition)

of the pre-condition is obtained. If the state does not exist in the global state,

and cannot be implied therefrom, then it is added to the global state.

4. Get the stimulus of the pre-condition of the inspected message. If this

stimulus is not external (Ext), then set the inspected message to the stimulus,

and go back to step 2.

Note that there may be several pre-conditions or post-conditions for a stim

ulus, in which case several choices can be made. These represent branching

points in the search space.

At the end of this stage, the global state to be investigated is obtained.

For state loss, the state dependency table is used to determine the message

required to create the state, and the topology constructed for that message is

used for the state. This is illustrated later in this section.

Forward Implication.

The states following G I (i.e. G Hi where i > 0) are obtained through forward

implication. We simply apply the transitions, starting from G I, as given by the

transition table, in addition to implied transitions (such as timer implication).

In case of a message loss, the transition due to the lost message is not applied.

If more than one state is affected by the message, then the space searched is

expanded to include the various selective loss scenarios for the affected routers.
Backward Implication.

If an error occurs, backward implication attempts to obtain a sequence of events
leading to G I, from an initial state (I .S.), if such sequence exists; i.e. if G I is

reachable from I.S.
The state dependency table is used in the backward search. Backward steps

are taken for the components in the global state G I, until an initial global state

(i.e. a state with all components as I.S.) is reached, or the termination criteria

(if any) is met.

Figure 1.1 shows the above processes for a simple example of a Join loss.

Following are the steps taken for that example:

Synthesizing the Global State

1. Join: startState of the post-condition is NFdst =? GI = {NFk}

2. Join: state of the pre-condition is N Hi =? G I = {N Hi, N Fk}, goto Prune

3. Prune: startState of the post-condition is Fk which can be implied from N Fk in G I

4. Prune: state of the pre-condition is NCj =? G I = {N Hi, N Fk, NCj}, goto L

5. the startState of the post-condition is N H which can be implied from NC in G I

103

Forward implication

Backward implication

Losing the Join by the forwarding router Rk leads to an error state where

router Ri is expecting packets from the LAN, but the LAN has no forwarder.

I Stimulus Pre-conditions Post-conditions

Joioj §->Fk

Prunej
LeaVej. (Fk --> NFk).(p) Join;

Leavej External (NHj --> Nq).Prunej

Constructed Topology

Initial State ...

error state

backward implication <-- Gr G1+ --> forward implication

Figure 1.1 Join topology synthesis. forward/backward implication

1.4.6 Summary of Results

We have implemented an early version of the algorithm in the NS/VINT envi

ronment (see http://catarina.usc.edu/vint) and used it to drive detailed sim

ulations of PIM-DM therein, to verify our findings. In this section we briefly

discuss the results of applying our method to PIM-DM. The analysis is con

ducted for single message loss and momentary loss of state. For a detailed

analysis of the results see [13].

Single message loss. We have studied single message loss scenarios for the

Join, Prune, Assert, and Graft messages. For brevity, we partially discuss our

104

upstream

downstream

A B A B
A B

II II II
Graft

12

12
13 12

GAck

13 GAck
14

GAck 15

13
16

14

time

(I) no loss (II) loss of Graft (III) loss of Graft &

interleaved Prune

Figure 1.2 Graft event sequencing

results here. For this subsection, we consider non-interleaving external events,

where the system is stimulated only once between stable states. The Graft
message is particularly interesting, since it is acknowledged, and it raises timing

and sequencing issues that we address in a later subsection, where we extend

our method to consider interleaving of external events.

Join:. A scenario similar to that presented in section 1.4.5 incurred an error.

In this case, the robustness violation was not allowing another chance to the

downstream router to send a Join. A suggested fix would be to send another

prune by FDel before the timer expires.

Prune:. In the topology above, an error occurs when Ri loses the Prune,

hence no Join is triggered. The fix suggested above takes care of this case too.

Assert:. An error in the Assert case occurs with no downstream routers;

e.g. G I = {Fi , Fj }. The design error is the absence of a mechanism to prevent
pruning packets in this case. One suggested fix would be to have the Assert

winner schedule a deletion timer (i.e. becomes FDel) and have the downstream

receiver (if any) send Join to the Assert winner.

Graft:. We did not reach an error state when the Graft was lost, with non

interleaving external events.

105

Interleaving events and Sequencing. A Graft message is acknowledged

by GAck, and is robust to message loss with the use of Rtx timer. Adversary

external conditions are interleaved during the transient states and the Rtx

timer is cleared, such that the adverse event will not be overridden by the Rtx

mechanism.

To clear the Rtx timer, a transition should be created from N HRtx to

N H which is triggered by a GAck according to the state dependency table

(N H N HRtx). This transition is then inserted in the event sequence,

and forward and backward implications are used to obtain the overall sequence

of events illustrated in figure 1.2. In the first and second scenarios (I and II)

no error occurs. In the third scenario (III) when a Graft followed by a Prune

is interleaved with the Graft loss, the Rtx timer is reset with the receipt of

the GAck for the first Graft, and the systems ends up in an error state. A

suggested fix is to add sequence number to Grafts.

Loss of State. We consider momentary loss of state in a router. A 'Crash'

stimulus transfers any state 'X' into 'EU' or 'ED'. Hence, we add the following

line to the transition table:

Stimulus Pre-cond Post-cond (stimulus.state/trans)

Crash Ext {NM,M,NH,NC,NHRtx} -t ED, {F,FDet.NF} -t EU

The FSM resumes function immediately after the crash (i.e. further tran

sitions are not affected). We analyze the behavior when the crash occurs in

any router state. For every state, a topology is synthesized that is necessary

to create that state. We leverage the topologies previously synthesized for the

messages. For example, state FDel may be created from st·ate F by receiving

(Prune F) hi' a Prune FDel . Hence we may use t e topo ogles constructed for

Prune loss to analyze a crash for FDel state.

Forward implication is then applied, and behavior after the crash is checked

for correct packet delivery. To achieve this, host stimuli (i.e. SPkt, H J and

L) are applied, then the system state is checked for correctness.

In lots of the cases studied, the system recovered from the crash (Le. the

system state was eventually correct). The recovery is mainly due to the nature

of PIM-DM; where protocol states are re-created with reception of data packets.

This result is not likely to extend to protocols of other natures; e.g. PIM Sparse

Mode [14].

However, in violation with robustness requirements, there existed cases in

which the system did not recover. In figure 1.3, the host joining in (II, a) did

not have the sufficient state to send a Graft and hence gets join latency until

the negative cache state times out upstream and packets are forwarded onto

the LAN as in (II, b).

In figure 1.4 (II, a), the downstream router incurs join latency due to the

crash of the upstream router. The state is not corrected until the periodic

broadcast takes place, and packets are forwarded onto the LAN as in (II, b).

106

SPI<I SPkt

HJ L

(n) (h)

(I> (II) (III)

Figure 1.3 Crash leading to join latency

SPkt

L

(a> (h>

(I>
(II) (III)

Figure 1.4 Crash leading to black holes

1.4.7 Limitations

The FOTG algorithms require a pre/post-condition global transition table, like

the one presented in this paper. Generating such table from a conventional

single router I/O FSM is part of our on-going work.

Currently the GFSM used in this study only models LANs. In our future

work we will attempt to extend the model for regular and random topologies.

The LAN topologies constructed are inferred from the mechanisms specified

by the transition table of the GFSM. The algorithm will not construct topolo

gies resulting from non-specified mechanisms. For example, if the Assert mech

anism was left out (due to a design error) the algorithm would not construct

{Fi,Fj} topology. So, FOTG (as presented here) may be used to evaluate be

havior of specified mechanisms in the presence of network failures, but is not a

general protocol verification tool.

1.5 SUMMARY AND FUTURE WORK

We have presented a new method for automating the robustness testing of

multicast routing protocols, in the presence of network failures.

107

We do not claim nor attempt to provide mathematical proof of protocol

correctness or verification. Rather, we have targeted protocol robustness and

endeavored to systematize its testing and analysis for a particular domain;

multicast routing.
Drawing from chip testing and FSM techniques, our method synthesizes

the protocol tests automatically. These tests consist of the topology, event

sequences and network faults. The following techniques were used to automate

each of the test dimensions:

Topology synthesis: using the state transition table, our method synthesizes

N - router LAN topologies necessary to generate protocol messages or states,

in terms of a global system state.

Fault investigation: from the global state, forward implication is used to test

the behavior of the system in the presence of faults.

Sequence of events: if an error is found, backward implication constructs a

sequence of events leading to the erroneous state, which is used to analyze the

protocol behavior.

Timing problems: we have presented an example of transforming a timing

problem into a sequencing problem to analyze acknowledged messages.

We have conducted a case study for PIM-DM, and found several scenarios

in which the protocol behaved erroneously.

Our method may also be applicable to other protocols that can be repre

sented by the global FSM model given in this paper.

We are in the process of conducting a quantitative analysis and evaluation

of our method in terms of complexity and completeness; i.e. the number of

topologies synthesized, state transitions traversed and faults covered. We are

also investigating complexity reduction techniques by introducing equivalence

classes of states and topologies, using counting equivalence and repetition con

structors [11].
Future directions of this research include applying the FOTG method to

other multicast protocols, including end-to-end performance analysis, extending

the method to apply to topologies containing multiple LANs, and to include

other network failures.

References

[1] V. Paxon. End-to-End Routing Behavior in the Internet. IEEE/ACM

Transactions on Networking, Vol. 5, No.5. An earlier version appeared in

Proc. ACM SIGCOMM '96, Stanford, CA, pages 601-615, October 1997.

[2] V. Paxon. End-to-End Internet Packet Dynamics. ACM SIGCOMM '97,

September 1997.

[3] A. Helmy and D. Estrin. Simulation-based STRESS Testing Case Study:

A Multicast Routing Protocol. Sixth International Symposium on Mod

eling, Analysis and Simulation of Computer and Telecommunication Sys

tems (MASCOTS '98), July 1998.

108

[4] D. Estrin, D. Farinacci, A. Helmy, V. Jacobson, and L. Wei. Protocollnde

pendent Multicast - Dense Mode (PIM-DM): Protocol Specification. Pro

posed Experimental RFC. URL http://netweb.usc.edu/pim/pimdm/PIM

DM.{txt,ps}.gz, September 1996.

[5] K. Saleh, I. Ahmed, K. AI-Saqabi, and A. Agarwal. A recovery approach

to the design of stabilizing communication protocols. Journal of Computer

Communication, Vol. 18, No.4, pages 276-287, April 1995.

[6] E. Clarke and J. Wing. Formal Methods: State of the Art and Future Di

rections. ACM Workshop on Strategic Directions in Computing Research,

Vol. 28, No.4, pages 626-643, December 1996.

[7] J. Spivey. Understanding Z: a Specification Language and its Formal Se

mantics. Cambridge University Press, 1988.

[8] R. Boyer and J. Moore. A Computational Logic Handbook. Academic

Press, Boston, 1988.

[9] F. Lin, P. Chu, and M. Liu. Protocol Verification using Reachability Anal

ysis. Computer Communication Review, Vol. 17, No.5, 1987.

[10] P. Godefroid. Using partial orders to improve automatic verification meth

ods. Proc. 2nd Workshop on Computer-Aided Verification, Springer Ver

lag, New York, 1990.

[11] F. Pong and M. Dubois. Verification Techniques for Cache Coherence

Protocols. ACM Computing Surveys, Volume 29, No.1, pages 82-126,

March 1996.

[12] M. Abramovici, M. Breuer, and A. Friedman. Digital Systems Testing and

Testable Design. AT (3 T Labs., 1990.

[13] A. Helmy, D. Estrin, and S. Gupta. Fault-oriented Test Generation for

Multicast Routing. USC-CS-TR 98-673, www.usc.edu/dept/cs, March

1998.

[14] D. Estrin, D. Farinacci, A. Helmy, D. Thaler, S. Deering, M. Handley,

V. Jacobson, C. Liu, P. Sharma, and L. Wei. Protocol Independent

Multicast - Sparse Mode (PIM-SM): Protocol Specification. RFC 2117.

URL http://netweb.usc.edu/pim/pimsm/PIM-SMv2-Exp-RFC. { txt,ps} .gz,

March 1997.

109

Ahmed A-G Helmy received his M.S. ('95) from the University of Southern California, and

his B.S. ('92) from Cairo University, Egypt, He is currently pursuing his Ph.D. in Computer

Science at the University of Southern California. His research interests include protocol design

and testing, multicast routing, and network simulation. Website: catarina.usc.edu/ahelmy.

Deborah Estrin is a Professor of Computer Science at the University of Southern California

in Los Angeles where she joined the faculty in 1986. Estrin received her Ph.D. (1985) and
M.S.(1982) from the Massachusetts Institute of Technology (M.LT.) and her B.S. (1980)

from U.C. Berkeley. In 1987, Estrin received the National Science Foundation, Presidential

Young Investigator Award for her research in network interconnection and security. Estrin

is a co-PIon the DARPA Virtual Internet Testbed (VINT) project and the NSF Routing

Arbiter project at USC's Information Sciences Institute where she spends much of her time

supervising doctoral student research.

Estrin is an active member of the IETF multicast routing related working groups and

a long-time member of the End-to-End research group. Estrin is a member of the ACM,

IEEE,and AAAS. She has served on numerous panels for The National Science Foundation,

The National Academy of Engineering, and is currently a member of DARPA's Information

Systems and Technology (ISAT) advisory board. Estrin has served as an editor for the

ACM/IEEE Transaction on Networks and the Wiley Journal of Internetworking Research

and Experience, and as a member of the program committee for many IEEE Infocom and

ACM Sigcomm conferences, and she was program co-chair of ACM Sigcomm '96.

Sandeep Gupta received his Bachelors degree in Electrical Engineering from the Indian

Institute of Technology, Kharagpur, India in 1985 and obtained M.S. and Ph.D. degrees
in Electrical and Computer Engineering from the University of Massachusetts at Amherst

in 1989 and 1991. Since 1991 he has been with the Department of Electrical Engineering

- Systems at the University of Southern California, Los Angeles, where currently he is an

Associate Professor. He is also a Co-Director of USC's M.S. Program in VLSI Design.

His research interests are in the area of VLSI Testing and Design and is currently involved
in projects on Built-In Self-Test, delay testing and diagnosis of digital circuits, and test and

validation of deep submicron, high speed circuits. He is a recipient of the National Science

Foundation's Research Initiation Award (1992) and CAREER Award (1995).

	FAULT-ORIENTED TEST GENERATION FOR MULTICASTROUTING PROTOCOL DESIGN
	1.1 INTRODUCTION
	1.2 RELATED WORK
	1.3 METHOD OVERVIEW AND DEFINITIONS
	1.4 APPLYING THE METHOD
	1.5 SUMMARY AND FUTURE WORK
	References

