
FAULT-ORIENTED TEST 

GENERATION FOR MULTICAST 

ROUTING PROTOCOL DESIGN 
Ahmed Helmy, Deborah Estrin, Sandeep Gupta 

University of Southern California 

Los Angeles, CA 90089 

{ahelmy,estrin }@usc.edu, sandeep@boole.usc.edu 

Abstract: We present a new algorithm for automatic test generation for mul

ticast routing. Our algorithm processes a finite state machine (FSM) model of 

the protocol and uses a mix of forward and backward search techniques to gen

erate the tests. The output tests include a set of topologies, protocol events and 

network failures, that lead to violation of protocol correctness and behavioral 

requirements. We target protocol robustness in specific, and do not attempt to 

verify other properties in this paper. We apply our method to a multicast rout
ing protocol; PIM-DM, and investigate its behavior in the presence of selective 

packet loss on LANs and router crashes. Our study unveils several robustness 

violations in PIM-DM, for which we suggest fixes with the aid of the presented 

algorithm. 

1.1 INTRODUCTION 

Network protocol errors are often detected by application failure or perfor

mance degradation. Such errors are hardest to diagnose when the behavior is 

unexpected or unfamiliar. Even if a protocol is proven to be correct in isolation, 

its behavior may be unpredictable in an operational network, where interaction 

with other protocols and the presence of failures may affect its operation. 

The complexity of network protocols is increased with the exponential growth 

of the Internet, and the introduction of new services, such as IP multicast. In 

addition, researchers are observing new and obscure, yet all too frequent, fail

ure modes over the internetsj such as routing anomalies [1, 2], and selective 

loss over LANs [3]. Such failures are becoming more frequent, mainly due to 

the increased heterogeneity of network components. 
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Many researchers have developed protocol verification methods, to ensure 

that certain properties of a protocol hold. Much of this work, however, was 

based on abstract mathematical models, with assumptions about the network 

conditions that may not always hold in today's Internet. To date, little effort 

has been exerted to formulate practical methods and tools that aid in the 

systematic testing of multicast protocols. 

In this study, we propose a new method for automatic test generation, geared 

towards the study of protocol robustness in the presence of packet loss and 

network failures. In particular, we try to answer the question "is the protocol 

robust to specific failures ?" However, we do not attempt to develop a general 

verification method. 

We borrow from well-established chip testing technologies and apply them 

to network protocols. We refer to our method as the fault-oriented test gener

ation (FOTG). Starting from a given fault, the necessary topology and event 

sequences are established, that drive the protocol into error states, using for

ward and backward search techniques. As a case study, we apply FOTG to a 

real multicast routing protocol; PIM-DM [4], that has been deployed in parts 

of the Internet. We are particularly interested in multicast routing protocols, 

because they are vulnerable to failure modes, such as selective loss, that have 

not been traditionally studied in the area of protocol design [3]. 

The rest of this paper is organized as follows. Related work is discussed in 

section 1.2. Section 1.3 provides method overview and definitions. Section 1.4 

describes our algorithm in detail, and summarizes the results of our case study. 

Conclusion is given in section 1.5. 

1.2 RELATED WORK 

There is a large body of literature dealing with verification of protocols. Ver

ification systems typically address well-defined properties -such as safety (e.g. 

deadlock freedom), liveness (e.g. livelock freedom), and responsiveness (e.g. 

timeliness) [5]- and aim to detect violations of these properties. 

In general, the two main approaches for protocol verification are theorem 

proving and reachability analysis [6]. Theorem proving systems define a set 

of axioms and relations to prove properties mathematically. Theorem proving 

includes model-based (e.g. Z [7]) and logic-based formalisms (e.g. Nqthm [8]). In 

general, however, the number of axioms and relations grows with the complexity 

of the protocol. We believe that these systems will be even more complex, and 

perhaps intractable, for multicast protocols. Moreover, these systems work with 

abstract specifications, and hence tend to abstract out some network dynamics 

that we will study; such as selective packet loss and router crashes. 

Reachability analysis algorithms [9], on the other hand, try to generate and 

inspect all reachable protocol states. Such algorithms suffer from the 'state 

space explosion' problem, especially for complex protocols. To circumvent this 

problem, state reduction and partial search techniques [10] could be used. These 

algorithms, however, do not synthesize network topologies. Reduced reachabil

ity analysis has been used in the verification of cache coherence protocols [11], 
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using a global FSM model. We adopt a similar FSM model and extend it for 

our approach in this study. 

In [3] we have proposed a simulation-based STRESS testing method, based 

on heuristics and topological equivalences to reduce the number of simulated 

scenarios. However, we did not address automatic generation of topologies 

and events. Work in this paper complements our previous work, and may be 

integrated with the STRESS framework as part of its scenario generation. 

VLSI chip testing [12] uses test vector generation to detect single-stuck 

faults. Test vectors may be generated based on circuit and fault models, using 

the fault-oriented process, that utilizes implication techniques for line justifi

cation. We adopt some implication concepts for our method, and transform 

them to the network protocol domain. We note that chip testing is performed 

for a given circuit, while a protocol must work over arbitrary and time varying 

topologies, adding a new dimension to the test generation problem. 

1.3 METHOD OVERVIEW AND DEFINITIONS 

The input to our method is the specification of a protocol, its correctness re

quirements, and a definition of its robustness. In general, protocol robustness is 

the ability to respond correctly in the face of network failures and packet loss. 

Usually robustness is defined in terms of network dynamics or fault models. 

A fault model represents various component faults; e.g. packet loss, or ma

chine crashes. The desired output is a set of test-suites that stress the protocol 

mechanisms according to the robustness criteria. 

Our method produces tests based on a model of the protocol. This section 

describes the model used and gives an overview of the case study protocol; 

PIM-DM. 

1.3.1 System Model and Test Definition 

The system consists of network and topology elements and a fault model. 

Elements of the network consist of multicast capable nodes and bi-directional 

symmetric links. Nodes run same multicast routing, but not necessarily the 

same unicast routing. The topology is a N-router LAN modeled at the network 
level; we do not model the MAC layer. 

A fault, is a low level (e.g. physical layer) anomalous behavior, that may 

affect the protocol under test. An error is the failure of a protocol to meet its 

design requirement (e.g. duplicate packet delivery). 

Faults include: a) Loss of packets due to queue congestion or failure. b) 

Loss of state, e.g. uni/multicast tables, due to failures or crashes. Loss duration 

varies with the nature of the failure. c) Delays due to transmission, propagation, 

or queuing delays. Some delay problems may be translated into sequencing 

problems (see section 1.4.6). 

Usually, a fault model is defined in conjunction with the protocol's robustness 
criteria. A design requirement for PIM is to be robust to single protocol message 

loss, which implies correct transitions from one stable state to another, even 
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in the presence of single message loss. We also study the momentary loss of 

state. To analyze erroneous behavior, we consider single message loss per test 

sequence. 

A test input pattern is defined as a 3-tuple '< Topology, Events, Faults >'j 

where Events is a sequence of host eventsj e.g. join, leave, Or send packet, and 

the topology and faults as defined above. 

Test Sequence Definition. Given sequences T =< el,e2, ... ,en > and 

T' =< el,e2, ... ,ej,j,ek, ... ,en >, where ei is an event and j is a fault. 

Let P(q, T) be the sequence of states and stimuli of protocol P under test 

T starting from the initial state q. T' is a test sequence if final P(q, T') is 

incorrectj Le. the stable state reached after the occurrence of the fault does 

not satisfy the protocol correctness conditions (see section 1.3.2) irrespective of 

P(q,T). In case of a fault-free sequence, where T = T', the error is attributed 

to a protocol design error. Whereas when T:f: T', and final P(q,T) is correct, 

the error is manifested by the fault. This definition ignores transient protocol 

behavior. 

1.3.2 PIM-DM 

As a case study, we apply our method to a version of the Protocol Independent 

Multicast-Dense Mode (PIM-DM) [4] protocol. 

Multicast routing protocols deliver packets efficiently to group members by 

establishing distribution trees. PIM-DM uses broadcast-and-prune to establish 
the tree. In this mode of operation, a multicast packet is broadcast to all leaf 
subnetworks. Subnetworks with no local members send prune messages towards 

the source{s) of the packets to stop further broadcasts. Routers with new 

members joining the group trigger Graft messages towards previously pruned 
sources to re-establish the branches of the delivery tree. Graft messages are 

acknowledged explicitly at each hop using the Graft-Ack message. PIM-DM 

uses the underlying unicast routing tables to obtain the next-hop information, 

which may lead to situations where there are multiple forwarders for a LAN. 

The Assert mechanism resolves these situations and ensures there is at most 

one forwarder for the LAN. 

In this study we target protocol robustness errors. We are interested mainly 

in erroneous stable (Le. non-transient) states. We assume that protocol errors 

and correctness conditions are provided by the specification. 

PIM Protocol Errors: A protocol error may manifest itself in one of the 

following ways: 1) black holes: consecutive packet loss between periods of packet 

delivery. 2) packet looping. 3) packet duplication. 4) join latency: excessive time 

taken by a receiver to start receiving packets. 5) leave latency: excessive time 

taken after a receiver leaves the group to stop the packet flow down pruned 

branches. 

Correctness Conditions: These conditions are necessary to avoid errors dur
ing stable states in a LAN environment: 1) If there exists routers expecting 

packets from the LAN then there must exist a forwarder for the LAN, to pre-
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vent data loss (e.g. join latency or black holes). 2) The LAN must have at most 

one forwarder at a time, to prevent duplicates. 3) If there exists no routers ex

pecting packets from the LAN there must not exist a forwarder for the LAN, 

to prevent leave latency. 4) The delivery tree must be loop-free. We do not 

consider looping in this study, as it is not a local behavior. 

1.3.3 The Protocol Model 

We represent the protocol by a finite state machine (FSM), and the LAN by a 

global FSM model (GFSM), as follows: 

I. FSM model: A deterministic finite state machine modeling the behavior 

of a router Ri is represented by the machine Mi = (Q, 8i), where: Q is 

a finite set of state symbols, is the set of stimuli causing state transitions; 

and, Oi is the state transition function Q x -t Q, 

II. Global FSM model: With respect to a particular LAN, the global state 

is defined as the composition of individual router states. The behavior of a 

LAN with n routers may be described by the global FSM Mg = (Qg, 8g) 
n 

where: Qg: Ql x Q2 X ... x Qn is the global state space, U is the set of 
i==l 

stimuli causing the transitions; and 8g : is the global state transition function 

Qg x -t Qg, 

1.4 APPLYING THE METHOD 

Fault-oriented test generation (FOTG) targets specific faults. Starting from a 

given fault, FOTG attempts to synthesize topology(ies) that may experience 

an error, and a sequence of events leading to the error. 

The faults studied here are single message loss, and loss of state: 
1. For a given message, the algorithm uses the protocol model to identify 

a set of stimuli and states needed to stimulate that message, and the possible 

states and stimuli elicited by the message. This set of states form the global 

system state to be inspected. The algorithm is repeated for each message. 

For loss of state, the global state is constructed from the mechanisms neces

sary to create the state, and the algorithm is repeated for each state. 
2. Subsequent system states are obtained, through a process called forward 

implication, after the fault is included in the implication rules. Forward im

plication is the process of inferring subsequent states from a given state. The 

subsequent stable state is checked for errors. 

3. If an error occurs, an attempt is made to obtain a sequence of events 

leading from an initial state to the error state, if such state is reachable. Such 

process is called backward implication. 

Details of these algorithms are presented in section 1.4.5. 

1.4.1 PIM-DM Model 

Following is the model of a simplified version of PIM-DM. 
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I. FSM model. Mi = (Qi, Oi) 

For a specific source-group pair, we define the states w.r.t. a specific LAN 

to which the router Ri is attached. For example, a state may indicate that a 

router is a forwarder for (or receiver expecting packets from) the LAN. 

A. System States (Q). Possible states in which a router may exist are: 

State Symbol 

Fi 

Fi_Timer 

NFi 

NHi 

NHLTimer 

Nei 

EUi 

EDi 

Mi 

NMi 

Meaning 

Router i is a forwarder for the LAN 

i forwarder with Timer Timer running 
Upstream router i is not a forwarder, but has entry 

Router i has the LAN as its next-hop 

same as N Hi with the Timer Timer running 
Router i has a negative-cache entry pointing to the LAN 

Upstream router i does not have an entry; i.e. is empty 

Downstream router i does not have an entry; i.e. is empty 

Downstream leaf router with no state, and an attached member 

Downstream leaf router with no state and no attached members 

The possible states for upstream and downstream routers are as follows: 

Qi = {{Fi,FLTimeTl NFi , EUi} router upstream, 

{N Hi, N HLTimer, NCi, Mi , N Mi , EDi} If the router IS downstream. 

B. Stimuli The stimuli considered here include transmitting and re

ceiving protocol messages, timer events, and external host events. Only stimuli 

leading to change of state are considered. For example, transmitting messages 

per se (vs. receiving messages) does not cause any change of state, except 

for the Graft, in which case the Rtx timer is set. Following are the stimuli 

considered in our study: 

1. Transmitting messages: Graft transmission (GraftTa,) 

2. Receiving messages: Graft reception (GraftRcv), Join reception (Join), 

Prune reception (Prune), Graft Acknowledgement reception (GAck), Assert 

reception (Assert), and forwarded packets reception (FPkt). 

3. Timer events: these events occur due to timer expiration (Exp) and in

clude the Graft re-transmission timer (Rtx), the event of its expiration (RtxExp) , 

the forwarder-deletion timer (Del), and the event of its expiration (DelExp). 

The expiration of a timer is implied as (Timer Implication) when the timer is 

set. 

4. External host events (Ext): include host sending packets (SPkt), host 

joining a group (H Join or H J), and host leaving a group (Leave or L). 

= {Join, Prune, GraftTx, GraftRcv, GAck, Assert, FPkt, Rtx, Del, SPkt, H J, L} 

II. Global FSM model. An example global state for a topology of 4 routers 

connected to a LAN, with router 1 as a forwarder, router 2 expecting pack

ets from the LAN, and routers 3 and 4 have negative caches, is given by 

{Fl,NH2' NC3 ,NC4 }. 
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1.4.2 Transition Table 

The global state transition may be represented in several ways. Here, we choose 

a transition table representation that emphasizes the effect of the stimuli on the 

system, and hence facilitates topology synthesis. The transition table describes, 

for each stimulus, the conditions of its occurrence. A condition is given as 

stimulus, and state or transition, (denoted by stimulus. state/trans); where the 

transition is given as startState -t endState. At least one pre-condition is 

necessary to trigger the stimulus. In contrast, a post-condition for a stimulus is 

an event and/or transition that is triggered by the stimulus, in the absence of 

faults (e.g. message loss). A '(p)' indicates a possible transition or stimulus, and 

represents a branching point in the search space. orig, dst, and other indicate 

the origin of the stimulus, its destination, and other routers, respectively. For 

example, a Join reception: a) is caused by the reception of a Prune from 

another router, with the originator of the Join in N H state, and b) causes dst 

to transit into Fdst if it exists in FDel or N F state (other transitions are left out 

for simplicity). Following is the transition table for the global FSM discussed 

earlier. 

Stimulus Pre-cond (stimulus.state/trans) Post-cond (stimulus.state/trans) 

Join Pruneother·N H orig Fdst_Del --t Fdst , N Fdst --t Fdst 

Prune L.NC, F Pkt.NC Fdst --t FdsLDel·(p)Joinother 

Grajtrx HJ.(NC --t NH), GrajtRcv·(NH --t NH_Rtx) 

RtxExp.(NH_Rtx --t NH) 

GrajtRcv Grajtrx·(NH --t NH_Rtx) GAck.(NFdst --t Fdstl 

GAck GrajtRcv·F N Hdst_Rtx --t N Hdst 

Assert FPktother·Forig, (p) Fother --t N Fother, 

Assertother .Forig (p )Assertother 

FPkt Spkt.F Prune.(N M --t NC), 

ED --t NH,M --t NH, 

EVother --t Fothe,,(P) Assert 

Rtx RtxExp Grajtrx.(NHorig_Rtx --t NHorig) 

Del DelExp ForigJJel --t N Forig 

SPkt Ext FPkt.(EVorig --t Forig) 

HJoin Ext NM --t M,Grajtrx.(NC --t NH) 

Leave Ext M --t NM,Prune.(NH --t NC), 

Prune.(NHRtx --t NC) 

1.4.3 State Dependency Table 

To aid in test sequence synthesis through the backward implication procedure, 

we construct what we call a state dependency table. This table does not con

tain additional information about the protocol behavior to that given by the 
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transition table, and is inferred automatically therefrom. We use this table to 

improve the performance of the algorithm and for illustration. 

For each state, the dependency table contains the possible preceding states 

and the stimulus from which the state can be reached or implied. To obtain this 

information for a state S, we search the post-condition column of the transition 

table for entries where the endState of a transition is S. In addition, a state 

may be identified as an initial state (1.8.). The initial states for this study 

include {EU,ED,NM}. 
Following is a partial state dependency table: 

State 

Fi 

NFi 

NHi 

NOi 

Possible Backward Implication(s) 

Fpktother EU Join F Join NF GraftRcv NF,', EU,' 
( i, f----- i_Del, f----- i, f-( ----'-'-'--

Del F Assert F 
f-- i_Del, f----- i 

Rtx,GAck NH HJ NO FPkt M FPkt ED 
( i_Rtx,f---- i,+-- i,+-- i 

FPkt L L 
+-- N Mi, f--- N HLRtx, f--- N Hi 

In some cases, multiple states need to be simultaneously implied in one 
backward step, otherwise an I.S. may not be reached. To do this, the transitions 

in the post-conditions of the stimulus are traversed, and any states in the global 

state that are endStates are replaced by their corresponding startStates. For 
FPkt 

example, {Mi,NMj,Fk} +---- {NHi,NCj,Fk}. 

1.4.4 Defining stable states 

As mentioned earlier, we are concerned with stable state (i.e. non-transient) 

behavior. To obtain erroneous stable states, we need to define the transition 

mechanisms between such states. We introduce the concept of transition clas

sification and completion to distinguish between transient and stable states. 

Classification of Transitions. We identify two types of transitions; exter

nally triggered (ET) and internally triggered (IT) transitions. The former is 

stimulated by events external to the system (e.g. H Join or Leave), whereas 

the latter is stimulated by events internal to the system (e.g. FPkt or Graft). 

We note that some transitions may be triggered due to both internal and 

external events, depending on the scenario. For example, a Prune may be 

triggered due to forwarding packets by an upstream router FPkt (which is an 

internal event), or a Leave (which is an external event). 
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A global state is checked for correctness at the end of an externally triggered 

transition after completing its dependent internally triggered transitions. 

Following is a table of host events, their dependent ET events and their 

dependent IT events: 

Host Events SPkt H Join Leave 

ET events F Pkt Graft Prune 

IT events Assert, Prune, GAck Join 

Join 

Transition Completion. To check for the global system correctness, all 

stimulated internal transitions should be completed, to bring the system into 

a stable state. Intermediate (transient) states should not be checked for cor

rectness (since they may violate the correctness conditions set forth for stable 

states, and hence may give false error indication). 

The process of identifying complete transitions depends on the nature of the 

protocol. But, in general, we may identify a complete transition sequence, as 

the sequence of (all) transitions triggered due to a single external stimulus (e.g. 

H J Din or Leave). Therefore, we should be able to identify a transition based 

upon its stimuli (either external or internal). 

At the end of each complete transition sequence the system exists in either 

a correct or erroneous stable state. Event-triggered timers (e.g. Del, Rtx) fire 

at the end of a complete transition, satisfying the Timerlmplication. 

Also, according to the above completion concept, the proper analysis of be

havior should start from externally triggered transitions. For example, analysis 

should not consider a Join without considering the Prune triggering it and its 
effects on the system. Thus the global system state must be rolled back to the 

beginning of a complete transition (i.e. the previous stable state) before ap
plying the forward implication. This will be implied in the forward implication 

algorithm discussed later, to simplify the discussion. 

1.4.5 FOTG details 

As previously mentioned, our FOTG approach consists of three phases: I) syn

thesis of the global state to inspect, II) forward implication, and III) backward 

implication. These phases are explained in more detail in this section. 

FOTG starts from a given fault. The faults we address here are message 

and state loss. 

Synthesizing the Global State. 

Starting from a fault (i.e. the message or state to be lost), and using the 

information in the protocol model (i.e. the transition table), a global state is 

chosen for investigation. We refer to this state as the global-state inspected 
(G I), and it is obtained for message loss as follows: 

1. The global state is initially empty and the inspected message is initially 

set to the message to be lost. 
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2. For the inspected message, the state (or the startState of the transition) 

of the post-condition is obtained from the transition table. If the state does 

not exist in the global state, and cannot be implied therefrom, then it is added 

to the global state. 

3. For the inspected message, the state (or the endState of the transition) 

of the pre-condition is obtained. If the state does not exist in the global state, 

and cannot be implied therefrom, then it is added to the global state. 

4. Get the stimulus of the pre-condition of the inspected message. If this 

stimulus is not external (Ext), then set the inspected message to the stimulus, 

and go back to step 2. 

Note that there may be several pre-conditions or post-conditions for a stim

ulus, in which case several choices can be made. These represent branching 

points in the search space. 

At the end of this stage, the global state to be investigated is obtained. 

For state loss, the state dependency table is used to determine the message 

required to create the state, and the topology constructed for that message is 

used for the state. This is illustrated later in this section. 

Forward Implication. 

The states following G I (i.e. G Hi where i > 0) are obtained through forward 

implication. We simply apply the transitions, starting from G I, as given by the 

transition table, in addition to implied transitions (such as timer implication). 

In case of a message loss, the transition due to the lost message is not applied. 

If more than one state is affected by the message, then the space searched is 

expanded to include the various selective loss scenarios for the affected routers. 
Backward Implication. 

If an error occurs, backward implication attempts to obtain a sequence of events 
leading to G I, from an initial state (I .S.), if such sequence exists; i.e. if G I is 

reachable from I.S. 
The state dependency table is used in the backward search. Backward steps 

are taken for the components in the global state G I, until an initial global state 

(i.e. a state with all components as I.S.) is reached, or the termination criteria 

(if any) is met. 

Figure 1.1 shows the above processes for a simple example of a Join loss. 

Following are the steps taken for that example: 

Synthesizing the Global State 

1. Join: startState of the post-condition is NFdst =? GI = {NFk} 

2. Join: state of the pre-condition is N Hi =? G I = {N Hi, N Fk}, goto Prune 

3. Prune: startState of the post-condition is Fk which can be implied from N Fk in G I 

4. Prune: state of the pre-condition is NCj =? G I = {N Hi, N Fk, NCj}, goto L 

5. the startState of the post-condition is N H which can be implied from NC in G I 
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Forward implication 

Backward implication 

Losing the Join by the forwarding router Rk leads to an error state where 

router Ri is expecting packets from the LAN, but the LAN has no forwarder. 

I Stimulus Pre-conditions Post-conditions 

Joioj §->Fk 

Prunej 
LeaVej.  (Fk --> NFk).(p) Join; 

Leavej External (NHj --> Nq).Prunej 

Constructed Topology 

Initial State ... 

error state 

backward implication <-- Gr G1+ --> forward implication 

Figure 1.1 Join topology synthesis. forward/backward implication 

1.4.6 Summary of Results 

We have implemented an early version of the algorithm in the NS/VINT envi

ronment (see http://catarina.usc.edu/vint) and used it to drive detailed sim

ulations of PIM-DM therein, to verify our findings. In this section we briefly 

discuss the results of applying our method to PIM-DM. The analysis is con

ducted for single message loss and momentary loss of state. For a detailed 

analysis of the results see [13]. 

Single message loss. We have studied single message loss scenarios for the 

Join, Prune, Assert, and Graft messages. For brevity, we partially discuss our 
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upstream 

downstream 

A B A B 
A B 

II II II 
Graft 

12 

12 
13 12 

GAck 

13 GAck 
14 

GAck 15 

13 
16 

14 

time 

(I) no loss (II) loss of Graft (III) loss of Graft & 

interleaved Prune 

Figure 1.2 Graft event sequencing 

results here. For this subsection, we consider non-interleaving external events, 

where the system is stimulated only once between stable states. The Graft 
message is particularly interesting, since it is acknowledged, and it raises timing 

and sequencing issues that we address in a later subsection, where we extend 

our method to consider interleaving of external events. 

Join:. A scenario similar to that presented in section 1.4.5 incurred an error. 

In this case, the robustness violation was not allowing another chance to the 

downstream router to send a Join. A suggested fix would be to send another 

prune by FDel before the timer expires. 

Prune:. In the topology above, an error occurs when Ri loses the Prune, 

hence no Join is triggered. The fix suggested above takes care of this case too. 

Assert:. An error in the Assert case occurs with no downstream routers; 

e.g. G I = {Fi , Fj }. The design error is the absence of a mechanism to prevent 
pruning packets in this case. One suggested fix would be to have the Assert 

winner schedule a deletion timer (i.e. becomes FDel ) and have the downstream 

receiver (if any) send Join to the Assert winner. 

Graft:. We did not reach an error state when the Graft was lost, with non

interleaving external events. 
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Interleaving events and Sequencing. A Graft message is acknowledged 

by GAck, and is robust to message loss with the use of Rtx timer. Adversary 

external conditions are interleaved during the transient states and the Rtx 

timer is cleared, such that the adverse event will not be overridden by the Rtx 

mechanism. 

To clear the Rtx timer, a transition should be created from N HRtx to 

N H which is triggered by a GAck according to the state dependency table 

(N H N HRtx). This transition is then inserted in the event sequence, 

and forward and backward implications are used to obtain the overall sequence 

of events illustrated in figure 1.2. In the first and second scenarios (I and II) 

no error occurs. In the third scenario (III) when a Graft followed by a Prune 

is interleaved with the Graft loss, the Rtx timer is reset with the receipt of 

the GAck for the first Graft, and the systems ends up in an error state. A 

suggested fix is to add sequence number to Grafts. 

Loss of State. We consider momentary loss of state in a router. A 'Crash' 

stimulus transfers any state 'X' into 'EU' or 'ED'. Hence, we add the following 

line to the transition table: 

Stimulus Pre-cond Post-cond (stimulus.state/trans) 

Crash Ext {NM,M,NH,NC,NHRtx} -t ED, {F,FDet.NF} -t EU 

The FSM resumes function immediately after the crash (i.e. further tran

sitions are not affected). We analyze the behavior when the crash occurs in 

any router state. For every state, a topology is synthesized that is necessary 

to create that state. We leverage the topologies previously synthesized for the 

messages. For example, state FDel may be created from st·ate F by receiving 

( Prune F) hi' a Prune FDel . Hence we may use t e topo ogles constructed for 

Prune loss to analyze a crash for FDel state. 

Forward implication is then applied, and behavior after the crash is checked 

for correct packet delivery. To achieve this, host stimuli (i.e. SPkt, H J and 

L) are applied, then the system state is checked for correctness. 

In lots of the cases studied, the system recovered from the crash (Le. the 

system state was eventually correct). The recovery is mainly due to the nature 

of PIM-DM; where protocol states are re-created with reception of data packets. 

This result is not likely to extend to protocols of other natures; e.g. PIM Sparse

Mode [14]. 

However, in violation with robustness requirements, there existed cases in 

which the system did not recover. In figure 1.3, the host joining in (II, a) did 

not have the sufficient state to send a Graft and hence gets join latency until 

the negative cache state times out upstream and packets are forwarded onto 

the LAN as in (II, b). 

In figure 1.4 (II, a), the downstream router incurs join latency due to the 

crash of the upstream router. The state is not corrected until the periodic 

broadcast takes place, and packets are forwarded onto the LAN as in (II, b). 
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SPI<I SPkt 

HJ L 

(n) (h) 

(I> (II) (III) 

Figure 1.3 Crash leading to join latency 

SPkt 

L 

(a> (h> 

(I> 
(II) (III) 

Figure 1.4 Crash leading to black holes 

1.4.7 Limitations 

The FOTG algorithms require a pre/post-condition global transition table, like 

the one presented in this paper. Generating such table from a conventional 

single router I/O FSM is part of our on-going work. 

Currently the GFSM used in this study only models LANs. In our future 

work we will attempt to extend the model for regular and random topologies. 

The LAN topologies constructed are inferred from the mechanisms specified 

by the transition table of the GFSM. The algorithm will not construct topolo

gies resulting from non-specified mechanisms. For example, if the Assert mech

anism was left out (due to a design error) the algorithm would not construct 

{Fi,Fj} topology. So, FOTG (as presented here) may be used to evaluate be

havior of specified mechanisms in the presence of network failures, but is not a 

general protocol verification tool. 

1.5 SUMMARY AND FUTURE WORK 

We have presented a new method for automating the robustness testing of 

multicast routing protocols, in the presence of network failures. 
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We do not claim nor attempt to provide mathematical proof of protocol 

correctness or verification. Rather, we have targeted protocol robustness and 

endeavored to systematize its testing and analysis for a particular domain; 

multicast routing. 
Drawing from chip testing and FSM techniques, our method synthesizes 

the protocol tests automatically. These tests consist of the topology, event 

sequences and network faults. The following techniques were used to automate 

each of the test dimensions: 

Topology synthesis: using the state transition table, our method synthesizes 

N - router LAN topologies necessary to generate protocol messages or states, 

in terms of a global system state. 

Fault investigation: from the global state, forward implication is used to test 

the behavior of the system in the presence of faults. 

Sequence of events: if an error is found, backward implication constructs a 

sequence of events leading to the erroneous state, which is used to analyze the 

protocol behavior. 

Timing problems: we have presented an example of transforming a timing 

problem into a sequencing problem to analyze acknowledged messages. 

We have conducted a case study for PIM-DM, and found several scenarios 

in which the protocol behaved erroneously. 

Our method may also be applicable to other protocols that can be repre

sented by the global FSM model given in this paper. 

We are in the process of conducting a quantitative analysis and evaluation 

of our method in terms of complexity and completeness; i.e. the number of 

topologies synthesized, state transitions traversed and faults covered. We are 

also investigating complexity reduction techniques by introducing equivalence 

classes of states and topologies, using counting equivalence and repetition con

structors [11]. 
Future directions of this research include applying the FOTG method to 

other multicast protocols, including end-to-end performance analysis, extending 

the method to apply to topologies containing multiple LANs, and to include 

other network failures. 
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