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In the framework of fault reconstruction technique, this paper studies the problems of multiple mode process fault detection, fault
estimation, and fault prediction systematically based on multi-PCA model. First, a multi-PCA model is used for fault detection in
steady state process under di�erent conditions, while a weighted algorithm is applied to transition process.
en, describe the faults
quantitatively and use the optimizationmethod to derive the fault amplitude under the sense of fault reconstruction. Fault amplitude
dri�s under di�erent conditions even if the same fault occurs. To solve the above problem, consistent estimation algorithm of fault
amplitude under di�erent conditions has been studied. Last, employ the support vector machine (SVM) to predict the trend of the
fault amplitude. E�ectiveness of the algorithms proposed in this paper has been veried using Tennessee Eastman process as the
study object.

1. Introduction

Modern engineering systems become more and more com-
plexwhile the scale becomes larger and larger simultaneously.
However, the operation safety of complex systems is inversely
proportional to their scales. Fault diagnosis and prediction
techniques o�er an important way to improve the operation
safety of complex engineering systems, which are o�en
operating under multiple mode process due to the following
reasons: changes of the nature of raw materials, external
environment disturbances, dri�ing of the load in a process
and even equipment aging, and so forth. All of the factors
mentioned abovemay lead to the di�erence between the prac-
tical operating processes and the rated operating processes;
otherwise equipment itself may have a plurality of operating
periods due to the adjustment of production programs. For
example, a ship sailing task needs to go through several
stages from set sail, o�shore sailing, far-shore sailing, and
returning back to the harbor. Operating condition of the
marine system changes frequently during the sailing. And a
marine system may have more than one working condition
even in the same stage.
erefore, the monitoring technology
of multicondition process has gradually achieved widespread
attention both in industry and in academia [1].

With the wide application of distributed control system
(DCS) in industrial processes, massive process data associ-
ated with the operating status of the device can easily be
saved. Since the 1990s, the data-driven multivariate statistical
monitoring technology has been successfully applied in
industrial processes [2]. Traditional multivariate statistical
monitoring techniques include methods based on PCA and
PLS. 
e traditional methods are based on the assumption
that the process data obey Gaussian distribution, the data
must be linear, and the process must be stable with only
one operating condition, and so forth. However, the practical
industrial process data o�en do not strictly obey theGaussian
distribution and also are usually nonlinear, time-varying,
multiconditioned, and dynamic. So if the traditionalmethods
are being used to monitor those practical processes, it will
inevitably lead to inaccuracy analysis of process performance
as well as false alarm and missing alarm of process failures
[3]. For multiple mode process, improved methods have
been proposed based on the traditional PCA/PLS, which
are mainly divided into recursive iterative method and
multimodel method. 
e basic idea of recursive iteration
method is to add new process data into the modeling data
matrix continuously. By updating the model parameters, the

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2015, Article ID 348729, 8 pages
http://dx.doi.org/10.1155/2015/348729



2 Mathematical Problems in Engineering

model can adapt to new conditions [4]. 
e recursive itera-
tion method is used relatively less in practical applications,
because the method cannot distinguish changes during nor-
mal operating conditions and fault conditions correctly and is
more dependent on the process mechanism and knowledge.

e basic idea of multimodel method is to divide di�erent
operating conditions rst by clustering algorithm and then
use process data for each condition to establish submodels.
Finally, construct a global detection indicator to monitor
the process data. Multiple PCA model is studied in [5–7],
super PCA model is studied in [8], probabilistic principal
component analysis (PPCA) is studied in [9], adjacent PCA
model is studied in [10], PCA model based on Bayesian
classier is studied in [11–13], mixed PCA model is studied
in [14], Gaussian mixture model (GMM) is studied in [15],
and so on.

Multiple mode process switches constantly between
“steady state mode 1 transition process-steady state mode
2” and the fault detection of steady state modes should be
considered and also the fault detection of the transition
process should be studied. For example, in the literature [16],
Lu et al. used “hard partition” to obtain the transition region
between steady state modes. In the literature [17], Zhao et al.
and another literature [18], Yao and Gao further proposed
the concept of “so� partition” and separate the data of the
transition region and the data of the stable region preferably.

Currently, fault detection and fault diagnosis of multiple
mode process have achieved remarkable achievements while
the research of fault prediction is still rare [19, 20].
is paper
proposed a fault predictionmethod ofmultiplemode process
based on fault reconstruction technology. First, multiple
PCA models are applied to fault detection of multiple mode
process. 
en, fault reconstruction technology is used to
estimate the fault amplitude. Last, employ the support vector
machine (SVM) to predict the trend of the fault amplitude.

e data of Tennessee Eastman process is applied to verify
the validity of the algorithm.

2. Fault Detection Algorithms under
Multiple Mode Process

Multiple mode process includes steady state process and
transition process. Build multi-PCA models to adapt to
steady state processes of di�erent conditions and calculate
statistics of the corresponding detection indicator Hotelling’s�2 and SPE (squared prediction error) of each PCAmodel for
fault detection. For transition processes, a weighted method
is applied to calculate statistics and control limits for fault
detection.

Dene x ∈ �� that represents a sample vector with �
measured variables, and there are � samples during operation.

e data matrix X ∈ ��×� is composed by � samples,
in which each row represents a sample and each column
represents that a measured variable includes � samplings.
First, transfer each column of the datamatrixX to zeromeans
and unit variance variable through standardized processing;

then, a�er standardization, the covariancematrix of sample x
can be obtained:

S = cov (x) ≈ 1� − 1X�X. (1)


en analyse the eigenvalues of the covariancematrix and
arrange the eigenvalues in descending order. Each column
of the data matrix X transfers to zero mean and unit
variance variable can be obtained as follows: subtract the
corresponding variable from each column of X and then
divide by the corresponding variable standard deviation.


e PCAmodel divides the measured variable space into
principal subspace and residual subspace; they are orthogonal
and complementary. Any sample vector can be decomposed
into projections on principal subspace and residual subspace;
that is to say, the PCA model decomposes the sample matrix

X ∈ ��×� into two parts: X̂ and E. Consider

X = X̂ + E = TP
� + E, (2)

where X̂ is the modeled part; E is the residual part; P ∈ ��×�
is loadmatrix, which is made up of the former	 eigenvectors

of 
; 	 is the number of principal elements; T ∈ ��×� is
scoring matrix, T = XP.


e multi-PCA method is to establish a corresponding
principal element model according to the historical data
of existing measured variables in each steady state operat-
ing condition, thus establishing the multiprincipal element
model groupwhich contains all operating conditions; namely,

X
(�) = X̂

(�) + E
(�), (3)

where � is the number of stable conditions.

2.1. Fault Detection of Steady State Process. In multi-PCA
model, it is needed to calculate the statistics of the corre-
sponding detection indicator �2 and SPE for each separate

PCA model, that is, �2(�) and SPE(�). SPE is used to measure
the changes of sample vector projections on residual sub-

space, and �2 is used to measure the changes of measured
variables on principal subspace. SPE is given as

SPE = �����(I − PP
�) x�����2 ≤ �2�, (4)

where �2� is the control limit of SPE when condence level
is �. When SPE is in control limit, the device is running in
normal state; however, when SPE is beyond the control limit,
a failure occurs. 
e change of SPE represents the change of

correlation between the data. �2� is given as

�2� = �1(��√2�2ℎ20�1 + 1 + �2ℎ0 (ℎ0 − 1)�21 )
1/ℎ0 , (5)

where �	 = ∑�
=�+1 �	
 (� = 1, 2, 3), ℎ0 = 1 − 2�1�3/3�21 , and�
 is the eigenvalue of covariance matrix∑ corresponding to
sample matrixX. �� is the threshold value of standard normal
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distribution when condence level is �.� is the dimension of
sample x.�2 is given as

�2 = x
�
PΛ−1P�x ≤ �2� , (6)

where Λ = diag{�1, . . . , ��} and �2� is the statistical limit of�2 when condence level is �. When �2 is in control limit,
the device is running in a normal state.

2.2. Fault Detection of Transition Process. In multiple mode
process, when a production process switches from one steady
state to another, it will go through a slow-changing transition
process and cause false alarms of a specic fault if the fault
detection method for steady state process is being used in
transition process. 
is paper uses a weighted method that

evolves with time to optimize each of �2 and SPE of each
separate PCA model. 
en use the optimized �2 and SPE
for fault detection. 
us false alarms of a fault during the
transition process can be e�ectively avoided.

When performing an average in statistics, the value
which gives some elements more “weight” or in�uence on
the result than other elements in the same set is called
weight. Weighted algorithm is the weight multiplied by the
value of the corresponding element and then divided by
the sum of every weight. In the instant of a steady state
condition just to transfer to the next condition, the former
condition has a greater impact on the characteristics of the
transition process. With time passing, the characteristics of
the transition process become more and more close to the
next condition. 
erefore, during the transition process the
value of weights should be time changing. 
e weight of
the former condition transfers from 1 to 0; on the contrary
the weight of the new condition transfers from 0 to 1. 
e
weight of the former condition �1 and the weight of the new
condition �2 are given as

�1 = � − �1Δ� ,
�2 = �2 − �Δ� , (7)

where �1 is themoment when the transition process begins; �2
is the moment when the transition process ends, Δ� = �2 − �1;�1 + �2 = 1.

Suppose that � = !,"1, "2 represent themean ofmeasured
variables of the two adjacent conditions and #1 and #2
represent the standard deviation of measured variables of the
two adjacent conditions; thus the mean "�=� and standard
deviation #�=� of the transition process are given as

"�=� = �1 × "1 + �2 × "2,#�=� = �1 × #1 + �2 × #2. (8)


e sample data can be pretreated by the weighted mean"�=� and standard deviation #�=�, so covariance matrix of the
sample vector 
�=� and load matrix of the transition process

P�=� can be obtained, and then the optimized SPE and �2 can
be derived:

SPE�=� = �����(I − P�=�P�=�
�) x�=������2 ≤ �2��=�,�2�=� = x

�
�=�P�=�Λ−1�=�P��=�x�=� ≤ �2�=�. (9)

3. Fault Amplitude Estimation Based on
Reconstruction Technique

When a fault is detected, the fault amplitude which measures
the extent of the current fault can be estimated by fault recon-
struction technique. Whether the estimation of amplitude
of the same fault is consistent under di�erent conditions is
an important problem that multicondition brought. If it is
not, it should achieve consistency by employing some specic
algorithms.

3.1. �e Basic Idea of Fault Reconstruction. Fault recon-
struction is to reconstruct the process data and remove
the e�ects of faults. 
e data reconstructed is within the
control limits theoretically and is approximately the normal
data. Fault estimation is to estimate the fault amplitude
a�er fault reconstruction. When observed data is missing
or is obviously failure, the practical data can be replaced
by reconstructed data. Fault reconstruction technology has
obtained some achievements in the eld of fault diagnosis;
refer to [21–30].

Suppose x represents the data of the detected fault,
x
∗ represents the normal data, x∗, x ∈ ["1, "2, . . . , "�],� represents the number of sensors, which represents the
dimension of eachmeasurement sample, and f represents the
fault amplitude. 
en

x = x
∗ + Ξf , (10)

where Ξ represents fault subspace, also known as fault
direction matrix.

Reconstruct the normal data to eliminate the in�uence of
faults and obtain "∗	 , which is the estimated value of normal
data

x
∗
	 = x − Ξ	f	, (11)

where f	 represents the estimated value of f . In geometric
meaning, it is pulling sample x back to the principal subspace
along the fault subspace.

Based on "∗	 which is the estimation of the normal data
a�er reconstruction, we can have f	 which is the estimation of
fault amplitude in the sense of least SPE a�er reconstruction:

%̂	 = Ξ̃+"	, (12)

where Ξ̃ = (I−C)Ξdenotes the projection from fault subspace
Ξ to residual subspace C.


e SPE a�er reconstruction is

SPE (x∗) = ����x̃∗����2 = �����x̃ − Ξ̃fi�����2 . (13)
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Reconstruction means searching f̂i to t the following
equation based on (13)

f̂i = argmin
�����x̃ − Ξ̃f	�����2 = (Ξ̃�	 Ξ̃	)−1 Ξ̃�i "̃. (14)


e optimal solution of (14) is

f̂	 = Ξ̃+x̃	 = Ξ̃+x	, (15)

where Ξ̃+ denotes the Moore-Penrose pseudoinverse of Ξ̃.

3.2. Consistent Estimation of Multiple Mode Process Fault
Amplitude. When a fault occurs in condition 1 and lasts
to condition 2, the fault direction matrix Ξ changes, but
the fault magnitude remains unchanged. In theory, for the
same fault, the fault estimation should be consistent even in
di�erent conditions. But in practical industrial process, the
result varies due to data noises and machine interference in
di�erent conditions. So the consistent estimation of the same
fault under di�erent conditions should be studied.

We assume that 	 = f̂1Ξ�	 14 = f̂2Ξ�	 2, (16)

where f̂1 and f̂2 denote the amplitude estimation of the same
fault in the condition and the next condition separately. Ξ	 1
and Ξ	 2 denote the projection matrix on residual subspace
of the corresponding fault separately; we suppose that the
dimensions of Ξ	 1 and Ξ	 2 are both �.

Based on (16), we can derive the amplitude estimations of
the same fault under di�erent conditions:

f
∗
1 = Ad

f
∗
2 = Be. (17)

We can derive d and e in the way of minimizing ‖f∗1 − f∗2 ‖.
We dene G = [A,B] here,G ∈ R

�×2�. 
e singular value

decomposition of G� can be described as

U
�
G
�
V = Σ, (18)

whereU andV are both unitary matrix with the correspond-
ing dimensions of 2! and �, Σ is diagonal matrix, and the
diagonal elements are singular values. Sort the singular values
in descending order. Take the last � column eigenvectors
of le� singular vector U, and the dimension is 2! × !. 
e
former ! line is the estimation of d, and the latter ! line is the
estimation of e. Put d and e in (17); the obtained f∗1 and f

∗
2 are

the consistent estimations of the same fault under di�erent
conditions.

4. Fault Prediction Algorithms


e amplitude changes with the evolution of the fault. When
the fault amplitude is estimated, the support vector machine
(SVM) prediction model can be used to predict the trend of
the fault amplitude.

For the given time series {"1, "2, . . . , "�}, � = 1, 2, . . . , �,"� is the target value of prediction, inputs are {"�−1, "�−2,. . . , "�−�}, and � is the embedding dimension. Build the
mapping % : R� → 7, which is between input "∗� = {"�−1,"�−2, . . . , "�−�} and output8� = {"�}, and the learning sample
for supporting vector machine is as follows:

9 = [[[[[[[

"1 "2 ⋅ ⋅ ⋅ "�"2 "3 ⋅ ⋅ ⋅ "�+1... ... ⋅ ⋅ ⋅ ..."�−� "�−�+1 ⋅ ⋅ ⋅ "�−1
]]]]]]]
, C = [[[[[[[

"�+1"�+2..."�
]]]]]]]

(19)


e regression function for training the vector machine
is

8� = �−�∑
	=1

(�	 − �∗	 )E ("	, "�) + F, � = � + 1, . . . , �, (20)

where�	 and�∗	 are Lagrangemultipliers, F is threshold value,E("	, "�) is a Kernel function, and the radial basis function is
used here:

E(", "�) = exp(−�����" − "������22#2 ) . (21)

And the one-step prediction model is

8�+1 = �−�∑
	=1

(�	 − �∗	 )E ("∗	 , "∗�−�+1) + F. (22)

And then obtain a sample "∗�−�+1 ={"�−�+1, "�−�+2, . . . , "�} and "̂�+1 represents the prediction
of the (� + 1)th data.

Furthermore we can have

8�+� = �−�∑
	=1

(�	 − �∗	 )E ("∗	 , "∗�−�+�) + F. (23)

Equation (23) represents the predictionmodel of the Ith step
and we can have "∗�−�+� = {"�−�+�, . . . , "̂�+�, "̂�+�+1}, "�
represents the actual value of the �th data, and "̂� represents
the prediction of the �th data [31].

Use mean squared error (MSE) and average relative
prediction error (ARE) to evaluate the accuracy of prediction
of the trend of the fault amplitude using the SVM prediction
model. 
e MSE and ARE can be described as follows:

MSE = 1� × √ �∑	=1 (8	 − 8̂	)2 ,
ARE = 1� ×∑ KKKKKKKK8	 − 8̂	8	

KKKKKKKK .
(24)

5. Simulations

Tennessee Eastman process contents 41 measured variables
(including 22 continuous variables and 19 component vari-
ables) and 12 operating variables and can set 21 kinds of
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Figure 1: 
e curve of SPE, when the fault occurs at condition 1.

faults; refer to paper [32–35] for more details of Tennessee
Eastman process. Simulation of this paper selects fault 2,
namely, step transition of �ow B. Add a step signal to �ow
B in a specic instant, and then the variable begins to have
a slowly changing process and nally stays at a stable state,
so the data of two stable conditions and a transition process
can be obtained. Select 11 control variables and 18 process
variables as a sample data set, and the sampling interval is 3
minutes, and take 2000 normal samples which contain both
working condition 1, transition process and condition 2 as
training samples. Under normal working conditions, changes
in working conditions occur at sample point 900, and, a�er
a period of transition process, the steady state of condition
2 arrives at about sample point 1100. Under fault conditions,
changes inworking conditions still occur at sample point 900,
which the time of fault include two cases in Case 1, the fault
occurs in condition 1, as the condition changes and the fault
enters the transition process and then lasts to condition 2, and
in this case the fault is set at sample point 160. In Case 2, the
fault occurs in condition 2, condition 1 and transition process
are in normal state, and, in this case, the fault is set at sample
point 1260.

First, with themulticondition data a�er pretreatment, the
multi-PCAmodel can be established and set the control limit
of statistical indicators for fault detection as 99%. 
e fault
that occurs at both cases has been detected; the detection
result of the rst case is showed in Figures 1 and 2; the
detection result of the second case is showed in Figures 3 and
4.

In Figure 1, the dash line represents the control limit of
SPE and the detection indicator of SPE surpasses the control
limit from the 166th sample point that means fault occurs at
condition 1.

In Figure 2, the dash line represents the control limit

of �2; �2 surpasses the control limit from the 164th sample
point that means fault occurs at condition 1.
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Figure 2: 
e curve of �2, when the fault occurs at condition 1.
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Figure 3: 
e curve of SPE, when the fault occurs at condition 2.

In Figure 3, the dash line represents the control limit
of SPE; the detection indicator of SPE surpasses the control
limit from the 1271st sample point that means fault occurs at
condition 2.

In Figure 4, the dash line represents the control limit of�2; �2 surpasses the control limit from the 1269th sample
point that means fault occurs at condition 2.

A�er fault detection was accomplished, we can derive
the estimation of amplitude of fault using reconstruction
technique. Suppose the same fault occurs at two di�erent
conditions; then the cure of the estimated amplitude of the
fault is shown as in Figure 5. 
e dot-dash line represents
the estimation of amplitude under condition 1, the solid line
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Figure 4: 
e curve of �2, when the fault occurs at condition 2.
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Figure 5: Estimation of amplitude of the same fault under two
di�erent conditions.

represents the estimation of amplitude under condition 2, and
we can easily see that they are not consistent in this situation.

In Figure 6, the consistent estimation of the amplitude of
the same fault under two di�erent conditions is derived.

We set that the fault occurs at condition 1 and last to
condition 2, the amplitude of the fault is shown in Figure 7,
and the consistent estimation of the amplitude is derived by
consistent estimation algorithm; see Figure 8.

In Figure 9, employ SVM prediction model to predict the
one-step and ten-step amplitude of the fault, the solid line
represents the actual value of the amplitude, the dot-dash line
represents the one-step prediction curve, and the star line
represents the ten-step prediction curve.

0 100 200 300 400 500 600 700 800 900
0

0.5

1

1.5

2

2.5

3

Sample index

Mode 1

Mode 2

|f
|

Figure 6: Consistent estimation of the amplitude of the same fault
under two di�erent conditions.
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Figure 7: Fault occurs at condition 1 and continues to condition 2.

Table 1: Comparison of relative prediction errors of di�erent
prediction steps.

Prediction step Relative prediction error

One-step prediction 2.027e − 008

Ten-step prediction 0.00264795

According to the characteristics of multicondition data,
SVM prediction model has a good generalization perfor-
mance; Table 1 shows comparison of relative prediction error
of the one-step prediction and 10-step prediction; it can be
easily seen that, in the long-term forecast, SVM prediction
model still remains high accuracy.
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Figure 8: 
e consistent estimation of the amplitude.
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Figure 9: Prediction curve of the amplitude.

6. Conclusions

When complex engineering systems run in multiple mode
process, the relationship between di�erent measurement
variables varies according to the operating mode. If we
describe the device status according to a one-condition data
model, a lot of false alarms and missing alarms will happen.
For a class of multiplemode process with hidden degradation
faults, the paper proposes a fault prediction algorithm based
on the combination of multi-PCA model and fault recon-
struction techniques, which can o�er a good solution for fault
prediction problems of multiple mode process data. To nd
the fault direction and estimate the fault amplitude from data
with hidden faults, bothmultidimensional characteristics and
consistent estimation of the fault have been considered, and
thus the estimation error of the same fault under di�erent

conditions can be avoided dramatically. Relatively ideal pre-
dictions are obtained by employing SVM to predict the trend
of the fault amplitude. By running to Tennessee Eastman
process, the e�ectiveness of reconstruction and prediction
algorithms proposed in this paper has been veried.
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