

Journal of Information Processing Systems, Vol.8, No.2, June 2012 http://dx.doi.org/10.3745/JIPS.2012.8.2.241

241

Fault Prediction Using Statistical and Machine
Learning Methods for Improving Software Quality

Ruchika Malhotra* and Ankita Jain**

Abstract—An understanding of quality attributes is relevant for the software organization

to deliver high software reliability. An empirical assessment of metrics to predict the

quality attributes is essential in order to gain insight about the quality of software in the

early phases of software development and to ensure corrective actions. In this paper, we

predict a model to estimate fault proneness using Object Oriented CK metrics and

QMOOD metrics. We apply one statistical method and six machine learning methods to

predict the models. The proposed models are validated using dataset collected from

Open Source software. The results are analyzed using Area Under the Curve (AUC)

obtained from Receiver Operating Characteristics (ROC) analysis. The results show that

the model predicted using the random forest and bagging methods outperformed all the

other models. Hence, based on these results it is reasonable to claim that quality models

have a significant relevance with Object Oriented metrics and that machine learning

methods have a comparable performance with statistical methods

Keywords—Empirical Validation, Object Oriented, Receiver Operating Characteristics,
Statistical Methods, Machine Learning, Fault Prediction

1. INTRODUCTION

Software reliability is a critical field in software engineering and an important facet of soft-

ware quality. Every organization wants to assess the quality of the software product as early as

possible so that poor software design leading to lower quality product can be detected and hence

be improved or redesigned. This would lead to significant savings in the development costs,

decrease the development time, and make the software more reliable. The quality of the software

can be measured in terms of various attributes such as fault proneness, maintenance effort, test-

ing effort, etc. In this study, we have used fault proneness as the quality predictor. Fault prone-

ness is defined as the probability of fault detection in a class [1-4]. Due to high complexity and

constraints involved in the software development process, it is difficult to develop and produce

software without faults. High cost is involved in finding and correcting faults in software pro-

jects. Thus, we need to identify or locate the areas where more attention is needed in order to

find as many faults as possible within a specified time and budget. To address this issue, we

predict fault proneness model using statistical and machine learning methods in this paper. One

of the approaches to identify faulty classes early in the development cycle is to predict models

by using software metrics. In the realm of an object oriented environment, object oriented soft-

Manuscript received May 16, 2011; first revision December 22, 2011; accepted February 13, 2012.

Corresponding Author: Ruchika Malhotra

* Dept. of Software Engineering, Delhi Technological University, Delhi, India (ruchikamalhotra2004@yahoo.com)

** Dept. of Computer Engineering, Delhi Technological University, Delhi, India (ankita4813@yahoo.com)

Copyright ⓒ 2012 KIPS (ISSN 1976-913X)

Fault Prediction Using Statistical and Machine Learning Methods for Improving Software Quality

242

ware metrics have become increasingly popular with researchers. There are various object-

oriented metrics available in the literature [5-11] to predict software quality attributes.

Hence, the main contributions of this paper are: (1) To establish relationship between object

oriented metrics and fault proneness. There are a number of object oriented metrics such as CK

metrics [5], MOOD [7], QMOOD metrics [8], etc., but not all the metrics are good predictors of

fault proneness. Thus, it is very important to understand the relationship of object oriented met-

rics and fault proneness. In other words, we must find out which of the metrics are significant in

predicting the faulty classes. Then, these significant metrics can be combined into one set to

build the multivariate prediction models for predicting fault proneness. Identified metrics will

help software practitioners to focus on fault prone classes and ensure a higher quality software

product with the available resources. Software researchers may use these metrics in further stud-

ies. (2) To analyze machine learning methods (method of programming computers to optimize

performance criterion using example data or past experience). Nowadays, machine learning is

widely used in various domains (i.e., retail companies, financial institutions, bioinformatics,

etc.) There are various machine learning methods available. We have used six machine learning

methods to predict the accuracy of the model predicted. These six machine learning methods

have been widely used in literature and have shown good results [4, 12-14]. Amongst the vari-

ous models predicted, we must determine one of the models to be the best model, which can be

used by researchers in further studies to predict the faulty classes.

In order to achieve this aim we have used dataset collected from open source software, poi

[15]. This software was developed using Java language and consists of 422 classes. The differ-

ent dataset used by us will provide an important insight to researchers for identifying the rele-

vance of metrics with a given type of dataset. Since it is Open Source software, the users have

freedom to study and modify the source code (written in Java) without paying royalties to previ-

ous developers. We have used one statistical method (logistic regression) and six machine learn-

ing methods (random forest, adaboost, bagging, multilayer perceptron, support vector machine,

and genetic programming).

We have analyzed the performance of the models by calculating area under the Receiver Op-

erating Characteristic (ROC) curve [16]. ROC curve is used to obtain a balance between the

number of classes predicted as being fault prone, and the number of classes predicted as not

being fault prone.

The paper is organized as follows: Section 2 reviews the key points of available literature in

the domain. Section 3 explains the independent and dependent variables used in our study. The

description of the metrics is also provided. Section 4 discusses the research methodology and

gives the details of the data used for analysis. It also explains the various methods used and the

performance evaluation measures. Section 5 analyzes the univariate and the multivariate results.

We have compared our results with the results of the previous results in this section. The model

predicted is evaluated using the ROC curve in Section 6. Finally, the work is concluded in Sec-

tion 7.

2. LITERATURE REVIEW

Significant work has been done in the field of fault detection. The complete survey of fault

prediction studies till 2008 is provided in the paper by C. Catal [17]. Highlights of select papers

Ruchika Malhotra and Ankita Jain

243

have been discussed in this section, including papers published post 2008. There are various

categories of methods to predict faulty classes such as machine learning methods, statistical

methods, etc. We have observed that much of the previous work used traditional statistical

methods [18, 20, 21, 16] to bring out the results, but very few studies have used machine learn-

ing methods. Recently, the trend is shifting from traditional statistical methods to modern ma-

chine learning methods. The most common statistical methods used are univariate and multi-

variate logistic regression. A few key points of the papers using statistical methods are discussed.

The paper by N. Ohlsson et al.[18] has worked on improving the techniques used by Khos-

goftaar [19] (i.e., Principal Component Analysis and Discriminant Analysis). This paper [18]

has discussed some problems that were faced while using these methods and thus suggested

remedies to those problems. Another approach to identify faulty classes early in the develop-

ment cycle is to construct prediction models. The paper [20] has constructed a model to predict

faulty classes using the metrics that can be collected during the design stage. This model has

used only object oriented design metrics. Tang et al. [21] conducted an empirical study on three

industrial real time systems and validated the CK [5] object oriented metric suite. They found

that only WMC and RFC are strong predictors of faulty classes. They have also proposed a new

set of metrics, which are useful indicators of object oriented fault prone classes. It has been seen

that most of the empirical studies have ignored the confounding effect of class size while vali-

dating the metrics. Various studies [6, 11, 22] have shown that class size is associated with

many contemporary object oriented metrics. Thus, it becomes important to revalidate contempo-

rary object oriented metrics after controlling or taking into account the effect of class size [16].

The two papers by El. Emam et al. [16, 23] showed a strong size confounding effect and thus

concluded that the metrics that were strongly associated with fault proneness before being con-

trolled for size were not associated with fault proneness anymore after being controlled for size.

Another empirical investigation [11] by M.Cartwright et al. conducted on a real time C++ sys-

tem discussed the use of object oriented constructs such as inheritance and therefore polymor-

phism. M. Cartwright et al. [11] have found high defect densities in classes that participated in

inheritance as compared to classes that did not. The probable reasons for this observation have

been discussed in the paper. Briand et al. [1] have empirically investigated 49 metrics (28 cou-

pling measures, 10 cohesion measures, and 11 inheritance measures) for predicting faulty

classes. There were 8 systems being studied (consisting of 180 classes in all), each of which was

a medium sized management information system. They used univariate and multivariate analysis

to find the individual and the combined effect of object oriented metrics and fault proneness.

They did not examine the LCOM metric and found that all the other metrics are strong predic-

tors of fault proneness except for NOC. Another paper by Briand et al. [24] has also validated

the same 49 metrics. The system used for this study was the multi-agent development system,

which consists of three classes. They found NOC metric to be insignificant, while DIT was

found to be significant in an inverse manner. WMC, RFC, and CBO were found to be strongly

significant. Yu et al. [25] empirically tested 8 metrics in a case study in which the client side of

a large network service management system was studied. The system is written in Java and con-

sists of 123 classes. The validation was carried out using regression analysis and discriminant

analysis. They found that all the metrics were significant predictors of fault proneness except

DIT, which was found to be insignificant.

Recently, researchers have also started using some machine learning techniques to predict the

model. Gyimothy et al. [12] calculated CK [5] metrics from an open source web and email suite

Fault Prediction Using Statistical and Machine Learning Methods for Improving Software Quality

244

called Mozilla. To validate the metrics, regression and machine learning methods (decision tree

and artificial neural networks) were used. The results concluded NOC to be insignificant,

whereas all the other metrics were found to be strongly significant. Zhou et al. [26] have used

logistic regression and machine learning methods to show how object oriented metrics and fault

proneness are related when fault severity is taken into account. The results were calculated using

the CK metrics suite and were based on the public domain NASA dataset. WMC, CBO, and

SLOC were found to be strong predictors across all severity levels. Prior to this study, no previ-

ous work had assessed severity of faults. The paper by S. Kanmani et al. [13] has introduced two

neural network based prediction models. The results were compared with two statistical methods

and it was concluded that neural networks performed better as compared to statistical methods.

Fenton et al. [27] introduced the use of bayesian belief networks (BBN) for the prediction of

faulty classes. G.J. Pai et al. [2] also built a bayesian belief network (BN) and showed that the

results gave comparable performance with the existing techniques. I. Gondra [14] has performed

a comparison between the artificial neural network (ANN) and the support vector machine

(SVM) by applying them to the problem of classifying classes as faulty or non-faulty. Another

goal of this paper was to use the sensitivity analysis to select the metrics that are more likely to

indicate the errors. After the work of Zhou et al. [26], the severity of faults was taken into ac-

count by Shatnawi et al. [28] and Singh et al. [4]. Shatnawi et al. used the subset of CK [5] and

Lorenz & Kidd [9] metrics to validate the results. The data was collected from three releases of

the Eclipse project. They concluded that the accuracy of prediction decreases from release to

release and some alternative methods are needed to get more accurate prediction. The metrics,

which were found to be very good predictors across all versions and across all severity levels,

were WMC, RFC, and CBO. Singh et al. [4] used the public domain NASA dataset to determine

the effect of metrics on fault proneness at different severity levels of faults. Machine learning

methods (decision tree and artificial neural network networks) and statistical method (logistic

regression) were used. The predicted model showed lower accuracy at a high severity level as

compared to medium and low severities. It was also observed that performance of machine

learning methods was better than statistical methods. Amongst all the CK metrics used CBO,

WMC, RFC, and SLOC showed the best results across all the severity levels of faults. Malhotra

et al. [29] have used LR and 7 machine learning techniques (i.e., artificial neural networks, ran-

dom forest, bagging, boosting techniques [AB, LB], naive bayes, and kstar) to validate the met-

rics. The predicted model using LB technique showed the best result and the model predicted

using LR showed low accuracy.

From the survey we have conducted, the following observations were made:

� We observed that among the number of metrics available in literature, the CK metric suite is

most widely used. It has been seen that most of the studies have also defined their own met-

ric suite and they have used them for carrying out the analysis.

� Among the various categories of methods available to predict the most accurate model such

as machine learning methods, statistical methods, etc. the trend is shifting from the tradi-

tional statistical methods to the machine learning methods. It has been observed that ma-

chine learning is widely used in new bodies of research to predict fault prone classes. Re-

sults of various studies also show that better results are obtained with machine learning as

compared to statistical methods.

Ruchika Malhotra and Ankita Jain

245

� Papers have used different types of datasets, which are mostly public datasets, commercial

datasets, open source, or students/university datasets. We have observed that the public

datasets, which have been mostly used in the studies, are from the PROMISE and NASA

repositories.

3. DEPENDENT AND INDEPENDENT VARIABLES

In this section, we present the independent and dependent variables used in this study along

with a summary of the metrics studied in this paper.

In this paper, we have used object-oriented metrics as independent variables. A summary of

the metrics used in this paper is given in Table 1. The dependent variable is fault proneness.

Fault proneness is defined as the probability of fault detection in a class [1, 2, 3, 4]. We have

Table 1. Metrics Studied

S.No. Metric Definition

1. WMC - Weighted methods

per class

The WMC metric is the sum of the complexities of all methods in a class.

Complexity can be measured in terms of cyclomatic complexity, or we can

arbitrarily assign a complexity value of 1 to each method. The Ckjm pro-

gram assigns a complexity value of 1 to each method. Therefore, the value

of the WMC is equal to the number of methods in the class.

2. DIT - Depth of Inheritance

Tree

The Depth of Inheritance Tree (DIT) metric for each class is the maximum

number of steps from the class node to the root of the tree. In Java, where

all the classes inherit the object, the minimum value of the DIT is 1.

3. NOC - Number of Children A class’ Number of Children (NOC) metric measures the number of im-

mediate descendants of the class.

4. CBO - Coupling Between

Object classes

The CBO for a class represents the number of classes to which it is cou-

pled and vice versa. This coupling can occur through method calls, field

accesses, inheritance, arguments, return types, and exceptions.

5. RFC - Response for a Class The value of RFC is the sum of the number of methods called within the

class' method bodies and the number of the class' methods.

6. LCOM - Lack of Cohesion in

Methods

LCOM measures the dissimilarity of methods in a class by looking at the

instance variables used by the methods in that class.

7. Ca - Afferent couplings

(not a C&K metric)

A class’ afferent couplings are the number of other classes that use a spe-

cific class.

8. Ce - Efferent couplings

(not a C&K metric)

A class’ efferent couplings are the number of other classes that are used by

the specific class.

9. NPM - Number of Public

Methods (not a C&K metric;

CIS: Class Interface Size in

the QMOOD metric suite)

The NPM metric counts all the methods in a class that are declared as

being public.

10. LCOM3 -Lack of cohesion in

methods Henderson-Sellers

version

LCOM3 varies between 0 and 2.

m - number of procedures (methods) in class

a - number of variables (attributes in class

µ(A) - number of methods that access a variable (attribute)

The constructors and static initializations are taken into account as sepa-

rate methods.

Fault Prediction Using Statistical and Machine Learning Methods for Improving Software Quality

246

used logistic regression and machine learning methods, which are based on predicting probabili-

ties [1-4]

The program Ckjm calculates six object oriented metrics specified by Chidamber and

Kemerer by processing the bytecode of compiled Java files. It also calculates a few of the other

metrics. Ckjm follows the UNIX tradition of doing one thing well. [30]

4. RESEARCH METHODOLOGY

In this section we present the descriptive statistics for all the metrics that we have considered.

We have also explained the methodology used (i.e., one statistical method and six machine

Table 1. Metrics Studied

S.No. Metric Definition

11. LOC - Lines of Code (not a

C&K metric)

The lines of code is calculated as the sum of the number of fields, the num-

ber of methods, and the number of instructions in a given class.

12. DAM: Data Access Metric

(QMOOD metric suite)

This metric is the ratio of the number of private (protected) attributes to the

total number of attributes declared in the class. A high value is desired for

DAM. (Range 0 to 1)

13. MOA: Measure of Aggre-

gation (QMOOD metric

suite)

The count of the number of data declarations (class fields) whose types are

user defined classes.

14. MFA: Measure of Func-

tional Abstraction

(QMOOD metric suite)

This metric is the ratio of the number of methods inherited by a class to the

total number of methods accessible by member methods of the class. The

constructors and the java.lang.Object (as parent) are ignored. (Range 0 to 1)

15. CAM: Cohesion Among

Methods of Class

(QMOOD metric suite)

The metric is computed using the summation of the number of different

types of method parameters in every method divided by a multiplication of a

number of different method parameter types in whole class and the number

of methods. A metric value close to 1.0 is preferred. (Range 0 to 1).

16. IC: Inheritance Coupling

(quality oriented extension

for the C&K metric suite)

This metric provides the number of parent classes to which a given class is

coupled. A class is coupled to its parent class if one of the following condi-

tions is satisfied:

� One of its inherited methods uses a variable (or data member) that is de-

fined in a new/redefined method.

� One of its inherited methods calls a method that is defined in the parent

class.

� One of its inherited methods is called by a method that is defined in the

parent class and uses a parameter that is defined in that method.

17. CBM: Coupling Between

Methods (quality oriented

extension for the C&K

metric suite)

The metric measures the total number of new/redefined methods to which all

the inherited methods are coupled.

18. AMC: Average Method

Complexity (quality ori-

ented extension to C&K

metric suite)

This metric measures the average method size for each class. The size of a

method is equal to the number of Java binary codes in the method.

19. CC - McCabe's Cyclomatic

Complexity

It is equal to the number of different paths in a method (function) plus one.

The cyclomatic complexity is defined as:

CC = E - N + P

where:

E - the number of edges of the graph

N - the number of nodes of the graph

P - the number of connected components

Ruchika Malhotra and Ankita Jain

247

learning methods). The performance evaluation measures are also presented.

4.1 Empirical Data Collection

This study makes use of an Open Source dataset "Apache POI" [15]. Apache POI is a pure

Java library for manipulating Microsoft documents. It is used to create and maintain Java API

for manipulating file formats based upon the office open XML standards (OOXML) and Micro-

soft OLE2 compound document format (OLE2). In short, we can read and write MS Excel files

using Java. In addition, we can also read and write MS word and MS PowerPoint files using

Java. The important use of the Apache POI is for text extraction applications such as web spi-

ders, index builders, and content management systems. This system consists of 422 classes. Out

of 422 classes, there are 281 faulty classes containing 500 numbers of faults. It can be seen from

Fig. 1 that 71.53% of classes contain 1 fault, 15.3 % of classes contain 2 faults and so on. As

shown in the pie chart, the majority of classes consist of 1 fault. Table 2 summarizes the distri-

bution of faults and faulty classes in the dataset.

4.2 Descriptive Statistics

Table 3 shows the “mean," “median," “min," “max," “std dev," “25% quartile," “50% quar-

tile,” and “75% quartile” of all the independent variables used in our study. We can make the

following observations from Table 3.

Fig. 1. Distribution of Faults

Table 2. Data Description

No. of faulty classes 281

% of faulty classes 63.57

No. of faults 500

Language used Java

Fault Prediction Using Statistical and Machine Learning Methods for Improving Software Quality

248

The size of a class measured in terms of lines of source code ranges from 0 to 9886. We can

observe that the NOC metric values are 0 in 75% of the classes. Also, the DIT metric values are

low, the biggest DIT metric value is 6, and 75% of the classes have 2 levels of inheritance at

most. This shows that inheritance is not used much in the system. Similar results were also ob-

served by other authors [1, 11].There is a high cohesion observed in the system. The cohesion

metrics (i.e., LCOM and LCOM3) have high values. The value of LCOM metric ranges from 0

to 7,059 and the LCOM3 metric ranges from 0 to 2 (which is the maximum LCOM3 value).

4.3 Methods Used

In this study, we have used one statistical model and six machine learning models to predict a

fault proneness model.

4.3.1 The statistical model

Logistic regression is the commonly used statistical modelling method. Logistic regression is

used to predict the dependent variable from a set of independent variables (a detailed description

is given by [3, 31, 32]). It is used when the outcome variable is binary or dichotomous. We have

used both univariate and multivariate regression. Univariate logistic regression finds the rela-

tionship between the dependent variable and each independent variable. It finds whether there is

Table 3. Descriptive Statistics

Percentiles

Metric Mean Std. Error of Mean Median Std. Deviation Minimum Maximum 25 50 75

WMC 13.501 0.698 10 14.677 0 134 5 10 16

DIT 1.869 0.040 2 0.850 1 6 1 2 2

NOC 0.738 0.331 0 6.963 0 134 0 0 0

CBO 10.120 0.932 6 19.585 0 214 4.75 6 9

RFC 30.351 1.763 21 37.067 0 390 13 21 36.25

LCOM 100.464 21.017 22 441.849 0 7059 1 22 53.25

CA 5.233 0.838 2 17.620 0 212 1 2 4

CE 5.224 0.431 4 9.059 0 133 2 4 6

NPM 11.600 0.606 9 12.747 0 101 4 9 14

LCOM3 0.999 0.025 0.85 0.534 0 2 0.749 0.85 1.129

LOC 292.595 30.046 124.5 631.675 0 9886 59.75 124.5 321.25

DAM 0.459 0.019 0.5 0.404 0 1 0 0.5 0.889

MOA 0.814 0.121 0 2.551 0 34 0 0 1

MFA 0.358 0.015 0.361 0.318 0 1 0 0.361 0.572

CAM 0.376 0.010 0.311 0.208 0 1 0.253 0.311 0.467

IC 0.577 0.026 1 0.555 0 3 0 1 1

CBM 1.952 0.116 1 2.439 0 20 0 1 4

AMC 19.362 1.880 12.192 39.516 0 616.375 6.375 12.192 20.544

MAX_CC 3.704 0.367 2 7.713 0 126 1 2 3

AVG_CC 1.188 0.052 0.976 1.090 0 17.125 0.814 0.975 1.289

Ruchika Malhotra and Ankita Jain

249

any significant association between them. Multivariate logistic regression is done to construct a

prediction model for the fault proneness of classes. It analyzes which metrics are useful when

they are used in combination. Logistic regression results in a subset of metrics that have signifi-

cant parameters. To find the optimal set of independent variables (metrics), there are two step-

wise selection methods, which are forward selection and backward elimination [32]. Forward

selection examines the variables that are selected one at a time for entry at each step. The back-

ward elimination method includes all the independent variables in the model and the variables

are deleted one at a time from the model until the stopping criteria is fulfilled. We have used the

forward stepwise selection method.

The general multivariate logistic regression formula is as follows [3]:

Prob (X1 , X2, …, Xn) =

where g(x) = B0 + B1*X1 + B2* X2 + … + Bn* Xn

 ‘prob’ is the probability of a class being faulty

 Xi, (1≤ i ≤ n) are independent variables

The following statistics are reported for each metric from the above formula:

1. Odds Ratio: The odds ratio is calculated using Bi's. The formula for the odds ratio is R=

exp (Bi). This is calculated for each independent variable. The odds ratio is the probability

of the event divided by the probability of a non-event. The event in our study is the prob-

ability of having a fault and the non- event is the probability of not having a fault [4].

2. Maximum Likelihood Estimation (MLE) and coefficients (Bi's): MLE is the likelihood

function that measures the probability of observing a set of dependent variables [4]. MLE

finds the coefficient in such a way that the log of the likelihood function is as large as pos-

sible. The more the value of the coefficient the more the impact of the independent vari-

ables on predicted fault proneness is.

4.3.2 Machine Learning Models

Besides the statistical approach, we have used six machine learning methods. All the methods

can be used to predict fault proneness by using just one metric or by using a combination of

metrics together for prediction [12]. We have used machine learning techniques to predict the

accuracy of the models when a combination of metrics is used. Not much of the work in the area

of fault prediction is done using machine learning techniques. There are various machine learn-

ing techniques available. From amongst all of the methods, artificial neural networks (ANN)

[33] and decision trees (DT) [34] have been widely used in literature [12, 13, 14, 4].The use of

decision trees in predicting fault proneness has been proposed in Porter & Selly [35]. The paper

[14] has used ANN to predict the value of a continuous measure of fault proneness. For per-

forming the classification of classes as fault prone and non-fault prone, the paper [14] has used a

support vector machine (SVM). The application of SVMs to the fault proneness prediction prob-

lem has been explained by Xing et al. [36]. The paper [29] has used ANN, random forest, bag-

ging, boosting, and some more machine learning techniques in order to predict the faulty classes.

Fault Prediction Using Statistical and Machine Learning Methods for Improving Software Quality

250

There are various variants of boosting algorithms available, but the authors have used two vari-

ants (i.e., AB [37] and LB [38]), which have been designed for classification purposes. In litera-

ture, boosting algorithms were not evaluated, but this paper [29] shows that the boosting tech-

nique LB gave the best results in terms of AUC. Thus, the authors concluded that boosting tech-

niques may be effective in predicting faulty classes.

To predict the fault proneness of classes, we have used the following machine learning meth-

ods, and these machine learning algorithms are available in the WEKA open source tool [39]:

a. Random Forest: A random forest is made up of a number of decision trees. Each decision

tree is made from a randomly selected subset of the training dataset using replacement. For

building a decision tree, a random subset of available variables is used. This helps us to

choose how best to partition the dataset at each node. The final result/outcome is chosen by

the majority. Each decision tree in the random forest gives out its own vote for the result

and the majority wins. In building a random forest, we can mention the number of decision

trees we want in the forest. Each decision tree is built to its maximum size. There are vari-

ous advantages of a random forest. Very little pre-processing of data is required. Also, we

do not need to do any variable selection before starting to build the model. A random forest

itself takes the most useful variables [40].

b. Adaboost: Adaboost is short for adaptive boosting. It is a machine learning algorithm that

can be used along with many other learning algorithms. This leads to an improvement in

efficiency and performance. Adaboost is adaptive as it adapts to the error rates of the indi-

vidual weak hypothesis. Also, adaboost is a boosting algorithm as it can efficiently convert

a weak learning algorithm into a strong learning algorithm. Adaboost calls a given weak

algorithm repeatedly in a series of rounds. The important concept for an adaboost algorithm

is to maintain a distribution of weights over the training set. Initially all the weights are

equal but on each round the weights of incorrect classified examples are increased so that a

weak learner is forced to focus on the hard examples in the training set. This is how a weak

learning algorithm is changed to a strong learning algorithm. Adaboost is less susceptible

to an over fitting problem than most learning algorithms [40].

c. Bagging: Bagging, which is also known as bootstrap aggregating, is a technique that re-

peatedly samples (with replacement) from a data set according to a uniform probability dis-

tribution [41]. Each bootstrap sample has the same size as the original data. Because the

sampling is done with replacement, some instances may appear several times in the same

training set, while others may be omitted from the training set. On average, a bootstrap

sample Di contains approximately 63% of the original training data because each sample

has a probability 1- (1- 1/N)
N

of being selected in each Di. If N is sufficiently large, this

probability converges to 1-1/e = 0.632. After training the k classifiers, a test instance is as-

signed to the class that receives the highest number of votes [42].

d. Multilayer Perceptron: Multilayer Perceptron (MLP) is an example of an artificial neural

network. It is used for solving different problems, example pattern recognition, interpola-

tion, etc. It is an advancement to the perceptron neural network model. With one or two

hidden layers, they can solve almost any problem. They are feedforward neural networks

trained with the back propagation algorithm. Error back-propagation learning consists of

two passes: a forward pass and a backward pass. In the forward pass, an input is presented

to the neural network, and its effect is propagated through the network layer by layer. Dur-

Ruchika Malhotra and Ankita Jain

251

ing the forward pass the weights of the network are all fixed. During the backward pass the

weights are all updated and adjusted according to the error computed. An error is composed

from the difference between the desired response and the system output. This error infor-

mation is fed back to the system and adjusts the system parameters in a systematic fashion

(the learning rule). The process is repeated until the performance is acceptable [42].

e. Support Vector Machine: A Support Vector Machine (SVM) is a learning technique that is

used for classifying unseen data correctly. For doing this, SVM builds a hyperplane, which

separates the data into different categories. The dataset may or may not be linearly separa-

ble. By "linearly separable" we mean that the cases can be completely separated (i.e., the

cases with one category are on the one side of the hyperplane and the cases with the other

category are on the other side). For example, Fig. 3 shows the dataset where examples be-

long to two different categories - triangles and squares. Since these points are represented

on a 2-dimensional plane, a 1-dimensional line can separate them. To separate these points

into 2 different categories, there are an infinite number of lines possible. Two possible can-

didate lines are shown in Fig. 3. However, only one of the lines gives a maximum separa-

tion/margin and that line is selected. "Margin" is defined as the distance between the

dashed lines (as shown in Fig. 3), which is drawn parallel to the separating lines. These

dashed lines give the distance between the separating line and closest vectors to the line.

These vectors are called support vectors. SVM can also be extended to the non-linear

Fig. 2. Multilayer Perceptron

Fig. 3. Support Vector Machine

Fault Prediction Using Statistical and Machine Learning Methods for Improving Software Quality

252

boundaries by using the kernel trick. The kernel function transforms the data into a higher

dimensional space to make the separation easy. [16]

f. Genetic Programming: Genetic Programming is a branch of genetic algorithms. It is in-

spired by biological evolution. Genetic Programming creates computer programs that can

perform a user defined task. For doing this, the following 4 steps are used:

i. First, all the computer programs are made.

ii. Then, each program is executed and assigned a fitness value according to how well it

solves the problem.

iii. Then, a new population of computer programs is created:

� From among all the programs the best existing programs are copied.

� Mutation is carried out to create new programs.

� Crossover is also carried out to create new programs.

iv. Finally, the best computer program created so far in any generation is the result of Ge-

netic Programming.

4.4 Performance Evaluation Measures

To measure the performance of the predicted model, we have used the following performance

evaluation measures:

Sensitivity: It measures the correctness of the predicted model. It is defined as the percentage

of classes correctly predicted to be fault prone. Mathematically,

Sensitivity = ((Number of modules correctly predicted as fault prone) / (total number of actual

faulty modules)) * 100

Specificity: It also measures the correctness of the predicted model. It is defined as the per-

centage of classes predicted that will not be fault prone. Mathematically,

Specificity = ((Number of modules correctly predicted as non- fault prone) / (total number of

actual non faulty modules)) * 100

Precision or Accuracy: It is defined as the ratio of number of classes (including faulty and

non- faulty) that are predicted correctly to the total number of classes.

Receiver Operating Characteristic (ROC) analysis: The performance of the outputs of the

predicted models was evaluated using ROC analysis. It is an effective method of evaluating the

performance of the model predicted. The ROC curve is defined as a plot of sensitivity on the y-

coordinate versus its 1-specificity on the x-coordinate [16]. While constructing ROC curves, we

selected many cutoff points between 0 and 1, and calculated sensitivity and specificity at each

cutoff point. The ROC curve is used to obtain the required optimal cutoff point that maximizes

both sensitivity and specificity [16, 4].

The validation method used in our study is k-cross validation (the value of k is taken as 10) in

which the dataset is divided into approximately equal k partitions [43]. One partition at a time is

used for testing the model and the remaining k-1 partitions are used for training the model. This

Ruchika Malhotra and Ankita Jain

253

is repeated for all the k partitions.

5. RESULT ANALYSIS

In this section, we have analyzed the results of our study. In this study, we have validated the

CK metric suite. To begin with the data analysis, the first step is to identify the subset of the

object oriented metrics that are related to fault proneness and that are orthogonal to each other.

The statistical modeling technique used for this purpose is univariate logistic regression. After

identifying a subset of metrics, we have used the multivariate logistic regression technique to

construct a multivariate model that can be used to predict the overall fault in the system. To pre-

dict the best model that gives the highest accuracy we have used various machine learning tech-

niques. We performed the analysis of an Open Source software, poi [15], which consisted of 422

classes (see Section 4.1). The performance of each of the predicted models was determined us-

ing several performance measures (i.e., sensitivity, specificity, precision, and the ROC analysis).

5.1 Univariate LR Analysis Results

We conducted univariate analysis to find whether each of the metrics (independent variables)

is significantly associated with fault proneness (dependent variable). Table 4 represents the re-

sults of univariate analysis. It provides the coefficient (B), standard error (SE), statistical signifi-

cance (sig.), and odds ratio (exp (B)) for each metric [4]. The parameter "sig" tells whether each

of the metric is a significant predictor of fault proneness. If the "sig" value of a metric is below

or at the significance threshold of 0.01, then the metric is said to be significant in predicting the

Table 4. Univariate Analysis

S.no Metric B SE Sig. Exp(B)

1 WMC 0.123 0.018 0.000 1.131

2 DIT -0.188 0.115 0.102 0.828

3 NOC 0.003 0.015 0.835 1.003

4 CBO 0.056 0.020 0.004 1.057

5 RFC 0.055 0.008 0.000 1.056

6 LCOM 0.012 0.003 0.000 1.012

7 CA 0.007 0.007 0.354 1.007

8 CE 0.251 0.043 0.000 1.285

9 NPM 0.109 0.018 0.000 1.115

10 LCOM3 -0.943 0.192 0.000 0.389

11 LOC 0.004 0.001 0.000 1.004

12 DAM 1.477 0.264 0.000 4.381

13 MOA 0.495 0.128 0.000 1.641

14 MFA -0.004 0.311 0.991 0.996

15 CAM -3.844 0.568 0.000 0.021

16 IC 1.460 0.206 0.000 4.307

17 CBM 0.511 0.065 0.000 1.668

18 AMC 0.013 0.006 0.036 1.013

19 MAX_CC 0.187 0.045 0.000 1.206

20 AVG_CC 0.828 0.192 0.000 2.289

Fault Prediction Using Statistical and Machine Learning Methods for Improving Software Quality

254

faulty classes [4]. Table 4 shows the significant values in bold. The coefficient "(B)" shows the

strength of the independent variable. The higher the value, the higher the impact of the inde-

pendent variable is. The sign of the coefficient tells whether the impact is positive or negative.

We can see that DIT, NOC, Ca, and MFA metrics are not significant and are therefore not taken

for any further analysis. Thus, in this way we can reduce the number of independent variables

and select only the best fault predictors. The following notations used in tables 5-9 shows the

degree of the significance:

++ shows the significance of the metric at 0.01, + shows the significance of the metric at 0.05,

-- shows the significance of the metric at 0.01 but in an inverse manner, − shows the signifi-

cance of the metric at 0.05 but in an inverse manner, and 0 shows that the metric is insignificant.

Table 5. Univariate Results of Size Metrics

Metric Notation

WMC ++

NPM ++

LOC ++

DAM ++

MOA ++

AMC +

Table 6. Univariate Results of Coupling Metrics

Metric Notation

RFC ++

CBO +

CA 0

CE ++

IC ++

CBM ++

Table 7. Univariate Results of Cohesion Metrics

Metric Notation

LCOM ++

LCOM3 --

CAM --

Table 8. Univariate Results of Inheritance Metrics

Metric Notation

DIT 0

NOC 0

MFA 0

Table 9. Univariate Results of the Complexity Metric

Metric Notation

CC ++

Ruchika Malhotra and Ankita Jain

255

5.2 Multivariate LR Analysis Results

Multivariate analysis is done to find the combined effect of all of the metrics together on fault

proneness. For doing multivariate analysis, we have used forward stepwise selection to deter-

mine which variables should be included in the multivariate model. Out of all the variables, one

variable in turn is selected as the dependent variable and the remaining others are used as inde-

pendent variables [44]. In univariate analysis 16 metrics were found to be significant. Table 10

shows the results of the multivariate model. The coeff (B), statistical significance (Sig.), stan-

dard error (SE), and odds ratio (Exp (B)) are also shown in the table for all the metrics included

in the model. We can see that only 3 metrics (i.e., DIT, RFC, and CBM) are included in the

model.

5.3 Obtaining a Relationship Between Object Oriented Metrics and Fault Prone-

ness

In this section, we have discussed our results and also we have compared our results with the

results of previous studies shown in Table 11.

Table 10. Multivariate Model Statistics

Metric B SE Sig. Exp(B)

DIT -0.522 0.165 0.002 0.594

RFC 0.031 0.007 0.000 1.032

CBM 0.531 0.078 0.000 1.701

CONSTANT -0.089 0.328 0.785 0.914

Table 11. Results of Different Validation

Fault Prediction Using Statistical and Machine Learning Methods for Improving Software Quality

256

5.3.1 Discussion about our results

All the size metrics, except AMC, are significant at 0.01. AMC is significant at 0.05.

Amongst the cohesion metrics, we can see that LCOM3 and CAM have negative coefficients

indicating that they have a negative impact on fault proneness. By definition, if LCOM, LCOM3,

and CAM are significant, it means that fault proneness increases with a decrease in cohesion.

Since CAM and LCOM3 are negatively related to fault proneness, we can conclude that fault

proneness decreases with the decrease in cohesion. We can observe that out of 3 cohesion met-

rics, the majority (i.e., 2) of the metrics are negatively related. All the coupling metrics, except

CA, are found to be strongly relevant to determine the fault proneness of the class. CBO is not

strongly related but it still has a positive impact. CA is not significant to fault proneness, mean-

ing it has neither a positive nor a negative impact. None of the inheritance metrics is found to be

significant. The complexity metrics CC is found to be strongly and positively related to fault

proneness.

5.3.2 Discussion of previous studies

We have done the comparison of our results with the results of the previous studies. CBO was

found to be a significant predictor in the majority of the studies except by Tang et al. (1999) [21],

El Emam et al. (2001) [23], and Olague et al. (2007) [45]. In El Emam et al. [20], the results

were analyzed for the projects with and without size control. When size control was not taken

Table 11. Results of Different Validation (cont'd…)

++, Denotes the metric is significant at 0.01; +, denotes the metric is significant at 0.05; --, denotes the metric is

significant at 0.01 but in an inverse manner; -, denotes the metric is significant at 0.05 but in an inverse manner; 0,

denotes that the metric is not significant.

A blank entry means that our hypothesis was not examined or that the metric was calculated in a different way.

LR, logistic regression; UMR, Univariate Multinomial Regression; UBR, Univariate Binary Regression; OLS,

Ordinary Least Square; ML, Machine Learning; DT, Decision Tree; ANN, Artificial Neural Network; RF, Random

Forest; NB, Naı¨ve Bayes ;MLP, Multilayer Perceptron; Ab, Adaboost; SVM, Support Vector Machine; GP,

Genetic Programming; LSF, Low Severity Fault; USF, Ungraded Severity Fault; HSF, High Severity Fault; MSF,

Medium Severity Faults; #1, without size control; #2, with size control; 2.0, Eclipse version 2.0; 2.1, Eclipse ver-

sion 2.1; 3.0,Eclipse version 3.0; 1., iBATIS system; 2., HealthWatcher application; 3., MobileMedia system;

R3,Rhino 15R3; R4, Rhino 15R4; R5, Rhino 15R5; comm.,commercial; univ., university

Ruchika Malhotra and Ankita Jain

257

into account, then CBO was found to be insignificant. Similarly, Olague et al. [45] predicted the

fault prone classes for various versions of RhiNo.For one of the versions, the CBO was found to

be insignificant. RFC was also found to be a significant predictor of fault proneness in all the

studies except by El Emam et al. (2001) [23] when size control was not considered. Most of the

studies (i.e., Tang et al. (1999)[21], Briand et al. (2000) [1], Briand et al. (2001)[24], Yu et

al.(2002)[25], Shatnawi et al. (2008)[28], English et al.(2009)[44], Zhou et al. (2010)[46], and

Burrows et al. (2010)[47]) did not examine the LCOM metrics or they calculated it in a very

different manner. Among the studies that examined LCOM, it was insignificant with Basili et al.

(1996) [31] and Singh et al. (2009) [4] for the Low Severity Fault (LSF) prediction model. The

metric NOC, which is not found to be a significant predictor in our study, showed a negative

impact on fault proneness by Basili et al. (1996) [31], Briand et al. (2000) [1], and Zhou et al.

(2006) [46] for the LSF prediction model and by Singh et al. (2009) [4] for the Medium Severity

Fault (MSF) and Ungraded Severity Fault (USF) prediction model. For the remaining previous

studies, NOC was not considered to be significant. NOC was found to be very significant in

predicting faulty classes by Yu et al. (2002) [25] and English et al. (2009) [44]. SLOC is found

to be strongly relevant to fault proneness in all the studies. Various studies (i.e. Tang et al.

(1999) [21], El emam et al. (2001) [23], Yu et al. (2002) [25], Zhou et al. (2006) [46], Singh et

al. (2009) [4], Burrows et al. (2010) [47], and Aggarwal et al. (2008) [3]) showed DIT results

that were similar to our results. For Basili et al. (1996) [31], Briand et al. (2000) [1], Gyimothy

et al. (2005) [12], and English et al. (2009) [44] was found to be positive significant predictor.

WMC is also found to be quite significant in all the previous studies. Thus, we can conclude that

WMC and SLOC have always been significant predictors. DIT is not much useful in predicting

the faulty classes.

6. MODEL EVALUATION USING THE ROC CURVE

This section presents and summarizes the result analysis. We have used various machine

learning methods to predict the accuracy of fault proneness. The validation method which we

have used is k cross-validation, with the value of k as 10.

Table 12 summarizes the results of 10 cross-validation of the models predicted by using ma-

chine learning methods. It shows the sensitivity, specificity, precision, AUC, and the cutoff

point for the model predicted using all the machine learning methods. We have used ROC

analysis to find the cutoff point. The cutoff point is selected such that a balance is maintained

between the number of classes predicted as being fault prone and not fault prone. The ROC

Table 12. Results of 10-cross Validation

S.No. Method Used Sensitivity Specificity Precision Area under curve Cut-off point

1 Random Forest 78.6 80.7 78.90 0.875 0.61

2. Adaboost 80.8 78.3 79.86 0.861 0.62

3. Bagging 82.9 80.1 81.99 0.876 0.57

4. Multilayer Perceptron 77.6 77 77.25 0.799 0.54

5. Support Vector Machine 89.3 51 76.30 0.70 0.5

6. Genetic Programming 82.8 72.7 79.38 0.808 0.5

7. Logistic Regression 74.7 73.9 74.4 0.791 0.59

Fault Prediction Using Statistical and Machine Learning Methods for Improving Software Quality

258

curve is plotted with sensitivity on the y-axis and (1-specificity) on the y-axis. The point where

sensitivity equals (1-specificity) is called the cutoff point. The ROC curves for the machine

learning models are presented in Fig. 4.

We can see that the random forest and bagging give quite similar results. They show good re-

sults as compared to the results of the other methods. The specificity and AUC for both the

models are quite similar. The specificity for the random forest is 80.7% whereas for bagging it is

80.1%. These values are quite high when compared to the values of the other methods. Also the

ROC curve for the random forest and bagging gives high AUC values i.e. 0.875 and 0.876 re-

spectively. The sensitivity of the random forest is 98.6%, whereas bagging shows a high sensi-

tivity of 82.9%. The highest sensitivity is shown by the SVM method, which is 89.3%, but it

 (a) (b) (c)

 (d) (e) (f)

 (g)

Fig. 4. ROC curve for (A) Adaboost, (B) Random Forest, (C) Bagging, (D) Multilayer Perceptron,

(E) Genetic Programming, (F) SVM, (G) Logistic Regression

Ruchika Malhotra and Ankita Jain

259

gives the lowest specificity of 51%. Also the AUC for the SVM model is 0.70. Thus, this

method is not considered to be good. Adaboost and Genetic Programming show average results

with a sensitivity of 80.8% and 82.8% respectively, with a specificity of 78.3% and 72.7%. Be-

sides these machine learning models, we have also used a statistical method (i.e., logistic regres-

sion). We can observe that the sensitivity of logistic regression is the lowest as compared to

other machine learning methods. Also, specificity is quite low when compared with most of the

other machine learning methods. Thus, we can conclude from the discussion that the machine

learning methods give better results as compared to the statistical methods. From amongst the

machine learning methods under consideration, random forest and bagging are the best predicted

models.

7. CONCLUSION

In any software project, there can be a number of faults. It is very essential to deal with these

faults and to try to detect them as early as possible in the lifecycle of the project development.

Thus, various techniques are available for this purpose in the literature, but previous research

has shown that the object oriented metrics are useful in predicting the fault proneness of classes

in object oriented software systems. The data is collected from an Open Source software Apache

POI, which was developed in Java and consists of 422 classes. In this study, we have used object

oriented metrics as the independent variables and fault proneness as the dependent variable. We

have studied 19 object oriented metrics for predicting the faulty classes. Out of 19 metrics, we

have identified a subset of metrics, which are significant predictors of fault proneness. For doing

this, we have used univariate logistic regression. It was found that the metrics DIT, NOC, Ca,

and MFA are not significant predictors of fault proneness and the remaining metrics that we

have considered are found to be quite significant. We have also compared our results with those

of previous studies and concluded that WMC and SLOC are significant predictors in the major-

ity of the studies. After identifying a subset of metrics, we constructed a model that could pre-

dict the faulty classes in the system. Using multivariate analysis, we constructed the model in

which only 3 metrics were included (i.e., DIT, RFC, and CBM). To predict the best model, we

used six machine learning techniques that measured the accuracy in terms of sensitivity, speci-

ficity, precision, and AUC (Area Under the Curve). The cutoff point was also selected such that

a balance is maintained between the number of classes predicted as fault and not fault prone.

The ROC curve was used to calculate the cutoff point. We observed that the random forest and

bagging gave the best results as compared to other models. Thus, we can conclude that practi-

tioners and researchers may use bagging and the random forest for constructing the model to

predict the faulty classes. The model can be used in the early phases of software development to

measure the quality of the systems.

More similar type of studies can be carried out on different datasets to give generalized results

across different organizations. We plan to replicate our study on larger datasets and industrial

object oriented software systems. In future studies, we will take into account the severity of

faults to get more accurate and efficient results. In this study, we have not taken into account the

effect of size on fault proneness. In future work, we will also take into account some of the

product properties such as size, and also process and resource related issues like the experience

of people, the development environment, etc., which all effect fault proneness.

Fault Prediction Using Statistical and Machine Learning Methods for Improving Software Quality

260

REFERENCES

[1] L. Briand, W. Daly and J. Wust, “Exploring the relationships between design measures and software qual-

ity,” Journal of Systems and Software, Vol.51, No.3, 2000, pp.245-273.

[2] G. Pai, “Empirical analysis of software fault content and fault proneness using Bayesian methods,” IEEE

Transactions on Software Eng., Vol.33,No.10,2007, pp.675-686.

[3] K. K. Aggarwal, Y. Singh, A. Kaur, and R. Malhotra, “Empirical analysis for investigating the effect of

object-oriented metrics on fault proneness: A replicated case study,” Software Process: Improvement and

Practice, Vol.16,No.1,2009,pp.39-62.

[4] Y. Singh, A. Kaur, and R. Malhotra, “Empirical vlidation of object-oriented metrics for predicting fault

proneness models,” Software Quality Journal, Vol.18,No.1, 2010,pp.3-35.

[5] S. Chidamber and C. Kemerer, “A Metrics Suite for Object-Oriented Design,” IEEE Trans. Soft Ware Eng.,

Vol.20, No.6, 1994, pp.476-493.

[6] L.Briand, P. Devanbu, W. Melo, “An investigation into coupling Measures for C++,” In Proceedings of the

19th International Conference on Software Engineering.

[7] J. Bansiya and C. Davis, “A Hierarchical Model for Object-Oriented Design Quality Assessment,” IEEE

Trans. Software Eng., Vol.28, No.1, 2002, pp.4-17.

[8] F. Brito e Abreu and W. Melo, “Evaluating the Impact of Object-Oriented Design on Software Quali ty,”

Proceedings Third Int’l Software Metrics Symposium, 1996, pp.90-99.

[9] M.Lorenz and J. Kidd, “Object-Oriented Software Metrics,” Prentice-Hall, 1994.

[10] W. Li and W. Henry, “Object-Poiented Metrics that Predict Maintainability,” In Journal of Software and

Sytems, 1993, Vol.23, pp.111-122.

[11] M.Cartwright and M. Shepperd, “An empirical investigation of an object-oriented software system," IEEE

Transactions on Software Engineering, Vol.26, No.8,1999, pp.786-796.

[12] T.Gyimothy, R. Ferenc, and I.Siket, “Empirical validation of object-oriented metrics on open source soft-

ware for fault prediction,” IEEE Transactions on Software Engineering, Vol.31, No.10, 2005, pp.897-910.

[13] S. Kanmani, V.R. Uthariaraj, V. Sankaranarayanan, P. Thambidurai, “Object-oriented software prediction

using neural networks,” Information and Software Technology, Vol.49, 2007, pp.482-492.

[14] I. Gondra, “Applying machine learning to software fault-proneness prediction,” The Journal of Systems and

Software,” Vol.81, 2008, pp.186-195.

[15] Promise. http://promisedata.org/repository/.

[16] K. El Emam, S. Benlarbi, N. Goel, and S. Rai, “A validation of object-oriented metrics,” NRC Technical

report ERB-1063,1999.

[17] C. Catal and B. Diri, “A systematic review of software fault prediction studies,” Expert Systems with Appli-

cations Vol.36, 2009, pp 7346-7354.

[18] N. Ohlsson, M. Zhao and M. Helander, M, “Application of multivariate analysis for soft ware fault predic-

tion,” Software Quality Journal, Vol.7, 1998,pp.51-66.

[19] T.M. Khoshgoftaar, E.B. Allen, K.S. Kalaichelvan and N. Goel, “Early quality prediction: a case study in

telecommunications,” IEEE Software, Vol.13, No.1, 1996, pp.65-71.

[20] K.E. Emam and W. Melo, “The Prediction of Faulty Classes Using Object-Oriented Design Metrics,” Tech-

nical report: NRC 43609, 1999.

[21] M.H. Tang, M.H. Kao, and M.H. Chen , “An empirical study on object-oriented metrics,” InProceedings of

Metrics, 242-249.

[22] L. Briand, J. Wuest, S. Ikonomovski, and H. Lounis, “A comprehensive Investigation of Quality Factors in

Object-Oriented Designs: An Industrial Case Study,” International Software Engineering Research Network,

technical report ISERN-98-29, 1998.

[23] K. El Emam, S. Benlarbi, N. Goel, and S. Rai, “The confounding effect of class size on the validity of object-

oriented metrics,” IEEE Transactions on Software Engineering, Vol.27, No.7, 2001, pp.630-650.

[24] L. Briand, J. Wu¨st, J and H. Lounis, “Replicated Case Studies for Investigating Quality Factors in Object-

Oriented Designs,” Empirical Software Engineering. International Journal (Toronto,Ont.), Vol.6, No.1,

2001, pp.11-58.

[25] P. Yu, T. Systa, and H. Muller, “Predicting fault-proneness using OO metrics: An industrial case study,” In

Proceedings of Sixth European Conference on Software Maintenance and Reengineering,Budapest, Hun-

gary, 2002, pp.99-107.

[26] Y. Zhou, and H. Leung, H, “Empirical Analysis of Object-Oriented Design Metrics for Predicting High and

Low Severity Faults,” IEEE Transactions on Software Engineering, Vol.32, No.10, 2006, pp.771-789.

Ruchika Malhotra and Ankita Jain

261

[27] N. Fenton and N. Ohlsson, “Quantitative analysis of faults and failures in a complex software system,” IEEE

Transactions on Software Engineering, Vol.26, No.8, 2000, pp.797-814.

[28] R. Shatnawi and W. Li, “The effectiveness of software metrics in identifying error-prone classes in post

release software evolution process,” The Journal of Systems and Software,Vol.81, 2008,pp.1868-1882.

[29] R. Malhotra and Y. Singh, “On the Applicability of Machine Learning Techniques for ObjectOriented Soft-

ware Fault Prediction,” Software Engineering: An International Journal, Vol.1,No.1, 2011, pp.24-37.

[30] ckjm download : http://www.Spinellis.gr/sw/ckjm/

[31] V. Basili, L. Briand and W.Melo, “A validation of object-oriented design metrics as quality Indicators,”

IEEE Transactions on Software Engineering, Vol.22, No.10,1996, pp.751-761.

[32] D. Hosmer and S. Lemeshow, Applied logistic regression. New York: Wiley,1989.

[33] C.M. Bishop, “Neural Networks for Pattern Recognition,” Oxford, U.K. : Claredon Press, 1995.

[34] J.R. Quinlan, C4.5 : Programs for Machine Learning. Morgan Kaufmann, 1993.

[35] A. Porter and R. Selly, “Empirically guided Software Devlopment using Metric-Based Classification Trees,”

IEEE Software, Vol.7, No.2, 1990, pp.46-54.

[36] F. Xing, P. Gua, and M.R. Lyu, “A novel method for early software quality prediction based on support

vector machine,” In: Proceedings of IEEE International Conference on Software Reliability Engineering,

2005, pp.213-222.

[37] Y. Freund, R. Schapire, “Experiments with a new boosting algorithm,” In: Thirteenth International Confer-

ence on Machine Learning, San Francisco, 1996, pp.148-156.

[38] J. Friedman, T. Hastie, and R. Tibshirani, “Additive Logistic Regression: a Statistical View of Boosting,”

Stanford University.

[39] Weka. Available: http://www.cs.waikato.ac.nz/ml/weka/

[40] Y. Freund and R.E. Schapire, “A Short Introduction to Boosting,” Journal of Japanese Society for Artificial

Intelligence, Vol.14, No.5, 1999, pp.771-780.

[41] L.Breiman, “Bagging predictors,” Machine Learning, Vol.24, 1996, pp.123-140.

[42] R. Malhotra and A.Jain, “Software Effort Prediction using Statistical and Machine Learning Me thod,”

International Journal of Advanced Computer Science and Applications , Vol.2, No.1, 2011.

[43] M.Stone, “Cross-validatory choice and assessment of statistical predictions,” Journal Royal Stat. Soc.,

Vol.36, 1974, pp.111-147.

[44] M.English, C.Exton, I.Rigon and B.Clearyp, “Fault Detection and Prediction in an open source Software

project,” Proceeding: PROMISE ’09 Proceedings of the 5th International conference on Predictor Models in

Software Engineering.

[45] H.Olague, L. Etzkorn, S. Gholston, and S.Quattlebaum, “Empirical validation of three software metrics

suites to predict fault-proneness of object-oriented classes developed using highly iterative or agile software

development processes,” IEEE Transactions on Software Engineering, Vol.33, No.8,2007, pp.402-419.

[46] Y.Zhou, B. Xu and H. Leung, “On the ability of complexity metrics to predict fault-prone classes in object -

oriented systems,” The journal of Systems and Software, Vol.83, 2010,pp.660-674.

[47] R. Burrows, F.C. Ferrari, O.A.L. Lemos, A. Garcia and F. Taiani, “The impact of Coupling on the fault-

Proneness of Aspect-oriented Programs:An Empirical Study,” IEEE 21st Internati onal Symposium on Soft-

ware Reliability Engineering, 2010.

Fault Prediction Using Statistical and Machine Learning Methods for Improving Software Quality

262

Ruchika Malhotra

She is an Assistant Professor in the Department of Software Engineering at Delhi

Technological University (formerly known as Delhi College of Engineering) in

Delhi, India. She is the Executive Editor of Software Engineering: An Interna-

tional Journal. She was an Assistant Professor at the University School of Infor-

mation Technology of Guru Gobind Singh Indraprastha University in Delhi, India.

Prior to joining the school, she worked as a full-time research scholar and re-

ceived a doctoral research fellowship from the University School of Information

Technology of Guru Gobind Singh Indraprastha in Delhi, India. She received her master’s and doctor-

ate degree in software engineering from the University School of Information Technology of Guru Go-

bind Singh Indraprastha University in Delhi, India. She is the co-author of the book titled Object Ori-

ented Software Engineering, which was published by PHI Learning. Her research interests are in soft-

ware testing, improving software quality, statistical and adaptive prediction models, software metrics,

neural nets modeling, and the definition and validation of software metrics. She has published more for

than 55 research papers in international journals and conferences. Malhotra can be contacted by e-mail

at: ruchikamalhotra2004@yahoo.com

Ankita Jain

She is a research scholar with Delhi Technological University (formerly Delhi

College of Engineering) in Delhi, India. She received her master’s degree in

Computer Technology and Applications (CTA) from Delhi Technological Univer-

sity. Her research interests are software quality, software metrics, and statistical

and machine learning models. She has published papers in international jour-

nals/conferences. She can be contacted by e-mail at: ankita.bansal06@gmail.

com.

