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Abstract—An understanding of quality attributes is relevant for the software organization 

to deliver high software reliability. An empirical assessment of metrics to predict the 

quality attributes is essential in order to gain insight about the quality of software in the 

early phases of software development and to ensure corrective actions. In this paper, we 

predict a model to estimate fault proneness using Object Oriented CK metrics and 

QMOOD metrics. We apply one statistical method and six machine learning methods to 

predict the models. The proposed models are validated using dataset collected from 

Open Source software. The results are analyzed using Area Under the Curve (AUC) 

obtained from Receiver Operating Characteristics (ROC) analysis. The results show that 

the model predicted using the random forest and bagging methods outperformed all the 

other models. Hence, based on these results it is reasonable to claim that quality models 

have a significant relevance with Object Oriented metrics and that machine learning 

methods have a comparable performance with statistical methods 
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1. INTRODUCTION 

Software reliability is a critical field in software engineering and an important facet of soft-

ware quality. Every organization wants to assess the quality of the software product as early as 

possible so that poor software design leading to lower quality product can be detected and hence 

be improved or redesigned. This would lead to significant savings in the development costs, 

decrease the development time, and make the software more reliable. The quality of the software 

can be measured in terms of various attributes such as fault proneness, maintenance effort, test-

ing effort, etc. In this study, we have used fault proneness as the quality predictor. Fault prone-

ness is defined as the probability of fault detection in a class [1-4]. Due to high complexity and 

constraints involved in the software development process, it is difficult to develop and produce 

software without faults. High cost is involved in finding and correcting faults in software pro-

jects. Thus, we need to identify or locate the areas where more attention is needed in order to 

find as many faults as possible within a specified time and budget. To address this issue, we 

predict fault proneness model using statistical and machine learning methods in this paper. One 

of the approaches to identify faulty classes early in the development cycle is to predict models 

by using software metrics. In the realm of an object oriented environment, object oriented soft-
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ware metrics have become increasingly popular with researchers. There are various object-

oriented metrics available in the literature [5-11] to predict software quality attributes.  

Hence, the main contributions of this paper are: (1) To establish relationship between object 

oriented metrics and fault proneness. There are a number of object oriented metrics such as CK 

metrics [5], MOOD [7], QMOOD metrics [8], etc., but not all the metrics are good predictors of 

fault proneness. Thus, it is very important to understand the relationship of object oriented met-

rics and fault proneness. In other words, we must find out which of the metrics are significant in 

predicting the faulty classes. Then, these significant metrics can be combined into one set to 

build the multivariate prediction models for predicting fault proneness. Identified metrics will 

help software practitioners to focus on fault prone classes and ensure a higher quality software 

product with the available resources. Software researchers may use these metrics in further stud-

ies. (2) To analyze machine learning methods (method of programming computers to optimize 

performance criterion using example data or past experience). Nowadays, machine learning is 

widely used in various domains (i.e., retail companies, financial institutions, bioinformatics, 

etc.) There are various machine learning methods available. We have used six machine learning 

methods to predict the accuracy of the model predicted. These six machine learning methods 

have been widely used in literature and have shown good results [4, 12-14]. Amongst the vari-

ous models predicted, we must determine one of the models to be the best model, which can be 

used by researchers in further studies to predict the faulty classes.  

In order to achieve this aim we have used dataset collected from open source software, poi 

[15]. This software was developed using Java language and consists of 422 classes. The differ-

ent dataset used by us will provide an important insight to researchers for identifying the rele-

vance of metrics with a given type of dataset. Since it is Open Source software, the users have 

freedom to study and modify the source code (written in Java) without paying royalties to previ-

ous developers. We have used one statistical method (logistic regression) and six machine learn-

ing methods (random forest, adaboost, bagging, multilayer perceptron, support vector machine, 

and genetic programming).  

We have analyzed the performance of the models by calculating area under the Receiver Op-

erating Characteristic (ROC) curve [16]. ROC curve is used to obtain a balance between the 

number of classes predicted as being fault prone, and the number of classes predicted as not 

being fault prone.  

The paper is organized as follows: Section 2 reviews the key points of available literature in 

the domain. Section 3 explains the independent and dependent variables used in our study. The 

description of the metrics is also provided. Section 4 discusses the research methodology and 

gives the details of the data used for analysis. It also explains the various methods used and the 

performance evaluation measures. Section 5 analyzes the univariate and the multivariate results. 

We have compared our results with the results of the previous results in this section. The model 

predicted is evaluated using the ROC curve in Section 6. Finally, the work is concluded in Sec-

tion 7. 

 

 

2. LITERATURE REVIEW 

Significant work has been done in the field of fault detection. The complete survey of fault 

prediction studies till 2008 is provided in the paper by C. Catal [17]. Highlights of select papers 
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have been discussed in this section, including papers published post 2008. There are various 

categories of methods to predict faulty classes such as machine learning methods, statistical 

methods, etc. We have observed that much of the previous work used traditional statistical 

methods [18, 20, 21, 16] to bring out the results, but very few studies have used machine learn-

ing methods. Recently, the trend is shifting from traditional statistical methods to modern ma-

chine learning methods. The most common statistical methods used are univariate and multi-

variate logistic regression. A few key points of the papers using statistical methods are discussed. 

The paper by N. Ohlsson et al.[18] has worked on improving the techniques used by Khos-

goftaar [19] (i.e., Principal Component Analysis and Discriminant Analysis). This paper [18] 

has discussed some problems that were faced while using these methods and thus suggested 

remedies to those problems. Another approach to identify faulty classes early in the develop-

ment cycle is to construct prediction models. The paper [20] has constructed a model to predict 

faulty classes using the metrics that can be collected during the design stage. This model has 

used only object oriented design metrics. Tang et al. [21] conducted an empirical study on three 

industrial real time systems and validated the CK [5] object oriented metric suite. They found 

that only WMC and RFC are strong predictors of faulty classes. They have also proposed a new 

set of metrics, which are useful indicators of object oriented fault prone classes. It has been seen 

that most of the empirical studies have ignored the confounding effect of class size while vali-

dating the metrics. Various studies [6, 11, 22] have shown that class size is associated with 

many contemporary object oriented metrics. Thus, it becomes important to revalidate contempo-

rary object oriented metrics after controlling or taking into account the effect of class size [16]. 

The two papers by El. Emam et al. [16, 23] showed a strong size confounding effect and thus 

concluded that the metrics that were strongly associated with fault proneness before being con-

trolled for size were not associated with fault proneness anymore after being controlled for size. 

Another empirical investigation [11] by M.Cartwright et al. conducted on a real time C++ sys-

tem discussed the use of object oriented constructs such as inheritance and therefore polymor-

phism. M. Cartwright et al. [11] have found high defect densities in classes that participated in 

inheritance as compared to classes that did not. The probable reasons for this observation have 

been discussed in the paper. Briand et al. [1] have empirically investigated 49 metrics (28 cou-

pling measures, 10 cohesion measures, and 11 inheritance measures) for predicting faulty 

classes. There were 8 systems being studied (consisting of 180 classes in all), each of which was 

a medium sized management information system. They used univariate and multivariate analysis 

to find the individual and the combined effect of object oriented metrics and fault proneness. 

They did not examine the LCOM metric and found that all the other metrics are strong predic-

tors of fault proneness except for NOC. Another paper by Briand et al. [24] has also validated 

the same 49 metrics. The system used for this study was the multi-agent development system, 

which consists of three classes. They found NOC metric to be insignificant, while DIT was 

found to be significant in an inverse manner. WMC, RFC, and CBO were found to be strongly 

significant. Yu et al. [25] empirically tested 8 metrics in a case study in which the client side of 

a large network service management system was studied. The system is written in Java and con-

sists of 123 classes. The validation was carried out using regression analysis and discriminant 

analysis. They found that all the metrics were significant predictors of fault proneness except 

DIT, which was found to be insignificant.  

Recently, researchers have also started using some machine learning techniques to predict the 

model. Gyimothy et al. [12] calculated CK [5] metrics from an open source web and email suite 
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called Mozilla. To validate the metrics, regression and machine learning methods (decision tree 

and artificial neural networks) were used. The results concluded NOC to be insignificant, 

whereas all the other metrics were found to be strongly significant. Zhou et al. [26] have used 

logistic regression and machine learning methods to show how object oriented metrics and fault 

proneness are related when fault severity is taken into account. The results were calculated using 

the CK metrics suite and were based on the public domain NASA dataset. WMC, CBO, and 

SLOC were found to be strong predictors across all severity levels. Prior to this study, no previ-

ous work had assessed severity of faults. The paper by S. Kanmani et al. [13] has introduced two 

neural network based prediction models. The results were compared with two statistical methods 

and it was concluded that neural networks performed better as compared to statistical methods. 

Fenton et al. [27] introduced the use of bayesian belief networks (BBN) for the prediction of 

faulty classes. G.J. Pai et al. [2] also built a bayesian belief network (BN) and showed that the 

results gave comparable performance with the existing techniques. I. Gondra [14] has performed 

a comparison between the artificial neural network (ANN) and the support vector machine 

(SVM) by applying them to the problem of classifying classes as faulty or non-faulty. Another 

goal of this paper was to use the sensitivity analysis to select the metrics that are more likely to 

indicate the errors. After the work of Zhou et al. [26], the severity of faults was taken into ac-

count by Shatnawi et al. [28] and Singh et al. [4]. Shatnawi et al. used the subset of CK [5] and 

Lorenz & Kidd [9] metrics to validate the results. The data was collected from three releases of 

the Eclipse project. They concluded that the accuracy of prediction decreases from release to 

release and some alternative methods are needed to get more accurate prediction. The metrics, 

which were found to be very good predictors across all versions and across all severity levels, 

were WMC, RFC, and CBO. Singh et al. [4] used the public domain NASA dataset to determine 

the effect of metrics on fault proneness at different severity levels of faults. Machine learning 

methods (decision tree and artificial neural network networks) and statistical method (logistic 

regression) were used. The predicted model showed lower accuracy at a high severity level as 

compared to medium and low severities. It was also observed that performance of machine 

learning methods was better than statistical methods. Amongst all the CK metrics used CBO, 

WMC, RFC, and SLOC showed the best results across all the severity levels of faults. Malhotra 

et al. [29] have used LR and 7 machine learning techniques (i.e., artificial neural networks, ran-

dom forest, bagging, boosting techniques [AB, LB], naive bayes, and kstar) to validate the met-

rics. The predicted model using LB technique showed the best result and the model predicted 

using LR showed low accuracy. 

 

From the survey we have conducted, the following observations were made:  

 

� We observed that among the number of metrics available in literature, the CK metric suite is 

most widely used. It has been seen that most of the studies have also defined their own met-

ric suite and they have used them for carrying out the analysis.  

� Among the various categories of methods available to predict the most accurate model such 

as machine learning methods, statistical methods, etc. the trend is shifting from the tradi-

tional statistical methods to the machine learning methods. It has been observed that ma-

chine learning is widely used in new bodies of research to predict fault prone classes. Re-

sults of various studies also show that better results are obtained with machine learning as 

compared to statistical methods. 
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� Papers have used different types of datasets, which are mostly public datasets, commercial 

datasets, open source, or students/university datasets. We have observed that the public 

datasets, which have been mostly used in the studies, are from the PROMISE and NASA 

repositories.  

 

 

3. DEPENDENT AND INDEPENDENT VARIABLES 

In this section, we present the independent and dependent variables used in this study along 

with a summary of the metrics studied in this paper. 

In this paper, we have used object-oriented metrics as independent variables. A summary of 

the metrics used in this paper is given in Table 1. The dependent variable is fault proneness. 

Fault proneness is defined as the probability of fault detection in a class [1, 2, 3, 4]. We have 

Table 1.  Metrics Studied 

S.No. Metric Definition 

1. WMC - Weighted methods 

per class 

The WMC metric is the sum of the complexities of all methods in a class. 

Complexity can be measured in terms of cyclomatic complexity, or we can 

arbitrarily assign a complexity value of 1 to each method. The Ckjm pro-

gram assigns a complexity value of 1 to each method. Therefore, the value 

of the WMC is equal to the number of methods in the class. 

2. DIT - Depth of Inheritance 

Tree 

The Depth of Inheritance Tree (DIT) metric for each class is the maximum 

number of steps from the class node to the root of the tree. In Java, where 

all the classes inherit the object, the minimum value of the DIT is 1. 

3. NOC - Number of Children A class’ Number of Children (NOC) metric measures the number of im-

mediate descendants of the class. 

4. CBO - Coupling Between 

Object classes 

The CBO for a class represents the number of classes to which it is cou-

pled and vice versa. This coupling can occur through method calls, field 

accesses, inheritance, arguments, return types, and exceptions. 

5. RFC - Response for a Class The value of RFC is the sum of the number of methods called within the 

class' method bodies and the number of the class' methods.  

6. LCOM - Lack of Cohesion in 

Methods 

LCOM measures the dissimilarity of methods in a class by looking at the 

instance variables used by the methods in that class.  

7. Ca - Afferent couplings  

(not a C&K metric) 

A class’ afferent couplings are the number of other classes that use a spe-

cific class.  

8. Ce - Efferent couplings  

(not a C&K metric) 

A class’ efferent couplings are the number of other classes that are used by 

the specific class. 

9. NPM - Number of Public 

Methods (not a C&K metric; 

CIS: Class Interface Size in 

the QMOOD metric suite) 

The NPM metric counts all the methods in a class that are declared as 

being public. 

10. LCOM3 -Lack of cohesion in 

methods Henderson-Sellers 

version 

LCOM3 varies between 0 and 2. 

m - number of procedures (methods) in class 

a - number of variables (attributes in class 

µ(A) - number of methods that access a variable (attribute) 

 
The constructors and static initializations are taken into account as sepa-

rate methods. 
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used logistic regression and machine learning methods, which are based on predicting probabili-

ties [1-4] 

The program Ckjm calculates six object oriented metrics specified by Chidamber and 

Kemerer by processing the bytecode of compiled Java files. It also calculates a few of the other 

metrics. Ckjm follows the UNIX tradition of doing one thing well. [30] 

 

 

4. RESEARCH METHODOLOGY 

In this section we present the descriptive statistics for all the metrics that we have considered. 

We have also explained the methodology used (i.e., one statistical method and six machine 

Table 1.  Metrics Studied 

S.No. Metric Definition 

11. LOC - Lines of Code (not a 

C&K metric) 

The lines of code is calculated as the sum of the number of fields, the num-

ber of methods, and the number of instructions in a given class. 

12. DAM: Data Access Metric 

(QMOOD metric suite) 

This metric is the ratio of the number of private (protected) attributes to the 

total number of attributes declared in the class. A high value is desired for 

DAM. (Range 0 to 1) 

13. MOA: Measure of Aggre-

gation (QMOOD metric 

suite) 

The count of the number of data declarations (class fields) whose types are 

user defined classes. 

14. MFA: Measure of Func-

tional Abstraction 

(QMOOD metric suite) 

This metric is the ratio of the number of methods inherited by a class to the 

total number of methods accessible by member methods of the class. The 

constructors and the java.lang.Object (as parent) are ignored. (Range 0 to 1) 

15. CAM: Cohesion Among 

Methods of Class 

(QMOOD metric suite) 

The metric is computed using the summation of the number of different 

types of method parameters in every method divided by a multiplication of a 

number of different method parameter types in whole class and the number 

of methods. A metric value close to 1.0 is preferred. (Range 0 to 1). 

16. IC: Inheritance Coupling 

(quality oriented extension 

for the C&K metric suite) 

This metric provides the number of parent classes to which a given class is 

coupled. A class is coupled to its parent class if one of the following condi-

tions is satisfied: 

� One of its inherited methods uses a variable (or data member) that is de-

fined in a new/redefined method.  

� One of its inherited methods calls a method that is defined in the parent 

class.  

� One of its inherited methods is called by a method that is defined in the 

parent class and uses a parameter that is defined in that method. 

17. CBM: Coupling Between 

Methods (quality oriented 

extension for the C&K 

metric suite) 

The metric measures the total number of new/redefined methods to which all 

the inherited methods are coupled. 

18. AMC: Average Method 

Complexity (quality ori-

ented extension to C&K 

metric suite) 

This metric measures the average method size for each class. The size of a 

method is equal to the number of Java binary codes in the method. 

19. CC - McCabe's Cyclomatic 

Complexity 

It is equal to the number of different paths in a method (function) plus one. 

The cyclomatic complexity is defined as: 

CC = E - N + P 

where: 

E - the number of edges of the graph 

N - the number of nodes of the graph 

P - the number of connected components 
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learning methods). The performance evaluation measures are also presented. 

 

4.1 Empirical Data Collection 

This study makes use of an Open Source dataset "Apache POI" [15]. Apache POI is a pure 

Java library for manipulating Microsoft documents. It is used to create and maintain Java API 

for manipulating file formats based upon the office open XML standards (OOXML) and Micro-

soft OLE2 compound document format (OLE2). In short, we can read and write MS Excel files 

using Java. In addition, we can also read and write MS word and MS PowerPoint files using 

Java. The important use of the Apache POI is for text extraction applications such as web spi-

ders, index builders, and content management systems. This system consists of 422 classes. Out 

of 422 classes, there are 281 faulty classes containing 500 numbers of faults. It can be seen from 

Fig. 1 that 71.53% of classes contain 1 fault, 15.3 % of classes contain 2 faults and so on. As 

shown in the pie chart, the majority of classes consist of 1 fault. Table 2 summarizes the distri-

bution of faults and faulty classes in the dataset.  

 

 
 

4.2 Descriptive Statistics 

Table 3 shows the “mean," “median," “min," “max," “std dev," “25% quartile," “50% quar-

tile,” and “75% quartile” of all the independent variables used in our study. We can make the 

following observations from Table 3. 

 

Fig. 1.  Distribution of Faults 

 

Table 2.  Data Description 

No. of faulty classes 281 

% of faulty classes 63.57 

No. of faults 500 

Language used Java 
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The size of a class measured in terms of lines of source code ranges from 0 to 9886. We can 

observe that the NOC metric values are 0 in 75% of the classes. Also, the DIT metric values are 

low, the biggest DIT metric value is 6, and 75% of the classes have 2 levels of inheritance at 

most. This shows that inheritance is not used much in the system. Similar results were also ob-

served by other authors [1, 11].There is a high cohesion observed in the system. The cohesion 

metrics (i.e., LCOM and LCOM3) have high values. The value of LCOM metric ranges from 0 

to 7,059 and the LCOM3 metric ranges from 0 to 2 (which is the maximum LCOM3 value). 

 

4.3 Methods Used 

In this study, we have used one statistical model and six machine learning models to predict a 

fault proneness model. 

 

4.3.1 The statistical model 

Logistic regression is the commonly used statistical modelling method. Logistic regression is 

used to predict the dependent variable from a set of independent variables (a detailed description 

is given by [3, 31, 32]). It is used when the outcome variable is binary or dichotomous. We have 

used both univariate and multivariate regression. Univariate logistic regression finds the rela-

tionship between the dependent variable and each independent variable. It finds whether there is 

Table 3.  Descriptive Statistics 

Percentiles 

Metric Mean Std. Error of Mean Median Std. Deviation Minimum Maximum 25 50 75 

WMC 13.501 0.698 10 14.677 0 134 5 10 16 

DIT 1.869 0.040 2 0.850 1 6 1 2 2 

NOC 0.738 0.331 0 6.963 0 134 0 0 0 

CBO 10.120 0.932 6 19.585 0 214 4.75 6 9 

RFC 30.351 1.763 21 37.067 0 390 13 21 36.25 

LCOM 100.464 21.017 22 441.849 0 7059 1 22 53.25 

CA 5.233 0.838 2 17.620 0 212 1 2 4 

CE 5.224 0.431 4 9.059 0 133 2 4 6 

NPM 11.600 0.606 9 12.747 0 101 4 9 14 

LCOM3 0.999 0.025 0.85 0.534 0 2 0.749 0.85 1.129 

LOC 292.595 30.046 124.5 631.675 0 9886 59.75 124.5 321.25 

DAM 0.459 0.019 0.5 0.404 0 1 0 0.5 0.889 

MOA 0.814 0.121 0 2.551 0 34 0 0 1 

MFA 0.358 0.015 0.361 0.318 0 1 0 0.361 0.572 

CAM 0.376 0.010 0.311 0.208 0 1 0.253 0.311 0.467 

IC 0.577 0.026 1 0.555 0 3 0 1 1 

CBM 1.952 0.116 1 2.439 0 20 0 1 4 

AMC 19.362 1.880 12.192 39.516 0 616.375 6.375 12.192 20.544 

MAX_CC 3.704 0.367 2 7.713 0 126 1 2 3 

AVG_CC 1.188 0.052 0.976 1.090 0 17.125 0.814 0.975 1.289 
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any significant association between them. Multivariate logistic regression is done to construct a 

prediction model for the fault proneness of classes. It analyzes which metrics are useful when 

they are used in combination. Logistic regression results in a subset of metrics that have signifi-

cant parameters. To find the optimal set of independent variables (metrics), there are two step-

wise selection methods, which are forward selection and backward elimination [32]. Forward 

selection examines the variables that are selected one at a time for entry at each step. The back-

ward elimination method includes all the independent variables in the model and the variables 

are deleted one at a time from the model until the stopping criteria is fulfilled. We have used the 

forward stepwise selection method. 

 

The general multivariate logistic regression formula is as follows [3]: 

 

Prob (X1 , X2, …, Xn) =  

 

where g(x) = B0 + B1*X1 + B2* X2 + … + Bn* Xn 

         ‘prob’ is the probability of a class being faulty 

      Xi, (1≤ i ≤ n) are independent variables 

 

The following statistics are reported for each metric from the above formula: 

 

1. Odds Ratio: The odds ratio is calculated using Bi's. The formula for the odds ratio is R= 

exp (Bi). This is calculated for each independent variable. The odds ratio is the probability 

of the event divided by the probability of a non-event. The event in our study is the prob-

ability of having a fault and the non- event is the probability of not having a fault [4]. 

2. Maximum Likelihood Estimation (MLE) and coefficients (Bi's): MLE is the likelihood 

function that measures the probability of observing a set of dependent variables [4]. MLE 

finds the coefficient in such a way that the log of the likelihood function is as large as pos-

sible. The more the value of the coefficient the more the impact of the independent vari-

ables on predicted fault proneness is. 

 

4.3.2 Machine Learning Models 

Besides the statistical approach, we have used six machine learning methods. All the methods 

can be used to predict fault proneness by using just one metric or by using a combination of 

metrics together for prediction [12]. We have used machine learning techniques to predict the 

accuracy of the models when a combination of metrics is used. Not much of the work in the area 

of fault prediction is done using machine learning techniques. There are various machine learn-

ing techniques available. From amongst all of the methods, artificial neural networks (ANN) 

[33] and decision trees (DT) [34] have been widely used in literature [12, 13, 14, 4].The use of 

decision trees in predicting fault proneness has been proposed in Porter & Selly [35]. The paper 

[14] has used ANN to predict the value of a continuous measure of fault proneness. For per-

forming the classification of classes as fault prone and non-fault prone, the paper [14] has used a 

support vector machine (SVM). The application of SVMs to the fault proneness prediction prob-

lem has been explained by Xing et al. [36]. The paper [29] has used ANN, random forest, bag-

ging, boosting, and some more machine learning techniques in order to predict the faulty classes. 
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There are various variants of boosting algorithms available, but the authors have used two vari-

ants (i.e., AB [37] and LB [38]), which have been designed for classification purposes. In litera-

ture, boosting algorithms were not evaluated, but this paper [29] shows that the boosting tech-

nique LB gave the best results in terms of AUC. Thus, the authors concluded that boosting tech-

niques may be effective in predicting faulty classes.  

To predict the fault proneness of classes, we have used the following machine learning meth-

ods, and these machine learning algorithms are available in the WEKA open source tool [39]: 

 

a. Random Forest: A random forest is made up of a number of decision trees. Each decision 

tree is made from a randomly selected subset of the training dataset using replacement. For 

building a decision tree, a random subset of available variables is used. This helps us to 

choose how best to partition the dataset at each node. The final result/outcome is chosen by 

the majority. Each decision tree in the random forest gives out its own vote for the result 

and the majority wins. In building a random forest, we can mention the number of decision 

trees we want in the forest. Each decision tree is built to its maximum size. There are vari-

ous advantages of a random forest. Very little pre-processing of data is required. Also, we 

do not need to do any variable selection before starting to build the model. A random forest 

itself takes the most useful variables [40]. 

b. Adaboost: Adaboost is short for adaptive boosting. It is a machine learning algorithm that 

can be used along with many other learning algorithms. This leads to an improvement in 

efficiency and performance. Adaboost is adaptive as it adapts to the error rates of the indi-

vidual weak hypothesis. Also, adaboost is a boosting algorithm as it can efficiently convert 

a weak learning algorithm into a strong learning algorithm. Adaboost calls a given weak 

algorithm repeatedly in a series of rounds. The important concept for an adaboost algorithm 

is to maintain a distribution of weights over the training set. Initially all the weights are 

equal but on each round the weights of incorrect classified examples are increased so that a 

weak learner is forced to focus on the hard examples in the training set. This is how a weak 

learning algorithm is changed to a strong learning algorithm. Adaboost is less susceptible 

to an over fitting problem than most learning algorithms [40]. 

c. Bagging: Bagging, which is also known as bootstrap aggregating, is a technique that re-

peatedly samples (with replacement) from a data set according to a uniform probability dis-

tribution [41]. Each bootstrap sample has the same size as the original data. Because the 

sampling is done with replacement, some instances may appear several times in the same 

training set, while others may be omitted from the training set. On average, a bootstrap 

sample Di contains approximately 63% of the original training data because each sample 

has a probability 1- (1- 1/N)
N 

of being selected in each Di. If N is sufficiently large, this 

probability converges to 1-1/e = 0.632. After training the k classifiers, a test instance is as-

signed to the class that receives the highest number of votes [42]. 

d. Multilayer Perceptron: Multilayer Perceptron (MLP) is an example of an artificial neural 

network. It is used for solving different problems, example pattern recognition, interpola-

tion, etc. It is an advancement to the perceptron neural network model. With one or two 

hidden layers, they can solve almost any problem. They are feedforward neural networks 

trained with the back propagation algorithm. Error back-propagation learning consists of 

two passes: a forward pass and a backward pass. In the forward pass, an input is presented 

to the neural network, and its effect is propagated through the network layer by layer. Dur-
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ing the forward pass the weights of the network are all fixed. During the backward pass the 

weights are all updated and adjusted according to the error computed. An error is composed 

from the difference between the desired response and the system output. This error infor-

mation is fed back to the system and adjusts the system parameters in a systematic fashion 

(the learning rule). The process is repeated until the performance is acceptable [42]. 

e. Support Vector Machine: A Support Vector Machine (SVM) is a learning technique that is 

used for classifying unseen data correctly. For doing this, SVM builds a hyperplane, which 

separates the data into different categories. The dataset may or may not be linearly separa-

ble. By "linearly separable" we mean that the cases can be completely separated (i.e., the 

cases with one category are on the one side of the hyperplane and the cases with the other 

category are on the other side). For example, Fig. 3 shows the dataset where examples be-

long to two different categories - triangles and squares. Since these points are represented 

on a 2-dimensional plane, a 1-dimensional line can separate them. To separate these points 

into 2 different categories, there are an infinite number of lines possible. Two possible can-

didate lines are shown in Fig. 3. However, only one of the lines gives a maximum separa-

tion/margin and that line is selected. "Margin" is defined as the distance between the 

dashed lines (as shown in Fig. 3), which is drawn parallel to the separating lines. These 

dashed lines give the distance between the separating line and closest vectors to the line. 

These vectors are called support vectors. SVM can also be extended to the non-linear 

 

Fig. 2.  Multilayer Perceptron 

 

Fig. 3.  Support Vector Machine 
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boundaries by using the kernel trick. The kernel function transforms the data into a higher 

dimensional space to make the separation easy. [16] 

f. Genetic Programming: Genetic Programming is a branch of genetic algorithms. It is in-

spired by biological evolution. Genetic Programming creates computer programs that can 

perform a user defined task. For doing this, the following 4 steps are used: 

 

i. First, all the computer programs are made. 

ii. Then, each program is executed and assigned a fitness value according to how well it 

solves the problem. 

iii. Then, a new population of computer programs is created: 

� From among all the programs the best existing programs are copied. 

� Mutation is carried out to create new programs. 

� Crossover is also carried out to create new programs. 

iv. Finally, the best computer program created so far in any generation is the result of Ge-

netic Programming. 

 

4.4 Performance Evaluation Measures 

To measure the performance of the predicted model, we have used the following performance 

evaluation measures: 

 

Sensitivity: It measures the correctness of the predicted model. It is defined as the percentage 

of classes correctly predicted to be fault prone. Mathematically, 

Sensitivity = ((Number of modules correctly predicted as fault prone) / (total number of actual 

faulty modules)) * 100  

 

Specificity: It also measures the correctness of the predicted model. It is defined as the per-

centage of classes predicted that will not be fault prone. Mathematically, 

Specificity = ((Number of modules correctly predicted as non- fault prone) / (total number of 

actual non faulty modules)) * 100  

 

Precision or Accuracy: It is defined as the ratio of number of classes (including faulty and 

non- faulty) that are predicted correctly to the total number of classes. 

 

Receiver Operating Characteristic (ROC) analysis: The performance of the outputs of the 

predicted models was evaluated using ROC analysis. It is an effective method of evaluating the 

performance of the model predicted. The ROC curve is defined as a plot of sensitivity on the y-

coordinate versus its 1-specificity on the x-coordinate [16]. While constructing ROC curves, we 

selected many cutoff points between 0 and 1, and calculated sensitivity and specificity at each 

cutoff point. The ROC curve is used to obtain the required optimal cutoff point that maximizes 

both sensitivity and specificity [16, 4]. 

 

The validation method used in our study is k-cross validation (the value of k is taken as 10) in 

which the dataset is divided into approximately equal k partitions [43]. One partition at a time is 

used for testing the model and the remaining k-1 partitions are used for training the model. This 
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is repeated for all the k partitions.  

 

 

5. RESULT ANALYSIS 

In this section, we have analyzed the results of our study. In this study, we have validated the 

CK metric suite. To begin with the data analysis, the first step is to identify the subset of the 

object oriented metrics that are related to fault proneness and that are orthogonal to each other. 

The statistical modeling technique used for this purpose is univariate logistic regression. After 

identifying a subset of metrics, we have used the multivariate logistic regression technique to 

construct a multivariate model that can be used to predict the overall fault in the system. To pre-

dict the best model that gives the highest accuracy we have used various machine learning tech-

niques. We performed the analysis of an Open Source software, poi [15], which consisted of 422 

classes (see Section 4.1). The performance of each of the predicted models was determined us-

ing several performance measures (i.e., sensitivity, specificity, precision, and the ROC analysis). 

 

5.1 Univariate LR Analysis Results 

We conducted univariate analysis to find whether each of the metrics (independent variables) 

is significantly associated with fault proneness (dependent variable). Table 4 represents the re-

sults of univariate analysis. It provides the coefficient (B), standard error (SE), statistical signifi-

cance (sig.), and odds ratio (exp (B)) for each metric [4]. The parameter "sig" tells whether each 

of the metric is a significant predictor of fault proneness. If the "sig" value of a metric is below 

or at the significance threshold of 0.01, then the metric is said to be significant in predicting the 

Table 4.  Univariate Analysis 

S.no Metric B SE Sig. Exp(B) 

1 WMC 0.123 0.018 0.000 1.131 

2 DIT -0.188 0.115 0.102 0.828 

3 NOC 0.003 0.015 0.835 1.003 

4 CBO 0.056 0.020 0.004 1.057 

5 RFC 0.055 0.008 0.000 1.056 

6 LCOM 0.012 0.003 0.000 1.012 

7 CA 0.007 0.007 0.354 1.007 

8 CE 0.251 0.043 0.000 1.285 

9 NPM 0.109 0.018 0.000 1.115 

10 LCOM3 -0.943 0.192 0.000 0.389 

11 LOC 0.004 0.001 0.000 1.004 

12 DAM 1.477 0.264 0.000 4.381 

13 MOA 0.495 0.128 0.000 1.641 

14 MFA -0.004 0.311 0.991 0.996 

15 CAM -3.844 0.568 0.000 0.021 

16 IC 1.460 0.206 0.000 4.307 

17 CBM 0.511 0.065 0.000 1.668 

18 AMC 0.013 0.006 0.036 1.013 

19 MAX_CC 0.187 0.045 0.000 1.206 

20 AVG_CC 0.828 0.192 0.000 2.289 
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faulty classes [4]. Table 4 shows the significant values in bold. The coefficient "(B)" shows the 

strength of the independent variable. The higher the value, the higher the impact of the inde-

pendent variable is. The sign of the coefficient tells whether the impact is positive or negative. 

We can see that DIT, NOC, Ca, and MFA metrics are not significant and are therefore not taken 

for any further analysis. Thus, in this way we can reduce the number of independent variables 

and select only the best fault predictors. The following notations used in tables 5-9 shows the 

degree of the significance: 

++ shows the significance of the metric at 0.01, + shows the significance of the metric at 0.05, 

-- shows the significance of the metric at 0.01 but in an inverse manner, − shows the signifi-

cance of the metric at 0.05 but in an inverse manner, and 0 shows that the metric is insignificant.  

Table 5.  Univariate Results of Size Metrics 

Metric Notation 

WMC ++ 

NPM ++ 

LOC ++ 

DAM ++ 

MOA ++ 

AMC + 

 

Table 6.  Univariate Results of Coupling Metrics 

Metric Notation 

RFC ++ 

CBO + 

CA 0 

CE ++ 

IC ++ 

CBM ++ 

 

Table 7.  Univariate Results of Cohesion Metrics 

Metric Notation 

LCOM ++ 

LCOM3 -- 

CAM -- 

 

Table 8.  Univariate Results of Inheritance Metrics 

Metric Notation 

DIT 0 

NOC 0 

MFA 0 

 

Table 9.  Univariate Results of the Complexity Metric 

Metric Notation 

CC ++ 
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5.2 Multivariate LR Analysis Results 

Multivariate analysis is done to find the combined effect of all of the metrics together on fault 

proneness. For doing multivariate analysis, we have used forward stepwise selection to deter-

mine which variables should be included in the multivariate model. Out of all the variables, one 

variable in turn is selected as the dependent variable and the remaining others are used as inde-

pendent variables [44]. In univariate analysis 16 metrics were found to be significant. Table 10 

shows the results of the multivariate model. The coeff (B), statistical significance (Sig.), stan-

dard error (SE), and odds ratio (Exp (B)) are also shown in the table for all the metrics included 

in the model. We can see that only 3 metrics (i.e., DIT, RFC, and CBM) are included in the 

model. 

 

 
 

5.3 Obtaining a Relationship Between Object Oriented Metrics and Fault Prone-

ness 

In this section, we have discussed our results and also we have compared our results with the 

results of previous studies shown in Table 11.  

Table 10.  Multivariate Model Statistics 

Metric B SE Sig. Exp(B) 

DIT -0.522 0.165 0.002 0.594 

RFC 0.031 0.007 0.000 1.032 

CBM 0.531 0.078 0.000 1.701 

CONSTANT -0.089 0.328 0.785 0.914 

Table 11.  Results of Different Validation 
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5.3.1 Discussion about our results 

All the size metrics, except AMC, are significant at 0.01. AMC is significant at 0.05. 

Amongst the cohesion metrics, we can see that LCOM3 and CAM have negative coefficients 

indicating that they have a negative impact on fault proneness. By definition, if LCOM, LCOM3, 

and CAM are significant, it means that fault proneness increases with a decrease in cohesion. 

Since CAM and LCOM3 are negatively related to fault proneness, we can conclude that fault 

proneness decreases with the decrease in cohesion. We can observe that out of 3 cohesion met-

rics, the majority (i.e., 2) of the metrics are negatively related. All the coupling metrics, except 

CA, are found to be strongly relevant to determine the fault proneness of the class. CBO is not 

strongly related but it still has a positive impact. CA is not significant to fault proneness, mean-

ing it has neither a positive nor a negative impact. None of the inheritance metrics is found to be 

significant. The complexity metrics CC is found to be strongly and positively related to fault 

proneness. 

  

5.3.2 Discussion of previous studies 

We have done the comparison of our results with the results of the previous studies. CBO was 

found to be a significant predictor in the majority of the studies except by Tang et al. (1999) [21], 

El Emam et al. (2001) [23], and Olague et al. (2007) [45]. In El Emam et al. [20], the results 

were analyzed for the projects with and without size control. When size control was not taken 

Table 11.  Results of Different Validation (cont'd…) 

 
++, Denotes the metric is significant at 0.01; +, denotes the metric is significant at 0.05; --, denotes the metric is 

significant at 0.01 but in an inverse manner; -, denotes the metric is significant at 0.05 but in an inverse manner; 0,

denotes that the metric is not significant.  

A blank entry means that our hypothesis was not examined or that the metric was calculated in a different way. 

LR, logistic regression; UMR, Univariate Multinomial Regression; UBR, Univariate Binary Regression; OLS,

Ordinary Least Square; ML, Machine Learning; DT, Decision Tree; ANN, Artificial Neural Network; RF, Random

Forest; NB, Naı¨ve Bayes ;MLP, Multilayer Perceptron; Ab,  Adaboost; SVM, Support Vector Machine; GP,

Genetic Programming; LSF, Low Severity Fault; USF, Ungraded Severity Fault; HSF, High Severity Fault; MSF, 

Medium Severity Faults; #1, without size control; #2, with size control; 2.0, Eclipse version 2.0; 2.1, Eclipse ver-

sion 2.1; 3.0,Eclipse version 3.0; 1., iBATIS system; 2., HealthWatcher application; 3., MobileMedia system; 

R3,Rhino 15R3; R4, Rhino 15R4; R5, Rhino 15R5; comm.,commercial; univ., university 
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into account, then CBO was found to be insignificant. Similarly, Olague et al. [45] predicted the 

fault prone classes for various versions of RhiNo.For one of the versions, the CBO was found to 

be insignificant. RFC was also found to be a significant predictor of fault proneness in all the 

studies except by El Emam et al. (2001) [23] when size control was not considered. Most of the 

studies (i.e., Tang et al. (1999)[21], Briand et al. (2000) [1], Briand et al. (2001)[24], Yu et 

al.(2002)[25], Shatnawi et al. (2008)[28], English et al.(2009)[44], Zhou et al. (2010)[46], and 

Burrows et al. (2010)[47]) did not examine the LCOM metrics or they calculated it in a very 

different manner. Among the studies that examined LCOM, it was insignificant with Basili et al. 

(1996) [31] and Singh et al. (2009) [4] for the Low Severity Fault (LSF) prediction model. The 

metric NOC, which is not found to be a significant predictor in our study, showed a negative 

impact on fault proneness by Basili et al. (1996) [31], Briand et al. (2000) [1], and Zhou et al. 

(2006) [46] for the LSF prediction model and by Singh et al. (2009) [4] for the Medium Severity 

Fault (MSF) and Ungraded Severity Fault (USF) prediction model. For the remaining previous 

studies, NOC was not considered to be significant. NOC was found to be very significant in 

predicting faulty classes by Yu et al. (2002) [25] and English et al. (2009) [44]. SLOC is found 

to be strongly relevant to fault proneness in all the studies. Various studies (i.e. Tang et al. 

(1999) [21], El emam et al. (2001) [23], Yu et al. (2002) [25], Zhou et al. (2006) [46], Singh et 

al. (2009) [4], Burrows et al. (2010) [47], and Aggarwal et al. (2008) [3]) showed DIT results 

that were similar to our results. For Basili et al. (1996) [31], Briand et al. (2000) [1], Gyimothy 

et al. (2005) [12], and English et al. (2009) [44] was found to be positive significant predictor. 

WMC is also found to be quite significant in all the previous studies. Thus, we can conclude that 

WMC and SLOC have always been significant predictors. DIT is not much useful in predicting 

the faulty classes.  

 

 

6. MODEL EVALUATION USING THE ROC CURVE 

This section presents and summarizes the result analysis. We have used various machine 

learning methods to predict the accuracy of fault proneness. The validation method which we 

have used is k cross-validation, with the value of k as 10.  

Table 12 summarizes the results of 10 cross-validation of the models predicted by using ma-

chine learning methods. It shows the sensitivity, specificity, precision, AUC, and the cutoff 

point for the model predicted using all the machine learning methods. We have used ROC 

analysis to find the cutoff point. The cutoff point is selected such that a balance is maintained 

between the number of classes predicted as being fault prone and not fault prone. The ROC 

Table 12.  Results of 10-cross Validation 

S.No. Method Used Sensitivity Specificity Precision Area under curve Cut-off point 

1 Random Forest 78.6 80.7 78.90 0.875 0.61 

2. Adaboost 80.8 78.3 79.86 0.861 0.62 

3. Bagging 82.9 80.1 81.99 0.876 0.57 

4. Multilayer Perceptron 77.6 77 77.25 0.799 0.54 

5. Support Vector Machine 89.3 51 76.30 0.70 0.5 

6. Genetic Programming 82.8 72.7 79.38 0.808 0.5 

7. Logistic Regression 74.7 73.9 74.4 0.791 0.59 
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curve is plotted with sensitivity on the y-axis and (1-specificity) on the y-axis. The point where 

sensitivity equals (1-specificity) is called the cutoff point. The ROC curves for the machine 

learning models are presented in Fig. 4. 

We can see that the random forest and bagging give quite similar results. They show good re-

sults as compared to the results of the other methods. The specificity and AUC for both the 

models are quite similar. The specificity for the random forest is 80.7% whereas for bagging it is 

80.1%. These values are quite high when compared to the values of the other methods. Also the 

ROC curve for the random forest and bagging gives high AUC values i.e. 0.875 and 0.876 re-

spectively. The sensitivity of the random forest is 98.6%, whereas bagging shows a high sensi-

tivity of 82.9%. The highest sensitivity is shown by the SVM method, which is 89.3%, but it 

  
                   (a)                          (b)                           (c) 

 

 
                   (d)                          (e)                          (f) 

 

   
                  (g) 

 
Fig. 4.  ROC curve for (A) Adaboost, (B) Random Forest, (C) Bagging, (D) Multilayer Perceptron,  

(E) Genetic Programming, (F) SVM, (G) Logistic Regression 
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gives the lowest specificity of 51%. Also the AUC for the SVM model is 0.70. Thus, this 

method is not considered to be good. Adaboost and Genetic Programming show average results 

with a sensitivity of 80.8% and 82.8% respectively, with a specificity of 78.3% and 72.7%. Be-

sides these machine learning models, we have also used a statistical method (i.e., logistic regres-

sion). We can observe that the sensitivity of logistic regression is the lowest as compared to 

other machine learning methods. Also, specificity is quite low when compared with most of the 

other machine learning methods. Thus, we can conclude from the discussion that the machine 

learning methods give better results as compared to the statistical methods. From amongst the 

machine learning methods under consideration, random forest and bagging are the best predicted 

models.  

 

 

7. CONCLUSION 

In any software project, there can be a number of faults. It is very essential to deal with these 

faults and to try to detect them as early as possible in the lifecycle of the project development. 

Thus, various techniques are available for this purpose in the literature, but previous research 

has shown that the object oriented metrics are useful in predicting the fault proneness of classes 

in object oriented software systems. The data is collected from an Open Source software Apache 

POI, which was developed in Java and consists of 422 classes. In this study, we have used object 

oriented metrics as the independent variables and fault proneness as the dependent variable. We 

have studied 19 object oriented metrics for predicting the faulty classes. Out of 19 metrics, we 

have identified a subset of metrics, which are significant predictors of fault proneness. For doing 

this, we have used univariate logistic regression. It was found that the metrics DIT, NOC, Ca, 

and MFA are not significant predictors of fault proneness and the remaining metrics that we 

have considered are found to be quite significant. We have also compared our results with those 

of previous studies and concluded that WMC and SLOC are significant predictors in the major-

ity of the studies. After identifying a subset of metrics, we constructed a model that could pre-

dict the faulty classes in the system. Using multivariate analysis, we constructed the model in 

which only 3 metrics were included (i.e., DIT, RFC, and CBM). To predict the best model, we 

used six machine learning techniques that measured the accuracy in terms of sensitivity, speci-

ficity, precision, and AUC (Area Under the Curve). The cutoff point was also selected such that 

a balance is maintained between the number of classes predicted as fault and not fault prone. 

The ROC curve was used to calculate the cutoff point. We observed that the random forest and 

bagging gave the best results as compared to other models. Thus, we can conclude that practi-

tioners and researchers may use bagging and the random forest for constructing the model to 

predict the faulty classes. The model can be used in the early phases of software development to 

measure the quality of the systems. 

More similar type of studies can be carried out on different datasets to give generalized results 

across different organizations. We plan to replicate our study on larger datasets and industrial 

object oriented software systems. In future studies, we will take into account the severity of 

faults to get more accurate and efficient results. In this study, we have not taken into account the 

effect of size on fault proneness. In future work, we will also take into account some of the 

product properties such as size, and also process and resource related issues like the experience 

of people, the development environment, etc., which all effect fault proneness. 
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