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Fault prognosis plays a key role in the framework of Condition-Based Maintenance (CBM). Limited by the inherent disadvantages, most 

traditional intelligent algorithms perform not very well in fault prognosis of hydraulic pumps. In order to improve the prediction accuracy, 

a novel methodology for fault prognosis of hydraulic pump based on the bispectrum entropy and the deep belief network is proposed in 

this paper. Firstly, the bispectrum features of vibration signals are analyzed, and a bispectrum entropy method based on energy distribution 

is proposed to extract the effective feature for prognostics. Then, the Deep Belief Network (DBN) model based on the Restrict Boltzmann 

Machine (RBM) is proposed as the prognostics model. For the purpose of accurately predicting the trends and the random fluctuations 

during the performance degradation of the hydraulic pump, the Quantum Particle Swarm Optimization (QPSO) is introduced to search for 

the optimal value of initial parameters of the network. Finally, analysis of the hydraulic pump degradation experiment demonstrates that 

the proposed algorithm has a satisfactory prognostics performance and is feasible to meet the requirements of CBM. 
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1.  INTRODUCTION 

Condition-based Maintenance (CBM) has been attracting 

more and more people's attention [1]. Technologies of fault 

prognostics are the core of CBM, which can estimate the 

residual useful life of damaged components or subsystems, 

and establish a targeted maintenance plan to ensure safe and 

reliable operation of the system [2]. Since the hydraulic 

pump is one of the most important components of hydraulic 

system, the performance of the hydraulic pump has a 

significant impact on the reliability of the whole system [3]. 

Therefore, the urgent issue is to search for a method to 

realize the accurate fault prognosis of hydraulic pumps.  

Deep learning is a new research direction in the field of 

machine learning, which is developed on the basis of 

Artificial Neural Networks (ANN). There are several kinds 

of typical deep learning models, including convolutional 

neural network (CNN), recurrent neural network (RNN), 

and deep belief network (DBN). CNN models have shown 

their success in various computer vision applications where 

input data are usually 2D data [30], while our input features 

are mainly 1D time series data whose type is not suitable for 

the CNN input. RNNs are the deepest of all neural networks 

and are widely applied in language processing (NLP). 

However,  there  are  problems such as  gradient  vanishing 

and  explosion in RNNs. DBN model proposed by Hinton 

[4]  in  2006  shows great advantages in feature learning and 

processing. DBN model is composed of multiple Restrict 

Boltzmann Machines (RBMs). RBM consists of two layers 

of neurons, a hidden layer and a visible layer, which are 

fully and symmetrically connected between layers, but not 

connected within layers. Using unsupervised learning, each 

RBM is trained in its weight matrix to encode a probability 

distribution that predicts the activity of the visible layer 

from the activity of the hidden layer. The advantage of DBN 

rests on the unsupervised layer-by-layer pre-training with 

the Contrastive Divergence (CD) algorithm, on which 

supervised learning and inference can be efficiently 

performed [5]. Compared with the traditional shallow 

learning model, DBN can effectively avoid the phenomenon 

of over-fitting and premature convergence in the process of 

training a neural network model [6]. With the development 

of machine learning, DBN has been successfully applied in 

machine vision recognition [7], biometric detection [8], fault 

prognosis, etc. [9]. Roy et al. [10] proposed a text 

recognition methodology based on DBN and recurrent 

neural network, which further improved the recognition 

accuracy. Mohamed et al. [11] proposed a voice recognition 

method based on DBN, and used TIMIT data to verify that 

this method had better recognition performance. Lee et al. 

[12] applied convolution DBN to the field of image 

recognition. By compressing the input layer data according 

to   the  probability  index,  the  model  possesses translation 
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invariant property, and supports bottom-up and top-down 

probabilistic inference. In recent years, the deep learning 

methods based on DBN and its variants have been widely 

applied in fault diagnosis and prognostics. Tamilselvan et al. 

[26] got an accurate health state classification result by 

DBN. Wang et al. [27] proposed a fault diagnosis method 

based on the Hilbert envelope spectrum and DBN. And 

Shao et al. [28] put forward a novel optimization DBN 

based on particle swarm for rolling bearing fault diagnosis. 

Comparing with the applications of DBN in fault diagnosis, 

the applications of DBN in fault prognostics are rarely 

reported. Zhao et al. [29] proposed a fusion fault prognostics 

approach based on DBN and the Relevance Vector Machine 

in which DBN is only responsible for extracting features. 

These successful applications provide ideas for us to apply 

an optimized DBN to the fault prognosis of hydraulic pump. 

In the process of hydraulic pump operation, vibration 

signals show obvious nonlinear and non-Gaussian 

characteristics due to the influence of fluid compressibility, 

fluid-structure coupling between pump source and servo 

system, and inherent mechanical vibration. In recent years, 

higher order spectra (HOS) are powerful signal processing 

tools that have shown significant advantages over traditional 

spectral analyses because of their capabilities of nonlinearity 

identification, phase information retention and Gaussian 

noise elimination [24]. Bispectrum analysis is a simple high-

order spectrum analysis method, which has the above 

characteristics of high-order spectrum. Theoretically, 

bispectrum can completely suppress the Gaussian noise in 

the nonlinear signal, and retain the non-Gaussian 

components in the signal, which is suitable for processing 

the pump vibration signals with periodicity and modulation. 

Bispectrum is the two Fourier transform on the three order 

cumulant. It preserves the phase information of the signal 

and can quantitatively describe the nonlinear phase coupling 

in the signal which is closely related to the fault information 

[14]. Bispectrum can effectively restrain noises, and obtain 

sensitive feature information of signals simultaneously [15]. 

Moreover, the concept of information entropy is introduced, 

and the bispectrum entropy model is established. On the 

basis of the bispectrum analysis, the bispectrum entropy of 

different frequency bands of vibration signals is extracted as 

the prediction features. 

Based on the above analysis, a novel methodology for 

fault prognosis of hydraulic pump based on the bispectrum 

entropy and QPSO-DBN is proposed in this paper. The 

structure of this paper is as follows. In Section 2, the basic 

theory and mathematical formulas of the bispectrum 

analysis are introduced in detail, and the extraction process 

of the bispectrum entropy is presented as well. In Section 3, 

the QPSO-DBN model is proposed for the fault prognosis of 

hydraulic pump. In Section 4, the effectiveness of the 

proposed fault prognostics methodology is verified through 

the experiment of the hydraulic pump. Conclusions are 

given in Section 5. 

2.  THE PROPOSED BISPECTRUM ENTROPY MODEL 

2.1.  Fundamentals of bispectrum analysis 

Bispectrum analysis is a powerful tool for dealing with 

non-Gaussian signals [16]. The bispectrum can be regarded 

as the decomposition of the skewness of the nonlinear signal 

in the frequency domain, which can describe the nonlinear 

and asymmetric characteristics of vibration signals [17]. 

Assuming that ( )x n  is zero-mean and k-order stochastic 

process, the third-order cumulant is defined as: 
 

3 1 2 1 2( , ) ( ( ) ( ) ( ))xc E x n x n x nτ τ τ τ= + +            (1) 

 

The bispectrum is defined as a third-order cumulant of the 

two-dimensional discrete Fourier transform, and it is usually 

represented as
1 2( , )xB ω ω . 
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Whereω  is the circular frequency. As the bispectrum is 

defined as an autocorrelation discrete Fourier transform, the 

third-order cumulant is absolutely summable, i.e. 
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The bispectrum is a double period function, which can 

effectively preserve the phase information of the non-

Gaussian signal and can be used to describe the energy 

information in the nonlinear signal. 

 

2.2.  The bispectrum entropy 

The information entropy is a measure of the inherent 

complexity of the nonlinear system, which can reveal the 

inherent energy change of the vibration signal during the 

degradation of the hydraulic pump [18]. Since the measured 

vibration signal of the hydraulic pump is a finite length 

sequence, the bispectrum estimation 
1 2( , )ω ω

�

xB can be 

obtained in practical application. Therefore, the energy 

entropy calculated from the bispectrum amplitude in any 

dual frequency domain is defined as bispectrum entropy, 

and the calculation steps are as follows [19]: 

1)  The nonparametric bispectral estimation method is 

applied to calculate the bispectrum estimation
1 2( , )ω ω

�

xB . 

Firstly, the signal x(N) with length N is divided into K 

segments, each segment has M data points, and the data of 

each segment is averaged. 

2)  Calculate the DFT coefficients of each segment. 
 

1
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Where 0,1, , / 2λ = � M  and ( )ix t , 0,1, , 1= −�t M  is the ith 

signal data. 
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3)  Calculate the triple correlation of each segment of data. 

 
1 1

1 1 21 1

( ) ( ) ( )

1 2 1 1 2 2 1 1 2 22

0

1ˆ ( , ) ( ) ( ) ( )
L L

i i i

i

k L k L
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=− =−

= + + − − − −
�
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Where 0 0/sf N� = is the required interval between frequency 

samples. 1 2 / 2λ λ+ ≤ sf , 2 10 λ λ≤ ≤  and N0 and L1 satisfy 

1 0(2 1)= +M L N  

4)  The bispectral estimate is the average of k-segment 

data as follows. 
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5)  Calculate the probability of bispectrum amplitudes for 

all points in the definition domain. 
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Where 
1 2

'

1 2

0 0

( , )
π π

ω ω

ω ω
= =

∑ ∑
�

xB is the non-Gaussian intensity 

eigenvalue. 

6)  Calculate the bispectrum entropy: 

 

1 2

1 2 1 2

0 0

( , ) ln ( , )
π π

ω ω

ω ω ω ω
= =

= −∑ ∑B B BH P P

           (8) 

 

Similar to other information entropies, the bispectrum 

entropy also has non-negative, symmetry, and extreme 

values. When the bispectrum amplitude is more uniform, the 

greater is the bispectrum entropy, the smaller is the entropy. 

 

3.  FAULT PROGNOSTICS BASED ON QPSO-DBN 

Unlike traditional shallow learning methods, deep learning 

is an unsupervised learning method. Deep learning applies 

the bottom-up layer by layer learning to train the model, and 

then utilizes the top-down feedback learning to adjust the 

parameters of the entire model [20]. As a new intelligent 

prognosis algorithm, deep learning can simulate the 

complex structure of the human brain and achieve more 

accurate prognosis with a strong self-learning ability. 

 

3.1.  Fundamentals of DBN 

DBN proposed by Hinton et al. is the most widely used in 

deep learning. DBN is composed of input layer, middle 

layer, and output layer, where the middle layer is composed 

of multiple RBMs. The network structure of DBN is shown 

in Fig.1. Fig.1. is a typical DBN model consisting of three 

layers of RBMs. RBM is a typical energy model consisting 

of visible and hidden layers. The first input layer vi can be 

regarded as the visual layer of RBM1, and constitutes the 

first layer RBM together with the hidden layer hi. RBM1 

extracts the corresponding information from the visual layer 

and passes it to the hidden layer inside RBM1 itself. At this 

time, the hidden layer of RBM1 can be seen as the visual 

layer of the next RBM. Then, the data of the visual layer 

inside RBM2 can be further extracted and passed to the 

hidden layer of RBM2. With this operation, the output data 

of the DBN model can be generated from the last hidden 

layer of RBM. Thus, a DBN model consisting of multi-layer 

RBMs is implemented. 

 

 
 

Fig.1.  The structure of DBN model. 

 

RBM is the core of the DBN model. It is a kind of energy 

model that obtains the dependencies between input 

parameters by associating the input parameters with a 

suitable energy function. For the energy models, the 

magnitude of energy is inversely proportional to the 

probability of combinations of parameters. This means that 

if a combination of parameters is considered to have a 

greater probability of rationality, it should also have smaller 

energy. Therefore, for the given set of parameter data, the 

configuration combinations of the parameters that minimize 

the corresponding energy values are obtained by training the 

model continuously. 

Assuming that m and n are respectively the unit numbers 

of the hidden layer h and the visual layer v, where hi is the 

ith unit vector of the hidden layer while vj is the jth cell 

vector of the visual layer. The probability distribution of the 

hidden layer element hi can be defined as: 
 

0

( 1 | ) sigmoid( )
=

= = +∑
n

i ij j i

j

P h v W v b                   (9) 

 

Where 
1

sigmoid
1 −

=
+ xe

, Wij is the weight matrix 

between the hidden layer element and the visual layer 

element, bi is the offset of hidden layer elements. In equation 

(6), the activation probability of the hidden layer elements is 

distributed according to the S type by the sigmoid function, 

and Wij is constantly updated based on the input data. The 

probability distribution of the visual layer element is 

determined by the hidden layer data, and its probability 

distribution is defined as: 
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0

( 1| ) sigmoid( )
=

= = +∑
m

j ij i j

i

P v h W h c                 (10) 

 

Where, cj is the offset of the visual layer element. 

According to the above probability distribution, the joint 

probability distribution between the hidden layer and the 

visual layer can be defined as: 

 

( , ) exp( ( , )) /= −p v h E v h Z                     (11) 

 

Where,
,

exp( ( , ))= −∑
v h

Z E v h  is the normalized function, 

and the RBM energy function can be defined as: 

 

1 1 1 1

( , )
= = = =

= − − −∑∑ ∑ ∑
n m n m

ij j i j j i i

j i j i

E v h W v h c v b h             (12) 

 

In equation (9), E(v,h) is the system energy of the RBM. 

According to the energy model theory, when the model 

energy is at minimum, the RBM is the most stable. 

Therefore, the optimal parameters of the RBM model can be 

obtained by solving the minimum value of E(v,h).  

When training RBM, the DBN model parameters can be 

optimized by calculating the minimum gradient for the log 

likelihood function, and then the RBM weight update model 

is defined as: 

 

( ) ( )� = −ij data j i model j iw E v h E v h                     (13) 

 

Where, ( )
data j i

E v h is energy value expectation of training 

samples, ( )
model j i

E v h is expectation defined by the model. In 

the process of solving min ( lg ( , ))−w P v h , due to the 

existence of the normalization factor, its computational 

complexity is higher, and it is difficult to accurately solve 

the DBN model parameters. Hinton proposed an 

approximate solution called the Contrastive divergence 

(CD) algorithm. The CD algorithm calculates the model 

parameters by single-step or multi-step Gibbs (Gibbs Chain) 

sampling and completes the updating of the above two 

expectations to achieve the fast learning of RBM.  

 

 
 

Fig.2.  The training process of DBN model.  

In summary, the DBN model is trained by greedy layer-

wise algorithm, and the training process of the DBN model 

is shown in Fig.2. First of all, the first layer of RBM utilizes 

the CD algorithm to train the input feature data, and the 

model parameters of the first RBM layer are obtained. Then, 

the hidden layer of the first RBM layer is regarded as the 

visual layer of the next RBM, and this training process is 

continued until the top of the DBN model. Finally, the DBN 

model adopts the labeled input characteristic data to trim the 

model parameters reversely, and optimizes the model 

parameters by supervised training. When the model output 

error is less than a predetermined threshold, the model 

training is completed. 

 

3.2.  Parameter optimization of the prediction model based 

on QPSO 

The DBN model includes parameters such as the number 

of hidden layers, the number of units per layer, and the 

learning rate. The choice of these parameters greatly 

influences the prognosis effect of the model, so the 

parameters   of   the   DBN   model   need  to  be  optimized. 
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Fig.3.  The flowchart of parameter optimization  

of the prediction model. 

 

Quantum Particle Swarm Optimization (QPSO) is a new 

parameter optimization algorithm based on the quantum 

theory and particle swarm optimization [21]. It has been 

successfully applied in many fields such as artificial 

intelligence, image processing, automatic control, data 

mining, and so on. Procedures are detailed as follows [22]: 

1)  Set the number of particles P and the maximum 

number of iterations I. 

2)  Initialize the initial velocity of each particle 0ky = and 

the initial position 0ks = . 
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3)  Make the RMSE of the DBN model prognosis results 

as the fitness function, and calculate the fitness. 

4)  Select the global optimum particle according to the 

fitness, and update the velocity and the position information 

of each particle by the following formula. 

 
1

1 2
( ) ( )k k k k k k

i i ibest i gbest i
s s cr y y cr y yω+ = + − + −        (14) 

 
1 1k k k

i i iy y s+ += +                          (15) 

 

Where, ω  is inertia weight, c is learning factor, 

and 1r , 2r are the uniform random numbers falling into [0,1]. 

 

4.  EXPERIMENTAL VALIDATION 

4.1.  Experimental platform 

In order to validate the effectiveness and feasibility of the 

methodology that we proposed in this paper, the QPSO-

DBN algorithm is applied in the fault prognosis of the 

hydraulic pump. The whole lifetime data of the hydraulic 

pump studied in this paper comes from the Hydraulic Pump 

Full Life Test Platform, which is shown in Fig.4.a). Fig.4.b) 

gives the schematic diagram of this platform where we can 

see that 603C01 Accelerometers are installed on the shell of 

the pump to collect vibration signals. The installation details 

are shown in Fig.4.c). The technical specification of the 

accelerometers is as follows. The sensitivity is 100 mV/g, 

the frequency range (±3 dB) is 0.5 Hz-10 KHz, and the 

range is ±50 g. The type of the tested hydraulic pump is 

L10VSO28DFR, which has 9 pistons. And its schematic 

diagram is shown in Fig.5.a). This type of pump is a 

constant pressure and constant flow pump of which max 

output pressure is 35 MPa and max oil flow is 90 L/min. On 

our platform, the pump is driven by a three-phase 

asynchronous motor whose power is 90 kW. A new 

hydraulic pump was taken for degradation experiment under 

the accelerated condition that the settled pressure was 

27 MPa and the speed was 2780 rp·min-1. The signals were 

sampled and stored by the cDAQ-9171 system of NI 

Corporation. The sampling frequency was10 KHz and the 

sampling time was 1 s. The interval time was 20 min. 

The volumetric efficiencyη is taken as the evaluation 

parameter of the hydraulic pump [23]. When the volume 

efficiency is less than 85 %, the hydraulic pump is judged to 

fail, and the test platform is automatically stopped. In this 

paper, a new hydraulic pump was taken as the experiment 

object to obtain the whole lifetime data of this pump. When 

the operating time was 575 h, ηwas less than 85 %. The 

hydraulic pump was judged to be totally invalid by the 

control system and the operating experiment platform was 

shut down automatically. After the experiment, the tested 

pump was disassembled, and it was clear that the failure 

mode was a severely loose slipper of one piston inside the 

pump, which is shown in Fig.5.b). 

 
 

Fig.4.a)  Hydraulic Pump Full Life Test Platform. 

 

 
Fig.4.b).  The schematic diagram of the Hydraulic Pump Full Life 

Test Platform. 

 

 
 

Fig.4.c)  Installation of the accelerometer. 

 

 
 

Fig.5.a)  The schematic diagram of the hydraulic pump with 

possible loose slipper fault. 
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Fig.5.b)  Piston failure of loose slipper. 

 

4.2.  Results and analysis 

In order to obtain the feature that can reflect the 

degradation state of the hydraulic pump accurately, 

bispectrum analysis of vibration signals is carried out in this 

paper, and the bispectrum entropy of different frequency 

bands is extracted as the prediction feature. Considering that 

the characteristic frequencies of the vibration signal are 

mainly within 3 KHz, the bispectral entropies in the 

frequency bands ([0,200), [200,400), … , [2800,3000]) are 

taken as the 15 prediction features in total. Among these 15 

prediction features, corresponding to the divided frequency 

bands, we select four kinds of typical bispectrums along 

with entropy values labelled to display this process. These 

bispectrums in 0-200 Hz, 600-800 Hz, 1600-1800 Hz, 2400-

2600 Hz are shown in Fig.6. 

 

 
 

          Fig.6.a)  HB=0.85                         Fig.6.b)  HB=0.68 

 

   
 

           Fig.6.c)  HB=0.45                       Fig.6.d)  HB=0.32 

 

The DBN model constructed in this paper takes the 15 

features as the model input layer vector, and the hydraulic 

pump volume efficiency is the output layer vector. First of 

all, in order to reduce the prognosis error of the DBN 

prognosis model, the 15 features need to be normalized, and 

the normalized formula is shown in equation (13): 

 

min

max min

x x
x

x x

−
=

−
�                               (16) 

 

Before the fault prognosis of the hydraulic pump, the 

network structure parameters of the DBN model need to be 

determined. In this paper, the DBN model depth is set to 3 

layers, the number of visual layer elements is 15, the 

learning rate for fine tuning is 0.01, and the number of 

cycles is 500 times. Since there is no explicit standard for 

setting the number of hidden layer elements and the learning 

rate of RBM, we optimize the above four model parameters 

with the QPSO optimization model constructed in 

Section 3.3. The RMSE of the prediction model is taken as 

the expected target, and the optimization result is shown in 

Fig.7. 

The prediction error decreases gradually with the increase 

of the number of QPSO iterations. When the number of 

iterations grows to 32 times, the prediction error is 

minimized. The structure parameters of the DBN model can 

be determined as follows: the number of hidden elements is 

12, the learning rate of the RBM1 is 0.1, the learning rate of 

RBM2 is 0.3, the learning rate of RBM3 is 0.6. 
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Fig.7.  The prediction error of QPSO algorithm. 

 
The volumetric efficiency η  is taken as the evaluation 

parameter of the hydraulic pump and the threshold is settled 

as 85 %. Considering the failure mechanism and the 

fluctuation trend curve, the whole changing process of the 

volumetric efficiency has been divided into several statuses. 

Duringη ≥95 %(0-145 h), the hydraulic pump is at normal 

status (F1). During 95% 93%η> ≥ (145 h-312 h), the 

pump is at initial degradation stage (F2). 

During 93% 87%η> ≥ (322 h-510 h), the pump is at slow 

degradation stage (F3). During 87% 85%η> ≥ (510 h-

575 h), the pump is at rapid degradation stage (F4). In the 

experiment, the stage F3 is selected as the training section of 

the DBN model, the stage F4 is selected as the predicting 

section. The threshold is settled according to the 1725th 

sample, which is considered as the occurrence time of 

failure. The prediction results are shown in Fig.8. 
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Fig.8.  The predicting results by QPSO-DBN. 

 

Fig.8. shows the results of QPSO-DBN prediction. Since 

the parameters of the DBN model are optimized by QPSO, 

the generalization ability and the predicting accuracy of the 

DBN model are improved. Consequently, the predicted 

series by the QPSO-DBN can better fit the real data and the 

errors are relatively small. The prediction algorithm reaches 

the threshold in the 38th sample and the failure is affirmed. 

Therefore, the error of the RUL prediction is two data 

points, which represents 40 min. To further verify the 

advantages of the proposed method, the BP neural network 

and the SVM model are utilized to predict the same data 

series with the same training data for comparison. The 

parameters of both models are optimized by particle swarm. 

For SVM, there are two critical parameters that can affect 

the performance of the model. These are the kernel 

parameter 4.6743σ = and the punish coefficient 31.7640=c . 

For BP Neural Network, the number of input layer nodes is 

15. The number of hidden layer nodes is 32. The number of 

output layers is 1. The number of training is set to 2000. The 

learning rate is set to 0.1. Results are shown in Fig.9. and 

Fig.10. 

 

0 5 10 15 20 25 30 35 40
0.84

0.85

0.86

0.87

0.88

0.89

0.9

0.91

0.92

0.93

Time(1 data=20 minutes)

T
h
e
 v

o
lu

m
e
tr

ic
 e

ff
ic

ie
n
c
y

 

 

Predicting values by BP neural network

Realvalues

 
 

Fig.9.  The predicted results by BP neural network. 

 

Fig.9. and Fig.10. show the results predicted by the BP 

neural network and the SVM model, respectively. The 

shallow learning methods cannot accurately extract the deep 

correlation information of the input data, and have the 

problem of overfitting. Therefore, the errors between the 

predicted data and the real data are obvious, and the 

predicted curves cannot accurately fit the degradation 

process of the hydraulic pump. Especially after the 30th 

sample, the prediction curves are almost a straight line, and 

the failure time of the hydraulic pump cannot be predicted 

accurately.  
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Fig.10.  The predicted results by SVM. 
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Fig.11.  The predicted results by RBM-DBN. 

 

Fig.11. shows the prediction result by the classical RBM-

DBN model which is widely applied in fault diagnosis and 

prognostics. The model also has three layers of RBMs and 

the learning rates of these layers are all set to 0.1. The other 

parameters of the model are given randomly. The difference 

between the RBM-DBN model and the QPSO-model is that 

the RBM-DBN model does not take parameter optimization. 

The prediction results demonstrate that the prediction curve 

is basically consistent with the actual value in the trend, 

which can reflect the actual degradation trend. However, the 

problem of insufficient gradient descent ability still exists 

after the 34th sample. The error of failure point is judged to 

be 4 sample points, that is, 80 min. Unreasonable model 

parameters affect the gradient descent ability of the model, 

and then affect the prediction performance of the model. 

For further quantitative evaluation, the Root Mean Square 

Error (RMSE), the Mean Relative Error (MRE), and the 

Mean Absolute Error (MAE) are selected as the evaluation 

indexes. The results of the above four methodologies are 

shown in Table 1. 
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Table 1.  The prediction errors of various algorithms. 
 

Algorithms RMSE MAE MRE 
Error of RUL 

prediction 

QPSO-DBN 0.032 0.062 0.107 40 min 

BP neural network 0.136 0.104 0.173 120 min 

SVM 0.186 0.1232 0.184 Failed 

RBM DBN 0.032 0.062 0.107 80 min 

 

Table 1. shows that the prediction accuracy of the deep 
learning method is obviously better than the shallow 
learning method. The QPSO-DBN model proposed in this 
paper has the highest prediction accuracy, and the final 
prediction error is only 40 min, which meets the needs of 
fault prognosis. 

 
5.  CONCLUSIONS 

A novel methodology for the fault prognosis of the 
hydraulic pump based on the bispectrum entropy and 
QPSO-DBN is proposed, which is verified by the whole 
lifetime data sampled from the hydraulic pump degradation 
experiment. Conclusions can be drawn as follows: 

1)  Bispectrum analysis is applied to processing the 
vibration signal of the hydraulic pump for extracting the 
degenerate state information. At the same time, the 
bispectrum entropy of different frequency bands is extracted 
as the prediction features. 

2)  The QPSO-DBN is proposed for fault prognosis. The 
QPSO algorithm has a good effect on the global 
optimization of the structural parameters within the range of 
solution space for the DBN model. The problem caused by 
the unreasonable determination of parameters of the DBN 
model is solved effectively. Therefore, the generalization 
ability and the prediction accuracy are effectively increased. 

3)  Experimental results show that the proposed method is 
feasible and the prediction accuracy is satisfactory, which is 
able to meet the requirements of CBM. It is also meaningful 
for the improvement of system reliability. 
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