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ABSTRACT The protection problems in microgrid effect the reliability of the power system caused due

to high distributed generator penetrations. Therefore, fault protection in microgrid is extremely important

and needs to be resolved to enhance the robustness of the power system. This manuscript proposes a

combined signal processing and data mining-based approach for microgrid fault protection. In this study,

first the multiresolution decomposition of wavelet transform is employed to preprocess the voltage and

current signals to compute the total harmonic distortion of the voltage and current. Then, the statistical

indices of standard deviation, mean, and median of the total harmonic distortion and the negative sequence

components of active and reactive power are used to collect the input data. After that, all the available

data is provided to the random forest-based classifier to evaluate the efficiency of the proposed scheme in

terms of the detection, identification, and classification of faults. This study used different aspects for data

collection by simulating various fault and no-fault cases for both looped and radial configurations under

grid-connected and islanded modes of operation. The simulations were performed on a standard medium

voltage microgrid using MATLAB/SIMULINK, whereas the analysis for testing and training of the random

forest were conducted in Python. It is recognized that the proposed method performed better than support

vector machines and decision tree that are reported in the literature. The results further demonstrate that the

proposed method can also detect simultaneous faults, and it is also effective against measurement noise.

INDEX TERMS Data-mining, discrete wavelet transform, feature extraction, fault protection, multiresolu-

tion analysis, random forest.

I. INTRODUCTION

T
HE advancement in distributed generators (DGs) has

played a vital role in resolving the problems of con-

ventional power systems over the past several decades. The

development of these DGs offer a viable solution against

the nonavailability and exhaustion of fossil fuels, rapid load

growth, environmental pollution, and expensive petroleum

products and gases. DGs met with great success to address a

number of technical, regulatory, and contemporary problems

of the conventional power system [1], [2].

This new technology has shifted the conventional power

system to low voltage active distribution networks called

microgrid. A microgrid is made up of a collection of DGs,

energy storage units, and various loads, which are control-

lable with the monitoring and protection devices [3], [4],

[5]. They are typically connected to the utility through a

circuit breaker at the point of common coupling (PPC) at

distribution or sub-transmission voltage levels. The micro-

grid operates in synchronization with the utility under normal

operating conditions. However, if the main grid undergoes

troubles such as voltage fluctuations or frequency variations,

it will completely disconnect from the utility and continue

to operate as an islanded to supply the critical loads. The

DGs in a microgrid are of a much smaller capacity, unlike the

large generators in traditional systems, because of their low

energy density and dependence on geographical conditions

of a region [6], [7], [8]. They are located near to customers

to provide electric and heat loads with the proper voltage

level and frequency with negligible line losses, and to prevent

network congestion. They bring technical, economic, and

environmental benefits to the modern power system with

improved reliability by keeping the power on, when the

VOLUME 4, 2016 1



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3088900, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 1: Abbreviations used in manuscript.

Abbreviations

DSP Digital signal processing
DWT Discrete wavelets transform
DGs Distributed generators
DT Decision tree
DERS Distributed energy resources
MRA Multiresolution analysis
WT Wavelets transform
FT Fourier transform
PMU Phasor Measurement Unit
ANN Artificial neural network
PCC Point of common coupling
THD Total Harmonic Distortions
IIDGs Inverter-interfaced distributed generators
SVM Support vector machines
DL Distribution line
WPT Wavelet packets transform
CB Circuit breaker
DNN Deep neural network
RF Random forest
MiB Mebibyte
A Approximation coefficient
ψj(t) Mother wavelet
f(t) Original signal
D Detailed coefficient
φj(t) Scaling function
aM,k Low frequency approximation coefficients
dj,k High frequency detailed coefficients
fs Sampling frequency

Φ̂ Predicted fault
ˆ̄Φ Predicted no-fault
Φ Actual fault

Φ Actual no-fault

normal supply is unavailable. They also provide numerous

advantages against the load demand, reduced capital costs,

and the reduction of the environmental pollution and global

warming concerns by producing clean power through low

carbon utilization technologies [9].

However, the fault feeding and control characteristics of

DGs are different from the synchronous generators. There-

fore, the conventional power system undergoes considerable

changes when the microgrid is implemented, giving rise to

protection problems [10]. The two main protection issues

that microgrid must address are the bidirectional fault cur-

rent flow and low fault current. Bidirectional power flow in

feeders is in one direction for a fault on the system, and in

the opposite direction for faults at the DER. Another problem

associated with microgrid is the variable and large difference

of the fault current levels when undergoing grid-isolated or

grid-connected operations [11], [12], [13], [14]. This level

may significantly drops after the disconnection of the main

grid. Another reason for the low fault current is because

of the large percentage of inverter-interfaced DGs (IIDGs)

in microgrid, which produces an insufficient fault current

due to their fault current limiting functions. Therefore, the

performance of conventional over-current directional relays

may fail to observe and respond to the fault, resulting in a

failure or misdetection of a fault. This turns out to be even

more problematic when the IIDGs penetration is high [15],

[16].

Faults cause downtime of the whole power system and

can severely damage the expensive equipment if not detected

and cleared quickly. Selective phase tripping can be achieved

through accurate fault detection, fault location, and fault

phase information [17]. Due to low fault currents in an is-

landed mode, the traditional over-current protection schemes

may lose the selectivity [18]. Hence, building a smarter

and controlled protection scheme for operating a microgrid

requires much attention towards planing and designing [19].

The literature on microgrid protection shows a variety of

approaches to address protection issues. An artificial neural

network (ANN) and discrete wavelet transform (DWT) pro-

tection technique is presented in [20]. A similar approach is

provided in [21], using a combined decision tree (DT) and a

wavelet transform (WT). An intelligent WT and deep neural

networks based fault detection scheme is introduced in [22].

Another intelligent fault protection strategy for microgrids

based on a convolutional neural network is reported in [23].

In [24], a seamless islanding and grid synchronization-based

communication approach is presented for the protection and

control of a microgrid. The authors in [25] presented a

squaring and low-pass filtering method based on an autocor-

relation function. Another WT and Renyi entropy technique

for an islanded microgrid is presented in [26]. In [27] and

[28], the authors described combined signal processing and

machine learning schemes for radial distribution grid. A three

stage approach based on real time data for protection of

microgrid is introduced in [29]. A dual setting directional

over-current relay based communication assisted scheme is

proposed in [30]. The authors in [31] presented a quadrature

and zero sequence components based adaptive protection

scheme. In [32], an integrated impedance angle based PMU

protection scheme is introduced using the positive sequence

components. A centralized control approach, based on a

hybrid hardware-software co-simulation platform to provide

protection between the physical and cyber parts is proposed

in [33]. A current-only polarity comparison inverter based

microgrid protection method is provided in [34]. To address

the issues of protection coordination, a non-pilot protection

strategy of an inverter-dominated microgrid is introduced in

[35]. A multiagent system-based co-simulation platform for

microgrid protection is presented in [36]. In [37], the authors

provided an isolated microgrid protection scheme based on

real-time adaptive differential features.

The above-mentioned schemes protected the microgrid

effectively, however, some studies did not consider both the

grid-connected and islanded modes of operation [25], [36]

and some did not consider both looped and radial configu-

rations [28]. Moreover, some of the studies relied on IIDGs

[34], [35]. The major drawback with an adaptive scheme is

the computational burden [31], [37], and most of the previous

studies did not take simultaneous faults into account. This

paper introduces a fault protection scheme for microgrid us-

ing a combined signal processing and data mining approach.

The statistical indices of total harmonic distortion (THD) and
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negative sequence components are extracted to collected the

input data-set. The obtained data-set is fed to the random

forest (RF) classifier to build the data mining model to protect

the microgrid against the fault. Additionally, the proposed

scheme investigated for the validation of simultaneous faults

and measurement noise. The proposed scheme is evaluated

on MATLAB/SIMULINK and the analysis for testing and

training of the RF is performed using Python. The contribu-

tions of this research are:

• To develop a multiresolution decomposition of the DWT

and RF-based microgrid protection scheme.

• To compute the THD using the detailed coefficient of a

three level multiresolution decomposition.

• To collect the data by extracting the standard deviation,

mean, and median of THD and negative sequence com-

ponents, and use this data-set to detect, identify, and

classify the faults utilizing the RF classifier .

• To investigate the robustness of the proposed scheme

against the measurement noise and simultaneous faults.

• To investigate the capability of the microgrid for both

the grid-connected and islanded modes of operation and

looped and radial configurations.

The remainder of the manuscript is structured into four

sections. Section II introduces the proposed protection

scheme with detailed descriptions of DWT and MRA decom-

position. Section III outlines the designed model of the test

system under study. Section IV is devoted to the findings and

discussions. Finally, Section V reports the conclusion.

II. PROPOSED SCHEME

The traditional approaches for fault protection are prone to

network disturbances caused by noise. Recent researches

have focused on data mining for microgrid protection be-

cause data mining techniques, as opposed to the hard thresh-

old, use a soft criterion for fault detection and have an

outstanding capability of handling data with noise [38], [39],

[40]. Hence, the proposed scheme employs the multireso-

lution analysis (MRA) of a DWT and RF. In the proposed

method, the sampled current measurements are preprocessed

by MRA of a DWT. Simplified schematic of the feature

extraction is given in Fig. 1. Here, the detailed coefficients

of the MRA of the DWT are used to compute the THD of

voltage and current. Further, the negative sequence compo-

nents of active and reactive power are extracted. After that,

standard deviation, mean, and median of the THD and the

negative sequence components are collected and fed to the

RF for building the data mining model to detect, identify,

and classify faults in a microgrid. To collect the data, a series

of simulations is performed from different aspects. Data for

fault events is collected by performing the simulations by

changing the fault resistance, fault line, fault inception angle,

and fault type. The measurement points are located on the

buses (B2 − B6) for each distribution line in the power

network. Additional data is collected by varying the load,

capacitor switching, and DGs outages for no-fault cases.

These simulations are conducted considering both modes

under looped and radial configurations of the microgrid.

Simulation events are depicted in Tables 2 and 3 of the

manuscript.

A. WAVELET TRANSFORM (WT)

A Fourier transform (FT) is suitable for studying steady

state problems and does not take into account the direct

information of an oscillating signal. WT is a popular linear

transformation signal processing technique developed in the

1980s. WT is the advancement of FT. WT has the ability

to decompose a signal into specific time-frequency domain

characteristics that extract the hidden fault information of

a signal [41]. WTs have several power system applications

and are widely used to detect and classify power system dis-

turbances. Generally, WT is divided into continuous wavelet

transform (CWT), DWT, and wavelet packet transform [42],

[43], [44], [45].

Since this study mainly deals with DWT, the following

subsection gives the details of DWT.

B. DISCRETE WAVELET TRANSFORM (DWT)

The DWT is an extended version of the WT. DWT is easier to

implement than CWT [20]. By using a scaling function φj(t)
and the mother wavelet ψj(t), a time series signal f(t) can

be decomposed into approximation and detailed coefficients

as:

φjk(t) = 2−
j

2φ(2−jt− n), (1)

ψjk(t) = 2−
j

2ψ(2−jt− n), (2)

where, n ∈ Z, j and k are integers and the basis function is

scaled by a factor of 2j and translated by n units of time. The

scaling function is associated with a low-pass filter, with filter

coefficients H = h(n). The wavelet function is associated

with a high-pass filter, with filter coefficient G = g(n) [21],

[46], given as:

φ(t) =
∑

n

h(n)
√
2φ(2t− n). (3)

ψ(t) =
∑

n

g(n)
√
2φ(2t− n). (4)

1) Wavelet multiresolution analysis (MRA) decomposition

MRA is a very useful implementation of DWT. Multireso-

lution signal decomposition theory was first introduced by

Mallat as a mathematical model [20], [47]. The multiresolu-

tion decomposition of a time-varying signal f(t) at level M
is expressed as:

f(t) =
∑

k

aM,k

ψ
√
2M

(
t

2M
− k)

+
M∑

k

∑

k

dj,k
ψ

√
2j

(
t

2j
− k)

∼= Am(t) +
∑

j

Dj(t),

(5)
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FIGURE 1: Block diagram of proposed scheme for feature extraction.

TABLE 2: Fault events simulating conditions.

Parameters Fault Events Counts

Operating modes Grid-connected or islanded 2
Topologies Radial or loop 2
Fault types AG, BG, CG, ABG, BCG, CAG, AB, BC, CA, ABC, ABCG 11

Fault resistance (Ω) 0.01-100 10
Fault inception angle 0◦, 30◦, 60◦, 90◦ 4

Fault line DL1, DL2, DL3, DL4, DL5 5
Total fault cases 8800

TABLE 3: No-fault events simulating conditions.

Parameters Counts

Operating modes (grid-connected or islanded) 2
Topologies (radial or loop) 2

Capacitor switching at load buses and PCC 6
Sudden load changes 6
DG1 and DG3 out 2
Total no-fault cases 288

where aM,k and dj,k are the low frequency approximation

and high frequency detailed coefficients of the original signal

at level M .

The DWT can be considered as a filter bank. Decom-

position is performed by passing the sampled signal f(t)
through a low-pass filter h(n) and a high-pass filter g(n) to

obtain the approximation and detailed coefficients. In the first

step, the signal is decomposed into detailed coefficient (D1)

with frequency band of ( fs
2

− fs
4
) kHz and approximation

coefficient (A1) with frequency band of ( fs
4
− 0) kHz. Then

a factor of 2 is used to down sample the output of both

filters. To repeat the procedure for further decomposition, the

detailed coefficient is sent to the second stage to produce new

coefficients. In the second decomposition step, D2 collects

the information between ( fs
4
− fs

8
) kHz and A2 is computed

between ( fs
8
−0) kHz. Similarly,D3 captures the information

between ( fs
8
− fs

16
) kHz, and A3 between 0 and fs

16
, where,

fs is the original signal sampling frequency. Decomposition

of input signal is illustrated in Fig. 2. The process is re-

peated for the detailed coefficients until the desired level of

detailed coefficients is retrieved [48], [47]. The number of

decomposition steps is influenced by the sampling frequency

which is 3.6 kHz for the proposed scheme. Information

TABLE 4: Detailed Coefficient frequency range.

Detailed coefficients Frequency Range in (kHz)

D1 1.8-0.9
D2 0.9-0.45
D3 0.45-0.225

related to the detailed coefficients obtained using the wavelet

decomposition is mentioned in Table 4.

III. TEST SYSTEM UNDER STUDY

The details of the test system of a microgrid are explained

in this section. The PCC circuit breaker in the model is used

to connect the microgrid and the utility, and it is also used to

change the modes between grid and islanded. The base values

used in this study are 25kV, 15MVA, and 60Hz. The test

system is comprised of three IIDGs, (DER1 andDER3 each

of 3MVA andDGR2 of 2MVA) and one 7MVA synchronous-

based DG (DER4). It comprises of five 20km line length dis-

tribution lines (DL1−DL5). The purpose of Circuit Breaker

CB loop-1 and Circuit Breaker CB loop-2 is to switch the

microgrid between looped and radial configurations. There

are six loads, one load is connected to each bus with the

values given in Table 5. A 120/25kV Dyn transformer is

used to interconnect the microgrid and the main grid. All DG

sources are connected through a 0.630/25kV transformer.

The test system model of the microgrid is presented in Fig. 3.

IV. RESULTS AND DISCUSSIONS

The complete flowchart of the proposed fault protection

algorithm is shown in Fig. 4. To evaluate the capability of the

4 VOLUME 4, 2016
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FIGURE 2: Decomposition of detailed coefficients.

FIGURE 3: Microgrid test system.

TABLE 5: Loads data of the proposed test system.

Load P (MW) Q (MVAR)

L1 3.0 1.00
L2 3.0 1.00
L3 4.0 1.50
L4 1.0 0.75
L5 1.0 0.75
L6 1.0 0.50

proposed fault protection strategy, accuracy, precision, and

recall are considered as the measurement indices.

1) Accuracy is used to compute the reliability of the

proposed scheme for the total number of predicted and

actual fault and no-fault events, given by:

A =
(Φ̂ + ˆ̄Φ)T

(Φ + Φ)T
, (6)

where, Φ̂T and ΦT are the total number of predicted

and actual faults, whereas, ˆ̄ΦT and Φ̄T are the total

number of predicted and the total number of actual no-

fault events.

2) Precision describes the relationship between the pre-

dicted and actual fault events. It is given as follows:

P =
Φ̂T

ΦT

, (7)

where, Φ̂T and ΦT denote the total number of predicted

faults and the total number of actual fault events re-

spectively.

3) Recall gives the relationship between the total number

of predicted and actual no-fault events given as:

R =
ˆ̄ΦT

ΦT

, (8)
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FIGURE 4: Flowchart of the proposed fault protection tech-

nique.

where, ˆ̄ΦT and ΦT represent the total number of pre-

dicted no-fault and the total number of actual no-fault

events, respectively.

A. DATA MINING MODEL FOR FAULT DETECTION

To build the data mining model for fault detection for the

proposed scheme, the obtained data-set is divided into two

parts with a proportion of 75% for training and 25% for

testing. Values of 1 and 0 are assigned for fault and no-fault

events, respectively. Once the training is done, the rest of

the data-set is used for testing to investigate the performance

through the RF to distinguish between fault and no-fault

events. In this study, the total data-set consists of 9, 088 cases,

FIGURE 5: Confusion matrix for fault detection.

TABLE 6: Fault detection accuracy comparison.

Data mining method Accuracy % Precision % Recall %

SVM 99.42 95.59 93.85
DT 99.47 100 83.56

Random forest 99.91 100 97.10

FIGURE 6: Comparison of accuracy measurement of RF

with SVM and DT for fault detection.

where 8, 800 are fault events and 288 are no-fault cases,

which are obtained as discussed in section II. Fig. 5 gives the

details of the confusion matrix of actual versus predicted fault

and no-fault cases. The proposed scheme classifier selected

a total of 2272 cases randomly, out of which 69 were no-

fault cases and 2, 203 were fault cases. The proposed scheme

detected all of the 2, 203 fault cases correctly, whereas, out

of 69 no-fault cases it detected 67 cases as no-faults, and

only 2 cases as fault, with an overall accuracy of 99.91%.

To verify this method, RF is compared with SVM and DT.

Table 6 shows the performance of the proposed scheme

with SVM and DT, and clearly shows better results than the

other methods. It is observed that the proposed scheme has

an accuracy of 99.91% (with 100.% precision, and 97.10%
recall) for fault detection, as compared to SVM which has

an accuracy of 99.42% (with 95.59% precision and 93.85%
recall), whereas DT has an accuracy of 99.47% (with 100%
precision and 83.56% recall). The bar-chart representation of

accuracy measurement of the proposed scheme with SVM

and DT can be found in Fig. 6. The proposed scheme takes

half cycle to detect the fault in microgrid.

B. PERFORMANCE OF PROPOSED SCHEME FOR

FAULT IDENTIFICATION

Once the fault is detected, the next step is to identify the

faulty section. For fault identification in the microgrid, train-

ing is done by assigning values from 0 − 4 to all of the

five distribution lines (DL1−DL5), respectively. After that,

6 VOLUME 4, 2016
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FIGURE 7: Confusion matrix for fault identification.

FIGURE 8: Confusion matrix for fault classification.

testing is done by feeding the input data to RF by considering

the same cases as in Table 2. Fig. 7 shows the confusion

matrix for fault identification of the proposed scheme. It can

be seen that the proposed scheme can identify the faults in a

microgrid with 98.04% accuracy.

C. DATA MINING MODEL FOR FAULT CLASSIFICATION

After fault detection and identification, RF is used to classify

the fault. For fault classification 75% of the data-set is used

for training and 25% is used for testing, similar to that for

fault detection. The model generated for fault classification

uses eleven fault types, single-line-to-ground faults (AG,

BG, CG), line-to-line faults (AB, BC, CA), line-to-line-to-

ground faults (ABG, BCG, CAG), three-phase faults (ABC),

and three-phase-to-ground faults (ABCG). While training the

input data-set, the SLG faults (AG, BG, CG) are assigned

with a value 0. Similarly, a value of 1 is considered for

LL (AB, BC, CA) faults, 2 is assigned for LLG (ABG,

BCG, CAG) faults, and for LLL/LLLG faults the value of

3 is assumed. The confusion matrix for fault classification is

presented in Fig. 8. It can be seen from the figure that the

proposed scheme considered 2200 fault cases randomly. It

classified 613 SLG fault cases correctly, with 5 misdetec-

tions, leading to 99.19% accuracy. The figure also shows

that the proposed scheme classified all 579 LL faults cases

correctly with 100% accuracy. For LLG faults, the proposed

scheme detected 581 cases correctly, with 98.48% accuracy.

Finally, for LLL/LLLG faults, 409 cases were classified cor-

rectly with 99.03% accuracy. However, the overall accuracy

of the proposed scheme for fault classification is 99.18%. A

comparison of the proposed scheme with SVM and DT is

presented in Table 7. It can be seen that the accuracy of the

proposed scheme is 99.18% compared to SVM and DT with

accuracies of 95.36% and 96.09%, respectively. The bar-

chart of the proposed fault classification in shown in Fig. 9.

After fault detection, identification, and classification, a trip

signal is generated to isolate the faulty part from rest of the

system in one cycle.

TABLE 7: Comparison of fault classification accuracy with

SVM and DT.

Data mining method Accuracy %

SVM 95.36
DT 96.09

Proposed method 99.18

FIGURE 9: Comparison of accuracy measurement for fault

classification.

D. PERFORMANCE OF PROPOSED SCHEME FOR

GRID-CONNECTED AND ISLANDED MODE

The proposed scheme was also investigated for accuracy to

differentiate between grid-connected and islanded modes of

operation. While building the data mining model, a value of

1 is assigned for grid-connected and 0 is assumed for grid-

isolation, considering the same cases as in Tables 2 and 3. It

was found that the proposed scheme can effectively differen-

tiate between grid-connected and islanded modes with 100%
accuracy.

E. SIMULTANEOUS FAULTS DETECTION

Simultaneous faults are when two or more faults occur at

the same time at different locations, and the protective relays

may malfunction due to such faults. Therefore, it is necessary

that the protection systems take into account simultaneous

faults precisely while protecting the microgrid. Hence, the

proposed scheme also considered simultaneous faults, and

their detection is performed by considering the same cases as

discussed in Section II. The proposed scheme considered two

simultaneous faults F1 (ABCG) on DL1, and another fault

F2 (ABG) on DL3 of the microgrid. Training and testing

were performed in the same manner as for fault detection.

While building the data mining model a value of 0 is assigned

for no-faults and a value of 1 is assigned for simultaneous

faults. The proposed scheme can effectively differentiate the

simultaneous faults with 100% accuracy. DT also has an

accuracy of 100% for simultaneous faults, whereas, SVM has

an accuracy of 94.29%

F. IMPACT OF NOISE

The robustness of the proposed scheme was also evaluated

under measurement noise. The simulations were conducted

VOLUME 4, 2016 7
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TABLE 8: Effect of noise on fault detection under measure-

ment noise.

Proposed method Accuracy % Precision% Recall %

Without Noise 99.91 100 97.10
40dB (SNR) 99.82 100 93.85
30db (SNR) 99.69 100 89.85

TABLE 9: Comparison of the proposed scheme with SVM

and DT under noise.

Data mining method Without Noise 40dB (SNR) 30db (SNR)

SVM 99.42 97.14 96.96
DT 99.47 88.68 98.02

Random forest 99.91 99.82 99.69

FIGURE 10: Accuracy measurement of proposed scheme for

fault detection with and without noise.

by distorting the three-phase voltage measurement by adding

white Gaussian noise with a 40dB and 30dB signal-to-noise

ratio (SNR), [22]. The data collection is done with the dis-

torted data by considering the cases as in Tables 2 and 3.

After that, the data is fed to the RF for testing. Table 8 and

Fig. 10 summarize the performance of the proposed scheme

under noise. It can be seen from the table and figure that

without the influence of noise the accuracy of the proposed

scheme is 99.91%. The performance of the proposed scheme

is also good under 40dB and 30dB noise with accuracies of

99.82% and 99.69%. Similarly, Table 9 and Fig. 11 provide

the comparison of the proposed scheme accuracy with SVM

and DT for fault detection under the influence of noise.

G. UNCERTAINTY OF DER

To enhance the performance of the proposed scheme, the

simulations were performed with DERs uncertainty. The

uncertainty is considered at 80%, 90%, and 100% of the rated

capacity of the DERs. The data is collected accordingly by

considering all the cases as in Tables 2 and 3 with limited

simulations. The obtained data-set is trained and tested for

the proposed algorithm. Fig. 12 shows the confusion matrix

for fault detection under DERs uncertainty. The accuracy of

the proposed scheme along with the SVM and DT are shown

in Table 10 and Fig. 13. The simulation results show that the

performance of the proposed scheme is efficient under DERs

FIGURE 11: Accuracy comparison of the proposed scheme

with SVM and DT under noise.

FIGURE 12: Confusion matrix for fault detection under

DERs uncertainty.

uncertainty.

TABLE 10: Fault detection accuracy comparison under

DERs uncertainty.

Data mining method Accuracy % Precision % Recall %

SVM 96.28 96.63 93.59
DT 99.11 99.66 94.87

Random forest 99.25 99.83 94.87

In addition, the time and space complexity are used to val-

idate the computational complexity of the proposed scheme.

The proposed scheme was implemented using the Python

framework in intel i7-10700 CPU. The total response time

and space complexity are tabulated in Table 11 for the pro-

posed scheme, DT, and SVM. The training and testing time of

FIGURE 13: Fault detection accuracy comparison under

DERs uncertainty.
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TABLE 11: Time and space complexity.

Data mining model
Time complexity

Training and testing (ms)

Space complexity

MiB

DT 9.138 146.218
SVM 1783.597 146.347

Proposed scheme 110.818 144.789

RF is 110.818 ms, out of which response time or predication

time is 6.46 ms. This makes the proposed scheme efficient

having good detection, identification, and classification rates

while requiring less time and space complexity. This reduces

the complexity of fetching the proposed scheme into reality.

In [21], [49], the authors performed the real time validation

using OPAL-RT setup based on signal processing and Data

mining techniques. The response time in [21] is ranging from

25 to 41.7 ms and less than 16 ms in [49], which is similar

or more than our proposed scheme i.e. 6.46 ms. The OPAL-

RT digital simulator is compatible with MATLAB/Simulink

and Python applications, making it easier for the proposed

scheme in interfacing with real time simulation.

Table 12 shows the comparison of the proposed schemes

with other existing techniques.

V. CONCLUSION

This paper considered a fault protection scheme for mi-

crogrid based on signal processing and data mining. The

proposed scheme preprocessed the three-phase voltage and

current signals by a multiresolution analysis of discrete

wavelets transform. Statistical indices of total harmonic dis-

tortion and negative sequence components are collected and

fed into random forest for fault protection. The simulations

were conducted in the MATLAB/SIMULINK software for

both grid-connected and grid-isolated modes, and looped and

radial configurations. The results demonstrates that the pro-

posed scheme is capable to detect, identify, and classify the

faults in microgrid. In addition, it can perform very well for

simultaneous faults and under the influence of measurement

noise. The results confirm that the proposed scheme is more

accurate for fault protection as compared to decision tree and

support vector machines.
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