
ETH Library

Fault Template Attacks on
Block Ciphers Exploiting Fault
Propagation

Conference Paper

Author(s):
Saha, Sayandeep; Bag, Arnab; Basu Roy, Debapriya; Patranabis, Sikhar; Mukhopadhyay, Debdeep

Publication date:
2020

Permanent link:
https://doi.org/10.3929/ethz-b-000392569

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
Lecture Notes in Computer Science 12105, https://doi.org/10.1007/978-3-030-45721-1_22

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-b-000392569
http://rightsstatements.org/page/InC-NC/1.0/
https://doi.org/10.1007/978-3-030-45721-1_22
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Fault Template Attacks on Block Ciphers

Exploiting Fault Propagation

Sayandeep Saha1, Arnab Bag1, Debapriya Basu Roy13⋆, Sikhar Patranabis12⋆⋆,
and Debdeep Mukhopadhyay1

1 Department of Computer Science and Engineering, Indian Institute of Technology,
Kharagpur

{sahasayandeep, arnabbag, debdeep}@iitkgp.ac.in
2 Department of Computer Science, ETH Zurich

sikhar.patranabis@inf.ethz.ch
3 Technische Universität München

debapriya.basu-roy@tum.de

Abstract. Fault attacks (FA) are one of the potent practical threats
to modern cryptographic implementations. Over the years the FA tech-
niques have evolved, gradually moving towards the exploitation of device-
centric properties of the faults. In this paper, we exploit the fact that
activation and propagation of a fault through a given combinational cir-
cuit (i.e., observability of a fault) is data-dependent. Next, we show that
this property of combinational circuits leads to powerful Fault Template
Attacks (FTA), even for implementations having dedicated protections
against both power and fault-based vulnerabilities. The attacks found
in this work are applicable even if the fault injection is made at the
middle rounds of a block cipher, which are out of reach for most of the
other existing fault analysis strategies. Quite evidently, they also work for
a known-plaintext scenario. Moreover, the middle round attacks are en-
tirely blind in the sense that no access to the ciphertexts (correct/faulty)
or plaintexts are required. The adversary is only assumed to have the
power of repeating an unknown plaintext several times. Practical valida-
tion over a hardware implementation of SCA-FA protected PRESENT,
and simulated evaluation on a public software implementation of pro-
tected AES prove the efficacy of the proposed attacks.

Keywords: Fault Attack · Fault Propagation · Masking.

1 Introduction

Implementation-based attacks are practical threats to modern cryptography.
With the dramatic increase in the usage of embedded devices for IoT and mo-
bile applications, such attacks have become a real concern. Most of the modern
embedded devices carry cryptographic cores and are physically accessible by the

⋆ Debapriya Basu Roy worked on this project during his stay at IIT Kharagpur
⋆⋆ Sikhar Patranabis worked on this project during his stay at IIT Kharagpur

2 S. Saha et al.

adversary. Therefore, suitable countermeasures are often implemented to protect
the cryptographic computations from exploitation.

Side-channel attacks (SCA) [1] and Fault attacks (FA) [2, 3] are the two
most widely explored implementation attack classes till date. The main idea
behind the first one is to passively exploit the operation dependency (simple-
power-analysis) or data-dependency (differential/correlation power analysis) of
the cryptographic computation to infer the secret key by measuring power or
electromagnetic (EM) signals. In contrast, fault attacks are active in nature,
as they work by corrupting the intermediate computation of the device in a
controlled manner. Intentionally injected faults create a statistical bias in some
of the intermediate computation states. Such bias is exploited by the adversary
(either analytically or statistically) to reduce the entropy of the unknown key
and thereby recovering the key [3].

The protection mechanisms found in modern devices mostly try to mitigate
the two abovementioned classes of attacks. In this context, hardening the cipher
algorithm itself with countermeasures is often preferred than the sensor and
shield-based physical countermeasures. This is due to the fact that algorithm-
level countermeasures are flexible in terms of usability. Moreover, they often
provide provable security guarantees. Masking is the most prominent and widely
deployed countermeasure so far, against passive SCA [4–7]. Masking is a class of
techniques which implement secret sharing at the level of cryptographic circuits.
Each cipher variable x is split into a certain number (say d+1) of shares in mask-
ing which are statistically independent by their own, and also while considered
in groups of size up to d. Each underlying function of the cipher is also shared
into d+1 component functions (respecting the correctness) to process the shared
variables. The order of protection d intuitively means that an adversary has to
consider SCA leakages for d + 1 points, simultaneously, in order to gain some
useful information about the intermediate computation. In the context of FA,
detection-type countermeasures are the most common ones. The main principle
of these FA countermeasures is to detect the presence of a fault via some re-
dundant computation (time/space redundancy or information redundancy), and
then react by either muting or randomizing the corrupted output [8,9]. Another
alternative way is to avoid the explicit detection step altogether, and perform
the computation in a way so that it gets deliberately randomized in the presence
of an error in computation (infective countermeasure) [10].

Symmetric key primitives (such as block ciphers) are the most widely ana-
lyzed class of cryptographic constructs in the context of implementation-based
attacks. Quite evidently, the current evaluation criteria for a block cipher de-
sign takes the overhead due to SCA and FA protections directly into account.
In other words, countermeasures are nowadays becoming an essential part of a
cipher. In practice, there exist proposals which judiciously integrate these two
countermeasures for block ciphers [11]. Whether such hardened algorithms are
actually secured or not is, however, a crucial question to be answered.

Recent developments in FA show that the answer to the above-mentioned
question is negative. Although combined countermeasures are somewhat success-
ful in throttling passive attacks, they often fall prey against active adversaries.

Fault Template Attacks on Block Ciphers Exploiting Fault Propagation 3

In [12,13], it was shown that if an adversary has the power of injecting a sufficient
number of faults, even the correct ciphertexts can be exploited for an attack.
The attack in [12], also known as Statistical Ineffective Fault Analysis (SIFA),
changed the widely regarded concept that fault attacks require faulty ciphertexts
to proceed. Most of the existing FA countermeasures are based on this belief and
thus were broken. In a slightly different setting, the so-called Persistent Fault
Analysis (PFA) [14, 15] presented a similar result. The main reason behind the
success of SIFA and PFA is that they typically exploit the statistical bias in
the event when a fault fails to alter the computation. However, this seemingly
simple event can be exploited in several other ways, too, which may lead to more
powerful attacks on protected implementations. Particularly, in this paper, we
show that once a fault is injected, whether it propagates to the output through
the circuit or not is data-dependent. This data dependency works as a source
of information leakage which eventually leads towards the recovery of the secret
even from protected cipher implementations. In contrast to SIFA or PFA, we
do not require access to the correct/faulty ciphertexts. Our contributions in this
paper are discussed below.

Our Contributions: In this paper, we propose a new attack strategy for pro-
tected implementations which exploits fundamental principles of digital gates to
extract the secret. The main observation we exploit is that the output observabil-
ity of a fault, injected at one input of an AND gate depends on the values of the
other inputs. In general, the activation and propagation of a fault inside a circuit
depends upon the value under process, which is indeed a side-channel leakage.
Based on this simple observation we devise attacks which can break masking
schemes of any arbitrary order, even if it is combined with FA countermeasures.
The strongest feature of this attack strategy is that it can enable attacks in the
middle round of a cipher without requiring any explicit access to the ciphertexts
even if they are correct. Just knowing whether the outcome of the encryption is
faulty or not would suffice. The plaintexts are need not be known explicitly in all
scenarios, but the adversary should be able to repeat a plaintext several times.
One should note that the attacks like SIFA require ciphertext access and are
also not applicable to the middle rounds. 4

The fault model utilized in this attack is similar to the one exploited for
SIFA [12]. However, the exploitation methodology of the faults is entirely dif-
ferent from SIFA. While SIFA uses statistical analysis based on the correct ci-
phertexts, we propose a novel strategy based on fault templates. The Fault Tem-
plate Attack strategy, abbreviated as FTA, efficiently exploits fault characteris-

4 Several modern symmetric-key protocols do not expose the ciphertexts. One promi-
nent example is the Message Authentication Codes (MAC) in certain application
scenarios. Furthermore, for many existing Authenticated Encryption schemes, di-
rect access to the plaintext is not available for the block ciphers used within the
scheme. However, fixing the plaintext value may be achieved. Also, in real devices,
the accessibility of plaintexts cannot be assumed in every scenario. One typical ex-
ample is the shared root key usage in UTMS [16].

4 S. Saha et al.

Table 1: Comparison of FTA with other competing attacks

Attack
Algorithm

Breaks
Masking?

Breaks
Fault
Countermeasure?

Requires
Ciphertext
Access?

Middle
Round
Attack?

Comments

SIFA ✓ ✓ ✓ ✗
Breaks SCA-FA
protection

PFA ✓ ✓ ✓ ✗
Breaks SCA-FA
protection

SEA ✗ ✓ ✗ ✓
Masking
is a countermeasure

BFA ✗ Not All ✗ ✓
Masking
is a countermeasure

FTA ✓ ✓ ✗ ✓
Breaks SCA-FA
protection

tics from different fault locations for constructing distinguishing fault patterns,
which enable key/state recovery. In principle, FTA is closer to SCA than FAs,
and hence, the evaluation of masking against this attack becomes essential.

The attacks proposed in this paper require multiple fault locations to extract
the entire key. Note that, we do not require multiple fault locations to be corrupted
at the same time, but injections can be made one location at a time in differ-
ent independent experiments. The spatial and temporal control of the faults are
practically feasible, as we show by means of an EM fault injection setup in this
paper. In particular, we target a hardware implementation of PRESENT with
first-order Threshold Implementation (TI) [17] for SCA protection, and dupli-
cation based FA protection. Although in our practical experiments, we target
hardware implementations, similar faults can be generated for software as well.
To establish this, we simulate the desired faults on a publicly available masked
software implementation of AES augmented with an FA countermeasure and
perform the key recovery for it. One advantage of FTA attack strategy is that
an implementation similar to the target one can be extensively profiled before
attack, and parameters for obtaining the desired faults can be identified.

The idea of FA without direct access to the plaintext and ciphertext has
been explored previously. The closest to our proposal are the so-called Blind
Fault Analysis (BFA) [18], the Safe-Error-Attack (SEA) [19] and the Fault Sen-
sitivity Analysis (FSA) [20]. However, none of these attacks exploit the inherent
circuit properties as we do in our case. Finally, BFA and SEA can be throttled
by masking, and FSA on masked implementations require timing information of
the S-Boxes along with the faults. The greatest advantage of our proposal lies
at the point that our attacks are applicable for masking countermeasures even
while combined with a state-of-the-art FA countermeasure. Although SIFA and
PFA work on masking, both of them require ciphertext access. The differences
of our attack from other competing ones are summarized in Table. 1.

In order to validate our idea both theoretically and practically, we choose the
block cipher PRESENT as a test case [21]. This choice is motivated by that fact
that PRESENT is a fairly well-analyzed design and also an ISO standard [22].
The choice of a lightweight cipher is also motivated by the fact that countermea-
sures are extremely crucial for such ciphers as they are supposed to be deployed
on low cost embedded devices. However, the attacks are equally applicable to
larger block ciphers like AES. Our validation on masked AES justifies this claim.

Fault Template Attacks on Block Ciphers Exploiting Fault Propagation 5

(a) (b)

a

b

a

b
oo

0

1

11

0/1

0

Fig. 1: Fault propagation: a) XOR gate; b) AND gate. The inputs for activation
and propagation are in blue and the value of the stuck-at fault is in red.

The rest of the paper is organized as follows. We begin by explaining the
fundamental principles behind the attacks in Sec. 2 through interpretable exam-
ples. Feasibility of the attacks for unmasked but FA protected implementations
are discussed in Sec. 3 taking PRESENT as an example. Attacks on combined
countermeasures are proposed in Sec. 4 (on PRESENT), followed by a brief
discussion on the practical evaluation of the attack in Sec. 5. We conclude the
paper in Sec. 6. An extended version of this paper is available on eprint5 pro-
viding further details on the practical experiments, and a brief discussion on the
implication of FTA on state-of-the-art countermeasures.

2 The Fundamental Principle

2.1 Fault Activation and Propagation

The concept of fault activation and propagation is instrumental for structural
fault testing of digital circuits. Almost every Automatic Test Pattern Generation
(ATPG) algorithm relies on these two events. Consider a combinational circuit
C and an internal net i in this circuit. The problem is to test if the net has been
stuck at a value 0 or 1. A test pattern for exposing this fault to the output is
required to perform the following two events in sequence:

1. Fault Activation: The test pattern is required to set the net i to value x

such that i carries the complement of x (i.e., x) in the presence of a fault
and x, otherwise.

2. Fault Propagation: The test pattern has to ensure that the effect of the
fault propagates to the output of the circuit C.

Both the activation and propagation events strongly depend upon the structure
of the circuit graph, and the gates present in the circuit. However, understanding
the fault activation and propagation property of each gate is the very first step
to have an insight into the attacks we are going to propose. Let us first consider
a linear 2-input XOR gate as shown in Fig. 1(a). Without loss of generality, we
consider a stuck-at-0 fault at the input register a, while the input register b may
take values independently. In order to activate the fault at a, one must set a = 1.
The next step is to propagate the fault at the output. One may observe that
setting the input b to either 0 or 1 will expose the fault at a to the output o. A
similar phenomenon can be observed for an n-input XOR gate. This observation
is summarized in the following statement:

5 https://eprint.iacr.org/2019/937

6 S. Saha et al.

Given an n-input XOR gate having an input set I, (|I| = n), an output O,
and a faulted input i ∈ I, the fault propagation to O does not depend upon the
valuations of the subset I \ {i}.

An exactly opposite situation is observed for the nonlinear gates like AND/OR.
For the sake of illustration, let us consider the two-input AND gate in Fig. 1(b).
Here a stuck-at fault (either stuck-at-0 or stuck-at-1) at input register a can
propagate to the output o if and only if the input b is set to the value 16. An
input value of 1 for an AND gate is often referred to as non-controlling value7.
The activation and propagation property of the AND gates, thus, can be stated
as follows:

For an n-input AND gate with input set I, output O, and one faulty input i ∈ I,
the fault propagation takes place if an only if every input in the subset I \ {i} is
set to its non-controlling value.

2.2 Information Leakage Due to Fault Propagation

Now we describe how information leaks due to the propagation of faults. Once
again, we consider the AND and the XOR gate for our illustration. Let us assume
that the gates are processing secret data and an active adversary A can only
have the information whether the output is faulty or not. The adversary can,
however, inject a stuck-at fault at one of the input registers of the gate8. We also
consider that the adversary has complete knowledge about the type of the gate
she is targeting. With this adversary model, now we can analyze the information
leakage due to the presence of faults.

First, we consider the XOR gate. Without loss of generality, let us assume
the fault to be stuck-at-0, and the injection point as a. Then the fault will
propagate to the output whenever it gets activated. In other words, just by
observing whether the output is faulty A can determine the value of a. More
precisely, if the output is fault-free a = 0 and a = 1, otherwise.

The situation is slightly different in the case of AND gates. Here the output
becomes faulty only if the fault is activated at a and b is set to its non-controlling
value. In this case, the adversary can determine the values of both a and b.
However, one should note that the fault will only propagate if both a and b are
set to unity. For all other cases the output will remain uncorrupted and A cannot
determine what value is being processed by the gate. Putting it in another way,
the adversary can divide the value space of (a, b) into two equivalence classes.

6 The fault activation takes place if a is set to 1 (stuck-at-0) or 0 (stuck-at 1).
7 A controlling input value of a gate is defined as a value, which, if present for at least
one input, sets the output of the gate to a known value. Non-controlling value is the
complement of the controlling value.

8 Although for simplicity we are considering stuck-at faults here, our arguments are
also valid for single bit toggle faults, and later on, we show how such faults can be
injected in an actual hardware.

Fault Template Attacks on Block Ciphers Exploiting Fault Propagation 7

0 f
b

c

a t

b

c

a t

(a) (b)

0/1 0
f

1

0/1

0/1

0

1

1

0/1

Fig. 2: Fault propagation through combinational circuits: a) Injection at XOR
gate input; b) Injection at AND gate input. The inputs for activation and prop-
agation are shown in blue and the nature of the stuck-at fault is shown in red.
The propagated faulty intermediate value is shown in green.

The first class contains values (0, 0), (0, 1)(1, 0), whereas the second class contains
only a single value (1, 1). One should note that the intra-class values cannot be
distinguished from each other.

One general trend in FA community is to quantify the leakage in terms of
entropy loss. The same can be done here for both the gates. Without the fault the
entropy of (a, b), denoted as H((a, b)), is 2. In the case of XOR gate, the entropy
reduces after the first injection event. Depending on the value of the observable
Of1 , which we set to 1 if the fault is observed at the output (and 0, otherwise),
the actual input value at the fault location can be revealed. More formally, we
have H((a, b)|Of1 = 0) = 1 and H((a, b)|Of1 = 1) = 1. Therefore, the remaining
entropy H((a, b)|Of1) = 1

2 × H((a, b)|Of1 = 0) + 1
2 × H((a, b)|Of1 = 1) = 1.

In other words, the entropy of (a, b) reduces to 1 after one fault injection. The
situation is slightly different in the case of AND gate. Here the remaining entropy
can be calculated as H((a, b)|Of1) =

3
4 × log2 3+

1
4 × log2 1 = 1.18. Although the

leakage here is slightly less compared to the XOR gate, one should note that it
is conditional on the non-faulty inputs of the gate too. In other words, partial
information regarding both a and b are leaked, simultaneously. In contrast, XOR
completely leaks one bit but does not leak anything about the other inputs.

As we shall show later in this paper, both AND and XOR gate leakages can
be cleverly exploited to mount extremely strong FAs on block ciphers. In the
next subsection, we extend the concept of leakage for larger circuits.

2.3 Fault Propagation in Combinational Circuits

One convenient and general way of realizing different sub-operations of a block
cipher is by means of algebraic expressions over GF (2) also known as Algebraic
Normal Form (ANF). For the sake of explanation, we also use ANF representa-
tion of the circuits throughout this paper. ANF representation is also common
while implementing masking schemes. Therefore, a good starting point would be
to analyze the effect of faults on an ANF expression. For example, let us consider
the ANF expression f = b + ca and its corresponding circuit in Fig. 2.9 As in
the previous case, we assume that the adversary A can only observe whether
the output is faulty or not, but cannot observe the actual output of the circuit.
Also, the inputs are not observable but can be kept fixed. With this setting the
adversary injects a stuck-at-0 fault in b (see Fig. 2(a)). Now, since the input is

9 Note that the ”+” represents XOR operation here.

8 S. Saha et al.

y1

x1

x2

x4

0

1

1

1

Remaining

Combinational

Logic

Fig. 3: Fault propagation through S-Box Polynomials. The input pattern causing
the propagation is shown in blue. The stuck-at fault type is shown in red.

fixed, a fault at the output would imply that b = 1. On the other hand, the
output will be correct only if b = 0. The property of the XOR gate mentioned in
the previous subsection ensures that the other input coming from the product
term does not affect the recovery of the bit b. Similarly, one can recover the
output of the product term ca.

Let us now consider recovery of the bits a and c, with the fault injected at
a. From the properties of an AND gate, the fault will propagate to the wire t

(see Fig. 2(b)) if and only if c = 1 and a = 1. This fault, on the other hand,
will directly propagate to the output as the rest of the circuit only contain an
XOR gate. However, from adversary’s point of view, entropy reduction due to a
non-faulty output is not very significant (non-faulty output may occur for (c, a)
taking values (0, 0), (0, 1) and (1, 0)). Moreover, no further information is leaked
even if the attacker now targets the input c with another fault. It may seem that
the AND gates are not very useful as leakage sources. However, it is not true if
we can somehow exploit the fact that it leaks information about more than one
bits. The next subsection will elaborate the impact of this property on S-Boxes.

2.4 Propagation Characteristics of S-Boxes

The S-Boxes are one of the most common constituents of modern block ciphers.
In most of the cases, they are the only non-linear function within a cipher.
Mathematically, they are vectorial Boolean functions consisting of high degree
polynomials over GF (2). Such polynomials contain high degree monomials which
are nothing but several bits AND-ed together. As a concrete example, we con-
sider the S-Box polynomials for PRESENT as shown in Eq. (1). This S-Box has 4
input bits denoted as x1, x2, x3, x4 and 4 output bits y1, y2, y3, y4 (where x1 and
y1 are the Most Significant Bits (MSB) and x4 and y4 are the Least Significant
Bits (LSB)).

y1 = x1x2x4 + x1x3x4 + x1 + x2x3x4 + x2x3 + x3 + x4 + 1

y2 = x1x2x4 + x1x3x4 + x1x3 + x1x4 + x1 + x2 + x3x4 + 1

y3 = x1x2x4 + x1x2 + x1x3x4 + x1x3 + x1 + x2x3x4 + x3

y4 = x1 + x2x3 + x2 + x4

(1)

Fault Template Attacks on Block Ciphers Exploiting Fault Propagation 9

Let us consider the first polynomial in this system without loss of generality. Also,
we consider a stuck-at-1 fault at x1 during the computation of the first mono-
mial x1x2x4 in this polynomial. The exact location of this fault in the circuit is
depicted in Fig. 3. Given this fault location, the fault propagates to the output
only if (x1 = 0, x2 = 1, x3 = 0, x4 = 1) or (x1 = 0, x2 = 1, x3 = 1, x4 = 1).
For the rest of the cases, the output remains unaltered. Consequently, if the
S-Box inputs are changing and the value is inaccessible for the adversary, she
can still detect when the S-Box processes the input (0, 1, 0, 1) or (0, 1, 1, 1), as
compared to other inputs. In the next subsection, we shall show how this simple
observation results in key leakage for an entire cipher.

3 Fault Observability Attacks

In this section, we describe how information leakage from gates eventually re-
sults in key leakage for so-called FA resilient block cipher implementations. For
the sake of simplicity, we begin with implementations having redundancy-based
detection-type FA countermeasures. Implementations having both masking and
FA countermeasures will be considered in the subsequent sections. The detection-
type FA countermeasures under consideration may use any form of redundancy
(space, time or information redundancy) [8,9]. However, the attacks we are going
to describe are equally applicable to any member of this classical countermea-
sure class. For the sake of simplicity, we, therefore, consider the most trivial
form where the redundancy check happens at the end of the computation before
outputting the ciphertexts.

3.1 Template-based Fault Attacks

Before going to the actual attack instances, let us first describe our general at-
tack strategy, which is based on constructing templates. Similar to the template
attacks in SCA, fault template attacks also consist of two phases, namely:

1. Template Building (offline): This is an offline phase where an imple-
mentation similar (preferably from the same device family) to the target is
profiled extensively to construct an informed model for the attack. The aim
of this informed modeling is to reason about some unknown directly in the
online phase of the attack on the actual target, based on some observables
from the online experiment10. Formally, a template T for fault attack can
be represented as a mapping T : F −→ X , where an a ∈ F is constructed by
computing some function on the observables (i.e. a = G(O)). The location
for a fault injection can be used as auxiliary information while computing
the function from the observable set to the set F . The range set X of the
template T either represents a part of an intermediate state, (for example,

10 The observable (denoted as O), for example, can be the knowledge that whether the
output of an encryption is faulty or not.

10 S. Saha et al.

Algorithm 1 BUILD TEMPLATE

Input: Target Implementation C, Fault fl
Output: Template T

T := ∅
w := GET SBOX SIZE() ⊲ Get the width of the S-Box
for (0 ≤ k < 2w) do ⊲ Vary one key word

Ft := ∅
for (0 ≤ p < 2w) do ⊲ Vary one w-bit plaintext word

x := p ⊕ k
yf := C(x)fl ⊲ Inject fault in one of the S-Boxes for each execution.
yc := C(x)
if DETECT FAULT(yf, yc) == 1 then ⊲ Fault detection function

Ft := Ft ∪ {1}
else

Ft := Ft ∪ {0}
end if

end for

T := T ∪ {(Ft, k)}
end for

Return T

Note that C(x) (resp. C(x)fl) is effectively S(x+k) where S(·) is an S-Box. This is true for other
template building algorithms as well in this paper

the value of a byte/nibble) or a part of the secret key.

2. Template Matching (online): In this online phase, an implementation
(identical to one profiled in the offline phase) with an unknown key is tar-
geted with fault injection. The injection locations may be pre-decided from
the template construction phase. The unknown is supposed to be discovered
by first mapping the observables from this experiment to a member of the
set F and then by finding out the corresponding value of the unknown from
the set X using the template T .

Unlike differential or statistical fault attacks, the key recovery algorithms
in fault template attacks are fairly straightforward in general. The fault com-
plexity of the attacks is comparable with that of the statistical fault attacks.
However, one great advantage over statistical or differential fault attacks is that
access to ciphertexts or plaintexts is not essential. The attacker only requires to
know whether the outcome is faulted or not. More precisely, FTA can target the
middle rounds of block ciphers, which are otherwise inaccessible by statistical
or differential attacks due to extensive computational complexity. Apart from
that, the FTA differs significantly from all other classes of fault attacks in the
way it exploits the leakage. While differential or statistical attacks use the bias
in the state due to fault injection as a key distinguisher, template-based attacks
directly recover the intermediate state values. From this aspect, this attack is
closer to the SCA attacks. However, there are certain dissimilarities with SCA
as well, in the sense that SCA template attacks try to model the noise from the
target device and measurement equipment. In contrast, FTA goes beyond noise
modeling and build templates over the fault characteristics of the underlying
circuit.

Fault Template Attacks on Block Ciphers Exploiting Fault Propagation 11

Algorithm 2 MATCH TEMPLATE

Input: Protected cipher with unknown key Ck, Fault fl, Template T
Output: Set of candidate correct keys kcand

kcand := ∅ ⊲ Set of candidate keys
w := GET SBOX SIZE()
Ft := ∅
for (0 ≤ p < 2w) do ⊲ Vary a single w bit word of the plaintext

O := (Ck(p))
fl ⊲ Inject fault for each execution

if (O == 1) then ⊲ Fault detected
Ft := Ft ∪ {1}

else

Ft := Ft ∪ {0}
end if

end for

kcand := kcand ∪ {T (Ft)}
Return kcand

3.2 Attacks on Unmasked Implementations: Known Plaintext

In this subsection, we present the first concrete realization of FTA. The first
attack we present requires the plaintexts to be known and controllable. However,
explicit knowledge of the ciphertexts is not expected. The adversary is only
provided with the information whether the outcome of an encryption is faulty or
not. One practical example of such attack setup is a block-cipher based Message-
Authentication Code (MAC), where the authentication tag might not be exposed
to the adversary, but the correctness of the authentication is available. We also
assume a stuck-at-1 fault model for simplicity. However, the attack also applies
to stuck-at-0 and bit-flip models. For the sake of illustration, we mainly consider
the PRESENT block cipher. The attack consists of two phases as detailed next.

Offline Phase – Template Building: Perhaps the most important aspect of
the attacks we describe is the fault location. As elaborated in Sec. 2.4, leakage
from the non-linear or the linear gates can be exploited. For this particular case
we choose an AND gate for fault injection as in Sec. 2.4, respecting the fact
that information regarding multiple bits are leaked, simultaneously. The same
fault location as in Sec. 2.4 is utilized. The observables, in this case, are the 0,1
patterns, from the protected implementation where 0 represents a correct outcome
and 1 represents a faulty outcome. The domain set F of the template consists
of patterns called fault patterns (denoted as Ft in the algorithm) constructed
from the observables. The fault location, in this case, is fixed. The process of
transforming the observables to fault patterns and then mapping them to the
set X is outlined in Algorithm 111. For each choice of the key nibble (which
is a member from set X), all 16 possible plaintext nibbles are fed to the S-Box
equations according to a predefined sequence, and the stuck-at-1 fault is injected
for each of the cases. Consequently, for each choice of the key nibble, one obtains
a bit-string of 16 bits which is the desired fault pattern (Ft). The fault patterns

11 Note that, in this attack in all our subsequent attacks, constructing the template
for one S-Box is sufficient. The same template can be utilized for extracting all key
nibbles of a round one by one.

12 S. Saha et al.

Table 2: Template-1 for attacking the
first round of PRESENT by varying
the plaintext nibble. The black cells
represent 1 (faulty output) and the
gray cells represent 0 (correct out-
put).

0 1 2 3 4 5 6 7 8 9 a b c d e f Key
13, 15
9, 11
4, 6
5, 7
12, 14
1, 3
0, 2
8, 10

Table 3: Template-2 for attack-
ing the first round of PRESENT.
The black cells represent 1
(faulty output) and the gray cells
represent 0 (correct output).

0 Key
2, 3, 6, 7, 10, 11, 14, 15
0, 1, 4, 5, 8, 9, 12, 13

are depicted in Table 2. It can be observed that corresponding to each fault
pattern, there can be two candidate key suggestions. One should also note that
changing the fault location might change the fault patterns and the mapping
T : F −→ X .

Online Phase – Template Matching: The online phase of the attack is fairly
straightforward. The attacker now targets an actual implementation (similar to
that used in the template building phase) with an unknown key and constructs
the fault patterns. The fault patterns are constructed for each S-Box at a time,
by targeting the first round 12. Next, the template is matched, and the key is
recovered directly. The algorithm for the online phase is outlined in Algorithm 2
for each nibble/byte. Few intricacies associated with the attack are addressed in
the following paragraphs.

Unique key recovery: The template used in the proposed attack reduces the
entropy of each key nibble to 1-bit (that is, there are two choices per key nibble).
The obvious question is whether the entropy can be reduced to zero or not. In
other words, is it somehow possible to create a template which provides unique
key suggestions for each fault pattern? The answer is negative for this particular
example. This is because with the chosen fault (bit x1 in the monomial x1x2x4 of
the first polynomial in Eq. (1)) location, no leakage happens for the variable x3.
In fact, there is no such location in the S-Box equations which can simultaneously
leak information regarding all the bits. Therefore, one-bit uncertainty will always
remain for the given template and for all other similar templates. However,
the key can still be recovered uniquely if another template, corresponding to a
different fault location, is utilized. The choice of this fault location should be
such that it leaks about x3. The main challenge in this context is to keep the
number of injections as low as possible for the second template. Fortunately, it
was observed that the second template can be constructed in a way so that it only
requires a single fault injection. The trick is to corrupt a linear term x3 in the

12 Extraction of round keys in a per-nibble/byte basis is done for all the attacks de-
scribed in this paper.

Fault Template Attacks on Block Ciphers Exploiting Fault Propagation 13

same polynomial (The template is depicted in Table. 3). Due to the activation-
propagation property of the XOR gates, a single injection would reveal the value
of the bit x3. In practice, we take the intersection between the key suggestions
obtained from two different templates and can identify the key uniquely. As a
concrete example for why it works, consider the key suggestion (13, 15) from the
first template. The second template will provide either of the two suggestion sets
described in it. Now, since 13 and 15 only differ by the bit x3, the suggestion
set returned by template-2 is supposed to contain only one of 13 and 15. Hence
taking the intersection of this second key suggestion set with the first one would
uniquely determine the key.

Required number of faults: The proposed attack performs the key recovery in a
nibble-wise manner. A straightforward application of Algorithm 2 for template
matching here would require total 17 fault injections (16 for the first template
matching and 1 for the second template matching) per nibble, and thus 17×16 =
272 fault injections for recovering the entire round key in the online phase.
However, given the regularity of the fault patterns in template-1 (as shown in
Table. 2), the number of injections per nibble can be reduced further. Note that,
each pattern consists of two faulty outputs (black cells in Table. 2). If we consider
the first faulty outcome from each pattern, the index of them are unique per
pattern. In other words, if the index of the first faulty outcome in a pattern Ft is
denoted as Ind1(Ft) then we have ∀s, t, 0 ≤ s, t ≤ 7, s 6= t. Ind1(Fs) 6= Ind1(Ft).
With this observation, the average number of injection for matching template-1
becomes 7.6, which is the expected value of Ind1(Ft)’s for all Ft. In summary,
with roughly 8+ 1 = 9 fault injections on average, one can recover a key nibble.
Another general trick for reducing the number of faults is to choose the highest
degree monomial for injection so that the maximum number of bits can be
leaked at once. The remaining bits can then be leaked by choosing lower degree
terms and constructing templates for them. This trick reduces the number of key
suggestions per pattern in a template. Moreover, we note that all fault locations
within a single higher degree monomial are equivalent in terms of leakage. This
fact gives extra flexibility while choosing the fault locations for an attack.

It should be observed that although the attack described in this subsection
requires at most two fault locations to be corrupted to recover the key uniquely,
the corruptions need not be simultaneous. In practice, one can run independent
fault campaigns on the target implementation and combine the results to recover
the key. A similar attack is also applicable for AES (see supplementary materiel
in the extended version for a brief description of this attack). In the next sub-
section, we will explore the situations where the fault is injected at a middle
round of the cipher. As we shall see, the attack methodology of our still allows
the recovery of the key within reasonable computational and fault complexity.

3.3 Attacks on Unmasked Implementations: Middle Rounds

Classically FAs target the outer rounds of block ciphers. Attacking middle rounds
are not feasible due to the extensive exhaustive search complexity involved, which

14 S. Saha et al.

Algorithm 3 BUILD TEMPLATE MIDDLE ROUND

Input: Target implementation C, Faults fl0, fl1, ..., flh
Output: Template T

T := ∅
w := GET SBOX SIZE() ⊲ Get the width of the S-Box
for (0 ≤ x < 2w) do ⊲ The key is known and fixed here and x is an

intermediate S-Box input
Ft := ∅
for each fl ∈ {fl0, fl1,..., flh} do

yf := C(x)fl ⊲ Inject fault in one copy of the S-Box for each execution
yc := C(x)
if DETECT FAULT(yf, yc) == 1 then ⊲ Fault detection function

Ft := Ft ∪ {1}
else

Ft := Ft ∪ {0}
end if

end for

T := T ∪ {(Ft, x)}
end for

Return T

becomes equal to the brute force complexity. However, the proposed template-
based attack techniques do not suffer from this limitation. In this subsection, we
shall investigate the feasibility of FTA on the middle rounds of a block cipher.

The main challenge in a middle round attack is that the round inputs are
not accessible. Therefore, the attacks described in the last subsections cannot be
directly applied in this context. However, template construction is still feasible. A
single attack location, in this case, cannot provide sufficient exploitable leakage.
The solution here is to corrupt multiple chosen locations and to construct a single
template combining the information obtained. Unlike the previous case, where
the plaintext was varying during the attack phase, in this case, it is required to
be kept fixed. Formally, the mapping from the set of observables to the set F , in
this case, is a function of fault locations. Also, the range set X of the template,
in this case, contains byte/nibble values from an intermediate state instead of
keys (more precisely, the inputs of the S-Boxes).

One aspect of this attack is to select the fault locations, which would lead to
maximum possible leakage. In contrast to the previous attack, where corrupting
the highest degree monomials leak the maximum number of bits, in this new
attack we observe that linear monomials are better suited as fault locations. This
is because linear monomials leak information irrespective of the value of their
input or the other inputs of the S-Box, and as a result, the total number of fault
injections would be minimized for them. Considering the example of PRESENT,
one bit is leaked per fault location and hence 4 different locations have to be
tried to extract a complete intermediate state nibble. The template building and
the attack algorithm (in per S-Box basis) are outlined in Algorithm 3 and 4.

The template for the middle round attack on PRESENT is shown in Table. 4,
where each fli denotes a fault location. Since the linear terms are corrupted,
each intermediate can be uniquely classified. In the online phase of the attack,
the plaintext is held fixed. The specified fault locations are corrupted one at
a time, and the fault patterns are constructed. An intermediate state can be
recovered with this approach immediately (by applying the Algorithm 4 total 16
times). However, one should notice that recovering a single intermediate state

Fault Template Attacks on Block Ciphers Exploiting Fault Propagation 15

Algorithm 4 MATCH TEMPLATE MIDDLE ROUND

Input: Protected cipher with unknown key Ck, Faults fl0, fl1, ..., flh, Template T
Output: Set of candidate correct states xcand

xcand := ∅ ⊲ Set of candidate states
w := GET SBOX SIZE()
Ft := ∅
for each fl ∈ {fl0, fl1, ...flh} do

O := (Ck(p))
fl ⊲ Inject fault for each execution

if (O == 1) then ⊲ Fault detected
Ft := Ft ∪ {1}

else

Ft := Ft ∪ {0}
end if

end for

xcand := xcand ∪ {T (Ft)}
Return xcand

does not allow the recovery of the round key. At least two consecutive states
must be recovered for the actual key recovery. Fortunately, recovery of any state
with the proposed attack strategy is fairly straightforward. Hence, one just need
to recover the states corresponding to two consecutive rounds and extract one
round of key in a trivial manner. In essence, the round key corresponding to any
of the middle rounds can be recovered. The number of faults required for entire
round key recovery is 128 in this case for PRESENT.

3.4 Discussion

The attack technique outlined for the middle rounds requires the fault to be
injected at many different locations. Although the SEA attacks would also re-
quire a similar number of fault injections13, as we show in the next section, the
proposed attack strategy still works when masked implementations are targeted.
This is clearly an advantage over SEA or BFA or as they are not applicable on
masking implementations [18].

It is interesting to observe that a trade-off is involved regarding the required
number of fault locations with the controllability of the plaintext. If the plain-
text is known and can be controlled, the number of required fault locations are
low. On the other hand, the number of different fault locations increases if the
plaintext is kept fixed. This can be directly attributed to the leakage characteris-
tics of the gates. The leakage from AND gates is more useful while its inputs are
varying and it is exactly opposite for the XOR gates. It is worth mentioning that
the middle round attacks can also be realized by corrupting several higher-order
monomials in the S-Box polynomials. However, due to the relatively low leakage
from AND gates for one fault, the number of injections required per location is
supposed to be higher.

From the next section onward, we shall focus on attacking masked implemen-
tations. Although, masking is not meant for fault attack prevention, in certain
cases it may aid the fault attack countermeasures [18]. The study on masking
becomes more relevant in the present context because our attacks, in principle,

13 In fact, one can perform the same attack at the key addition stages to recover the
key directly.

16 S. Saha et al.

Table 4: Template for attacking the middle rounds of PRESENT. Here fl0 = x1

in polynomial of y1, fl1 = x3 in in polynomial of y1, fl2 = x4 in polynomial of
y1, and fl3 = x2 in polynomial of y4.

fl0 fl1 fl2 fl3 State fl0 fl1 fl2 fl3 State
0 8
1 9
2 a
3 b
4 c
5 d
6 e
7 f

are close to SCA attacks (in the sense that both tries to recover values of some
intermediate state).

4 Attack on Masked Implementations

Masking is a popular countermeasure for SCA attacks. Loosely speaking, mask-
ing implements secret sharing at the level of circuits. Over the years, several
masking schemes have been proposed, the most popular one being the Threshold-
Implementation (TI) [6]. For illustration purpose, in this work, we shall mostly
use TI implementations.

Before going into the details of our proposed attack on masking, let us briefly
comment on why SEA does not work on masking. Each fault injection in the
SEA reveals one bit of information. However, each actual bit of a cipher is shared
in multiple bits in the case of masking, and in order to recover the actual bit, all
shares of the actual bit have to be recovered, simultaneously. Moreover, the mask
changes at each execution of the cipher. Hence, even if a single bit is recovered
with SEA, it becomes useless as the next execution of the cipher is suppose
to change this bit with probability 1

2 . By the same argument, attacking linear
terms in the masked S-Box polynomials would not work for key/state recovery,
as attacking linear monomials typically imply faulting an XOR gate input. As an
XOR gate only leaks about the faulted input bit, in this case, the attacker will
end up recovering a uniformly random masked bit. However, the FTA attack
we propose next, works even while masks are unknown and varying
randomly in each execution (such as in TI). The only requirement is to
repeat an unknown plaintext several times.

4.1 Leakage from Masking

Let us recall the unique property of AND gates that they leak about multiple
bits, simultaneously. We typically exploit this property for breaching the security
of masked implementations. To illustrate how the leakage happens, we start with
a simple example. Consider the circuit depicted in Fig. 4, which corresponds to
the first-order masked AND gate. The corresponding ANF equations are given as
q0 = x0y0+r0,1 and q1 = x1y1+(r0,1+x0y1+x1y0). Here (q0, q1) represents the
output shares and (x0, x1), (y0, y1) represents the input shares. We assume that

Fault Template Attacks on Block Ciphers Exploiting Fault Propagation 17

x0 x1 y1r0,1

q0

q1

1

00/1 0/10/1 0/1

y0

Fig. 4: Fault propagation through masked AND gate.

actual unmasked input to the gate (denoted as x and y) remains fixed. However,
all the shares vary randomly due to the property of masking. Consequently, all
the inputs to the constituent gates of the masked circuit also vary randomly.
Without loss of generality, let us now consider that a stuck-at-1 fault is induced
at the input share x0 during the computation of both the output shares. Now,
from the ANF expression it can be observed that x0 is AND-ed with y0 and y1
in two separate shares (i.e. x0y0 in q0 and x0y1 in q1). So, faulting x0 would
leak information about both y0 and y1. From the properties of the AND gate,
the stuck-at-1 fault will propagate to the output only if x0 = 0 and yi = 1
with i ∈ {0, 1}. However, it should also be noted that if faults from both of the
gates propagate simultaneously, then they (the faults) will cancel each other. The
actual output of the masked AND circuit (i.e. q0 + q1) will be faulty only if one
of the constituent AND gates propagate the fault effect. More specifically, the
effective fault propagation requires either (y0 = 0, y1 = 1) or (y0 = 1, y1 = 0).
In summary, the fault will propagate if and only if the actual unshared bit y

(y = y0+y1) equals to 1 and x0 = 0. There will be no fault propagation if y = 0.
The fact is illustrated in the truth table at Table. 5.

The above-mentioned observation establishes the fact that a properly placed
fault can leak the actual unshared input bits from a masked implementation.
This observation is sufficient for bypassing masking countermeasures as we shall
show subsequently in this paper. However, to strongly establish our claim, we
go through several examples before describing a complete attack algorithm.

4.2 Leakage from TI AND Gates

The second example of our involves a TI implemented AND gate. We specifically
focus on a four-share realization of a first-order masked AND gate proposed in [6].
The ANF representation of the implementation is given as:

q0 = (x2 + x3)(y1 + y2) + y1 + y2 + y3 + x1 + x2 + x3

q1 = (x0 + x2)(y0 + y3) + y0 + y2 + y3 + x0 + x2 + x3

q2 = (x1 + x3)(y0 + y3) + y1 + x1

q3 = (x0 + x1)(y1 + y2) + y0 + x0

(2)

18 S. Saha et al.

Table 5: Output status for faulted masked AND gate for different input values.
The variables x and y are used for representing the unshared variables (i.e.
x0 + x1 = x and y0 + y1 = y). C and F denote correct and faulty outputs.

x0 x y0 y r0,1 C/F

0 0 0 0 0 C
0 0 0 1 0 F
0 1 0 0 0 C
0 1 0 1 0 F
0 0 1 1 0 F
0 0 1 0 0 C
0 1 1 1 0 F
0 1 1 0 0 C
1 1 0 0 0 C
1 1 0 1 0 C
1 0 0 0 0 C
1 0 0 1 0 C
1 1 1 1 0 C
1 1 1 0 0 C
1 0 1 1 0 C
1 0 1 0 0 C

x0 x y0 y r0,1 C/F

0 0 0 0 1 C
0 0 0 1 1 F
0 1 0 0 1 C
0 1 0 1 1 F
0 0 1 1 1 F
0 0 1 0 1 C
0 1 1 1 1 F
0 1 1 0 1 C
1 1 0 0 1 C
1 1 0 1 1 C
1 0 0 0 1 C
1 0 0 1 1 C
1 1 1 1 1 C
1 1 1 0 1 C
1 0 1 1 1 C
1 0 1 0 1 C

Here (x0, x1, x2, x3), (y0, y1, y2, y3) and (q0, q1, q2, q3) represent the 4-shared in-
puts and output, respectively. Let us consider a fault injection at the input share
x3 which sets it to 0. An in-depth investigation of the ANF equations reveal that
x3 is multiplied with y1+y2 and y0+y3. The leakage due to this fault will reach
the output only when y0 + y1 + y2 + y3 = y = 1. One may notice that x3 also
exists as linear monomial in the ANF expressions. However, the effect of this
linear monomial gets canceled out in the computation of the actual output bit.
Hence the fault effect of this linear term does not hamper the desired fault prop-
agation. In essence, the TI AND gate is not secured against the proposed attack
model.

TI AND gates are often utilized as constituents for Masked S-Boxes. One
prominent example of this is a compact 4-bit S-Box from [23]. The circuit dia-
gram of the S-Box is depicted in Fig. 5 with 4-shared TI gates. We specifically
target the highlighted AND gate in the structure, which is TI implemented. If
we inject the same fault as we did for the TI AND gate example, the fault effect
propagates to the output with the same probability as of the TI AND. This is
because there is no non-linear gate in the output propagation path of this fault.
As a result, we can conclude that even this S-Box leaks. It is worth mentioning
that the choice of the target AND gate is totally arbitrary and, in principle, any

x

y

z

w

a

b

c

d

x

y

4 bit reg

4 bit reg

4 bit reg

4 bit reg

4 bit reg

4 bit reg

1
Single bit fault

Fig. 5: Fault propagation through an S-Box having TI gates. Note that each
constituent AND gate is 4-shared, and thus each wire and register are of 4-bit.

Fault Template Attacks on Block Ciphers Exploiting Fault Propagation 19

of the TI AND gates depicted in the circuit can be targeted. One may also target
the OR gate based on the same principle. However, the non-controlling input of
OR being 1, the leakage will happen for the input value 0 instead of value 1.

One important practical question is how many of such desired fault locations
may exist for a masked implementation. It turns out there are plenty of such
locations even for the simple TI AND gate implementation. It is apparent that
any of the input shares from (x0, x1, x2, x3) or (y0, y1, y2, y3) can be faulted for
causing leakage. In fact, changing the target input share will enable recovery of
both x and y separately. Another point here is that whether there will always
exist such favorable situations where faulting a share will lead to the leakage of
an unmasked bit. We argue that it will always be the case because the output
of any masking scheme must always satisfy the property of correctness. Putting
it in a different way, the output of the masked AND gate must always result in
q = xy = (x0+x1+x2+x3)(y0+y1+y2+y3). Although shares are never supposed
to be combined during the masked computation, ensuring correctness always
requires that the monomials x3y0 x3y1, x3y2 and x3y3 are computed at some
share during the masked computation (considering x3 to be the fault location).
Hence, irrespective of the masking scheme used, we are supposed to get fault
locations which are exploitable for our purpose (i.e., leaks (y0+y1+y2+y3) = y).
Finding out such locations becomes even easier with our template-based setup
where extensive profiling of the implementation is feasible for known key values.

So far we have discussed regarding the feasibility of leakage for masked AND
gates, and S-Boxes constructed with masked gates. The obvious next step is to
verify our claim for explicitly shared S-Boxes which we elaborate in the next
subsection. As it will be shown, attacks are still possible for such S-Boxes.

4.3 Leakage from Shared S-Boxes

There are numerous examples of TI S-Boxes in the literature. For the sake of illus-
tration, we choose the 4×4 S-Box from the GIFT block cipher [24]. For our pur-
pose, we select the three-share TI implementation of this S-Box proposed in [25].
One should note that the GIFT S-Box is originally cubic. In order to realize a
three-shared TI, the original S-Box function S : GF (2)4 −→ GF (2)4 is broken into
two bijective sub-functions F : GF (2)4 −→ GF (2)4 and G : GF (2)4 −→ GF (2)4,
such that S(X) = F (G(X)). Both F and G are quadratic functions for which
three-share TI is feasible. In [25], it was found that for the most optimized imple-
mentation in terms of Gate Equivalence (GE), F and G should be constructed
as follows:

G(x3, x2, x1, x0) = (g3, g2, g1, g0)

g3 = x0 + x1 + x1x2

g2 = 1 + x2

g1 = x1 + x2x0

g0 = x0 + x1 + x1x0 + x2 + x3

(3)

F (x3, x2, x1, x0) = (f3, f2, f1, f0)

f3 = x1x0 + x3

f2 = 1 + x1 + x2 + x3 + x3x0

f1 = x0 + x1

f0 = 1 + x0

(4)

20 S. Saha et al.

Table 6: Output status for faulted masked AND gate for different input values
with bit-flip fault. The variables x and y are used for representing the unshared
variables (i.e. x0 + x1 = x and y0 + y1 = y).

x0 x y0 y r0,1 C/F

0 0 0 0 0 C
0 0 0 1 0 F
0 1 0 0 0 C
0 1 0 1 0 F
0 0 1 1 0 F
0 0 1 0 0 C
0 1 1 1 0 F
0 1 1 0 0 C
1 1 0 0 0 C
1 1 0 1 0 F
1 0 0 0 0 C
1 0 0 1 0 F
1 1 1 1 0 F
1 1 1 0 0 C
1 0 1 1 0 F
1 0 1 0 0 C

x0 x y0 y r0,1 C/F

0 0 0 0 1 C
0 0 0 1 1 F
0 1 0 0 1 C
0 1 0 1 1 F
0 0 1 1 1 F
0 0 1 0 1 C
0 1 1 1 1 F
0 1 1 0 1 C
1 1 0 0 1 C
1 1 0 1 1 F
1 0 0 0 1 C
1 0 0 1 1 F
1 1 1 1 1 F
1 1 1 0 1 C
1 0 1 1 1 F
1 0 1 0 1 C

Here x0 is denotes the LSB and x3 is the MSB. Both G and F are shared into
three functions each denoted as G1, G2, G3 and F1, F2, F3, respectively. Details
of these shared functions can be found in [25]. For our current purpose, we
only focus on the shares corresponding to the bit g0 of G. The ANF equations
corresponding to this bit are given as follows:

g10 = x3
0 + x3

1 + x3
2 + x3

3 + x2
0x

2
1 + x2

0x
3
1 + x3

0x
2
1

g20 = x1
0 + x1

1 + x1
2 + x1

3 + x1
0x

3
1 + x3

0x
1
1 + x3

0x
3
1

g30 = x2
0 + x2

1 + x2
2 + x2

3 + x1
0x

1
1 + x1

0x
2
1 + x2

0x
1
1

(5)

Here xi = x3
i + x2

i + x1
i for i ∈ {0, 1, 2, 3}, and g0 = g10 + g20 + g30.

We now search for suitable fault locations for our purpose. One such feasible
location is x2

0. One should observe that the leakage due to this fault injection
actually depends upon (x1

1 + x2
1 + x3

1 +1) = x1 +1. Hence the fault propagation
will take place in this case while x1 is equal to zero. In a similar fashion, it can be
shown that a fault injection at x2

1 will leak the actual value of x0. One interesting
observation here is that fault injection at any of the shares of an input bit xi is
equivalent to the injection at any other share of the same input. This is because
all of them cause the leakage of the other unshared input bit associated. This is,
in fact, extremely useful from an attacker’s point of view as she may select any
one of them for leaking information.

4.4 Different Fault Models

So far, in this paper, we have mostly utilized stuck-at faults for all our illus-
trations. The attacks are equivalent for stuck-at-0 and stuck-at-1 fault models.
Interestingly, they are also equally applicable while the fault flips the value of the
target bit. To show why it works, we recall the concept of fault activation and
propagation described at the beginning of this work. Fault reaches the output

Fault Template Attacks on Block Ciphers Exploiting Fault Propagation 21

of a gate from its input only while these two events are satisfied, simultane-
ously. Considering AND gates (and other non-linear gates), the fault activation
depends on specific values at the target input for stuck-at faults (value 0 for
stuck-at 1, and value 1 for stuck-at 0). However, for the bit-flip fault model,
the fault is always active. In other words, in the case of stuck-at faults, the
fault activation event happens with probability 1

2 , whereas, for bit-flip faults,
it happens with probability 1. The fault propagation, however, still depends on
the occurrence of a non-controlling value at other inputs of the gate. Hence,
the main property we exploit for attacking masking schemes (that is, the fault
propagation to the output depends on the value of unmasked bits) still holds for
bit-flip fault models, and attacks are still feasible. In fact, it is found that the
required number of injections become roughly half for bit-flip faults compared
to stuck-at faults. In other words, in a noise-free scenario, one injection per fault
location can recover the target unshared bit for bit-flip faults. To support our
claim, we present the truth table corresponding to the simple first-order masked
AND gate once again in Table 6, this time for a bit flip fault at x0.

4.5 Template Attack on Masked PRESENT: Main Idea

In this subsection, we utilize the concepts developed in the previous subsections
for attacking a complete block cipher implementation. A three-share TI imple-
mentation of PRESENT, with simple redundancy countermeasure, is considered
for our experiments. As for the three-shared TI, we implemented the lightweight
scheme proposed in [17]. Considering the fact that PRESENT S-Box is also cu-
bic, it is first represented as a combination of two quadratic bijective mappings F
and G. Each of these mappings is then converted to three-shared TI implemen-
tations. Generally, registers are used to interface the outputs of G and inputs of
F . The implementation of the linear mappings is straightforward. For the sake
of completeness, the keys are also masked. As for the fault countermeasure is
concerned, we implemented the most common form of redundancy, where the
redundancy check happens at the final stage just before outputting the cipher-
text. Two separate copies of the masked PRESENT with different mask values
are instantiated as two redundant branches of computation. Upon detection of
a fault, the output is muted or randomized14.

The three-shared ANF equations for F and G functions can be found in [17].
For our purpose, it is sufficient to focus only on the shared implementation of F ,
which is given below. For the sake of illustration, we first present the unshared
version of F (Eq. (6)), and then the shares corresponding to it (Eq. (7)). Note
that, in Eq. (6) x0 denote the LSB and x3 denote the MSB.

F (x3,x2, x1, x0) = (f3, f2, f1, f0)

f3 = x2 + x1 + x0 + x3x0; f2 = x3 + x1x0; f1 = x2 + x1 + x3x0;

f0 = x1 + x2x0.

(6)

14 Actually, our attacks do not depend on this choice and would equally apply for any
detection-type countermeasure.

22 S. Saha et al.

f10 = x2
1 + x2

2x
2
0 + x2

2x
3
0 + x3

2x
2
0

f20 = x3
1 + x3

2x
3
0 + x1

2x
3
0 + x3

2x
1
0

f30 = x1
1 + x1

2x
1
0 + x1

2x
2
0 + x2

2x
1
0

f11 = x2
2 + x2

1 + x2
3x

2
0 + x2

3x
3
0 + x3

3x
2
0

f21 = x3
2 + x3

1 + x3
3x

3
0 + x1

3x
3
0 + x3

3x
1
0

f31 = x1
2 + x1

1 + x1
3x

1
0 + x1

3x
2
0 + x2

3x
1
0

(7)

f12 = x2
3 + x2

1x
2
0 + x2

1x
3
0 + x3

1x
2
0

f22 = x3
3 + x3

1x
3
0 + x1

1x
3
0 + x3

1x
1
0

f32 = x1
3 + x1

1x
1
0 + x1

1x
2
0 + x2

1x
1
0

f13 = x2
2 + x2

1 + x2
0 + x2

3x
2
0 + x2

3x
3
0 + x3

3x
2
0

f23 = x3
2 + x3

1 + x3
0 + x3

3x
3
0 + x1

3x
3
0 + x3

3x
1
0

f33 = x1
2 + x1

1 + x1
0 + x1

3x
1
0 + x1

3x
2
0 + x2

3x
1
0

4.6 Middle Round Attacks

The most interesting question in the current context is how to attack the middle
rounds of a cipher without direct access to the plaintexts or ciphertexts. The
attacks in the first round with known plaintext will become trivial once the
middle round attacks are figured out. Note that, in all of these attacks (even for
the known-plaintext case), we assume the plaintext to be fixed, whereas the masks
vary randomly. The attacker is only provided with the information whether the
outcome is faulty or not, and nothing else. For the case of middle-round attacks,
the value of the fixed plaintext is unknown to the adversary.

Template Construction: The very first step of the attack is template-building.
The attacker is assumed to have complete knowledge of the implementation and
key, and also can figure out suitable locations for fault injection. One critical
question here is how many different fault locations will be required for the attack
to happen. Let us take a closer look at this issue in the context of the shared
PRESENT S-Box. Without loss of generality, let us assume the input share x2

0 as
the fault injection point during the computation of the shares (f10, f20, f30). It
is easy to observe that this fault leaks about the expression (x2

2 +x3
2 +x1

2) = x2.
In a similar fashion the fault location x2

0 during the computation of the shares
(f11, f21, f31) leaks about x3; the location x2

0 during the computation of the
shares (f12, f22, f32) leaks about x1; and the location x2

3 during the computation
of (f13, f23, f33) leaks about x0. Consequently, we obtain the template shown in
Table 7 for independent injections at these selected locations.

The template construction algorithm is outlined in Algorithm 5. The aim is to
characterize each S-Box input (denoted as x in the Algorithm 5) with respect to
the fault locations. The plaintext nibble is kept fixed in this case during each fault
injection campaign, while the mask varies randomly. One important observation
at this point is that the fault injection campaign has to be repeated several times
with different random mask for each valuation of an S-Box input. To understand
why this is required, once again, we go back to the concept of fault activation
and propagation. Let us consider any of the target fault locations; for example,
x2
0. The expression which leaks information is (x2

2 + x3
2 + x1

2). Now, for the fault
to be activated in a stuck-at fault scenario, x2

0 must take a specific value (0 or
1 depending on the fault). Since all the shared values change randomly at each
execution of the cipher, we can expect that the fault activation happens with

Fault Template Attacks on Block Ciphers Exploiting Fault Propagation 23

Algorithm 5 BUILD TEMPLATE MASK

Input: Masked cipher C, Faults fl0, fl1, · · ·, flh, Number of masked executions per input M
Output: Template T

T := ∅
w := GET SBOX SIZE() ⊲ Get the width of the S-Box
for (0 ≤ x < 2w) do

Ft := ∅
for each fl ∈ {fl0, fl1, · · ·, flh} do

V := ∅
for mind ≤ M do

m := GEN MASK() ⊲ Generate fresh mask for each execution

yf := C(x,m)fl ⊲ Inject fault in one copy of the S-Box for each execution
m := GEN MASK()
yc := C(x,m)
if DETECT FAULT(yf, yc) == 1 then ⊲ Fault detection function

V := V ∪ {1}
else

V := V ∪ {0}
end if

end for

if V ∼ D1 then

Ft := Ft ∪ {1}
else

Ft := Ft ∪ {0}
end if

end for

T := T ∪ {(Ft, x)}
end for

Return T

Table 7: Template for attacking TI PRESENT (middle round). The black cells
indicate a faulty outcome and yellow cells represent correct outcome.

fl0 = x2

0

(f10,
f20,
f30)

fl1 = x2

0

(f11,
f21,
f31)

fl2 = x2

0

(f12,
f22,
f32)

fl3 = x2

3

(f13,
f23,
f33)

State

fl0 = x2

0

(f10,
f20,
f30)

fl1 = x2

0

(f11,
f21,
f31)

fl2 = x2

0

(f12,
f22,
f32)

fl3 = x2

3

(f13,
f23,
f33)

State

0 8
1 9
2 a
3 b
4 c
5 d
6 e
7 f

probability 1
2

15. Once the fault is activated, the propagation happens depending
on the value of the other input of the gate which actually causes the leakage.
In order to let the fault activate, the injection campaigns have to run several
times, corresponding to a specific fault location for both the template building
and online attack stage. Given the activation probability of 1

2 , 2 executions
(injections) with different valuations at x2

0, would be required on average.
As a consequence of performing several executions of the cipher corresponding

to one fault location, we are supposed to obtain a set of suggestions for the
valuation of the bit to be leaked. For example, for two separate executions we
may get two separate suggestions for the value of (x2

2 + x3
2 + x1

2). If the fault
at x2

0 is not activated, the suggestion will always be 0. However, if the fault

15 for bit-flip faults the fault activation will happen with probability 1.

24 S. Saha et al.

is activated, the suggestion reflects the actual value of x2. There is no way of
understanding when the fault at x2

0 gets activated. So, a suitable technique has
to be figured out to discover the actual value of x2 from the obtained set of
values. Fortunately, the solution to this problem is simple. Let us consider the
set of observables corresponding to a specific fault location as a random variable
V taking values 0 or 1. The value of V is zero if no fault propagates to the output
and 1, otherwise. Mathematically, V can be assumed as a Bernoulli distributed
random variable. Now, it is easy to observe that if the actual value to be leaked is
0, V will never take a value 1 (that is, the fault never propagates to the output).
Therefore, the probability distribution of V for this case can be written as:

D0 : P[V = 0] = 1 and P[V = 1] = 0 (8)

If the value to be leaked is 1, the probability distribution of V becomes16:

D1 : P[V = 0] =
1

2
and P[V = 1] =

1

2
(9)

The template construction procedure becomes easy after the identification of
these two distributions. More precisely, if V ∼ D0 the corresponding location in
the template takes a value 0. The opposite thing happens for V ∼ D1.

Algorithm 6 MATCH TEMPLATE MASK

Input: Protected cipher with unknown key Ck, Faults fl0, fl1, · · ·, flh, Template T
Output: Set of candidate correct states xcand

xcand := ∅ ⊲ Set of candidate states
w := GET SBOX SIZE()
Ft := ∅
for each fl ∈ {fl0, fl1, · · ·, flh} do

V := ∅
for mind ≤ M do

O := (Ck(P))fl ⊲ Inject fault for each masked execution
if (O == 1) then ⊲ Fault detected

V := V ∪ {1}
else

V := V ∪ {0}
end if

end for

if V ∼ D1 then

Ft := Ft ∪ {1}
else

Ft := Ft ∪ {0}
end if

end for

xcand := xcand ∪ {T (Ft)}
Return xcand

Online Phase: The online phase of the attack algorithm is outlined in Algo-
rithm 6. Fundamentally it is similar to the template construction phase. We keep
the plaintext fixed and run the fault campaigns at pre-decided locations. The

16 In the case of bit-flip faults D1 : P[V = 0] = 0 and P[V = 1] = 1, as the fault always
gets activated in this case.

Fault Template Attacks on Block Ciphers Exploiting Fault Propagation 25

templates are decided by observing the output distributions of the random vari-
able V as described in the previous section. At the end of this step, one round
of the cipher is recovered. In order to recover the complete round key, recovery
of two consecutive rounds is essential. Recovery of another round is trivial with
this approach, and therefore, a round key can be recovered uniquely.

Number of Faults: In the case of PRESENT, we use 4 fault locations, and each
of them requires several fault injections with the mask changing randomly. The
number of injections required for each of these locations depends upon the num-
ber of samples required to estimate the distribution of the variable V accurately.
In an ideal case, two fault injections on average should reveal the actual leak-
age for stuck-at faults. Experimentally, we found that 4-5 injections on average
are required to reveal the actual distribution of V 17. The increased number is
caused by the fact that an entire mask of 128-bit is generated randomly in our
implementation and the activation of an injected fault happens with a slightly
different probability than expected. Assuming, 5 injections required per fault lo-
cation, the total number of fault requirements for a nibble becomes roughly 20.
Therefore, around 32× 20 = 640 faults are required to extract the entire round
key of the PRESENT cipher (For bit-flip faults the count is 128 in a noise-free
case.) 18. Note that, in practical experiments, these numbers may rise given the
fact that some of the injections may be unsuccessful or the fault may hit wrong
locations. In the next subsection, we show that the FTA is robust against such
random noise in fault injection.

4.7 Handling Noisy Fault Injections

Noise in fault injection is a practical phenomenon. The primary sources of noise
are the injection instruments and certain algorithmic features. The manifestation
could be either a missed injection or injection at an undesired location. However,
in both cases, the observable distribution may directly get affected. In this sub-
section, we investigate how noise in fault injection affects the attacks proposed
in this work. For simplicity, here, we shall mainly consider the scenario where
noise is random and uncorrelated with the actual information. A different noise
scenario (where the noise is algorithmic and correlated with the signal), in the
context of infective countermeasures, has been discussed in the supplementary
material of the extended version.

The main reason behind the noise affecting the observable is that wherever
a fault happens, it propagates to the output. As a result, the fault patterns
for template matching cannot be constructed properly during the online phase.
However, given the fact that a similar device is available for profiling in the
offline phase, the noise distribution can be characterized quite efficiently, which
eventually makes the attacks successful. As described in Sec. 4.6, for a specific

17 For bit-flip faults, the number of injections per location is 1.
18 Given the fact, that PRESENT uses an 80-bit master key, and 64-bit round keys,

the remaining keyspace after one round key extraction would be of size 216, which
is trivial to search exhaustively.

26 S. Saha et al.

fault location inside the S-Box the observable is a Bernoulli distributed random
variable (V). The random variable corresponding to the noisy version of this
distribution is denoted as V

′

. In order to make the attacks happen, we need
to decide actual fault patterns by compensating the effect of noise. As already
shown in Eq. (8), and (9), the noise-free distributions D0 and D1 only depend
upon the leaked values. The main task there was to decide whether the noise-free
random variable for the observable V is distributed according to D0 or D1.

Let us now characterize the noisy distribution. For convenience, let us define
another random variable Vn denoting the distribution of the noise. The noisy
random variable V

′

is then distributed as either of D
′

0 or D
′

1 defined as follows:

D
′

0 :P [V
′

= 1] = psig × P [V = 1|x = 0] + (1− psig)× P [Vn = 1]

P [V
′

= 0] = 1− P [V
′

= 1]
(10)

and

D
′

1 :P [V
′

= 1] = psig × P [V = 1|x = 1] + (1− psig)× P [Vn = 1]

P [V
′

= 0] = 1− P [V
′

= 1]
(11)

Here psig represents the signal probability, which can be characterized during
the template building phase along with Vn. The random variable x denotes the
leaking intermediate (one component of the fault pattern). The decision making
procedure for fault pattern recovery now can be stated as:

Decide the outcome(one component of the target fault pattern) to be 0 (no fault
propagation) if V

′

∼ D
′

0, and to be 1, otherwise.

Let us now try to see how the fault patterns can be recovered from the noisy
distributions. The expected value µVn

of Vn (which is nothing but P [Vn = 1])
is normally distributed by Central Limit Theorem. This makes the mean of
D

′

0 (denoted as Dµ0
) and D

′

1 (Dµ1
) normally distributed as well. In order to

make the abovementioned decision process work with high confidence, both the
means should be accurately estimated, and their distributions should overlap as
less as possible. We now state our detection procedure for the fault patterns.
Corresponding to each fault location, we perform the fault injection campaign
for several different mask values and gather a sufficient number of observations
for the noisy observable random variable V

′

. The mean of V
′

is next estimated
as µV′ . In the next step, we estimate the probability of µV′ belonging to any of
the two distributions Dµ0

or Dµ1
. More precisely, we calculate the following:

P [Dµ0
| µV′] and P [Dµ1

| µV′] (12)

The outcome (one component of the target fault pattern) is assumed to take the
value for which the probability is the highest.

In order to consider random noise distribution, here we set P [Vn = 1] =
P [Vn = 0] = 0.5 (ref. Eq. (10) and (11)) without loss of generality. However, the
proposed method also works for other noise distributions. Both signal probability

Fault Template Attacks on Block Ciphers Exploiting Fault Propagation 27

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Noise Probability

0

100

200

300

400

500

600

700

800

#
 I
n
je

ct
io

n
s

P
e
r

Fa
u
lt

 L
o
ca

ti
o
n

Stuck-at-0

Bit-flip

Fig. 6: Variation in number of injections with respect to noise probability. 100 in-
dependent experiments (with different key-plaintext pairs) have been performed
for each probability value, and the median is plotted.

psig and the noise distribution are considered to be known from the initial profil-
ing and template building phase. In the online phase, the mean of the collected
observables are calculated (per fault location), and its probability for belonging
to any of Dµ0

or Dµ1
is calculated. The higher among these two probabilities

give us the correct answer corresponding to that fault location. Once the entire
fault pattern is recovered, the intermediate state can be found. It is observed
that by increasing the number of injections per location at the online stage, it is
possible to recover the desired states accurately even for very low signal values.
Fig 6 presents the variation of fault injection count (per location) with the noise
probability (1−psig). Evidently, low signal probability requires a higher number
of injections.

5 Practical Validation

The applicability of the proposed FTA attacks has been validated for both hard-
ware and software implementations. Our first validation experiment performs
the FTA attack on a hardware implementation of PRESENT having first-order
TI [17] (and temporal redundancy-based fault detection) with Electromagnetic
(EM) pulse-based fault injection. We found that EM-induced faults are precise
enough to perform the FTA. Moreover, the EM injection does not require chip
de-packaging and explicit access to the clock/voltage lines. Our target platform
is an FPGA implementation of the protected PRESENT. We assume that the
adversary has complete access to one of the FPGA implementations on which she
can construct the fault templates. The target also belongs to the same FPGA
family, and the configuration bit file of the design is the same one. The FTA
attack we perform in this case is the one described in Sec. 4.6. In order to realize
the desired faults, we target the internal registers situated at the inputs of the
F function of the shared PRESENT S-Box.

The hardware experiment in this context is detailed in the supplementary
material of the extended version. The faults injected in this experiment were
bit faults targeted to precise locations within a register. One of the key obser-
vations is that different bit locations within a register can be targeted
by varying the fault injection parameters (especially the location of
the EM probe over the target chip). Moreover, the generated faults are

28 S. Saha et al.

repeatable in the sense that they can induce the same fault effect arbitrary num-
ber of times at a given location with the injection parameters kept fixed. Indeed
there are some noise during injection. However, the noise effect can be undone
by increasing the number of observations at a specific location. During the pro-
filing phase the noisy injections were detected assuming the knowledge of the
key and masks, and the probability of the noise is estimated as the fraction of
noisy injections among the total samples collected at a specific fault location.
Perhaps the most crucial property of the fault injections is their reproducabil-
ity. By reproducability, we mean that the faults can be regenerated
on another device from the same family with the same injection pa-
rameters found during the template-building phase. This property has
been validated practically in our experiments on FPGA platforms. Finally, we
were able to perform complete key recovery from the hardware platform with
3150-3300 faults for different plaintext-key pairs.

The second example of ours performs simulated fault injection for a pub-
licly available masked implementation of AES from [26], which uses Trichina
Gates [27]. One should note that profiling of the target implementation to de-
tect desired fault locations is an important factor in FTA attacks. This particular
example demonstrates how to perform such profiling for a relatively less under-
stood public implementation. The target implementation of ours is targeted for
32-bit Cortex M4 platform with Thumb-2 instruction set. Since the original im-
plementation, in this case, lacks fault countermeasure, we added simple temporal
redundancy, that is the cipher is executed multiple times, and the ciphertexts
are matched before output. In all of our experiments, the observable is a string of
0, 1 bits with its corresponding interpretations. Further details on this validation
experiment can be found in the extended version of this paper.

6 Conclusion

Modern cryptographic devices incorporate special algorithmic tricks to throttle
both SCA and FA. In this paper, we propose a new class of attacks which
can efficiently bypass most of the state-of-the-art countermeasures against SCA
and FA even if they are incorporated together. The attacks, abbreviated as
FTA, are template-based and exploit the characteristics of basic gates under the
influence of faults for information leakage. Although the fault model is similar
to the SIFA attacks, the exploitation mechanism is entirely different from SIFA.
Most importantly, FTA enables attacks on middle rounds of a protected cipher
implementation, which is beyond the capability of SIFA or any other existing
FA technique proposed so far. Middle round attacks without explicit knowledge
of plaintexts and ciphertexts may render many well-known block cipher-based
cryptographic protocols vulnerable. Practical validation of the attacks has been
shown for an SCA-FA protected hardware implementation of PRESENT and a
publicly available protected software implementation of AES. A comprehensive
discussion on the impact of FTA over certain other classes of FA countermeasures
is presented in the extended version of this paper.

Fault Template Attacks on Block Ciphers Exploiting Fault Propagation 29

Several future directions can be pointed out at this point to enhance FTA
attacks. One feature of the current version of the attack is that it prefers bit
faults. Although repeatable and reproducable bit faults are found to be prac-
tical, one potential future work could be to investigate if this requirement can
be relaxed further. Another interesting exercise is to analyze the recently pro-
posed SIFA [28] countermeasures. An FTA adversary, enhanced with the power
of side channel analysis should be able to exploit some basic features of such
countermeasures (such as correction operation) for potential information leak-
age. One future application would be to make these attacks work for secured
public key implementations. Another potential future work is to figure out a
suitable countermeasure against FTA attacks.

References

1. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: CHES. pp. 13–28. Springer
(2002)

2. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking crypto-
graphic protocols for faults. In: International conference on the theory and appli-
cations of cryptographic techniques. pp. 37–51. Springer (1997)

3. Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. Ad-
vances in Cryptology–CRYPTO’97 pp. 513–525 (1997)

4. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: Securing hardware against prob-
ing attacks. In: CRYPTO. pp. 463–481. Springer (2003)

5. Reparaz, O., Bilgin, B., Nikova, S., Gierlichs, B., Verbauwhede, I.: Consolidating
masking schemes. In: CRYPTO. pp. 764–783. Springer (2015)

6. Nikova, S., Rechberger, C., Rijmen, V.: Threshold implementations against side-
channel attacks and glitches. In: ICICS. pp. 529–545. Springer (2006)

7. Groß, H., Mangard, S., Korak, T.: An efficient side-channel protected aes im-
plementation with arbitrary protection order. In: CT-RSA. pp. 95–112. Springer
(2017)

8. Guo, X., Mukhopadhyay, D., Jin, C., Karri, R.: Security analysis of concurrent error
detection against differential fault analysis. Journal of Cryptographic Engineering
5(3), 153–169 (Sep 2015)

9. Kulikowski, K., Karpovsky, M., Taubin, A.: Robust codes for fault attack resistant
cryptographic hardware. In: FDTC. pp. 1–12 (2005)

10. Tupsamudre, H., Bisht, S., Mukhopadhyay, D.: Destroying fault invariant with
randomization. In: CHES’14. pp. 93–111. Springer (2014)

11. Schneider, T., Moradi, A., Güneysu, T.: ParTI–towards combined hardware coun-
termeasures against side-channel and fault-injection attacks. In: CRYPTO. pp.
302–332. Springer (2016)

12. Dobraunig, C., Eichlseder, M., Korak, T., Mangard, S., Mendel, F., Primas, R.:
SIFA: exploiting ineffective fault inductions on symmetric cryptography. TCHES
pp. 547–572 (2018)

13. Dobraunig, C., Eichlseder, M., Gross, H., Mangard, S., Mendel, F., Primas, R.:
Statistical ineffective fault attacks on masked aes with fault countermeasures. In:
ASIACRYPT. pp. 315–342. Springer (2018)

14. Zhang, F., Lou, X., Zhao, X., Bhasin, S., He, W., Ding, R., Qureshi, S., Ren, K.:
Persistent fault analysis on block ciphers. TCHES pp. 150–172 (2018)

30 S. Saha et al.

15. Pan, J., Zhang, F., Ren, K., Bhasin, S.: One fault is all it needs: Breaking higher-
order masking with persistent fault analysis. In: 2019 Design, Automation & Test
in Europe Conference & Exhibition (DATE). pp. 1–6. IEEE (2019)

16. Niemi, V., Nyberg, K.: UMTS security. John Wiley & Sons (2006)
17. Poschmann, A., Moradi, A., Khoo, K., Lim, C.W., Wang, H., Ling, S.: Side-channel

resistant crypto for less than 2,300 ge. Journal of Cryptology 24(2), 322–345 (2011)
18. Korkikian, R., Pelissier, S., Naccache, D.: Blind fault attack against spn ciphers.

In: FDTC. pp. 94–103. IEEE (2014)
19. Yen, S.M., Joye, M.: Checking before output may not be enough against fault-based

cryptanalysis. IEEE Transactions on computers 49(9), 967–970 (2000)
20. Li, Y., Sakiyama, K., Gomisawa, S., Fukunaga, T., Takahashi, J., Ohta, K.: Fault

sensitivity analysis. In: International Workshop on Cryptographic Hardware and
Embedded Systems. pp. 320–334. Springer (2010)

21. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J., Seurin, Y., Vikkelsoe, C.: Present: An ultra-lightweight block cipher. In:
International Workshop on Cryptographic Hardware and Embedded Systems. pp.
450–466. Springer (2007)

22. ISO/IEC 29192-2:2012: information technology–security techniques–lightweight
cryptography–part 2: block ciphers, https://www.iso.org/standard/56552.html

23. Ullrich, M., De Canniere, C., Indesteege, S., Küçük, Ö., Mouha, N., Preneel, B.:
Finding optimal bitsliced implementations of 4× 4-bit S-boxes. In: SKEW 2011
Symmetric Key Encryption Workshop, Copenhagen, Denmark. pp. 16–17 (2011)

24. Banik, S., Pandey, S.K., Peyrin, T., Sasaki, Y., Sim, S.M., Todo, Y.: GIFT: a
small PRESENT. In: International Conference on Cryptographic Hardware and
Embedded Systems. pp. 321–345. Springer (2017)

25. Jati, A., Gupta, N., Chattopadhyay, A., Sanadhya, S.K., Chang, D.: Threshold
implementations of GIFT : A trade-off analysis. IEEE Transactions on Information
Forensics and Security 15, 2110–2120 (2020)

26. Masked-aes-implementation,
https://github.com/Secure-Embedded-Systems/Masked-AES-Implementation

27. Trichina, E.: Combinational logic design for aes subbyte transformation on masked
data. IACR Cryptology ePrint Archive 2003, 236 (2003)

28. Saha, S., Jap, D., Basu Roy, D., Chakraborty, A., Bhasin, S., Mukhopadhyay, D.:
A framework to counter statistical ineffective fault analysis of block ciphers using
domain transformation and error correction. IEEE Transactions on Information
Forensics and Security 15, 1905–1919 (2020)

29. Gierlichs, B., Schmidt, J., Tunstall, M.: Infective computation and dummy rounds:
fault protection for block ciphers without check-before-output. In: LatinCrypt’12.
pp. 305–321. Springer (2012)

30. Saha, S., Jap, D., Breier, J., Bhasin, S., Mukhopadhyay, D., Dasgupta, P.: Breaking
redundancy-based countermeasures with random faults and power side channel. In:
FDTC. pp. 15–22 (2018)

Fault Template Attacks on Block Ciphers Exploiting Fault Propagation 31

Supplementary Material

32 S. Saha et al.

A More on the Attack from Sec. 3.2: AES Example

It would be interesting to see how the first round attack described in Sec. 3.2
works in the case of AES. The S-Box polynomials for AES has the highest degree
of 7. As the first injection location, we choose the highest degree monomial
x1x2x3x4x5x7x8 from the polynomial corresponding the 0’th output bit of the
AES S-Box. Very similar to the PRESENT case, the fault template here also
suggests two keys per pattern. However, the total number of injections required
are 256 for the first template and 257 in total to recover a single byte of the key.
The first template for the AES attack contains a total of 128 distinct patterns
with two key suggestion per pattern. The second template, which is based on
fault injection at a linear term, contains two patterns.

B Alternative Fault Template for Masked PRESENT

In this section, we present an alternative fault template for the three-share im-
plementation of PRESENT. In this case, the fault is injected in the input shares
of the G function. In fact, concentrating on the shares corresponding to any two
bits of G is sufficient. For the sake of illustration, we first present the unshared
version of G, and then the shares corresponding to two of the actual output bits
of it. The unshared G, and the shares corresponding to g0 and g1 are presented
in Eq. (13), Eq. (14) and Eq. (15), respectively.

G(x3,x2, x1, x0) = (g3, g2, g1, g0)

g3 = x2 + x1 + x0, ; g2 = 1 + x2 + x1; g1 = 1 + x3 + x1 + x2x0 + x1x0;

g0 = 1 + x0 + x3x2 + x3x1 + x2x1

(13)

g10 = 1 + x2
0 + x2

3x
2
2 + x2

3x
3
2 + x3

3x
2
2 + x2

3x
2
1 + x2

3x
3
1 + x3

3x
2
1 + x2

2x
2
1 + x2

2x
3
1 + x3

2x
2
1

g20 = x3
0 + x3

3x
3
2 + x1

3x
3
2 + x3

3x
1
2 + x3

3x
3
1 + x1

3x
3
1 + x3

3x
1
1 + x3

2x
3
1 + x1

2x
3
1 + x3

2x
1
1

g30 = x1
0 + x1

3x
1
2 + x1

3x
2
2 + x2

3x
1
2 + x1

3x
1
1 + x1

3x
2
1 + x2

3x
1
1 + x1

2x
1
1 + x1

2x
2
1 + x2

2x
1
1

(14)

g11 = 1 + x2
3 + x2

1 + x2
2x

2
0 + x2

2x
3
0 + x3

2x
2
0 + x2

1x
2
0 + x2

1x
3
0 + x3

1x
2
0

g21 = x3
3 + x3

1 + x3
2x

3
0 + x1

2x
3
0 + x3

2x
1
0 + x3

1x
3
0 + x1

1x
3
0 + x3

1x
1
0

g31 = x1
3 + x1

1 + x1
2x

1
0 + x1

2x
2
0 + x2

2x
1
0 + x1

1x
1
0 + x1

1x
2
0 + x2

1x
1
0

(15)

Without loss of generality, let us consider the input x2
3 as the first fault injection

point. It is easy to observe that this fault leaks about the expression (x1
1 + x2

1 +
x3
1 + x1

2 + x2
2 + x3

2) = x1 + x2. Further investigation reveals that fault injection
at any share of x1 in Eq. (14) leaks information regarding x3+x2, and a similar
injection in one of the shares of x2 reveals about x3+x1. Independent injections
at these locations thus reduces the entropy of the three actual bits (x3, x2, x1) to
1 bit. However, no information regarding the bit x0 can be revealed from Eq. (14)
as the shares of x0 are only present as linear monomials. In order to extract this

Fault Template Attacks on Block Ciphers Exploiting Fault Propagation 33

bit we have to consider the shares from Eq. (15). Corrupting any single share of
x2 or x1 exposes x0 in this case. However, one should note that even after the
extraction of x0 the overall entropy of the entire state (x3, x2, x1, x0) still remains
as 1. Consequently, this template provides two suggestions for each S-Box input
at an intermediate round. The template is depicted in Table. 8.

Table 8: Alternative Template for attacking TI PRESENT (middle round). The
black cells indicate a faulty outcome and yellow cells represent correct outcome.

fl0 fl1 fl2 fl3 State
3, 13
5, 11
2, 12
1, 15
6, 8
0, 14
4, 10
7, 9

C Detailed Practical Validation

In this section, we present the practical validation results in detail. As already
pointed out in Sec. 5, our first experiment performs the FTA attack on a hard-
ware implementation of protected PRESENT with EM pulse-based fault injec-
tion. In the second use-case, we analyze a publicly available protected AES im-
plementation (software) with simulated faults. Both the experiments are detailed
in the following:

C.1 EM pulse based FTA on TI PRESENT

Target Implementation: As a validation experiment, we aim to perform the
attack described in Sec. 4.6. For simplicity, here we only show the architecture
of the shared F function of the TI S-Box (Fig. 7), with the injection locations
specified with different colors. Each color indicates one location of the fault
template. Targeting the local registers within each functional block (F1, F2,
F3 or F4) ensure that the injected fault only propagates through the desired
gates of the circuit. It is important to note that the injection happens for one
location at a time both during the offline and online phase. The entire SCA-
FA secure PRESENT design is implemented on Sakura-GII evaluation platform
having a Xilinx Spartan-6 FPGA. During the synthesis we used flags like “Keep
Hierarchy” and “Don’t Touch” even inside the blocks F1, F2, F3 and F4
to prevent all unnecessary optimizations which may lead to SCA leakage. Test
Vector Leakage Assessment (TVLA) analysis was also performed on this design,
and the result of the test can be found in Fig. 9. In summary, the design did not
show any SCA leakage.

34 S. Saha et al.

Input Shares of {x,y,z,w}

R1 R2 R3 R4

F0 BLK F1 BLK F2 BLK F3 BLK

f30 f20 f10 f31 f21 f11 f32 f22 f12 f33 f23 f13

/ / / /

/ / / /

f10f20f30

f0 f1 f2 f3

fl0 fl1 fl2 fl3

Fig. 7: Schematic describing the architecture of the shared F func-
tion in our implementation of SCA-FA secure PRESENT (ref.
Eq. (7)). Register R1, R2, R3 and R4 accumulates different parts
of the input shares. R1 contains (x1

0,x
2
0, x

3
0, x

1
1, x

2
1, x

3
1, x

1
2, x

2
2, x

3
2),

R2 contains (x1
0,x

2
0, x

3
0, x

1
1, x

2
1, x

3
1, x

1
2, x

2
2, x

3
2, x

1
3, x

2
3, x

3
3), R3

contains (x1
0,x

2
0, x

3
0, x

1
1, x

2
1, x

3
1, x

1
3, x

2
3, x

3
3), and R4 contains

(x1
0, x

2
0, x

3
0, x

1
1, x

2
1, x

3
1, x

1
2, x

2
2, x

3
2, x

1
3,x

2
3, x

3
3). The bold and colored shares

represent the fault injection points.

Attack Platform: The most challenging step for performing FTA on the
abovementioned implementation is to create the faults at accurate locations. To
achieve that we create an injection setup as depicted in Fig. 8 comprising an ar-
bitrary waveform generator (Keysight 81160A), a constant-gain power amplifier
(Teseq CBA 400M-260), a high-frequency near field H-probe (Rigol Near-field
Probe 30MHz-3GHz) and an XYZ table (Thorlabs SMC100). Upon receiving a
trigger signal from the evaluation board with the target implementation mounted
on it, the waveform generator emits a high-frequency pulse train. The amplifier
amplifies the pulse train, and finally, the H-probe creates a magnetic field over
the target. The amplitude, frequency, and burst count of the pulse train are
customizable. The main features of this injection setup are as follows:

– Precision:We found that each bit within a target register can be flipped by
varying the position of the probe over the target by means of the XYZ table
(some adjustments of the pulse parameters are also required). However, this
positioning has to be performed by trial-and-error, as there is no visibility
within the internal registers. Fortunately, The access to the key and mask
values at the profiling (offline) phase allows us to perform accurate probe
positioning and parameter finding for each fault location within the template.

– Repeatability: Once a fault location is found, the injection on that can be
repeated an arbitrary number of times by fixing the probe location and pulse
parameters. Moreover, the noise probability in these injections is consistently
around 40% on average for most of the locations. Such repeatability of faults
is highly desirable for FTA.

Fault Template Attacks on Block Ciphers Exploiting Fault Propagation 35

– Reproducibility: Being a template attack, it is highly desirable that the
faults in FTA can be practically reproduced on a similar but different device.
Interestingly, we found that if the same configuration bit file used for tem-
plate building is dumped on a different Sakura-GII board, the faults can be
reproduced exactly with the already found parameters and probe position-
ing. The parameter settings and probe positions corresponding to different
fault locations are given in Table. 9. The X-Y positions of the probe are
given with respect to an origin which is set approximately at the middle of
the FPGA chip by inspection.

XYZ Table

Power

Amplifier
Waveform

Generator

PC

Trigger
EM Probe

Target FPGASakura GII

(a) (b)

Fig. 8: The Attack Platform: a) Schematic of the setup; b) The position of the
probe on the FPGA.

0. 0 0. 5 1. 0 1. 5 2. 0 2. 5
Trace Point ×103

8

6

4

2

0

2

4

6

8

t-
te

st
 S

co
re

Fig. 9: TVLA plot for the protected PRESENT implementation with 1000000
samples [28].

In our experiments, we targeted the intermediate state recovery from round
13 and 14 of PRESENT. In the offline phase, the trigger signal was set at
a specific clock cycle, so that the registers at the input of the shared F func-
tion can be targeted with EM pulses. Once the trigger is set, the chosen bits

36 S. Saha et al.

Table 9: Injection parameters corresponding to each fault location (Nibble 0)

Fault
Location

Probe
Position
(X,Y)

Pulse
Amp.(dBm)

Pulse
Freq. (MHz)

Burst
Count

Noise
Prob.

#Injections

fl0 (349, 239) -3 200 57 0.451 31
fl1 (349, 253) -2 193 60 0.385 18
fl2 (359, 271) -1 185 75 0.411 24
fl3 (369, 285) -1 185 72 0.426 27

are determined by varying the probe location and pulse parameters. Once the
templates are constructed, we move to the online phase of the attack on a
different Sakura-GII platform. Note that we do not assume any access to the
mask or key in the online phase. The noise probability, already estimated in the
offline phase plays a crucial role here in determining the number of injections
required per fault location. The last two columns in Table. 9 present both noise
probabilities as well as the required number of injections for each fault location
(corresponding to a 12-bit masked nibble). It can be observed that a total of 100
faults (bit-flip faults) are required to recover the unmasked value of a nibble in
our practical setup. The entire round key recovery requires 3150 − 3300 faults
for different key-plaintext pairs.

C.2 Simulated Experiments on a Public Implementation of AES

So far, in this paper, we have mainly demonstrated the attacks in the context
of PRESENT block cipher. However, it is interesting to analyze whether AES is
also susceptible to the proposed attacks. Although in principle, the answer should
be yes, it is always important to analyze the attacks for third-party implemen-
tations. With this viewpoint, we choose one publicly available implementation
of optimized, bit-sliced, 1st-order masked AES from [26]. The masked S-Box in
this implementation utilizes Trichina gates [27] for SCA protection.

Analyzing the S-Box: The main concern of analyzing third-party implementa-
tions is that the high-level structure is not very well-understood during profiling.
This being a practical issue, we decide to handle it with a simple trial-and-error
based profiling of the S-Box. We target each instruction at once and simulate
a bit stuck-at or bit-flip fault for one of its operands. One should note that in
this experiment, we do not restrict ourselves to the faults in the input shares
during the shared execution of a single bit. The faults can now happen at any
intermediate variable, and we accept them as long as they are found useful for
constructing templates. The compiled code in Thumb-2 of the S-Box is found to
have 2621 instructions in total. It was found that a total of 1102 among them
results in exploitable fault locations in our case. The exploitability was decided
based on the fact whether the fault location can reduce the entropy of the S-Box
input. The result of this experiment is summarized in Table. 10, and it clearly
indicates that one can have plenty of exploitable fault locations to run practical
FTA attacks.

Fault Template Attacks on Block Ciphers Exploiting Fault Propagation 37

Table 10: Summary of ex-
ploitable instructions.

Total
Instruction
Count

Exploitable
Instructions

% Vulnerable
Instructions

2621 1102 42.6

Table 11: Summary of the templates
for different fault models.

Fault
Model

#Fault
Locations

#Distinct
Patterns

#Patterns
with 2 value
suggestions

#Patterns
with 1 value
suggestion

Stuck-at 16 200 56 144
Bit-flip 15 198 58 140

Different Fault Models: The next step is to construct templates and use
them to perform full-scale attacks. We specifically consider two different fault
models for template construction: 1) stuck-at fault; 2) bit flip fault. The corre-
sponding templates are summarized in Table 11. For the first model, we found
200 distinct patterns in the template having 16 different fault locations. Each
pattern maps to either one or two suggestions for the intermediate state byte
value. The result for the other case is very similar. During the online phase, it
was found that roughly 7 − 8 fault injections per location with different mask
values are sufficient for template matching. One should note that none of the
templates constructed can uniquely identify a complete state. In the worst case,
we may get 216 equally likely suggestions for one single intermediate round19. As
two consecutive states are required in the case of middle-round attack, the total
number of key suggestions become 216 × 216 = 232. However, one should note
that this is simply a worst-case estimate, and in practice, the attack complexity
is supposed to be lower than this. Even if the complexity reaches the worst-case
estimate, the exhaustive search complexity of 232 is fairly reasonable. It is worth
mentioning that the choice of this AES implementation was entirely random and
subject to the availability of public codes. To summarize, the FTA attacks work
fairly well for masked AES implementations having fault countermeasures and
suitable measures should be considered.

D Potential Countermeasures

In this section, we discuss the applicability of some of the well-known fault attack
countermeasures for preventing the proposed attacks. Both the middle round and
known-plaintext attacks on the masking schemes are taken into consideration.

D.1 Device-Level Countermeasures:

Self-destruction is one of the most radical steps that can be taken to prevent
against FAs. However, given the fact that most of the cryptographic devices in
the modern day is supposed to operate in an open environment, self-destruction
can be extremely costly and will have a very low yield. This is because small
embedded devices cannot afford to have extremely efficient methods to handle
power-spikes and electromagnetic radiation effects. As a result, deciding between
malicious fault and accidental fault becomes almost impossible. One reasonable
trade-off could be to destroy the device after a certain number of faults has

19 Although, in our experiments, we got several states with single suggestions.

38 S. Saha et al.

been encountered. However, a resourceful attacker may always try to bypass it
by first corrupting the fault counter, which is reasonable with any standard lab
setup and may not even require precise faults. Another option to prevent FA is
to use tamper resilient shielding. However, this is not cost-effective for most of
the embedded devices and can also be bypassed by careful de-packaging of the
chip.

D.2 Infection Countermeasures

Infection countermeasures were mainly proposed to get rid of the explicit check
operation often used in detection countermeasures. The explicit check operation
has been shown to have serious consequences in terms of security [10, 29]. An-
other distinct property of infection countermeasures is that they try to make the
faulty ciphertexts unexploitable by destroying (often called infecting) the useful
patterns within them. Usually, an infection function is called upon detection (not
via explicit check) of a fault to infect the computation. In the present context, we
consider the infection countermeasure proposed in [10]. The infection function
is fairly simple, albeit effective in this case. The idea is to output a uniformly
random string upon the detection of a fault. Additionally, the countermeasure
involves random dummy round computation to make a targeted fault injection
difficult.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Injection loop iteration t 1e2

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

S
ig

n
a
l
p
ro

b
a
b
ili

ty
 (

r
=

 1
3
)

#dummy = 16

#dummy = 32

#dummy = 64

Fig. 10: Variation of signal probability with targeted loop iterations for injection
(for different counts of dummy rounds).

The infection function and the fault detection mechanism do not found to
have any significant effect on the proposed FTA attacks. However, the dummy
rounds have some interesting impact. The presence of dummy rounds make the
observable distributions noisy, and there is a noise component which is found to
be correlated with the signal associated. However, the attacks cannot be fully
mitigated. In order to elaborate this further, in this subsection, we consider one
of the most prominent infection countermeasures due to [10]. In order to detect

Fault Template Attacks on Block Ciphers Exploiting Fault Propagation 39

a fault, this countermeasure performs two executions of each round (denoted
as cipher and redundant rounds). There can be an arbitrary number of dummy
rounds happening between a cipher and a redundant round. The whole compu-
tation is controlled by a random bit-string of fixed length (denoted as rstr). A
bit zero in rstr denotes a dummy round and a bit value of one denotes a cipher
or redundant round.

Let us consider FTA on this infection countermeasure. To validate the robust-
ness of this countermeasure, we implemented it on a three-shared TI PRESENT.
In order to prevent SCA-based identification of individual rounds, the final key
addition operation of PRESENT is converted into a complete round by adding
a dummy S-Box layer and pLayer. In other words, the implementation processes
32 cipher and 32 redundant rounds, and a predefined number of dummy rounds.
The security against the proposed fault-template attacks was evaluated for 16,
32, and 64 dummy round computations.

The proposed attacks do not get affected by the fact that the ciphertext is
randomized upon the detection of a fault. However, the existence of dummy
rounds adds noise to the observables as the target fault location cannot be
determined exactly. Let us now have a closer look at these noisy observables. Let
the cipher processes total R rounds among which there are total n cipher and
redundant rounds and R−n dummy rounds. As already pointed out, an arbitrary
number of dummy round computation may take place between any cipher round
and its corresponding redundant round. Let us further assume that the fault
location is set at loop iteration t.20 Depending upon the random rstr string, the
fault injection may either hit the desired cipher round r (or its corresponding
redundant round.), or some arbitrary cipher or dummy round. The event that
fault injection happens at round r (cipher or redundant) is considered as signal,
whereas injection at any other round or at a dummy round is considered as
noise.

As it has already been explained in Sec. 4.7, uncorrelated noise does not
hamper the key recovery process. Following the same approach developed in
Sec. 4.7 here we try to compensate for the effect of noise due to dummy rounds.
Referring to Eq. (10) and (11) the signal probability psig in the case of infection
countermeasures is decided by the occurrence of dummy rounds. Given the fault
is injected at the loop iteration t, with the aim of affecting the r-th cipher or

20 For simplicity, we assume that the attacker can deterministically identify the target
S-Box and fault location within a round

40 S. Saha et al.

16 32 64
#Dummy Rounds

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

N
o
is

e
 m

e
a
n
 a

n
d
 s

td
.

Noise mean

Noise std.

Fig. 11: Mean and standard deviation of noise for different count of dummy
rounds.

redundant round, psig is given as follows:21:

psig =

(

t−1
2r−2

)(

R−t
n−2r+1

)

+
(

t−1
2r−1

)(

R−t
n−2r

)

(

R
n

) (16)

In order to compensate the effect of the noise in the decision-making process,
we need to ensure two things; firstly, fault injection must happen at a loop
iteration where the probability of signal psig is the highest. This can be achieved
easily using the expression for psig given in Eq. (16). The variation of signal
probabilities for a specific choice of r with different counts of dummy rounds
is depicted in Fig. 10. It can be observed that psig achieves its highest value
corresponding to a given r only at certain loop iterations.

The second factor which can reduce the noise impact is an accurate estimation
of the distribution of Vn. Unlike the psig, estimation of Vn is found to be tricky
in the case of infective countermeasures. One may observe that noise, in this
case, comes from two points: 1) injection at a dummy round; 2) injection at
arbitrary cipher or redundant rounds (for simplicity, here we do not consider the
noise due to fault injection for the time being.). Note that the propagation of
the fault in our case typically depends upon the actual unshared value. For an
injection at a dummy round, this value-dependent propagation effect becomes
random (as the data inside the dummy rounds are random) and can be estimated
properly. However, for the second case, the noise is correlated with the signal.
This is attributed to that fact that the plaintext in our attacks is typically held
fixed, which also fixes the unshared values processed in all cipher and redundant

21 The intuition behind the expression in Eq. (16) can be given as follows. The cipher
(or redundant) round r executes at loop iteration t if and only if one of the two
events occur – 1) all the cipher (and redundant) rounds up to (r − 1) including the
cipher round r have already happened within the previous (t − 1) loop iterations
(and redundant round corresponding to r happens at the t-th iteration), and 2) all
the cipher (and redundant) rounds up to (r − 1) excluding the cipher round r have
happened within the previous (t−1) loop iterations (and the cipher round r happens
at the t-th iteration).

Fault Template Attacks on Block Ciphers Exploiting Fault Propagation 41

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Distribution of means

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

P
ro

b
a
b
ili

ty

Dµ0

Dµ1

Fig. 12: Overlapping distributions for Dµ0
and Dµ1

. The shaded region indicates
the threshold window.

computation rounds. Although the desired round of injection is r, some of its
neighboring cipher and dummy rounds get hit by the fault with significantly
high probability. In essence, the noise here is correlated with the signal, which
makes the detection of the signal significantly challenging.

One option to reduce the correlation of the noise with the signal component
is to increase the number of dummy rounds. Fig. 11, presents the mean and
variances for the expected value of the noise distribution (Vn) for a different
number of dummy round computations. The expected value of Vn is normally
distributed, in general. The distributions were estimated during the profiling
(template-building) phase by changing the plaintext values. It can be observed
that the variance of noise is significantly high while the number of dummy rounds
is low, and it gradually improves with the increased number of dummy rounds22.
This observation also indicates that probably a better estimation of the noise
distribution is possible if the number of dummy rounds is increased arbitrarily.
However, having a huge number of dummy rounds is impractical as the overhead
will be extremely high.

Let us now try to see if the signal components can be recovered for a reason-
able count of dummy rounds. Without loss of generality, we set the number of
dummy rounds to be 64 for this specific experiment. The decision-making rule
based on the estimation of means (ref. Eq. (12)) is applied once again. Unfortu-
nately, the detection strategy is found to have some accuracy issues here in this
case due to the presence of correlated noise with significantly high probability.
To understand the impact we refer to the distributions of Dµ0

and Dµ1
for this

case depicted in Fig. 12. The highly overlapped patterns of these distributions
are the sole cause behind the inaccuracies in the detection. To deal with these
inaccuracies, we set a threshold window in the detection mechanism which gives
an indication if the detection confidence is sufficiently high or not (Typically,

22 One should note that even a noise standard deviation of 0.07 is high in this context,
as the psig is in the range of 0.1-0.2 for any reasonable count of dummy rounds. In
other words, the contribution of the noise component is so high that even a small
standard deviation value can distort the fault pattern detection mechanism.

42 S. Saha et al.

some part of the shaded region in Fig. 12 is selected as threshold window). The
threshold is set based on the observed value of µV′ . If the value is within the low
confidence region, the detection process raises a flag indicating the uncertainty
in the detection. Having this threshold at place, it is observed that in the case
of PRESENT, two components of the fault pattern vector (which is of length 4)
may remain undecided on average. Given there are total 16 possible fault pat-
terns for the fault location we chose, the template-matching will now return 4
suggestions on average for each intermediate value. As a result, we would get a
total of 416 = 232 suggestions for a 64-bit intermediate state. Note that, one may
further filter these suggestions by performing the same experiment for another
set of fault locations and taking the intersection between the value suggestions
corresponding to each nibble returned from these two experiments. In our case,
we tried with the fault locations at the G function (presented in Appendix. B)
and found that taking the intersection leaves us with 2− 3 suggestions for each
intermediate nibble, with three suggestions occurring rarely. The size of the sug-
gestion set now becomes roughly 220.

In the known-plaintext scenario, where the target intermediate round is the
first round, the abovementioned complexity figure is still reasonable for recover-
ing a round key. However, for middle round attacks, one needs to estimate two
consecutive intermediate states to recover a complete round key. The complex-
ity of round key recovery is 220, and master key recovery is 236. In the present
context, the number of key suggestions for a middle-round key recovery would
become 240 (and 256 for the entire master key), which, although, is less than
brute force complexity, but still impractical. It is worth mentioning that the
results we consider in this case are specific for the attack on PRESENT (how-
ever, the attack procedure is generic). There is always a chance that changing
the TI equations or the fault locations result in an attack with better accuracy
and complexity figures. In a nutshell, although infection countermeasures are
somewhat promising as protections against the proposed attacks, they cannot
be considered as an ultimate solution against FTA.

D.3 Code-based Error-Detection

Code-based error detection is one of the lightweight alternatives for throttling
fault attacks. The low resource overhead comes at the cost of limited fault cov-
erage. The simplest example of code-based error detection is simple single-bit
parity checking which can detect 50% of the injected faults. The error-detection
capability can be improved further by using non-linear codes [9]. The proposed
attack strategy remains unaltered at the presence of such countermeasures. This
can be explained by the fact that even if some of the errors remain undetected,
the distribution D0 in Eq. 8 remains unaltered. Although the distribution D1

might get affected slightly, it still remains distinguishable from D0. On the other
hand, code-based detection schemes with high error detection rate behave al-
most identically with standard time/space redundancy countermeasures. Hence,
the proposed attacks would not get throttled with such detection schemes.

Fault Template Attacks on Block Ciphers Exploiting Fault Propagation 43

D.4 Error Correction

Error correction is an alternative countermeasure strategy, which is relatively
less explored compared to other countermeasure classes. Error correction can be
moderately effective in the present context as all the observables to the adversary
will be “correct”. However, with a little more power given to the adversary, the
effectiveness of error correction may fall short. One should recall that the attacks
described in this paper only need to know whether the fault has happened or not.
An adversary having the power of measuring side-channel information may sill
get this information even in the presence of error correction. This is because the
error correction logic is supposed to make a different number of transitions while
it has to correct a bit than the situations while nothing has to be corrected. Also,
an error would make a valid code-word deviate from its predefined structure. It
is not very difficult for a side-channel adversary to detect such deviations via
side-channel. The vulnerability of such check operations has already been shown
as exploitable in [30] in the context of detection countermeasures. Availability
of such information is sufficient to make the FTA attacks work.

