
Fault Tolerance for Stream
Programs on Parallel

Platforms

by

Vicent Sanz Marco

A thesis submitted to the University of Hertfordshire
in partial fulfillment of the requirements of the degree of

Doctor of Philosophy

December 2015

Abstract

A distributed system is defined as a collection of autonomous computers con-
nected by a network, and with the appropriate distributed software for the system
to be seen by users as a single entity capable of providing computing facilities.

Distributed systems with centralised control have a distinguished control node,
called leader node. The main role of a leader node is to distribute and man-
age shared resources in a resource-efficient manner. A distributed system with
centralised control can use stream processing networks for communication. In
a stream processing system, applications typically act as continuous queries, in-
gesting data continuously, analyzing and correlating the data, and generating a
stream of results.

Fault tolerance is the ability of a system to process the information, even if
it happens any failure or anomaly in the system. Fault tolerance has become an
important requirement for distributed systems, due to the possibility of failure has
currently risen to the increase in number of nodes and the runtime of applications
in distributed system. Therefore, to resolve this problem, it is important to add
fault tolerance mechanisms order to provide the internal capacity to preserve the
execution of the tasks despite the occurrence of faults.

If the leader on a centralised control system fails, it is necessary to elect a new
leader. While leader election has received a lot of attention in message-passing
systems, very few solutions have been proposed for shared memory systems, as
we propose.

In addition, rollback-recovery strategies are important fault tolerance mecha-
nisms for distributed systems, since that it is based on storing information into a
stable storage in failure-free state and when a failure affects a node, the system
uses the information stored to recover the state of the node before the failure
appears.

In this thesis, we are focused on creating two fault tolerance mechanisms for
distributed systems with centralised control that uses stream processing for com-
munication. These two mechanism created are leader election and log-based
rollback-recovery, implemented using LPEL.

The leader election method proposed is based on an atomic Compare-And-Swap
(CAS) instruction, which is directly available on many processors. Our leader
election method works with idle nodes, meaning that only the non-busy nodes
compete to become the new leader while the busy nodes can continue with their
tasks and later update their leader reference. Furthermore, this leader election
method has short completion time and low space complexity.

The log-based rollback-recovery method proposed for distributed systems with
stream processing networks is a novel approach that is free from domino effect
and does not generate orphan messages accomplishing the always-no-orphans
consistency condition. Additionally, this approach has lower overhead impact
into the system compared to other approaches, and it is a mechanism that pro-
vides scalability, because it is insensitive to the number of nodes in the system.

Abstract

Los sistemas distribuidos se definen como una conjunto de ordenadores conec-
tados por red, y con el apropiado software son vistos por los usuarios como una
simple entidad capaz de trabajar como un unico ordenador.

Sistemas distribuidos con control centralizado tienen un nodo control speci-
fico, llamado nodo lider. El objetivo principal del nodo lider es la distribucion
y gestion the recursos compartidos de una manera eficiente. Un Sistemas dis-
tribuidos con control centralizado puede usar stream processing para la communi-
cacion. En sistemas stream processing, las applicacion tipicamente actuan como
queries continuas, ejecutando data continuadamente, analizando y relacionan-
dola, y generando stream con los resultados.

La tolerancia a fallos es la habilidad de un sistema para acceder a la informa-
cion, incluso si ocurriese un fallo or anomalia en el sistema. Por esta razon,
la tolerancia a fallos se ha convertido en un importante requisito para sistemas
distribuidos, debido a que la posibilidad de fallo ha crecido actualmente por el
incremento del numero de nodos y la applicacion ejecutadas usados por los sis-
temas distribuidos. Por lo tanto, para resolver este problem es imporante aadir
mecanismo de tolerancia de fallos que tienen capacidad interna para preservar
la ejecucion de las tareas a pesar de la aparicion de fallos.

Si el lider falla, el sistema necesita elegir a un nuevo lider para poder contin-
uar. Mientras la eleccion de lider ha recibido mucha atencion en sistemas de
paso de mensajes, muy pocas soluciones han sido propuestas para sistemas con
memoria compartido.

Las estrategias de rollback-recovery son importantes mecanismos de tolerancia
de fallos para sistemas distribuidos, ya que se basan en almacenar informacion
en una memoria estable cuando no hay fallos en el sistema y cuando un fallo
afecta un nodo, el sistema isa la informacion alamacenada para recuperar el
estado del nodo antes de la aparicion del fallo.

En esta tesis, nos enfocamos en crear dos mechanismos de tolerancia de fallos
para sistemas distribuidos con control centralizado que usan stream processing
para comunicarlos. Los mecanismos creados son la eleccin de lider y log-based
rollback-recovery, implementados usando LPEL.

El mtodo de eleccin de lider propuesto se basa en la instruccin Compare-And-
Swap (CAS). Nuestro mtodo trabaja incrementando, significa que solo los nodo
libres actualizan su referencia de lider. El mtodo log-based rollback-recovery prop-
uesto para sistemas distribuidos con stream processing es una nueva aproxima-
cion que esta libre del domino effect y no genera mensajes huerfanos cumpliendo
la condicion the always-no-orphans. Adicionalmente, nuestro mecanismo tiene
un bajo coste dentro del sistema y permite la scalabilidad, porque el nmero de
nodos en el sistemas no es importante para nuestro mecanismo.

Acknowledgements

I would like to show my deepest gratitude and appreciation to my extra su-
pervisory team who were willing to support me throughout my PhD studies.
The encouragement and inspiration given to me by my principal supervisor Dr.
Raimund Kirner is second to none. He was able to identify my weakness early
on and gently encourage and support these areas of my personal development.
He has always shown a deep interest in my work and was always willing to talk
about it. My second supervisor Dr. Michael Zolda has also provided me with
exceptional support. He has the ability to make me view ideas from a different
perspective which helped the overall development of this work. I will always
appreciate what they have done for me.

I would like to thanks my friends and colleagues in the research institute and
school of computer science.

Finally, I would like to show my appreciation to my family and my fiance
Olga, for their never-ending love and always encourage me to work hard and to
value education.

III

Contents

Abstract I

Acknowledgements III

List of Figures VII

List of Tables X

1 Introduction 1
1.1 Leader election . 3
1.2 Rollback-Recovery . 3
1.3 Research Question . 4
1.4 Contributions . 5

1.4.1 Publications . 6
1.5 Thesis Structure . 7

2 Background 9
2.1 Fault tolerance . 9

2.1.1 Features of faults . 11
2.1.2 Classification of Failures 12
2.1.3 Safety and cost . 13
2.1.4 Leader Election Strategies 14
2.1.5 Rollback-Recovery Strategies 14

2.2 Stream-Processing Networks . 29
2.2.1 The S-Net Coordination Language 29
2.2.2 The S-Net Compiler . 34
2.2.3 The S-Net Runtime Environment 35

2.3 Data Flow Programming . 36
2.4 The execution Layer LPEL . 36

2.4.1 Architecture of LPEL . 37
2.5 Chapter Summary . 40

3 Related Work 41
3.1 Leader Election . 41
3.2 Rollback-Recovery . 43
3.3 Chapter Summary . 48

V

4 Fault tolerance for parallel stream-processing systems with
shared memory 49
4.1 Fault Model . 49
4.2 Fault Detection . 50
4.3 Leader Election Mechanism . 51
4.4 Rollback-Recovery Mechanism 53
4.5 Chapter Summary . 54

5 Leader Election 55
5.1 Preliminaries . 55

5.1.1 Atomic operations . 56
5.2 Algorithm . 57
5.3 Reintegration of the nodes . 60
5.4 Modification of the algorithm 60
5.5 Examples of the Leader Election Algorithm 63
5.6 Evaluation . 65

5.6.1 Space complexity per node 66
5.6.2 Time complexity per node 66
5.6.3 System-wide time complexity 67

5.7 Chapter summary . 69

6 Log-Based Rollback-Recovery 71
6.1 Model . 71

6.1.1 Log Buffer . 73
6.1.2 Fault Tolerance Control 77
6.1.3 Block Task Event . 80
6.1.4 Garbage Collection Mechanism 83
6.1.5 Restore Mechanism . 85

6.2 Examples of Log-Based Rollback-Recovery 89
6.3 Chapter Summary . 96

7 Correctness of the Proposed Fault Tolerance 97
7.1 Correctness of Leader Election 97

7.1.1 Definitions . 97
7.1.2 Correctness . 98

7.2 Correctness of Log-Based Rollback-Recovery 103
7.2.1 Definition . 103
7.2.2 Correctness . 103

7.3 Chapter Summary . 109

8 Assessment 111
8.1 Evaluation of Leader Election 111

8.1.1 Description of the Experiment 111
8.1.2 Discussion of Results . 112

8.2 Log-based rollback-recovery . 116
8.2.1 Description of the Experiments 116

8.2.2 Discussion of Results . 117

9 Conclusion 123
9.1 Thesis Summary . 123
9.2 Future work . 124

A Appendix 1 135
A.1 Experiments Data . 135

List of Figures

2.1 Faults, errors and failures . 10

2.2 Features of faults [7] . 11

2.3 Example of rollback-recovery . 14

2.4 Example of the domino effect 15

2.5 Example of consistent and inconsistent states 17

2.6 Classification of log-based rollback-recovery protocols 22

2.7 Pessimistic log-based protocol 23

2.8 Optimistic log-based protocol 25

2.9 a) Causal log protocol. b) Antecedence graph of message m4 in P0 28

2.10 A graphical network representation of the factorial example. . . 31

2.11 S-Net compiler architecture. [58] 35

2.12 S-Net runtime system architecture. [106] 36

2.13 The architecture of LPEL [109] 38

2.14 Example leader and two workers in LPEL 38

4.1 Notification message behaviour of the workers 52

5.1 The different states of a worker. 58

5.2 The possible behaviour of each node participating in the leader
election algorithm . 63

6.1 Example of log-based rollback-recovery with two workers 72

6.2 Example of the leader storing the register in its stable storage. . 79

6.3 Example of a task blocked and finished in another worker 81

6.4 Example of a task blocked and finished in the first worker where
it was executed . 82

6.5 Example of the garbage collection mechanism 85

6.6 Restore mechanism behaviour after reading the first register in
the workers’ LB . 86

6.7 Behaviour of the task that tries to read or write the stream when
it is performed by the restore method 89

6.8 Initial state of the log-based rollback-recovery example 90

6.9 Snapshot of the log-based rollback-recovery example when a fault
is detected in W1 and the restore mechanism is called 91

6.10 Snapshot of the log-based rollback-recovery example when T1 is
performed by the restore mechanism 92

IX

6.11 Snapshot of the log-based rollback-recovery example when T2 fin-
ishes while T1 is re-performed a second time 92

6.12 Snapshot of the log-based rollback-recovery example when T1 tries
to write D1 for the second time 93

6.13 Snapshot of the log-based rollback-recovery example when the
leader sends T3 to W2 . 94

6.14 Snapshot of the log-based rollback-recovery example when W1

finishes T1 . 94
6.15 Snapshot of the log-based rollback-recovery example when the

leader receives T1 . 95
6.16 State of the system after performing the log-based rollback-

recovery example . 95

7.1 Reaction of nodes to CAS instructions in the leader election . . 101

8.1 Behaviour of the leader into the experiments 112
8.2 Time (sec) used by the nodes to elect a new leader 113
8.3 Number of times all the workers did a reading from the shared

memory . 113
8.4 Number of reading comparative of different approaches including

ours leader election approach. 115
8.5 Execution time overhead of our leader election approach. 115
8.6 Execution time overhead comparative of different approaches in-

cluding ours leader election approach. 116
8.7 Percentage of the execution time overhead depending on the reg-

isters stored in the stable storage 117
8.8 Percentage of execution time overhead caused by our log-based

rollback-recovery algorithm . 119
8.9 Percentage of execution time overhead when the system is not

affected by faults comparing other approaches to our log-based
rollback-recovery approach . 120

8.10 Percentage of execution time overhead when the system is not
affected by faults comparing other approaches to our log-based
rollback-recovery approach . 121

List of Tables

4.1 Summary of the log-based rollback-recovery protocol [49] 54

5.1 The ABA problem . 60
5.2 Solution to the ABA problem 61
5.3 Example of two nodes competing to become the new leader . . . 62
5.4 One node updates before the new leader is elected 64
5.5 Two nodes update before the leader is elected 64
5.6 Node 1 crashes after it modifies the counter in the shared memory 65
5.7 Node 1 crashes after modifying the leader in the shared memory

and before taking the leader role 65
5.8 Time complexity of the algorithm to send messages to the leader 66
5.9 Accesses to the shared memory by one node in the algorithm to

elect a leader . 67
5.10 Example with four nodes . 68

A.1 Execution time of leader election experiments 136
A.2 The amount of reading by nodes to the shared memory in the

leader election experiments . 137
A.3 The log-based rollback-recovery experiments results 138
A.4 Results of changing the percentage of failure into the log-based

rollback-recovery experiments 138
A.5 Percentage of execution time overhead caused by the registers

used by the restore mechanism proposed 138

XI

Chapter 1

Introduction

“Most of the fundamental ideas of science are essentially
simple, and may, as a rule, be expressed in a language
comprehensible to everyone.”

— Albert Einstein

High performance computing is currently supported by distributed systems
with hundreds of processors [91]. The demand for higher-performing of scientific
applications is met by further increasing the number of components. Neverthe-
less, the risk of faults increases. Although the average time between faults (Mean
Time Between Faults, MTBF [125]) of single system components is high, the sys-
tem may often fail because of the large number of components it has, such as,
power supplies, fans or network boards [115].

A distributed system consists of a collection of autonomous computers linked
by a computer network and equipped with distributed system software [124].
The distributed system software enables computers to coordinate their activities
and to share the resources of the system: hardware, software, and data. Users
of a distributed system should perceive a single integrated computing facility,
even though it may be implemented by many computers in different locations.
Benefits of distributed systems include bridging geographic distances, improving
performance and availability, maintaining autonomy, cutting costs, and allowing
for interaction.

There are different types of distributed systems [79]. However, this thesis
focuses on distributed systems with shared memory [17]. A distributed system
with shared memory is composed of nodes with a local memory that is avail-
able only for itself, and shared variables that can be read/written by all nodes
in a single shared memory. This kind of architecture is used by High Perfor-
mance Computing (HPC) machines such as Archer [50] or Tianhe-2 [103] or Intel
Paragon multicomputer [37].

One of the main characteristics of a distributed system is the notion of partial
faults [10]: part of the system fails while the remaining parts continue performing
and seemingly correctly. An important goal in a distributed system design is
to construct the system in such a way that it can automatically recover from
partial faults without seriously affecting overall performance. Whenever a fault

1

occurs, the system should continue to operate in an acceptable fashion while
repairs are underway. In other words, a distributed system is expected to offer
fault tolerance.

Fault tolerance is the system’s ability to continue working and accessing in-
formation, even in the event of a fault or anomaly [15]. For this reason, fault
tolerance is important for some kinds of distributed systems, such as storage sys-
tems or air traffic control systems, in which fault tolerance is required to avoid
catastrophic consequences of faults. Storage systems with fault tolerance are vi-
tal in environments that use critical information, such as financial institutions,
governments and corporations.

The objective of designing and creating fault tolerance for distributed systems
is to ensure that the system can continue to work properly as a whole, even in
the presence of faults. The system needs to be able to recover from faults once
they appear, and to remove the system’s error status.

The disadvantage of fault tolerance techniques are the performance costs as it
is an added task during execution times. This execution time overhead is called
overloading [89], and lots of works on this topic have been published [110, 121,
113].

In this thesis, a system consists of a set of hardware and software components,
and it is designed to provide a specific service. A system malfunction occurs
when the system does not perform these services as specified. Then a system
fails when it does not realize its specification. Therefore, we assume that a
system’s erroneous state is such that it could lead to a failure in the system.

This thesis proposes two fault tolerance mechanisms for distributed systems to
repair the faults that affects the system with local hardware faults with transient
and persistent state. When the leader node is affected by a fault, the leader
election method presented in this thesis is called. When a node, that it is not
the leader of the system, is affected by a fault, the log-based rollback-recovery
mechanism presented is called. These mechanisms were chosen because it is not
necessary to add new hardware to the system and can be creating given a low
execution time overhead.

The first mechanism is for electing a leader (or master) that was affected by
a fault and it is not working anymore, from a collection of processes in the
presence of shared memory. Reaching a consensus about which process should
become the leader is an essential fault-handling measure in systems that depend
on a central master process. Master processes are often used to manage shared
resources, or to distribute work over several worker processes.

The second mechanism is for taking snapshots of the streaming network state
and it offers the possibility of recovering a previous state should one of the
processes in the network fail. The rollback-recovery mechanism presented herein
implements backward error correction.

In this introductory chapter, we provide an introduction of our leader election
and rollback-recovery mechanism, and we also outline our contributions and the
structure of this thesis.

2

1.1 Leader election

The idea of a leader node for coordination is common in distributed sys-
tems. However such a leader provides a single point of failure [92]. Therefore,
mechanisms are required to make the leader fault-tolerant. For example, such
mechanisms could detect a failed leader and then initiate leader election to re-
place the old leader. Leader election is about solving the consensus problem of
choosing a unique leader among a set of nodes.

Many distributed system applications are based on the existence of one distin-
guished leader node that coordinates the work of a set of nodes [39]. If a system
detects that the leader has crashed, then the system has to find a node in the
system to become the new leader. The election of a new leader requires nodes
reaching an agreement about which one will become the new leader. Numerous
methods have been proposed to address the leader election problem in different
system contexts [96, 42, 8].

In this thesis we propose a new leader election algorithm, which has been
developed for distributed systems with shared memory, whose advantage is to
recover the system from a faulty leader without external assistance. The pro-
posed algorithm is based on the following preconditions:

1. The system provides a shared memory that is accessible by all nodes

2. The nodes of the system can implement the Compare-And-Swap (CAS)
instruction

As a result, we obtain a distributed system with a fault-tolerant leader inde-
pendently of the topology of the system and the communication protocol used
by the nodes.

To create the prototype for the experiments, the proposed leader election is
implemented in LPEL [99, 109]. In LPEL, there are two different roles: worker
and leader. A leader is also called a master and there is only one leader in the
system. Each worker represents a parallel execution thread. LPEL uses one
worker for each core. Currently, LPEL does not offer a solution when the leader
stops working. The leader stops, for example, if the core where the leader is
performed crashes, or if communication between the leader and workers is cut
by accident. So, the system collapses.

The aim of our prototype is to modify LPEL so that it can automatically
recover after the leader fails or stops working. The leader is replaced with an
available worker that becomes the new leader of the system. As a result, LPEL
has a fault tolerance mechanism that affects only the leader of the system.
Section 3.1 summarizes the most leader election methods related to our con-

text of distributed systems with shared memory.

1.2 Rollback-Recovery

The second proposed fault tolerance technique is a rollback-recovery mecha-
nism for distributed systems.

3

A very basic rollback-recovery mechanism for fault tolerance consists in regu-
larly storing a checkpoint of the system state while the system is free of faults.
The moment when the system is storing this checkpoints is called phase of pro-
tection or failure-free. If a fault has been detected in the system, the restore
mechanism reloads the state of the latest stored checkpoint and retries it again.
The moment when the system is using the restore mechanism is called phase of
restoring.

These protocols have been studied [78] and compared according to the time
and resources used by the system in the phase of protection and recovery from
the latest checkpoint.

The main overhead in rollback-recovery strategies in modern systems stems
from storing the checkpoint [49]. Techniques like uncoordinated checkpointing
help to reduce this overhead [53]. In the real-time domain, techniques like state
prediction to make a roll-forward instead of a roll-back are used to avoid high
timing overhead at the expense of approximative result [95].

The proposed technique is a log-based rollback-recovery that consists in
restarting the node affected by a fault using the last checkpoint stored. Af-
ter restarting the node, it uses the log information stored in its stable storage
to restore its state to the state it had before the fault appeared.

The following list shows the assumption for the prototype created using LPEL
according to our log-based rollback-recovery mechanism:

• The mechanism is only used by the workers and not the leader. Therefore,
a fault to activate the restore mechanism can affect only workers.

• A fault cannot affect the messages between the leader and the worker(s).
So, we are sure that the messages received from the leader and the worker
are corrects without errors. We can assume this using, for example, the
handshaking mechanism to ensure that the messages are correct [36].

• The workers cannot communicate with each other.

• Each worker and the leader have a stable storage. The stable storage of a
worker/leader can be accessed only for itself.

This prototype is implemented only for the worker nodes of LPEL because
the leader node has the proposed leader election mechanism. This prototype
creates a new role for the leader called Fault-Tolerance Control (FTC).

As a result, we create a strong fault tolerance mechanism for LPEL along with
both proposed algorithms (leader election and log-based rollback-recovery).

Section 3.2 summarizes the most rollback-recovery methods related to our
context of distributed systems with shared memory.

1.3 Research Question

This thesis is motivated by the following research question:

4

Can log-based rollback-recovery be used as an adequate fault tolerance tech-
nique for stream processing networks with centralised scheduling on shared mem-
ory systems?

This question is fractured into the following sub-questions:

1. How can log-based rollback-recovery be optimised specifically for stream
programs?

overall processing model-role and operation of the scheduler

2. How can a distributed system with centralised scheduling be protected if
the leader of the system is affected by a fault causing a single point of
failure?

3. What fault model can be handled by the resulting log-based rollback-
recovery approach?

1.4 Contributions

A fault tolerance system is one that has been designed to maintain an accept-
able level of service in the presence of certain faults that have been anticipated
by the developers. The precise definition of an acceptable level of service de-
pends on the specific system application, and may range from an average service
degradation threshold to the complete absence of service failures.

Fault tolerance in stream-processing systems is an important issue, as stream-
processing applications are a frequent application pattern that is well-suited for
programming parallel systems. However, there are not a lot of fault tolerance
mechanisms developed for distributed systems that use stream processing net-
works.

In this thesis we contribute two mechanisms. The first mechanism is an effi-
cient and fast fault-tolerant leader election method that converts a distributed
system with shared memory into a fault-tolerant system. The second mecha-
nism is a rollback-recovery mechanism (log-based rollback-recovery) to convert
distributed systems with stream processing networks into a fault-tolerant sys-
tem.

Regarding the leader election proposed, it is based on an atomic Compare-
And-Swap (CAS) instruction, which is directly available on many processors.
Our leader election method works with idle nodes, which means that only non-
busy nodes compete to become the new leader, while busy nodes can continue
with their tasks and later update their leader reference.

The other proposed method, log-based rollback-recovery, is used to convert
streaming networks on parallel platforms into a system that can handle faults.
The idea is to store the minimum information of specific moments of the appli-
cation in log buffers. If the application fails, the system uses the log information
that has been stored to rollback the task to the previous state before the fault
appeared. According to this idea, the system is able to access information, even
if a fault or an anomaly has taken place in the system.

5

In opposition to other rollback-recovery mechanism we consulted, that had a
high execution time overhead, we created a new rollback-recovery mechanism
that has a low execution time overhead in failure-free time. One of the reasons
why we achieved this feature is through to the creation of a new garbage collec-
tion mechanism with low execution time overhead, not presented in the others
mechanisms.

Another contribution of this thesis is to work toward adding fault tolerance
methods to S-Net [61, 62, 100] and LPEL [109, 99]. With this idea, we intend
to incorporate the proposed mechanism (leader election and log-based rollback-
recovery) to LPEL. The addition of these methods to LPEL implies that S-Net
becomes a fault-tolerant system that can handle faults. However S-Net has
specific implicit tasks like synchrocells (explained in Section 2.2) that is not
supported for our approach. As a result, the approach presented in this thesis
supports only a static software-pipeline of stateless components.

The modification of LPEL is primed to benefit both programmers and com-
piler designers. Programmers stand to benefit from an automatic fault tolerance
mechanism for which they do not require previous knowledge. Regarding com-
piler designers that uses LPEL to create a compiler, the compiler created will
receive automatically the fault tolerance techniques added in LPEL. So, the
compiler created will have both fault tolerance mechanism proposed.

Last but not least, as a member of the CRAFTERS [116] Project, the mission
of our research group [102] was to add fault tolerance to LPEL. Therefore,
adding these two fault tolerance techniques to LPEL has fulfilled the purpose of
our group in the CRAFTERS Project.

1.4.1 Publications

The following paper within the scope of this thesis have been published:

• Vicent Sanz Marco, Michael Zolda, Raimund Kirner, ”Efficient Leader
Election for Synchronous Shared-Memory Systems”, In Proc. Int’l Work-
shop on Performance, Power and Predictability of Many-Core Embedded
Systems, Dresden, Germany, March,2014

• Vicent Sanz Marco, Raimund Kirner, Michael Zolda, Frank Penczek,
”Fault-tolerant Coordination of S-Net Stream-processing Networks”, In
Proc. 2nd Workshop on Feedback-Directed Compiler Optimization for
Multi-Core Architectures, Berlin, Germany, Jan. 2013.

Furthermore, there are two journal articles under preparation to be submitted:

• Vicent Sanz Marco, Raimund Kirner, Michael Zolda, ”A Fast and Fault-
Tolerant Leader Election Algorithm for Shared Memory Systems”

• Vicent Sanz Marco, Raimund Kirner, Michael Zolda, ”Log-Based Rollback-
Recovery for streaming networks”

6

1.5 Thesis Structure

The remainder of this thesis is organized as follows.
Chapter 2 provides some background for the fault tolerance context. This

background provides a description of the features of faults and the classifica-
tion of failures. It also offers an overview description about our leader election
and log-based rollback-recovery methods by describing the overall approach and
discussing potential alternative approaches. This chapter includes a summary
of stream-processing networks and data-flow programming. It also provides a
description of LPEL where prototypes are implemented.

Chapter 3 offers an overview of the related work by setting out the back-
ground of this research. This chapter primarily reviews research for the field
of leader election models in distributed systems with shared memory. Addi-
tionally, this chapter also describes rollback-recovery strategies in distributed
systems and streaming networks.

Chapter 4 presents the fault model that our fault tolerance mechanisms need
to support. In addition, this chapter shows the reason why we chose the leader
election and log-based rollback-recovery mechanisms.

Chapter 5 discusses the proposed leader election method. This chapter in-
cludes the description of the leader election preliminaries. Then it presents a
full description and some examples of the proposed leader election algorithm.
At the end of the chapter, an extensive example and the evaluation of the leader
election method are presented in terms of space complexity and time complexity.

Chapter 6 introduces the proposed log-based rollback-recovery mechanism
approach. This chapter includes the description of the proposed new role (FTC),
the proposed garbage collection and the proposed restore mechanism for our
log-based rollback-recovery method. There are some examples of the log-based
rollback-recovery at the end of the chapter.

Chapter 7 demonstrates the correctness of the fault tolerance mechanisms
presented in this thesis. This chapter includes the necessary definitions and
the correctness that proves the fault tolerance and the correct execution of the
approaches.

Chapter 8 presents the experiments of our leader election and log-based
rollback-recovery method using LPEL. Moreover, it explains the notification
message mechanism. This mechanism is implemented to know if the leader is
still alive or if it is necessary to start the leader election mechanism. These
experiments are tested for a distributed system with 4, 8, 16, 32 and 48 cores.

In conclusion, Chapter 9 summarizes the work done, and discusses the strong
points and the weak points of the proposed approaches. It also provides direc-
tions for future research in this field.

7

8

Chapter 2

Background

2.1 Fault tolerance

Fault tolerance is the property that enables a system to continue operating
properly if a failure event appears in any system component [69]. Once the
errors appear, the system needs a mechanism so it can recover and continue
working independently of hardware or software errors. It is important to not
confuse fault tolerance with system maintenance. The main difference is that
system maintenance requires an external agent that has to work when a prob-
lem appears, whereas in fault tolerance an internal system property, allows its
recovery.

A system’s fault tolerance can be explained as a set of actions characterized
by their ability to recognize any alteration to the process that the system is
running on and is, therefore, potentially harmful [98]. This alteration is called a
fault. This recognition is the necessary first step to organizing a response that
aims to neutralize or eliminate that fault [89]. Moreover, we talk about fault
tolerance once the error has occurred, and the system can stop or disable the
error through an urgent action to overcome it with no external help. Therefore,
fault tolerance recognizes the error, intercepts it urgently and handles it so that
it can continue its usual work.

To some extent, fault tolerance reminds us of the immune system in the human
body, which is characterized by its ability to recognize any foreign molecule in the
organism (antigen) which is, therefore, potentially harmful. This recognition,
called antigenic presentation, is the necessary first step towards organizing a
response that aims to neutralize or eliminate that antigen. However, we should
state that the response in the fault tolerance of a system has a faster and more
effective response as it deals with the error immediately.

Fault tolerance related concepts in distributed systems have become increas-
ingly important [83, 72]. The proliferation of distributed systems and their use
in a growing number of areas means that finding a solution for any kind of er-
ror that may arise is urgent [85]. A large proportion of the available literature
on fault tolerance refers to distributed systems. These works are divided into
different areas according to where the faults occurs, such as processors, com-

9

munications or data areas. In some applications, systems are very critical and
need to be protected against failure. Incorrect system functionality can be catas-
trophic and can cause major problems in the system. For example, a failure that
stops the flight-control system on a plane in the middle of a flight is a major
problem that the fault tolerance mechanisms have to avoid. In addition, fault
tolerance is important in systems that must work uninterruptedly for 24 hours
a day without rest.

To be able to make precise statements about fault tolerance, it is important
to clarify the meaning of the associated terms, like system, fault, error, and
failure [12].

• A system is a set of interacting components that form a conceptual unit.
A system’s observable behaviour is called output. Input is external exci-
tation through any well-defined interfaces.

• We call a fault any physical or logical defect in any component, hard-
ware or software in a system. This category includes accidental contacts
between electrical components, cuts in electrical components, defects in
components, variations in component functionality due to external distur-
bances (such as temperature or electromagnetic waves), etc. We would say
that a fault is due to physical phenomena.

• An error is the manifestation or the result of a fault. In other words, an
error is the result of a fault from the system’s information point of view.
Errors form part of the called informational world.

• If an error causes malfunction of the system from an external point of view,
this means that if the consequences of the fault go beyond the system,
a failure occurs. Failures occur outside the system, which means that
failures occur in the external world or user world.

To clarify these concepts and to better explain the difference between faults,
errors and failures, we use a combinational circuit example. If one point of the
circuit is connected incorrectly to the logic value 0, the system has a fault. If
this fact is seen from the point of view of the circuit’s truth table, we find an
error since this table has changed as a result of the fault.

Figure 2.1. Faults, errors and failures

10

When this error affects the system’s output or the performance of a hardware
of the system, we have a failure. Figure 2.1 shows the relation among faults,
errors and failures.

A fault-tolerant system is a system that has been designed to maintain an
acceptable level of service in the presence of certain faults that have been an-
ticipated by the developers. The precise definition of an acceptable service level
depends on the specific system application, and may range from an average ser-
vice degradation threshold to the complete absence of service failures. A robust
system is a system that can maintain an acceptable service level in the presence
of non-specific faults. Once again, the precise definition of an acceptable service
level depends on the specific system application.

2.1.1 Features of faults

Before we consider mechanisms to support robustness and fault tolerance, it
is important to think about what kinds of faults we wish to consider. There is
no comprehensive approach that can handle all possible kinds of faults, so it is
necessary to restrict ourselves to certain classes of faults. Different approaches
may be necessary to handle different kinds of faults. Faults can be character-
ized by several criteria: cause, nature, duration, extension and variability [98].
Figure 2.2 depicts features of faults.

ical

Figure 2.2. Features of faults [7]

Causes
The causes of faults can be many: incorrect specifications at the design

11

time, errors in the implementation process, defects in components, external
disturbances, etc.

Nature
The nature of faults specifies the part of the system that fails: software
or hardware. Inside hardware, the fault can be analog or digital.

Duration
Regarding duration, faults can be persistent, intermittent and tran-
sient. Persistent faults are characterized by continuing indefinitely in
time if there is no action to repair them. Intermittent faults appear, dis-
appear, and reappear repeatedly and randomly. Transient faults appear
only during brief moments and coincide with some circumstance, such as
an external disturbance.

Extension
The extension of the fault indicates if the fault affects only a localized
point (local) or if it affects the totality (global) of hardware, software, or
even both.

Variability
In terms of variability, faults can be either determinate, if their state
does not change with time, even if the input or other conditions change,
or indeterminate, whose state can change when some conditions alter.

2.1.2 Classification of Failures

For economic and feasibility reasons, it is not useful to try and avoid all possi-
ble failures. Instead the system should only fail in such ways that the remaining
service level is still acceptable for application. We consider the following list the
for categorizing failures [64, 40]:

• Fail-silent failures

• Omission failures

• Timing failures

• Byzantine failures

Fail-silent failures
A fail-silent failure, also called fail-stop failure, occurs when a node halts
completely in the middle of an execution for no reason. This means that
the node cannot send or receive messages. The system can detect the
affected node using a specific detection mechanism to do so.

12

Omission failures
An omission failure is associated with communication protocols of dis-
tributed systems. This failure appears when a message is lost between the
communication of two nodes and neither one of these two nodes knows
that the message has been lost. So the receiving node fails to receive in-
coming messages or the sending node fails to send outgoing messages. As
a result, the sending node does not know if the sent message was received
correctly or the receiving node does not know if there has been a message.

Timing failures
Timing failures are related with the violation of a temporal property in
synchronous distributed systems or real-time systems. For example, there
are two nodes, n1 and n2, and their clocks are not synchronized. If n1

sends a message to n2, n2 receives the message but, in the point of view of
n2, the message has been delayed longer than a threshold period. Thus n2

does not accept the received message and a timing failure appears in the
system.

Byzantine failures
The Byzantine failures are failures when a node continues to run, but
produces arbitrary incorrect results. An example of such a fault is that a
node may produce arbitrary messages at arbitrary times. Pease, Shostak
and Lamport [86] present the Byzantine General’s Problem, where they
created a fully fault tolerant system for these Byzantine failures.

2.1.3 Safety and cost

A system is in a safe state for a particular set of faults if these faults can
impair the correctness of any critical services, but only in combination with some
other faults [88].

Different approaches for robustness and fault tolerance can cause distinct
kinds of costs in terms of money, time, effort, risk, computational resources,
memory, etc. We consider the following classes of costs:

Development costs
Costs that occur in connection with system development, e.g., money spent
for hardware and software purchases, licensing, development, and time-to-
market.

Certification costs
Costs that occur in connection with system certification, e.g., efforts made
in testing and verification.

Maintenance costs
Costs that occur in connection with system maintenance, e.g., money
spent on replacement components and maintenance technicians, and sys-
tem downtimes.

13

Operation costs
Costs that occur in relation to system operation, e.g., consumption of
computational and memory resources, and costs of a critical failure.

2.1.4 Leader Election Strategies

Many applications and services for distributed systems are based on the ex-
istence of a separate process that coordinates the work of a set of processes.
For example, LPEL has a coordinator node called leader that distributes tasks
to the remaining nodes of the system. In this section, we describe the most
common algorithms to perform leader election.

In the leader election strategies, it is necessary to detect the failure of the
leader and to elect a new process to assume the role of leader. This election
requires reaching an agreement among the processes as to which will be the new
single leader. To determine the election of a process to become leader, processes
need to have associated unique identifiers.

2.1.5 Rollback-Recovery Strategies

Rollback-recovery protocols attempt to recover the system from an inconsis-
tent state to a consistent state. The definition of consistent and inconsistent
state is found in the following subsection. One of the requirements of these
protocols is to use stable storage that survives possible faults, which is used to
restore the process from the stored data. The stable storage of each process can
be local or global.

When a fault occurs, the data stored in stable storage are used to reset the
process from a previous state before the failure has appeared. If the stored state
is very recent, loss in computation is a minimal, otherwise it is not (Figure 2.3).

Figure 2.3. Example of rollback-recovery

The recovery information contains at least the last state stored of the partic-
ipant processes, and these states are called checkpoints. Additionally, some
rollback-recovery mechanisms need to store log events, such as interactions with
input/output components, interprocess communication, etc. If the communica-
tion protocol is message passing, the rollback-recovery mechanisms are compli-
cated because messages are events that lead to a certain dependence between
processes.

14

Nowadays rollback-recovery protocols seek to be transparent (no human in-
tervention) and to reduce the repair/recovery time. This transparency requires
extra time from the runtime application because the system needs to store in-
formation and mechanisms to be automatic.

The interdependence of processes entails some problems: for example, if a
process fails, it can mean that other processes that have not failed have to
return to a previous state to synchronize with the failed process. This is called
rollback propagation.

One point to worry about in rollback propagation is the domino effect [35,
111] during the restores. This phenomenon can appear in distributed systems
in which each process takes its checkpoint independently. The need to establish
a consistent state throughout the system can force other processes to restore
a previous checkpoint, which may cause other processes to restore a previous
checkpoint. This choice can continue until all the processes enter in the initial
state because there are no more checkpoints to restore. Therefore, if checkpoints
are not coordinated, a single failure can provoke a domino effect.

Figure 2.4. Example of the domino effect

The Figure 2.4 illustrates an example of the domino effect. If process P1 fails,
then P1 restarts from checkpoint E. If message m5 was sent after checkpoint
E, then process P0 needs to return to a state before in order to have no orphan
message. Therefore, the problem now is in process P1, because the message m4
is an orphan message. This problem continues until the processes find a state
without orphan messages. In the worst case, this state can be the initial system
state. The following lemma establishes the condition to avoid the domino effect.

Lemma 2.1.1 If all the messages received by each process are eventually logged,
there is no possibility of a domino effect in the system [46].

The following rollback-recovery methods are defined in the literature [81, 49]:

• Coordinated checkpointing

• Uncoordinated checkpointing

• Communication-induced checkpointing

15

• Pessimistic logging

• Optimistic logging

• Causal logging

We grouped the checkpointing methods in the Checkpoint Subsection in sec-
tion 2.1.5 and the logging methods in the Log-Based Subsection in section 2.1.5.
These strategies have been studied [49] and compared according to the overhead
there is over the protection and recovery step.

Description of processes

In distributed systems, a process can be informally understood as an executing
program. Formally, a process is a unit of activity characterized by the execution
of a sequence of instructions, a current state, and a set of associated system
resources.

To understand what is a process and the difference between a program and a
process, Andrew Stuart Tanenbaum 1 proposed an analogy: a computer scientist
with a culinary mind bakes a birthday cake for her daughter; the scientist has
the recipe for a birthday cake and a well-equipped kitchen with all the necessary
ingredients: flour, eggs, sugar, milk, and so on. Placing each part of the analogy,
it can be said that the recipe is the program (the algorithm), the computer
scientist is the processor, and the ingredients are program entries. The process
is the activity during which the computer scientist reads the recipe, obtains the
ingredients and bakes the cake.

Therefore, distributed systems have processes, P1, P2 . . .PN . These pro-
cesses communicate with each other through messages. The aim of these systems
is the cooperation of processes to execute a distributed application.

Then the execution of the process can be modeled as a sequence of determin-
istic state intervals, where each starts with the execution of a non-deterministic
event. The events of one process can be non-deterministic or deterministic.
Non-deterministic events are generated when the process receives a message
from another process or when an internal event occurs inside a process. The
remaining messages that are not included in the previous definition are deter-
ministic for the process. Note that the messages sent by the process are deter-
ministic. The idea of differentiating between deterministic and non-deterministic
is called the piecewise deterministic (PWD) assumption. Then according to this
assumption, all non-deterministic events that a process executes can be identi-
fied, and the information needed to reproduce these events can be logged.

The model is based on the dependencies between the states of the processes
at some point when the processes are modified as a result of the communication
between processes. Then the model helps us to study the correct functionality
of the processes. All the processes are assumed to execute on fail-stop processors
connected by a communication network, but the reliable delivery of messages

1Author of MINIX, a free Unix-like operating system for teaching purposes.

16

on the network is not required. The state of each process is represented by its
dependencies, and the global state of a distributed system is represented by the
collection of the process states and the states of the communication channels.
Thus a consistent global state is one that may occur during a failure-free execu-
tion of a distributed computation. Consequently, a consistent system [14] state
is one during which, if the state of the process reflects a message receipt, then
the state of the corresponding sender reflects having sent that message. The aim
of a rollback-recovery mechanism is to return the system from an inconsistent
state because of failure to a consistent state.

a) b)

Figure 2.5. Example of consistent and inconsistent states

Figure 2.5 depicts two examples of global states. The first example is a con-
sistent state because each received message has a corresponding message sent
event. Each of these messages sent creates a non-deterministic event in the sys-
tem. Process P0 sends message m1 to process P1 and the process P2 receives
message m2 from process P1. When any process fails, the system starts the
restart mechanism from the last checkpoint in each process. Therefore, process
P0 knows that it sent message m1, but P0 does not know if the message was
received. After the restart, this message cannot be resent by P0. Consequently,
P1 does not receive m1 after the restart. Accordingly, the system loses the
information about m1. However, the system is consistent because all the pro-
cesses have a record of the messages sent, and these processes know that all the
received messages have a process that created this message.

In the inconsistent state, the process P2 receives message m2 and P2 creates
a checkpoint after the message has been received. Process P1 sends the message
without control. Then in the inconsistent state, process P1 may fail after sending
message m2 to process P2. Afterwards the system uses the last checkpoint of
each process to restart the state of the processes. Therefore, process P1 can
resend again message m2 and create an inconsistent state in the system due to
message duplication.

Process p becomes an orphan if p does not fail, but p’s state depends on a

17

non-deterministic event e which cannot be recovered from the stable storage of
process p. Process p is called on orphan process [73]. Another way to explain
an orphan process is a process whose state depends on a non-deterministic event
that cannot be reproduced during recovery. In the example figure the non-
deterministic events are the messages sent and received from each process. A
consistent state can have orphan processes: for example, in Figure 2.5(a), process
P1 is an orphan process because P1 cannot recover message m1 from process
P0. Moreover, message m1 is called an orphan message. Upon the recovery of
all failed processes, log-based rollback-recovery guarantees the system does not
contain any orphan process. Then log-based recovery satisfies the No-Orphans
Consistency condition:

8e. ¬Stable(e) =) Depend(e) ✓ Log(e)

where Stable(e) is the function to store event e in the stable storage. This
function returns true when the event is stored, otherwise it returns false. De-
pend(e) returns the group of all the processes affected by non-deterministic event
e. Log(e) are all the processes that have stored event e in their stable storage
or log file.

If any surviving process depends on an event e, then event e is logged in the
stable storage, or the process has a copy of the determinant of event e. If neither
condition is true, then the process is an orphan process because it depends on an
event e that cannot be generated after the recovery. The reason for this is that
the process creator of event e cannot recreate it once the restart mechanism is
running.

Stable storage

In log-based rollback-recovery, checkpoints and event logs must be saved. This
is why log-based checkpointing protocols use stable storage. Stable storage in
log-based is only an abstraction, although it is often confused with the disk
storage used to implement it. By definition, stable storage ensures that stored
information is resistant to failures and their corresponding recoveries.

Then a stable storage is an abstraction of a perfect storage that survives
processor or communication failures [41]. It provides atomic read and write
operations; that is, these operations either execute completely, or do not execute
at all, even when processor or communication failures occur. Stable storage
is a basic requirement of a large number of fault-tolerance techniques, such as
atomic actions [87], process checkpointing, and rollback recovery [48, 74, 82, 111].
Despite the importance of this abstraction, commercial systems do not provide
a stable-storage service and, typically, it is left to the programmer to implement
such functionalities whenever they are needed.

This requirement can lead to different kinds of stable storage depending on
the failures tolerated:

1. If the system has to tolerate only one single failure, stable storage can be
a volatile memory of another process. [7, 19]

18

2. If the system has to tolerate an arbitrary number of transient failures,
stable storage can consist of a local disk.

3. If the system has to tolerate non-transient failures, stable storage must con-
sist in a persistent medium outside the host on which the process running.
An example of this kind of stable storage is a replicated file system.[29]

For this reason, we created the stable storages used in this thesis that it is like
option two in the list before. Therefore each process has a local stable storage
that can be read and written only for the process. So the each stable storage in
the system is independent, the stable storage has a local synchronicity with the
process.

Garbage Collection

In the log-based mechanism, checkpoints and logged messages are stored to
recover the system in the event of failure. These consume storage resources. As
processes collect information, a subset of stored information may become useless
for recovery. Accordingly, the system needs a mechanism to remove useless
information from processes. This mechanism is called garbage collection [76, 9].

Therefore, This information can be removed from stable storage only as long
as it will not interfere with the system’s ability to recover as and when needed.
A common garbage collection mechanism aims to identify the recovery line and
to remove useless information before that line.

Garbage collection is important for log-based protocols because removing the
useless information from stable storage incurs overhead. Furthermore, log-based
protocols differ from the information stored in stable storage and, therefore,
differ in the complexity and invocation frequency of the used garbage collection.

Checkpoint

The checkpoint mechanism in distributed systems is complicated because each
process has a parallel execution where there is no a global clock, which compli-
cates the synchronization to create them [13]. In this case, both the frequency
and content of the checkpoints are important features to define a checkpoint
mechanism [78].

Frequency of checkpoints: checkpoint algorithms are run at the same
time as the work of the process. Therefore, the overhead to create them must
be minimized. Furthermore, checkpoints need to allow quick recovery without
losing too much work done, which means creating them frequently is necessary.
Hence the problem is if checkpoints are created often, overhead becomes very
high. Yet if checkpoints are created rarely, when the restore method is called,
the system loses a lot of previously done work and needs to do it again. Thus
the frequency of the checkpoints is considered an important parameter in the
checkpoint algorithm because the number of checkpoints needs to ensure minimal
loss of information in the event of failure and to add a minimum overhead.

19

Content of checkpoints: The state of a process must be saved in stable
storage in order to be used later for the recovery mechanism. The state includes
a code, data variables and the content of memory, and registers that the process
has been using when the checkpoint was created.

Depending on how the checkpoint is created, the following checkpoint mech-
anisms exit:

• Uncoordinated checkpointing

• Coordinated checkpointing

• Communication-induced checkpointing

Uncoordinated checkpointing

Using uncoordinated checkpointing has more advantages than co-
ordinated and communication-induced checkpointing for distributed
systems since there is no an agreement among processes to create
checkpoints. Then each process can decide when its checkpoints are
created. As a result, the main advantages are the autonomy of creating
checkpoints and the scalability that these features provide.

Regarding autonomy, the recovery of a failed process can provoke an in-
consistent state in other processes, and the other processes need to recover
a previous state. Hence uncoordinated checkpointing cannot resolve the
domino effect problem. Additionally, the checkpoints stored per process
are difficult to handle per process and confer a high overhead during the
execution time compared with the other checkpoint mechanisms [78].

During the system’s failure-free execution, the processes calculate the in-
terdependence among their checkpoints according to Bhargava’s work [18].
This technique consists into attaching information about the checkpoint
in each message sent by the process to another process. The receiver of
the message uses the attached information to calculate the dependency
between itself and the sender. So if a failure occurs in a process, the
recovery mechanism initiates the rollback by requesting the information
about the dependencies of messages related to the failed process to the
system’s remaining processes. When a process receives the request, the
process stops its execution and replies with the information about the
dependencies related with the failed process stored in its stable storage.
The failed process waits until the relevant information is received from the
other nodes. When all the processes reply, the failed process calculates
the recovery line from itself and the processes with relevant dependencies.
The failed process sends the result to the system’s remaining processes.
As a result, other processes may perform rollback to a previous checkpoint
indicated by the failed process.

Coordinated checkpointing

20

Coordinated checkpointing strategies require all processes to come
to an agreement and synchronise their checkpoints to create a global con-
sistent state. This strategy confers simplicity to the recovery mechanism,
and it is not affected by the domino effect because each process always
restarts from the latest checkpoint stored in its stable storage. Further-
more, each process only needs to store the latest checkpoint because the
other processes are self-sufficient to recover using the information stored
in their stable storage. Consequently, the overhead used to store and
manage previous checkpoints is removed in the coordinated checkpoint
algorithms.

The main disadvantage of this method is the overhead to synchronize all
the checkpoints created by the processes.
There are two ways to create a coordinated checkpointing: a blocking
checkpoint or a non-blocking checkpoint. The blocking checkpoint [123]
has a coordinator that forces processes to create checkpoints at a specific
point in time. When processes receive the order from the coordinator,
they stop their work and create a checkpoint all together. Regarding the
non-blocking checkpoint [33], checkpoints are created at a specific time.
All the processes have a clock. When the clock is ready, the processes
do not receive more work, and they need to finish the work that they
are presently doing. When all the processes are free, they start to create
checkpoints all together. Afterwards, processes demand works to do. They
wait until they are all free. However, one process may still be working and
the remaining processes have to wait a long time without doing anything.
The blocking checkpoint does not have this problem because, instead, the
blocking checkpoint is more costly while executing the time of the each
process’s work than the non-blocking checkpoint.

Communication-induced checkpointing

Communication-induced checkpointing (CIC) [5] is balanced between
uncoordinated and coordinated checkpointing. CIC allows processes
to create checkpoints independently in order to avoid the domino
effect. These checkpoints are called local checkpoints. Processes are also
forced to create checkpoints, which guarantees the recovery line and
the global consistent state of the system. These checkpoints are called
forced checkpoints. These forced checkpoints are created when processes
piggyback the received message using the information in the message
to decide if the process needs to take a forced checkpoint or is not
necessary. If a forced checkpoint is demanded, then the checkpoint must
be created before the process reads the contents of the messages, which
confers much latency and a high overhead to such methods. Another
disadvantage of this method is the overhead in the messages sent during
the communication between processes, because the information is related
with forced checkpoints.

21

Log-based checkpointing approaches

After a failure occurs, the failed processes recover by using checkpoints and
logged determinants to replay the corresponding non-deterministic events pre-
cisely since they occurred during pre-failure execution. While the process exe-
cutes the rollback-recovery step, the other processes continue working and have
no knowledge about the error in the affected process. It is desirable to minimize
the amount of lost work by restoring the system to the most recent consistent
global state, which is called the recovery line.

Log-based approaches avoid the domino effect since the failed process can be
brought forward to the global state rather than individual processes being forced
to rollback for consistency with the failed process.

These protocols allow each process to independently save its state avoiding
spending additional time on the coordination between processes to save the
process’s state. The disadvantage of these protocols is the overhead that is
added to save and store non-deterministic events in the stable storage. Some
works have studied and compared the performance and overhead of log-based
checkpointing protocols. [25, 26]

Figure 2.6. Classification of log-based rollback-recovery protocols

The Figure 2.6 illustrates the classification of log-based rollback-recovery pro-
tocols. These protocols offer the application a different performance, and have
different recovery and garbage mechanisms. We now go on to explain these
three log-based protocols and we add a figure to each one in order to better
understand how they work.

Pessimistic log-based protocol

The pessimistic log-based protocol assumes that a failure can occur
after any non-deterministic event during the computation. This situation

22

is rare in a real world, which is why this is called pessimistic. In the
pessimistic protocol, the message is always logged before it is processed.
Therefore, a pessimistic protocol will not allow a process to send a
message until all the delivered messages are in the log. The main idea is
that the process stops whatever it is doing when it receives a message.
Then the process logs the message into the log and resumes its execution.
To place the message in the log file, the process must use a synchronous
logging mechanism [126] to control file access. This synchronization
mechanism is used to accomplished the always-no-orphans condition in
the system:

8e. ¬Stable(e) =) Depend(e) ✓ Log(e)

This property states that if an event has not been stored in stable storage
or a log file, then no process can depend on it. In addition to logging de-
terminants, the process takes periodic checkpoints to minimize the amount
of work that has to be repeated during recovery.

To recover a process from failure, the process rolls back to its latest check-
point stored and plays back the messages stored in the log in the right
order until the process enters in the pre-failure state. The rolling back of a
process does not trigger the rollback of any other process thus, no Domino
effect can occur. This method has three advantages:

1. The method allows processes to restart from their most recent check-
point, which limits the extent of the execution that has to be replayed.

2. Recovery is simplified because the effects of a failure are confined only
to the processes that fail.

3. Garbage collection is simple to implement.

The disadvantage is that synchronous logging incurs a high performance
penalty during a failure-free operation.

Figure 2.7. Pessimistic log-based protocol

Let’s consider the example in Figure 2.7. During a failure-free operation,
the logs of processes P0, P1 and P2 contain the determinants needed to
replay the received messages. Then P0 stores information about the [m0,

23

m4, m7] messages, P1 stores information about [m1, m3, m6] and P2
saves information about [m2, m5]. Let’s assume that processes P1 and P2
fail as shown, then the system restarts process P1 from checkpoint B, and
process P2 from checkpoint C. After the restart, processes P1 and P2 use
the information inside their logs to redeliver the same sequence of messages
as during the pre-failure execution. This guarantees that P1 and P2 repeat
exactly their pre-failure execution and resend the same messages. Hence
once recovery is complete, both processes are consistent with the state of
P0, which includes the receipt of message m7 from P1. Until this point in
the system, the three processes can be restored in case of a failure appears.
Then, the three processes have a consistent recoverable state that, in case
of failure, the three processes can be restored until that state. This state
is represented as maximum recoverable state in Figure 2.7.

In a pessimistic log-based protocol, the status of each observed process is
recoverable, and this property implies some advantages [49]:

• Processes can send messages to the outside world without using a
special protocol.

• Processes can restart from the last checkpoint. Thus the overhead of
computation is low.

• The recovery mechanism is simpler because the effect of failure affects
only the process related with failure. All the other processes continue
their execution. They are not orphan processes because the processes
affected by failure restart to the consistence state, which includes the
most recent interaction with other processes not related with failure.

• Garbage collection in pessimistic log-based protocol is simpler than
optimistic and causal log-based protocol. Older checkpoints and non-
deterministic events that occurred before the last checkpoint stored
in stable storage can be removed because they are useless for the
recovery mechanism.

Obviously the system needs to pay a price for these advantages. This price
is deterioration in performance, which occurs from synchronous logging.
For this reason, the implementations of this protocol must use special
techniques to reduce the negative effects of such logging. The pessimistic
logging (along with uncoordinated checkpoints) is used in the RADIC
architecture [44].

Optimistic log-based protocol

The optimistic log-based protocol assumes that logging is always
complete before a failure occurs. With this idea in mind, when messages
are received, they are written in a volatile buffer, and are copied in
stable storage or a log file asynchronously and at a suitable time. With
this mechanism, the process execution is not disrupted, so the logging

24

overhead is very low. It differs from the pessimistic protocol because in
the optimistic protocol, processes asynchronously store information in
the stable storage. [122] Thus the optimistic protocol has asynchronous
logging.

Moreover, the optimistic protocol allows the temporary creation of orphan
processes, but no orphan processes should exist by the time recovery is
complete. When one process fails, the contents of its volatile buffer are
lost, and the state intervals during which the process was started by such
events cannot be recovered. If the process fails to send a message while
the process is in any of these state intervals, the receiver of the sent mes-
sage becomes an orphan process. To solve this problem, the process that
receives the message needs to rollback. Therefore one process fails, which
means that multiple processes have to do rollback as well. To avoid the
domino effect, optimistic logging tracks the causal dependencies during
failure-free execution. To be able to detect orphan processes, the depen-
dencies between non-deterministic events need to be tracked during the
entire execution, and dependency information must be piggybacked on
the messages sent. Upon failure, dependencies are used to recover the last
saved global state of the pre-failure execution during which the system had
no orphan process. For this reason, the processes need to store multiple
checkpoints.

Figure 2.8. Optimistic log-based protocol

The Figure 2.8 shows that process P2 fails before the determinant for
message m5 is logged to stable storage. Process P1 then becomes an
orphan process, so P1 restarts from the last checkpoint D to try to undo
the effect of receiving orphan message m6. Furthermore, the restart of
P1 forces process P0 to restart in order to undo the effects of receiving
orphan message m7. To perform these restarts correctly, optimistic log-
based protocols track the messages between the processes during failure-
free execution. Upon failure, this information is used to calculate and
recover the latest global state of the pre-failure execution during which no
process is an orphan process. However, non-determinant events are logged
asynchronously. Therefore, the output committed in optimistic logging
protocols requires a guarantee so that no failure scenario can revoke the
output. For example, if process P0 needs to commit the output in state

25

X, process P0 must store messages m4 and m7 in stable storage, and ask
process P2 to store m2 and m5 because they are the messages related
with m1. In this case, if any process fails, the system can restart to state
X.

According to the above information, it is obvious that garbage collection
mechanisms are not trivial for the optimistic protocol because this protocol
needs to save the last created checkpoint. Therefore, to resolve the fail that
affect process P2 in Figure 2.8, process P1 restarts from checkpoint B
instead of from checkpoint D.

Recovery in optimistic protocols can be synchronous or asynchronous. In
synchronous recovery[72], all the processes run the recovery mechanism to
compute the most recent recoverable state based on both the dependencies
of orphan messages and the information stored in stable storage. Then all
the processes restart at the same time to the point calculated with the
calculated information.

In asynchronous recovery mechanisms [122], the process with a failure
sends a special message to inform other processes that it performs the
restart. When a process receives this special message, the process restarts
at a previous checkpoint if the process detects that it is an orphan process.
As this process needs to restart, this process also sends the special message
to inform all the other processes that it will perform the restart. With this
mechanism, there can be multiple special messages from the same process.
Then each process needs to control the dependencies between its state
and the state of the process that sent the special message to detect if the
process is an orphan process, and it needs to restart. All the restarts in
this mechanism are asynchronous.

The advantage of this protocol is that the protocol incurs very little over-
head during failure-free execution. Compared to the pessimistic log-based
protocol, the disadvantages include the complication to create the recovery
and garbage collection mechanisms. Moreover, the pessimistic log-based
protocol needs only to keep the most recent checkpoint of each process,
whereas the optimistic ones need to keep multiple checkpoints for each pro-
cess. The output committed in an optimistic log-based protocol requires
multihost coordination to ensure that a non failure scenario can revoke the
output.

Causal Log-Based Protocol

It is a combination of the pessimistic log-based and optimistic log-
based protocols used to create a protocol with the advantages of both.
From the optimistic log-based protocol, the causal protocol obtains
asynchronous access to store in the log file. Then the processes can read
and write with asynchronous access, which means the access of the log
file is not coordinated in time for the processes. From the pessimistic

26

protocol, the causal protocol allows each process to commit output
independently, it never creates orphan processes, and rollback is done
with the most recent checkpoint. Thus the processes only have one
checkpoint per process. In the causal log-based protocol, each process
stores information about all the events that affect the process’s state.
This information is independent of other processes and allows the process
to make its state recoverable by simply logging the available information.
Therefore, the failure of one process only affects the failed process and
the other processes do not rollback. Only the failed process rollsbacks to
recover its pre-failure execution. As we have seen, the causal log-based
protocol ensures the always-no-orphans property. For this purpose,
the causal log-based protocol ensures that the determinants of each
non-deterministic event that precedes the state of a process are either
stable or available locally to that process.

For the recovery mechanism, each process stores its antecedence graph.
This antecedence graph provides the history of all the non-deterministic
events that have causal effect on the process state [49, 47]. In the an-
tecedence graph, each node is a non-deterministic event that precedes the
process’s current state and the event occurs after storing the last check-
point related to this process. The edges of the graph correspond to the
relation between the events and help know the order of the creation of
events. Any unnecessary nodes in an antecedence graph can be deleted
when the new checkpoint is stored. Therefore, the antecedence graph of a
process P is a directed graph G(V,E), and:

• V is a set of non-deterministic events that precede P ’s current state
(according to happened-before)

• E contains edge v ! u if, and only if, v precedes u (according to
happened-before)

The idea of the causal log-based protocol is when one process receives
a message, this process starts to store an antecedence graph of all the
messages related to the message received. Therefore, each message has
attached an antecedence graph with information about the previous mes-
sages. Then as we show in Figure 2.9(a), P0 receives message m0. First,
P0 starts to create an antecedence graph of all the messages created from
message m0. At this moment, the antecedence graph has only one node
with m0. Later, P0 receives message m4 with the antecedence graph at-
tached. Then, P0 checks the antecedence graph received in m4 and sees
that m0 is in the antecedence graph. As a result, P0 adds the new infor-
mation to its antecedence graph, storing m1, m2, m3 and m4 to its stable
storage or to its volatile log. Figure 2.9(b) is the result of this antecedence
graph until this point. When a failure appears in the system, process P0
can guide the recovery of processes P1 and P2 because P0 knows the order
of all the messages sent and received by P1 and P2 related to message m0.

27

Figure 2.9. a) Causal log protocol. b) Antecedence graph of message m4 in P0

It is important to note that messages m5 and m6 are not available in the
antecedence graph of process P0. This is because each process creates an
antecedence graph after the checkpoint is stored, and a message is received
after the checkpoint has been created. In this example, the antecedence
graph of message m0 starts during process P0 when P0 receives m0. In
the example, P0 creates the antecedence graph of messages m0 and m4,
P1 creates the antecedence graph of messages m1 and m3, and P2 cre-
ates the antecedence graph of message m2. In this example, processes P1
and P2 fail. Three processes (P0, P1 and P2) work together to create a
consistent state and to arrive at the maximum recoverable state.

In conclusion, causal log-based rollback-recovery protocols attempt to com-
bine the advantages of low performance overhead and fast output commits,
but need complex recovery and garbage collection. The information stored
in stable storage is also more complex than in the other protocols.

Causal logging has the failure-free performance advantages of optimistic
logging, but retains most of the advantages of pessimistic logging. The
disadvantage of the causal protocol is the complexity of the recovery mech-
anism. Its advantages are that it:

• Avoids synchronous access to stable storage, except during the output
committed.

• Allows each process to commit output independently. The process
simply needs to save its log in stable storage

• Never creates orphans

28

• Limits the rollback of any failed process to the most recent checkpoint
in stable storage.

• Reduces the storage overhead and the amount of work at risk.

2.2 Stream-Processing Networks

The idea of stream-processing networks is to create parallel networks in soft-
ware and/or hardware. They are called stream-processing networks because
the communications performed by the channels that pass information between
modules are potentially infinite data sequences. These infinite data sequences
are referred to as streams. A stream-processing network is a series of opera-
tions applied for each element in concurrent processing. Stream-processing is a
computer-programming paradigm related to SIMD (Single Instruction, Multi-
ple Data) that allows some applications to more easily exploit a limited form of
concurrent processing. Such applications can use multiple computational units,
such as FPUs on a GPU, without explicitly managing allocation, synchroniza-
tion or communication among those units.

2.2.1 The S-Net Coordination Language

S-Net [58, 59, 106, 119] is a declarative coordination language used to de-
scribe streaming networks of asynchronous components at a high level of ab-
straction. [62] These components are interconnected by streams. The simplest
components in S-Net are called boxes. Such a component has only one input
and one output stream. Boxes communicate solely by means of the data received
from the input stream and the data sent to the output stream.

A stream can contain zero, one data item or more, and boxes can receive and
send these data items. Boxes can be deployed cheaply, and can be moved and
replicated without giving rise to data integrity concerns.

Boxes are implemented in an appropriate programming language, e.g., ISO C
or SAC [60]. Boxes are in fact ”black boxes” from the implementation point
of view. By being implemented in a different language, they do not expose any
box internals to the S-Net level.

The streaming network in S-Net define asynchronous components inductively
through algebraic formulas. There are only four essential composition patterns
for SISO (Single-Input and Single-Output) components:

• Serial composition

• Parallel composition

• Serial replication

• Parallel replication

29

Each of these patterns has a corresponding network combinator in S-Net.
These combinators create a new SISO component from one or two SISO com-
ponents.

Generally, S-Net networks are asynchronous. One component sends output
to the input buffer of the recipient component. The runtime system determines
the size of these buffers, and the size of the buffer determines the degree of
asynchrony between components. If we need to synchronize and combine the
output of several components, there is a component in S-Net to do this, called
Synchrocell. A synchrocell is the only stateful component type in S-Net. A
synchrocell obtains several inputs and joins them into one output. The internal
synchrocell state is made up of the records waiting to be synchronized.

Boxes send data items over streams to communicate with other boxes. These
data items are organized as non-recursive tagged records with arbitrary non-
record fields. The types of data associated with streams in an S-Net network
are non-recursive, tagged variant record types. Like the function that actually
implements a box, elementary types are indeed opaque to S-Net. Since all
actual data are produced and consumed by box language programs, only the
box language code can interpret data.

If there are more records field in the stream received by a box that the box
can accept, then the excess fields are attached to the output stream of the box,
and that part of the record is not processed by the box. This behaviour is called
flow inheritance and it does not cause the program to fail. S-Net does not
require explicit subtype declarations, but applies type inferences instead.

To better understand the S-Net language, we provide an example of a factorial
function. The next code shows an implementation in ISO C. The ISO C function
factorial only computes a single factorial number given suitable arguments.

Algorithm 1 Computing a single factorial number in ISO C.

1: function int factorial(n)
2: int r, x;
3: r = 1;
4: x = n;
5: while x > 1 do
6: r = x * r;
7: x = x -1;

8: return (r);

Figure 2.10 provides a graphical representation of the network topology of
the example that is the equivalent to the textual specification following the key
word connect in Algorithm 2.

The S-Net network factorial shown in Algorithm 1 indeed transforms a stream
of natural numbers into a stream of pairs, as reflected by its type signature
{n} =) {n,fac}. The purpose of this example is to demonstrate the basics of
the S-Net language. First we break down the problem into its atomic building
blocks. The S-Net network uses five boxes for this example. The topology of

30

(
(

(
(

Figure 2.10. A graphical network representation of the factorial example.

31

the network factorial is fairly simple: a pipeline consisting of an initialization
step, the main loop and a post-processing step.

The network init, very similar to the first few lines of the ISO C implementa-
tion, initializes new record fields emphr and emphx for the actual computation
while the original argument emphn is preserved for global output. Whereas the
renaming of one to emphr and the copying of emphn to emphx can be easily
done at the S-Net level using a filter box, we employ a user-defined box to create
a proper box language representation of the number one.

The while loop of the C function directly carries over to a deterministic star
combinatory in S-Net. Note that the loop predicate (network pred) is entirely
evaluated in the domain of a box language. The Boolean result is hidden in
opaque record field emphp and can only be made accessible to S-Net by means
of another box, if that takes field p, and it either yields a tag T or a tag F
depending on its Boolean interpretation.

The network then branch is like the loop body of the C function factorial.
It starts by stripping off the tag T from each incoming record. Then it uses
another filter box to duplicate each incoming record into one that is identical
and one that only contains field x.

The best match rule of parallel composition combinatory plays a crucial role
here in routing the {xx,r} record to the box mult and the {x} record to the
box dec. Note that we need to rename field x as xx in order to circumvent the
covariance restriction of parallel composition.

A subsequent synchrocell recombines records x and {r} into a joint record
{x,r}. Note that synchrocell is embedded in another serial replication. This
combination of synchrocell and star combinatory is a very common design pat-
tern in S-Net. It implements synchronization across an unbounded number of
records: when {x} arrives at the first synchrocell, the record is stored. If the
next record is once {x}, a new synchrocell is created dynamically and the new
synchrocell capture the {x} record. The first synchrocell dies after synchroniza-
tion, whose effect is that any subsequent records are directly sent to the second
synchrocell instance.

Last but not least, the exit network strips off field x and tag stop from any
record since they are only used internally by the factorial network. Eventually,
field r, as it is used internally in factorial, is renamed as fac before a record
leaves the whole network.

The sole purpose of our example is to illustrate the use of the various S-Net
language features and their relationship to constructs known from conventional
programming languages. Using boxes only for the most rudimentary computa-
tions and expressing anything else in S-Net are by no means representative of
real-world S-Net applications. We expect boxes to represent substantial amounts
of computational work and the S-Net layer to control only coarse-grained coor-
dination aspects.

32

Algorithm 2 Computing a stream of factorial numbers in S-Net.

net factorial ({n} ! {n,fac}) {
2: box one (() ! (one));

box leq ((x) ! (x,p));
4: box if ((p) ! (<T>) — (<F>));

box dec ((x) ! (x));
6: box mult ((xx,r) ! (r));

net init ({n} ! {n,r,x,}) {
8: connect one .. [{n,one} ! {n,x=n,r=one}];

net loop ({r,x} ! {r,x,<stop>}) {
10: pred ({x} ! {x,<T>} — {x,<F>})

connect leq .. if;

12: net then branch ({<T>,x,r} ! {x,r})
connect [{<T>} ! {}]

14: .. [{x,r} ! {xx = x,r};{x}]
.. (dec—mult)

16: .. [|{x},{r}|]*{x,r};

else branch ({<F>}) !{<stop>}
18: connect [{<F>} ! {}] .. [{} !{<stop>}];

}
20: connect (pred .. (then branch || else branch)) ** {<stop>});

net exit ({<stop>,x,r} ! {fac})
22: connect [{<stop>,x} ! {}] .. [{r} !{fac=r}]

}
24: connect init .. loop .. exit;

33

2.2.2 The S-Net Compiler

In order to manage the complexity of compiling a fully-fledged declarative S-
Net code into a near machine-level representation, we define several intermediate
variants of S-Net. A multistage compilation framework gradually transforms S-
Net specifications into less abstract and less declarative codes.

Figure 2.11 (taken from the S-Net implementation report) shows a sketch of
the overall S-Net compiler architecture. We define five compilation stages:

1. Preprocessing

2. Topology flattening

3. Type inference

4. Optimization

5. Post-processing

In addition, we have two auxiliary stages: parsing and printing. The five
compilation stages share a common internal representation of networks. Auxil-
iary stages transform textual representations of networks into internal represen-
tations (parser), and vice versa (printer).

The compilation process may start and stop in any compilation stage. The
exact stage in which to start is determined by an identifier in the source code.
The first line of text must contain a special comment of the form:

//! snet code
If this identifier is not present, the compilation process starts at the very

beginning. The final compilation stage is determined by a compiler flag. If that
stage has been completed, the S-Net compiler prints the intermediate program
representation to the standard output stream with the intermediate language
identification properly set. The five intermediate languages are all variants of
S-Net itself:

• S-Net core

• S-Netflat

• S-Net typed

• S-Netopt

• S-Netfinal

First, an S-Net application is performed by the intermediate language S-Net

core. After that S-Net flat transforms the output of S-Net core. In this way, a
S-Net application go through these five intermediate languages before S-Net can
performed. Therefore, the internal representation, the parser and the printer can
be developed once, and parametrized for the different intermediate languages.

34

S−Net

S−Net

S−Net

S−Net

S−Net

S−Net core

flat

typed

opt

final

Parsing

Printing

Parsing

Printing

Parsing

Printing

Parsing

Printing

Parsing

Printing

Preprocessing

Topology Flattening

Type Inference

Optimisation

Postprocessing

Figure 2.11. S-Net compiler architecture. [58]

The advantage of this multistage compiler architecture is that we can develop
the individual parts mostly in isolation with well-defined interfaces in between
them. Ease of use is still achieved by the compiler driver, which is responsible for
user interaction and the orderly application of the individual compilation stages.
The intermediate compiler phases can expect certain side conditions to hold
apart from purely syntactical restrictions of the intermediate input language.
In particular, the conditions that have been checked, enforced or created by
preceding compiler phases do not need checking again. If for some reason they
are violated, a compiler phase may arbitrarily fail in the attempt to compile the
erroneous code. The feature of stopping and resuming the compilation process
is exclusively intended for the sake of compiler development and testing. In a
product version it is to be deactivated, which is good for robustness.

2.2.3 The S-Net Runtime Environment

A runtime environment implements the core behaviour of an S-Net language.
The runtime system is a rich library of system calls for runtime representations
of types and patterns, for setting up S-Net at runtime for the dynamic control of
asynchronous S-Net components and the communication channels among them.

Figure 2.12 shows a sketch of the runtime system architecture. The common
runtime interface is an abstraction layer that allows us to support different target

35

common runtime interface

PThread
based
runtime
system

Sequential
runtime
system

muTC
based
runtime
system

Figure 2.12. S-Net runtime system architecture. [106]

architectures without affecting the compilation and code generation process. For
the time being, we envision three destination architectures:

• Sequential execution

• Multithreading based on PTHREADS and

• Multithreading based on µTC(an intermediate language for programming
chip multiprocessors)

The common runtime interface shields the specific properties of these and
other target architectures from the S-Net compiler and code generator. Actu-
ally, changing the target architecture does not even require the recompilation
of an S-Net, but merely a link with a different runtime system implementation.
Hence, the selection of a specific concrete target architecture forms part of S-Net
deployment.

2.3 Data Flow Programming

Data flow programming is a paradigm based on the idea of a dataflow dia-
gram. Applications are modelled as a directed graph or as networks similar to a
dataflow diagram [31]. For this reason, applications are represented as a set of
nodes that contain input and/or output ports in them. Each node can receive
and send data. Nodes are connected by directed edges called arcs which define
the flow of information between them. In contrast to the traditional control-flow
model, a node is performed as soon as the node receives data from its input port.

2.4 The execution Layer LPEL

The Light-weight Parallel Execution Layer (LPEL) [109, 99] was designed to
be used by S-Net and it provides an efficient and flexible execution platform for
applications based on stream-processing for architectures with shared memory.
A stream-based coordination program is a set of components connected by chan-
nels called streams. Additionally, S-Net uses LPEL to control the mapping and
scheduling on shared memory platforms.

LPEL utilizes a user-level threading scheme for communication and threading
protocols in user-space. For this reason, LPEL uses the services provided by the

36

operating system and hardware, where LPEL runs to create threads, context
switching in a user-space and atomic instructions.

With the LPEL architecture, it is possible to deliberate the allocation of
available processing resources. LPEL also allows a large number of tasks to be
handled at the same time with lock-free synchronization techniques and user-
level threading.

The LPEL design is modular, and provides profiling information at execution
time, as well as mechanisms for managing tasks in the user-space.

It is possible to use LPEL to know when the execution of a user-level thread
is to start and stop. To know the execution time, LPEL can add a monitor
for the stream, and a stream communication for monitoring is necessary to do
this. This stream communication will be a slight overhead. It is also possible
to switch off the monitoring. LPEL uses a monitoring framework to observe the
mapping and scheduling activities. The following three kinds of monitor can
detect particular events:

• Mapping Event: if the task is allocated to a worker, a mapping event
occurs.

• Scheduling Event: if the task changes its state, a scheduling event oc-
curs. There are five task states: task-created, task-blocked-by-input, task-
blocked-by-output, task-resumed and task-destroyed.

• Resource Load: it is a monitor to see the overhead of workers.

LPEL provides good scalability and deployment of multiple available processor
cores. Scalability is supported because LPEL employs lock-free data structures.
Furthermore, LPEL’s characteristics include:

• Support for non determinism by being able to test the availability of new
data in input channels.

• Dynamic (de-)construction of the streaming network during runtime.

• Possibility of adapting the scheduling policy to the application require-
ments.

2.4.1 Architecture of LPEL

LPEL is implemented in the scheduling model of Parks [105] for process net-
works: The connection of the tasks is unidirectional and by streams, which are
modeled as bounded buffers. Tasks are suspended from execution upon writ-
ing to a full stream and reading to an empty stream. This model enables easy
implementation and renders parallel execution. Bounded buffers have the ad-
vantage of being able to provide back-pressure, but the downside is that they
can lead to artificial deadlocks in circular networks. Tasks are not directly exe-
cuted as operating system threads, but are executed as user-level threads in the

37

Figure 2.13. The architecture of LPEL [109]

LPEL context. Task management is tailored to LPEL task constructs and can
be efficiently implemented.

Figure 2.13 presents the LPEL architecture and shows six components: work-
ers, tasks, streams, monitoring, assignments and scheduling. We explain work-
ers, tasks and streams, because monitoring, assignments and scheduling are not
relevant for this thesis.

Workers and leader

The nodes in a stream-processing network are tasks that are executed in
parallel execution threads in the system. Workers [99, 100] are responsible
for executing tasks. Currently, LPEL defines one worker per processor. Thus
each worker represents a CPU core or a hardware thread. Then the number of
workers depends on the processing resources.

The reason for defining one worker per processor is to gain complete control
over the scheduling in each core. At the beginning of LPEL program execution,
one worker is defined as a leader.

Additionally, LPEL has a buffer that contains all the blocked tasks which is
called Central Task Queue (CTQ). This buffer is managed only by the leader
node of LPEL. Therefore, the leader distributes tasks from the CTQ to other
workers by the mapping policy to decide which task is assigned to each worker
using a time scheduling policy [100] to determine which task with a ready state
is next dispatched.

Leader

Figure 2.14. Example leader and two workers in LPEL

38

The task is returned to the leader when the worker completely performs the
task or if the task is blocked. Afterwards the leader stores the task in the CTQ.
An example of a LPEL system is shown in Figure 2.14.

Task

A program executed with LPEL is subdivided into different parts. For this
reason, the S-Net boxes are mapped to tasks in LPEL. This subdivision is be-
cause each task can be executed in parallel. Each subdivisions is called a task.
These tasks can be arbitrary chunks of work distributed into LPEL workers.

Tasks are not directly executed as operating system threads, but executed as
user-level threads in the LPEL context. LPEL uses the streams to know if a
task can be executed. The task reads the input messages from its input stream.
If there is not enough information in the stream to start task execution, the task
is blocked until the corresponding message arrives. The task is marked as ready
and is executed by a worker when all the input messages needed to perform
the task are in the input stream. Tasks are the processes that write the output
messages in the output stream.

LPEL has a scheduling policy that determines if a task is in a ready state to
be delivered to a worker. The state of a task is related to the availability of the
input data in the input streams. This means that if a task wants to read from
an empty stream, it is blocked and returned to the leader. If a task writes to
an empty stream, another task can be unblocked when that stream is its input
stream.

Mailbox

The communication in LPEL is by message passing. Then LPEL equips each
worker and the leader with a mailbox to allow notification of a worker, either
from outside of the worker or the leader. The message are stored to the receiver
mailbox and the worker performs the message received from outside.

The mailbox basically consists of a message queue, in which messages are
enqueued by other workers or the leader, and dequeued only by the owning
worker or leader. The number of messages a worker can receive is not bounded.

In LPEL this messages can contain a task that it will be performed by the
worker. Therefore, if the mailbox is empty and the worker is not running any
task, then the worker is waiting for a message that contains a task from the
leader.

Communication Model of LPEL: Streams

Streams are unidirectional communication channels among tasks, which is the
only way that tasks can communicate with each other. Streams encapsulate the
synchronization mechanism needed to block tasks and make them ready again
when data become available. Therefore, if task T tries to write to a full stream

39

or read from an empty stream, the task is blocked. Otherwise, task T changes
its state to ready. The stream can be read and written at the same time by
different workers on distinct processors. The idea is to use the task as a single
producer and another task as a single consumer.

Streams are represented as a First In, First Out (FIFO) buffer for storing
messages. These buffers are bounded to avoid memory overload. Bounded
buffers have the advantage of being able to provide back pressure. Therefore,
writing to a full stream causes the writing task to be blocked. The disadvantage
is that streams can lead to artificial deadlocks in circular networks.

2.5 Chapter Summary

This chapter provided background information on fault tolerance including
their features and classification. This chapter also described the execution model
supporting S-Net stream languages and data flow programming. Furthermore,
it is presented an instantiation of the execution layer LPEL that is used as
benchmark platform for experiments to give fault tolerance to S-Net and LPEL.

40

Chapter 3

Related Work

The growing number of nodes in distributed systems has increased the proba-
bility of failures. Therefore, there is demand for development of techniques to
detect and tolerate failures by losing a small fraction of computational perfor-
mance. The idea of fault tolerance is to return the system after a fault happened
in a consistent state so the system can recover execution from an inconsistent
state.

Schoeder and Gibson [117] showed that failure rates in new hardware compo-
nents of current systems increase compared with the old systems. Their work is
based on the incidents that occurred over a nine year period in the Los Alamos
Research Center. The conclusion of their work was that between 40% and 80%
of failures, depending on the cluster size, are caused by a problem in a node of
the cluster.

The study of fault tolerance techniques is not a new issue as they have been
investigated for many years. Indeed they have become more important since
the 1970s [34]. Additionally, evolution of computers and their application mean
that these techniques are constantly studied in order to offer evolutionary and
adaptive improvements to emerging systems.

In this thesis we focus on fault tolerance techniques related with leader election
and rollback-recovery protocols for distributed systems.

3.1 Leader Election

Although the leader election problem has received plenty of attention in
message-passing systems, very few solutions have been proposed for shared-
memory systems. Guerraoui et al. present a leader election protocol for an
synchronous shared memory [63]. Their approach is based on keeping an array
of integer counters in a shared memory, with one entry per node. Each node
has a static id, and the node with lowest id that is alive is assumed by all to be
the leader. The approach is based on periodically polling shared memory by all
the alive nodes in order to confirm the continuous availability of their currently
assumed leader. The node that currently acts as leader periodically increases its
counter in a shared memory to indicate its availability. The nodes that do not
act as leader only read shared memory, but do not update it. For each node,

41

the approach requires the periodic polling of all the node ids lower than its own.
If a node sees that all the nodes with ids below its own have stopped to confirm
their leader status, by increasing their counter value, than this node assumes
the leader role, and consequently starts to periodically increase its own counter.
This approach does not assume any knowledge about worst-case response times,
but rather learns a sufficiently high timeout value over time by constantly dou-
bling a delay factor. Once these timeouts have been established, the so-called
synchronous state of shared memory is reached. The algorithm does not provide
any guarantees about when this synchronous state is reached, and a node cannot
be sure as to whether the current state is already a synchronous state or not.

In comparison to our leader election method, the strong side of the approach
by Guerraoui et al.’s approach is that they do not rely on a synchronisation
feature like CAS (there is more information about CAS in Section 5.1.1) as
we do, but provide a more general application domain. In contrast, if CAS
is available, our approach has several advantages. Guerraoui et al.’s approach
relies on a node id used as a static priority to become leader, whose drawback is
that the re-integration of a previously failed node causes unnecessary switches
of the leader. Guerraoui et al.’s leader determination might sporadically lead
to inconsistent views of the leader role should the current synchrony state not
be stable. Furthermore, while we maintain only the data related to the current
leader in the shared memory, Guerraoui et al. maintain a vector with entries for
each node, and this makes their approach more data-intensive and more complex
for updating purposes if new nodes arrive at the system.

A series of papers have focused on acquiring the best time and space com-
plexity of leader election by Test-And-Set (TAS) implementations. Alistarh [3]
implemented an algorithm, called RatRace protocol [4], that uses TAS to elim-
inate nodes, then the last node that is not removed is declared leader. The
idea of this algorithm is to eliminate nodes with a sequence of sifting rounds,
where each one reduces the number of survivors to roughly the square root of
the number of processes that enter the round. More specifically, the algorithm
is divided into O(log log n) rounds. In each round, the node flips a binary
biased coin. If the coin is 1, the node writes its identifier to the position of the
round in the array in the shared memory, and then goes to the next round. If
the coin is 0, the node reads the position of the round. If this array position
has no data, the node goes to the next round. If there are data when the node
reads the array from the shared memory, then nodes are marked as a losers,
and lose the competition to become leader. When all rounds have finished, the
survivor nodes participate in a RatRace protocol. In RatRace, each node will
first acquire a temporary name, and then compete in a series of two nodes using
TAS instances to decide the winner. The RatRace winner becomes the leader
of the system.

The nodes in Alistarh’s algorithm write to the shared memory in each round
and the space complexity related to the shared memory is O(n), where n is the
number of nodes in the system. In our work, the space complexity is constant
independently of the number of nodes. Another differences to our work is the

42

step complexity. The step complexity in Alistarh’s algorithm is O(log log n),
while our algorithm has O(1).

Afek et al. [2, 127] extend the tournament binary tree idea of Peterson [107],
where binary tree nodes are the winners of two processes that compete to be
elected using TAS. When two nodes compete to become leader, the node that
first modifies the shared memory is the winner and the other is the loser. Then
the winner goes to the next leaf of the tree and competes against another node.
If there are no more nodes to compete, the node that arrives at the last step of
the binary tree becomes leader. The outcome of each node competition is stored
in the shared memory, and the space complexity is O(log n). The authors’ algo-
rithm has step complexity O(log n) and was the first algorithm with logarithmic
step complexity. Our solution has a constant step and space complexity.

Golab [56, 57] uses the Remote Memory References (RMRs) metrics to mea-
sure the performance of algorithms that solve a consensus and other related
problems in two asynchronous shared memory models. The RMRs are defined
to be the worst-case number of remote memory references by one process in order
to enter and then exit its critical section. A remote memory reference is a shared
variable access that requires an interconnect traversal. Golab provides deter-
ministic Test-And-Set and Compare-And-Swap implementations with constant
complexity in RMRs terms and an asynchronous shared memory model with
no process failures. The algorithm proceeds in asynchronous merging phases,
where nodes are divided into teams and a random node per team is elected as
a leader of the team. As the leader of a team competes against another leader
team. The winner team goes to the next step, where the leader is marked as a
loser and a random node inside the team is selected as a leader. The loser team
is marked as a loser. A separate flag register per node is stored in the shared
memory to the losers and the winner.

In contrast, our approach uses only one variable in the shared memory, in-
dependently of the number of nodes. The algorithm does not need to pass
steps/phases to elect a leader. In Golab’s approach, only the leader of the team
has access to the shared memory by TAS or CAS. In our case, all the nodes
have access to the shared memory to find out who the leader is. However, Go-
lab’s approach is to better control how many times the node accesses the shared
memory. Golab’s algorithm cannot continue if a failure appears in a node that
participates in leader election. In our case, we create a fault tolerance method
that allows one or many failures at any time, and includes the reinsertion of
crashed nodes into the system.

One characteristic of our algorithm is that although each node has a unique
identifier, the system nodes do not need to know the identifiers of the other
nodes as in the algorithms proposed in other works [51, 52].

3.2 Rollback-Recovery

Checkpointing and message logging protocols are well-known automatic and
transparent fault tolerance techniques. In the literature, we can find three dif-

43

ferent classes of checkpointing protocols:

1. uncoordinated checkpointing

2. coordinated checkpointing

3. communication-induced checkpointing.

There are three different classes of log-based rollback-recovery, depending how
and when events are logged:

1. Optimistic

2. Pessimistic

3. Causal [112]

.
Regarding log-based rollback-recovery mechanisms, they are also known as

message-logging protocols and there are fault tolerance mechanism based on
the Piecewise determinism assumption [122]: the rollback-recovery protocol can
identify and store all the non-deterministic events created by each process. Each
non-deterministic event contains all the necessary information to repeat the
event in the recovery mechanism. Then if the PWD assumption holds, the
restore mechanism of the log-based rollback-recovery protocol uses the non-
deterministic event stored to recover the process before a failure appeared.

Some works about log-based rollback-recovery assume that non-deterministic
events are only the events created by communication between processes, such as
the reception and delivery of messages [46].

Section 2.1.5 offers a formal definition of checkpoint and log-based rollback-
recovery protocols.

Johnson and Zwaenepoel [73] present a system that uses a pessimistic message
logging protocol. Each sent message contains a unique identifier called a Send
Sequence Number (SSN). This identifier is used to discard duplicate messages
in the restore mechanism. Then a sender process asks the receiver for a Receive
Sequence Number (RSN). A RSN is a counter of all the messages received by a
process. Then the sender process delivers the received messages in accordance
with the RSN assigned to each one.

Our proposal adds an identifier to each piece of data written or read in the
stream, but the process cannot send messages between them. In our system,
communication lies between the leader process and the worker process, and
direct communication between different workers is not allowed.

MPICH-V [23] uses an uncoordinated checkpoint protocol along with log mes-
sages to preserve the status process and to recover a failed process if a fault
appears. This implementation is designed for large-scale computing using het-
erogeneous networks, and it uses reliable stable memory called channel memo-
ries. Processes are created using MPI, and then each MPI process has access
to a channel memory. When a process sends a message to another process, the

44

message is sent to the channel memory of the receiver. Whenever the process
wants to receive messages, the process reads its own memory channel. The idea
is to store all messages and to use them to restore the process.

MPICH-V2 [27] is an improvement of MPICH-V, in which messages are stored
locally by the sender and only information about the reception of the message
is stored in the channel memory of the receiver.

If we compare MPICH-V and MPICH-V2 with our protocol, we use other
non-deterministic events, and not only the events related to reading or writing
a message (in our case, reading or writing to the stream). Additionally in our
algorithm, the process stores a checkpoint of the task that is involved, and
does not need to restart the process from the beginning, as in MPICH-V and
MPICH-V2, because our approach processes messages independently.

Manetho [47] is the first implementation of a causal message-logging protocol.
Manetho’s idea was to force each process to keep an antecedence graph, which
is a directed acyclic graph that records the causal relationship among all the
messages sent in the system. Therefore, messages can be restored with the
information in the antecedence graph. Thus when a process sends a message, it
does not send all the antecedence graphs with the message, but only attaches
the sufficient information to allow the receiver to reconstruct the antecedence
graph with the received message. When a failure appears in a process, the other
processes can use their portions of the antecedence graph to restore the failed
process.

In our proposal, the restore mechanism is independent, which means that
when a failure affects a process, this process can self-recover without help from
any another process. Additionally, the processes in our algorithm do not have
an antecedence graph.

Acharya and Badrinath [1] propose an uncoordinated checkpoint protocol for
distributed applications in mobile computers, where the nodes are Mobile Hosts
(MH). Then the system can arrive at a global consistent checkpoint without
coordination messages. The protocol uses Mobile Support Stations (MSS) as
stable storage to save MH’s checkpoints. An MH takes a checkpoint, which is
saved into the MSS when an MH connects to a new cluster and before discon-
necting from another cluster. These authors define a message log that contains
the state of an MH. With this approach they attempt to resolve the problems
of search costs, frequent disconnections and lack of stable storage.

The Acharya’s mechanism uses the last checkpoint stored into the MSS losing
all the computation done between this checkpoint and the moment before the
fault appears. In our case, we use log registers to restore the node’s state closer
to the previous moment of the fault appears, giving less computation overhead
in the system.

Taesoon Park and H.Y. Yeom [104] present an optimistic message logging
protocol for mobile computing systems. To resolve the stable storage problem
in an MH, the MSS are responsible for performing the tasks of message logging
and dependency tracking. Checkpoints are sent by the messages among MSS
to reduce dependency, whereas the messages among the MHs that reside in the

45

same MSS are traced from the message sequence. Given the little overhead
and asynchrony, MHs are not involved in any coordination and the system can
recover from failures using the information from MSS.

The Taesoon’s approach can handle multiple and concurrent failures, exactly
as our proposal can. The difference with our approach is that we are focused in
distributed systems with shared memory instead of mobile computing systems.
Additionally, Taesoon’s approach restore the MH from the last checkpoint stored
into MSS, causing that the checkpoint saved is old and the MH is restored to an
old state losing computation time. Instead of that, we use log registers trying
to restore the state of the worker to be closest to the last state of the processor
before the fault appeared.

Guohong and Singhal [30] created a new approach called mutable checkpoints.
The idea of mutable checkpoints is to modify the coordinated checkpoint proto-
col in an attempt to minimize the overhead generated by this protocol by taking
checkpoints anytime and anywhere, i.e., local disk. So these mutable checkpoints
help save space in the stable storage without forcing the transmission of large
amounts of data over the whole network, thus cutting the time of overheads
and the number of checkpoints taken. Therefore, the advantage of this proposal
is the reduction in the number of irrelevant checkpoints, while the overhead of
taking mutable checkpoints becomes negligible.

The Guohong’s mechanism is a modification of the coordination checkpoint
method and it can be affected by the domino effect, causing that the processors
return to the initial state. Our approach is free of the domino effect, in case
a fault affects one processor, not being disrupted the rest of processors for the
apparition of this fault.

Chaoguang Men et al. [93] create a logging message protocol for cluster-based
mobile ad-hoc wireless networks. Each cluster has a Cluster Head (CH) node
where the checkpoint index, a node queue and a variable that counts the number
of reply messages are stored. This CH is responsible for performing channel
assignment, communication data and schedule intra-cluster traffic, whereas the
node stores a checkpoint in its stable storage. Therefore, log messages are stored
into the CH of the cluster. The CH sends special messages called beacon packets,
to manage the nodes in the cluster. This special message is used to create
two intervals to distinguish in which interval a node should take a checkpoint.
The CH delivers all the parameters related to the node when a CH receives a
checkpoint request from a node that attempts to restore its state.

The CH forces the nodes to take checkpoints, however, in our approach the
checkpoint is taken for the nodes in an independent way, without being forced for
other nodes or clocks. Then, we do not have the problem of a unique node that
forces the rest of nodes to take checkpoints, being our nodes independent to take
their own checkpoints and log messages without external demand. Additionally,
our method does not use beacon packets to control the nodes, that implies the
nodes have to be connected among them. Instead of using this beacon packets to
restore the node, our approach is focused in an independent restore mechanism,
that allows the nodes to work independently.

46

Sapna, Chen and Ying [55] describe a logging message protocol for a dis-
tributed system separated into clusters where checkpoints are taken if, and only
if, a process exceeds a specific number of cluster changes (threshold). A process
is forced to change its cluster by the system. The system reallocates the pro-
cesses depending of the application performed by the cluster. Then a process
takes a checkpoint if the process was forced to change its cluster a threshold
number of times. This threshold is calculated with a performance model based
on stochastic petri nets [16], where the parameters are the log arrival rate, failure
rate and mobility rate of the process. As a result, each node has an independent
checkpoint and message logging protocol, and the system optimizes the recovery
cost, recovery time and storage issues.

The processes in Sapna’s approach needs to exceed threshold to take a check-
point. Sapna needs to constantly update the threshold depending of arrival
rate, failure rate and mobility rate of the process into the cluster. Therefore,
maintaining this threshold gives overhead into the cluster. Comparing with our
approach, we do not define a threshold using the non-deterministic events to
save the checkpoints and log messages necessary to restore the nodes in case of
a fault appears. As a result, our approach does not need to use a process to
calculate a threshold. Regarding the recovery cost, recovery time and storage
issues, Sapna’s approach and our approaches are optimized to work with lower
system overhead, but the overhead in failure-free time is lower in our approach
than Sapna’s approach.

Jiyang et al. [71] propose a combination of communication-induced check-
pointing and an optimistic message logging protocol for distributed systems,
where the whole process shares stable storage. At the beginning, all processes
use the communication-induced checkpoint protocol to create a checkpoint that
accomplished consistent global state of the system and the processes store a
copy of the checkpoint created into their local memory. After that, this protocol
allows processes to take locally provisional checkpoints and to store them in sta-
ble storage whenever there is no contention for stable storage. So each process
stores the provisional checkpoint in its local memory and then flushes it to sta-
ble storage when stable storage is ready. Regarding optimistic message logging,
each process stores in its local memory all the messages sent and received after
a provisional checkpoint has been created. After some time, all processes are
forced to take a global state checkpoint and the log messages stored into their
stable storage are removed when this new checkpoint is taken.

In our approach, we do not need to create a global consistent checkpoint
to have a consistent global state, because we allow the processes to use the
restore mechanism independently. Then, if a fault affects a process, the rest
of the processes are not affected and can continue with their work without any
notification of the fault occurrence. Additionally, the nodes in our approach do
not use their local memory to store a consistent global state. As a result, our
approach has lower storage complexity than Jiyang’s approach.

Tong-Ying and Meng-Chang [77] propose a new independent checkpointing
protocol for distributed systems organized as cluster-based structures. Each

47

cluster has a coordinator process that manages all the communications inside
the cluster and the garbage collection of stable storage. Then processes can
communicate only with the coordinator in the same cluster as theirs. Each
process has internal stable storage that can be read and written by the process
and the coordinator process. A process periodically stores its current state, as
well as a history of the messages received and sent in its stable storage. The
author creates a rollback-recovery method using the information stored in the
stable storage of each process. A processor is restarted from its most current
checkpoint in the event of failure.

Instead of Tong-Ying’s approach, each process in our mechanism has a stable
storage that can be read and write only by the own process, and the coordinator
(leader) cannot access to the stable storage. Other difference with our approach
is the periodically storage of checkpoints. Then, Tong-Ying uses clocks to force
the process to take a checkpoint after a specific time. In our case, we do not use
clocks. Furthermore, the coordinator in Tong-Ying is responsible of the garbage
collection, however, in our approach, the processes are responsible to remove the
information inside their local stable storages.

3.3 Chapter Summary

In this chapter, we have presented a range of work related to two aspects
of the context of this thesis. These are leader election and rollback-recovery.
For leader election, we presented approaches where leader election methods use
atomic operations to elect a new leader in the system. The second part of this
chapter is focused on the approaches related to rollback-recovery mechanisms
developed for distributed systems with stream processing networks.

48

Chapter 4

Fault tolerance for parallel
stream-processing systems with
shared memory

The main objective of fault tolerance techniques in distributed systems is the
execution of work, even if a fault appears in any system component. These
features are sought by paying a minimum overhead in the system’s operational
complexity.

This section presents the fault model by representing the faults that our sys-
tem can handle. Afterwards, we describe various options for fault tolerance, and
the advantages and disadvantages of each one, by starting with data replication
and continuing with rollback-recovery strategies. At the end of this section, we
can find a summary of the methods explained and why we selected the method
used in this thesis.

4.1 Fault Model

From the fault tolerance perspective, we consider the computer system to be a
subsystem that is embedded in its environment of the particular use case, which
we call system. This environment embodied by the use case also determines
what kind of faults we need to consider in order to make the overall system
sufficiently robust. At the same time the environment also dictates what failure
behaviour the computer system may exercise.

For faults, we consider the classification described in Section 2.1.1, where only
the marked types (bold style) of the faults are considered in this thesis:

• Fault nature: hardware(Digital and Analogical)/software

• Fault duration: permanent/transient/Intermittent

• Fault extension: local/global

• Fault variability: Determinate/Indeterminate

49

We consider only the faults manifested at the hardware level because we as-
sume that the faults manifested at the software level are primarily covered al-
ready within the software engineering and verification process. Obviously, errors
may still remain in the software after verification, but we assume likelihood to be
low enough to justify that decision. At the same time, we focus primarily on the
faults whose states that do not change with time (determinate). Furthermore,
we treat the faults that are permanent or transient in the system.

A characteristic feature of distributed systems that distinguishes them from
single-machine systems is the notion of partial failure [85]: part of the system is
failing while the remaining part continues to operate, and seemingly correctly.
This property shows that distributed systems are affected by local faults. As a
result, this thesis focuses on local faults.

Regarding the failures described in Section 2.1.2, we have to ensure that the
affected node by fail-silent failure is rebooted and reinserted into the system
when fail-silent is detected. Omission and timing failures are not dealt with in
this thesis because our approach focuses on neither the communication protocol
of the system, nor the synchronous distributed system. For Byzantine failures,
this thesis is not focused to detect these kind of fault, instead of, the approach
presented has a mechanism to handle and repair these failures when a Byzantine
failures affects a data in the stream.

Regarding development, certification and maintenance costs, the created al-
gorithms do not affect theses costs. The inclusion of fault tolerance and safety
features in software designs typically incurs extra operational costs, and can re-
duce system performance. Operation costs are higher if the system employs the
created algorithms compared to the system not using them. Losing performance
is a small price to pay for acquiring a system that can support faults.

Additionally, the implementation of leader election and log-based rollback-
recovery into LPEL and S-Net supports different flags to control that one that
is desirable:

• ANY FAULT TOLERANCE: The user does not want any fault tolerance
mechanism.

• LEAD ELEC FT TYPE: Only the leader election mechanism is allowed.

• CHECK RES FT TYPE: Only the log-based rollback-recovery is allowed.

• ALL FAULT TOLERANCE: The leader election and log-based rollback-
recovery are used during the execution time.

If no flag is set, the application is executed as normal, but without the fault
tolerance mechanism.

4.2 Fault Detection

In this thesis, we do not focused on fault detection. However, we present
a simple timeout-based fault detector which is suitable if we can assume fail-
silent behaviour of the failed nodes. The fail-silent detected in the experiments

50

is based on the failure of the leader what causes the leader cannot continue
working. Therefore, this fault detector, called notification message, is used by
the leader election experiments and detects when the leader crashes.

We assume that all the messages are always sent and received without prob-
lems. Then workers cannot detect when the leader crashes. For this reason, we
implemented the method called notification message to know if the leader is
alive or not. Then the worker uses the notification message to detect the leader’s
failure and starts the leader election mechanism.

The timeout for this notification message is define as 3 seconds. This is enough
time that a worker needs to receive the confirmation message from the leader in
our benchmark examples.

Figure 4.1 shows the behaviour of the notification message method. There
are two ways that a worker can detect the leader’s failure.

1. When a worker returns a task to the leader, the worker awaits a specific
timeout (3 seconds) for a notification message from the leader.

If the worker does not receive the notification message from the leader
within this timeout, the worker resends the task and again awaits the
same specific timeout (3 seconds) for a notification message.

In case that this second time the notification message is not received, the
worker begins the leader election method.

2. When a worker is idle (non-busy) and is waiting for a new task from the
leader. If the worker does not receive a task before an estimated timeout
(3 seconds), the worker sends an alive message to the leader. This alive
message is to know if the leader is still working or not. Therefore, if the
worker does not receive the reply for the alive message sent from the leader
before the estimated timeout ends, the worker assumes that the leader has
crashed and the worker starts the leader election mechanism.

4.3 Leader Election Mechanism

The leader election is a fault tolerance mechanism that consists to elect a new
leader after the leader of the system has crashed.

There are a lot of works related to a leader election mechanism for distributed
systems. The problem of these works is that all nodes of the system need to
participate in the leader election, causing that the system is stopped when the
nodes are performing the leader election. In our case, we wanted a leader election
mechanism that did not interrupt or force the nodes to wait for other nodes for
electing a new leader. In addition, we wanted to have a fast and consistent
leader election algorithm.

One of the thesis’ goals is the creation of a fast and consistent leader election
algorithm for S-Net and LPEL systems.

For this reason, we have created a leader election algorithm to elect a new
leader among the non-busy nodes, while the busy nodes will update their infor-
mation about the leader after finishing their task.

51

Figure 4.1. Notification message behaviour of the workers

In our algorithm, nodes do not store the id of other nodes, not occupying
the local memory of the nodes. Removing the necessity to know the id of other
nodes, our algorithm allows to keep a low space complexity.

We also reduce the number of messages among nodes to 0, thanks to avoid
the communication among nodes.

Regarding the consistency, the algorithm created assures that only one leader
can be elected per leader election.

In case the leader is affected by a fault, it loses its condition of leader and it
is reintegrated as a worker by the system.

In summary, our leader election has the following features:

52

• Nodes do not know the id of other nodes.

• The number of messages among nodes is 0, independent of the amount of
nodes.

• Only non-busy nodes participate in the leader election.

• A crashed leader is reintegrated in the system as a worker.

With all these characteristics, our leader election achieves a low execution
time overhead.

4.4 Rollback-Recovery Mechanism

One of the ideas of this thesis is to create a system that works for all the appli-
cations developed in S-Net and LPEL without using extra hardware resources.
For this reason, we rule out replication mechanisms because a work is made up
by two processes or more using hardware resources.

Regarding the rollback-recovery mechanism, Lemarinier’s article [90] com-
pares the coordinated checkpoint to the pessimistic log-based protocol imple-
mented in MPICH-V [24]. The result of the paper shows better times for the
pessimistic log-based protocol during the recovery mechanism than the coordi-
nated checkpoint. Yet the latency and complexity of the recovery mechanism
are bigger in the pessimistic log-based protocol. Based on this work, Paul’s
journal [118] indicates that it is important to choose a protocol that best suits
the system, application and requirements used. For this reason, we create the
Table 4.1, which shows the differences between the log-based rollback-recovery
protocols in order to help us choose the best fault tolerance mechanism for S-Net
and LPEL.

We seek a mechanism that avoids orphan processes and has low performance
deterioration. So in uncoordinated checkpointing, CIC and optimistic logging
are not selected for our approach. We intend to avoid interrupting the work
of the process, thus we wish to create a non-blocking mechanism. As a result,
coordinated checkpointing is also ruled out. Additionally, we seek a mechanism
with no significant performance deterioration. Therefore, pessimistic logging is
not suitable for our proposal. Causal log-based rollback-recovery is the
fault tolerance mechanism used in this thesis.

The disadvantage of casual logging is the complexity of the recovery and
garbage collection mechanisms. For the recovery mechanism, the algorithm of
this thesis does not store an antecedence graph of each message. Instead we
create a new role of a process called Fault Tolerance Control, which is used for
processes to perform the recovery mechanism. For garbage collection, we explain
in Section 6.1 a method to remove the useless data stored in each stable storage.
With these modification, our log-based rollback-recovery mechanism can be used
for distributed systems with stream networks, LPEL and S-Net.

53

Uncoor.
check-
pointing

Coor.
check-
pointing

CIC Pessimistic
Logging

Optimistic
Logging

Causal
Logging

Checkpoint
/process

Several 1 Several 1 Several 1

Domino
Effect

Yes No Yes No Yes No

Orphan
processes

Yes No Yes No Possible
(temporal)

No

Rollback
extent

Unbounded Last global
checkpoint

Possibly
several
check-
points

Last
checkpoint

Possibly
several
checkpoint

Last
checkpoint

Recovery
data

Distributed Distributed Distributed Distributed
or local

Distributed
or local

Distributed

Recovery
protocol

Distributed Distributed Distributed Local Distributed Distributed

Output
commit-
ted

Not
possible

Global
coordination
required

Global
coordination
required

Local
decision

Global
coordination
required

Local
decision

Table 4.1. Summary of the log-based rollback-recovery protocol [49]

4.5 Chapter Summary

This chapter has presented an overview of the features developed and used
for our leader election and log-based rollback-recovery mechanisms. The combi-
nation of our leader election and log-based rollback-recovery allows LPEL and
S-Net to support permanent and transient faults that appear in the hardware
of the system.

In spite of this thesis is not focused on the development of a fault detec-
tor, however, we created a notification message mechanism (timeout-based fault
detector) used by our leader election experiments to detect when the leader fails.

We also explained why we decided to create a new leader election algorithm
used by LPEL and S-Net, instead of using an existent one. We aimed to develop
a fast and consistent leader election algorithm not presented in other algorithms,
and we have achieved it.

With regard to the rollback-recovery mechanism, we chose the behaviour of
the casual logging on account of the beneficial characteristics we exposed before
in this chapter. Besides, we have partially modified its behaviour to adapt our
algorithm for distributed systems with stream networks, such as, the creation of
the FTC role and the absence of the antecedence graph. Its implementation is
used by LPEL and S-Net.

54

Chapter 5

Leader Election

This section describes some foundations and assumptions required to understand
our leader election method. First of all, our leader election method purely
addresses the leader election problem after the failure of the leader, but does
not address the issue of detecting the failure of the leader in the first place.
The problem of leader failure detection is an orthogonal problem that is to
be considered separately. The leader election method starts when the system
detects the failure of the leader node. As only all the non busy nodes take part
in the leader election method, no global consensus with all nodes is required
in order to nominate the new leader. Our leader election method ensures that
currently busy nodes will merely and correctly update their leader reference
information.

5.1 Preliminaries

The failure of a node, or the unexpected termination of a task somewhere in
the system, does not immediately affect the other nodes. Each node in the sys-
tem can fail independently, which leaves the others still running and unaffected.
Consequently, one of the advantages of using distributed systems is the indepen-
dent failure of nodes [38]. As a result, there are only local faults in distributed
systems, and global faults are avoided. Our algorithm has, therefore, focused on
handling local faults.

Moreover, faults can appear in either software or hardware. Hardware failures
used to be more common than software failures. Yet with all the recent inno-
vations in hardware design and manufacturing, now they tend to be fewer and
far apart, and most of these physical failures tend to be the related network or
drive. This kind of faults can appear because of CPU errors or problems with
energy, for example. This faults are shown in the thesis as a failures what causes
the leader crashes and cannot continue working.

Any of these faults can be either fail-silent faults [28] (also known as fail-
stops) or a Byzantine failure [32]. A fail-silent fault is one where the faulty
unit stops functioning and produces no bad output. More precisely, it produces
either no output or output that clearly indicates that the component has failed.
A Byzantine fault is one where the faulty unit continues to run, but produces

55

incorrect results. The faults treated in our election method are fail-silent hard-
ware faults, because we are assuming that the leader cannot continue running
after it is affected by a fault.

Although our leader election method runs even in the event of multiple failures
in the system, this algorithm is only used for solving a leader crash and does not
take other failures into account. If several nodes crash, including the leader, our
algorithm utilizes the unaffected nodes. If all nodes except two fail at the same
time, the leader election can elect one of the unaffected nodes as a leader node
and the remain node as a worker. Normally, the systems need at least a worker
and a leader. If there is not a leader in the system, the worker cannot receive a
task that the worker will perform. On the other hand, if there is not workers in
the system, the leader could not have worker to perform tasks.

Additionally, our solution is not restricted to any particular system topology,
and the communication mechanism is based on messages passing among nodes.
These nodes use the information in their local memory to communicate with the
leader. If the leader has crashed, each node starts leader election, and either
becomes a new leader or updates its local memory with the information in the
shared memory.

5.1.1 Atomic operations

An atomic operation is defined as an indivisible operation with no intermediate
state of its execution, and it cannot be interrupted or partially performed. The
entire operation is either performed or not. This is important when multiple
processes operate on the same memory area, and we need to guarantee that
each node completely accesses. When a node runs an atomic operation, the other
nodes see it as happening instantaneously. The advantage of atomic operations is
that they are relatively quick compared to locks and do not suffer from deadlock
and convoying. The disadvantage is that there is only a limited set of operations:
read, write, and RMW (read-modify-write).

Depending on the platform used, we can find: Compare-And-Swap (CAS) or
Load-Link/Store-Conditional (LL/SC).

The Compare-And-Swap (CAS) instruction was developed in the 1970s by
IBM 370, and is now a standard instruction in many microprocessors, such
as ARM microprocessors for mobile phones (ARMv6 and above). The CAS
instruction is also used in several other architectures, such as x86, x86-64, or
IA64 (Itanium).

The advantage of the CAS instruction is its atomicity. If multiple threads try
to perform this operation simultaneously at the same memory address, only one
thread succeeds and the others fail, but the other threads do not block. Instead
they can continue with other operations or try again. This means that when
multiple nodes attempt to update the same variable simultaneously using CAS,
one wins and updates the variable’s value, and the rest lose, but the losers are
not punished by suspension [43].

In our leader election algorithm, we use a CAS instruction with three argu-
ments:

56

• First argument: a memory reference.

• Second argument: data to be compared with the value in the memory
referenced by the first argument.

• Third argument: if the comparison evaluates to true, the algorithm
stores this value in the memory referenced by the first argument, otherwise
it does nothing.

• Return value: the result of the comparison: true if the value in the
memory referenced by the first argument equals to the second argument,
false otherwise.

Algorithm 3 The instruction Compare-And-Swap (atomic)

1: function CAS(int ⇤p, int cmp, int new)
2: bool retval := false;
3: begin atomic;
4: if ⇤p == cmp then
5: ⇤p := new;
6: retval := true;

7: end atomic;
8: return retval;

Algorithm 3 shows that if the current value of the variable at address p equals
the value cmp, then the variable value referred to by p is set at the value of new
and true is returned; otherwise false is returned and the variable value referred
to by p does not change. All this is carried out atomically, indivisibly and with
no partial effects.

If the Load-Link/Store-Conditional (LL/SC), the Load-Link (LL) instruction
returns the current value of a memory location, the Store-Conditional (SC) in-
struction to the same memory location stores a new value, but only if no updates
occurred at that location since the Load-Link instruction was performed. LL/SC
is used on Alpha, PowerPC, MIPS and ARMv6 architectures, and can emulate
CAS behaviour.

Algorithm 4 shows how CAS can be implemented using LL/SC. Implementing
LL/SC in architectures that only support CAS primitive is possible, but not that
straightforward. Details are provided in [94].

5.2 Algorithm

We now present our leader election method. We first start with a simplistic
approach that can only tolerate persistent hardware faults (Algorithm 6). Then
we extend this approach in order to also support non persistent hardware faults
(Algorithm 7).

57

Algorithm 4 Implementation of Compare-And-Swap based on the LL/SC in-
structions

1: function LL(int *p)
2: return *p;

3: function SC(int *p, int new)
4: begin atomic;
5: if p has not been written to since this thread last called LL(p) then
6: ⇤p = new;
7: return true;
8: else
9: return false;

10: end atomic;

11: function CAS(int *p, int old, int new)
12: if LL(p)! = old then
13: return SC(p, new);

14: return false

Figure 5.1. The different states of a worker.

At the beginning of our research, the leader election algorithm requires one
variable in the shared memory: the id of the current leader. If the leader crashes,
the remaining nodes compete to become the new leader. To compete during
leader election, each node stores a copy of the current leader in its local memory.
Figure 5.1 shows the behaviour of each node in the system to communicate with
the leader.

Algorithm 5 shows a procedure called CommunicateWithLeader. This proce-
dure is called per node when the node tries to send a message to the leader.
The node uses the function Communicate (line 6) to send the message to the
leader. This function is called using the information inside the node, such as the
id to contact the leader (nde.lid) and the message sent to the leader (buf). At
this point the node does not use the information stored in the shared memory,
instead it uses the information stored in its local memory. If the message never
reaches the leader, then the Communicate function returns false, otherwise, it
returns true. Remember that the topic of this thesis is to repair the problem

58

Algorithm 5 Algorithm to send message to the leader

1: procedure CommunicateWithLeader(nde, buf)
2: leaderContacted := false
3: do
4: // function Communicate(sender, message)
5: // returns true if the message is received without problems
6: if Communicate(nde.lid, buf) == true then
7: leaderContacted := true;
8: else
9: // communication with leader failed ! volunteer to become new

leader
10: LeaderElection(nde);

11: while leaderContacted == false;

when the leader stops work and not to detect if the leader crashes. For example,
Communicate could use a handshake protocol with a timeout to be awaken. If
the leader is broken, the node starts the leader election method.

After leader election, if the node does not become the new leader, it tries to
communicate with the leader. At this time, the information stored in its local
memory is updated in the leader election method.

Algorithm 6 Simple leader election algorithm (only for persistent faults)

1: procedure LeaderElection(nde)
2: // Try to become new leader
3: if CAS(shm.lid, nde.lid, nde.id) == false then
4: // Someone else already became new leader ! store new leader id

locally
5: nde.lid := shm.lid;
6: else
7: // Only one node enters here to become new leader
8: // Cleanup current task and change role to leader
9: BecomeLeader(nde);

Algorithm 6 is the pseudocode for our leader election method. Nodes run
this method after they realize the leader no longer works. The argument of this
procedure is the information stored inside the node’s memory. At the beginning
of the method, a node compares the leader id in its local memory (nde.lid)
with the identifier of the leader in the shared memory (shm.lid) using the CAS
instruction. In Algorithm 6, the first CAS argument is the address of the leader
id in the shared memory (shm.lid); the second CAS instruction parameter is the
leader id contained in the node’s local memory (nde.lid); the third one is the
identifier of the caller (nde.id).
Two cases can occur with leader failure:
In the first case, when the node performs the LeaderElection method, the

59

Sequence Node 1 Node 2 Node 3 Shared Memory
1 n1.lid:3 n2.lid:3 LEADER CRASHES shm.lid:3
2 ContactLeader(n2.lid:3)7 Reinsertion(n3.lid:-1) shm.lid:3
3 CAS(3, 3, 2)7 ContactLeader(n3.lid:-1)7 shm.lid:2
4 BecomeLeader() CAS(2,�1, 3)7 shm.lid:2
5 LEADER CRASHES n3.lid:2 shm.lid:2
6 ContactLeader(n1.lid:3)7 ContactLeader(n3.lid:2)7 shm.lid:2
7 CAS(2, 2, 3)3 shm.lid:3
8 CAS(3, 3, 1)3 BecomeLeader() shm.lid:1
9 BecomeLeader() shm.lid:1

Table 5.1. The ABA problem

leader id stored in the shared memory differs from the leader id contained in
the node. This means that this node loses the competition to become the new
leader of the system. Accordingly, another node executes the CAS instruction,
and then the leader id stored in the shared memory differs from the leader id
contained in the loser node. Therefore, the node updates its local memory and,
once updated, it finishes the method.

In the second case, the leader id stored in the node (nde.lid) and that stored
in the shared memory (shm.lid) are equal. Then the CAS instruction sets the
identifier of this node (nde.id) as the new leader id (shm.lid) in the shared
memory. Then the node performs the function to modify its functionality to
become the new leader of the system.

5.3 Reintegration of the nodes

According to our assumption, the algorithm allows the reintegration of leader
or/and worker nodes after they crash. When the node is reintegrated into the
system, the counter and the leader id stored in local memory are initialized to
�1. Therefore, the reintegrated node tries to send a request task to the leader
with the leader id equal to �1, and no node has an id that equals to �1. Thus
when the node is reintegrated, it attempts to contact a non existent leader. As
a result, the node starts the leader election and updates its local memory with
the information stored in the shared memory.

5.4 Modification of the algorithm

The leader election algorithm that we presented in the previous section is
affected by the ABA problem [114]. The ABA problem occurs when a node
reads the shared memory twice: shared memory has the same value for both
reads, and the value is used to indicate that nothing has changed. However, the
other nodes executed between the two reads may change the variable, perform
different work and then change the variable to its previous value. Then the first
nodes believe that the shared memory value has not changed.

An example of this problem is shown in Table 5.1. This problem appears
when node 1 is busy, while leader election is performed by other nodes and the
leader changes.

60

Sequence Node 1 Node 2 Node 3 Shared Memory
1 n1.lid:3 n1.cnt:1 n2.lid:3 n2.cnt:1 LEADER CRASHES shm.lid:3 shm.cnt:1
2 ContactLeader(n2.Lid:3)7 Reinsertion(n3.lid:-1, n3.cnt:-1) shm.lid:3 shm.cnt:1
3 CASc(1, 1, 2)3 ContactLeader(n3.lid:-1)7 shm.lid:3 shm.cnt:2
4 CASl(3, 3, 2)3 CASc(2,�1, 0)7 shm.lid:2 shm.cnt:2
5 BecomeLeader() n3.lid:2 n3.cnt:2 shm.lid:2 shm.cnt:2
6 ContactLeader(n1.lid:3)7 LEADER CRASHES ContactLeader(n3.lid:2)7 shm.lid:2 shm.cnt:2
7 CASc(2, 2, 3)3 shm.lid:2 shm.cnt:3
8 CASc(3, 1, 2)7 CASl(2, 2, 3)3 shm.lid:3 shm.cnt:3
9 n1.lid:3 n1.cnt:3 BecomeLeader() shm.lid:3 shm.cnt:3

Table 5.2. Solution to the ABA problem

As seen in the table, node 1 is busy when the leader (node 3) crashes. While
node 1 is busy, node 2 becomes the leader and node 3 is reintegrated into the
system and updates its local leader id with the leader id in the shared memory
(shm.lid = 2). Afterwards, node 2 (current leader) crashes. Then node 1 finishes
its task and tries to contact the leader in its local memory (n1.lid = 3). However,
node 3 is no longer the leader anymore, so node 1 starts the LeaderElection
method. In parallel, node 3 participates in the leader election against node 1
and becomes the new leader of the system. But node 1 compares the local
leader id stored in its local memory (n1.lid = 3) to the leader id in the shared
memory (shm.lid = 3), and modifies the information in the shared memory
because node 1 thinks that node 3 is the leader when node 1 tries to contact
node 3. As a result, the system has two leaders and these leaders can, in turn,
have their own workers. Consequently, the system is split into two, and we wish
to avoid this problem.

This situation is undesirable because the system is not prepared to control
two leaders at the same time. So one leader and its workers do not perform any
task and they are useless for the system. Additionally, another problem is the
split of the system’s resources.

We add a new variable called counter to indicate leader changes and to solve
the ABA problem. Each node has a copy of this variable in its local memory
and the shared memory also has a copy.

As a result, our improved algorithm uses two variables in the shared memory:
the id of the current leader and a counter to avoid the ABA problem during
the leader election. Each node also stores two variables: the copy of the id of
the current leader and a copy of the counter in the shared memory. Figure 5.2
shows the behaviour of one node that executes the improved algorithm.

This counter is used to allow the reinsertion of the crashed leader into the
system and to avoid the situation explained in Table 5.1 by solving the problem,
as shown in Table 5.2, where CAS c is the CAS instruction to compare the counter
in the node’s local memory to the counter in the shared memory; CASl is the
CAS instruction to compare the leader id stored in the node’s local memory to
the leader id stored in the shared memory. This new variable affects only the
leader election algorithm. Algorithm 7 shows the improved algorithm.

61

Algorithm 7 Modified leader election algorithm (to also support non persistent
faults)

1: procedure LeaderElection(nde)
2: // Try to become new leader
3: if CAS(shm.cnt, nde.cnt, nde.cnt + 1) == false or CAS(shm.lid, nde.lid,

nde.id) == false then
4: // Someone else already became new leader ! store new leader id

locally
5: nde.cnt := shm.cnt;
6: nde.lid := shm.lid;
7: else
8: // Only one node enters here to become new leader
9: BecomeLeader(nde); // Cleanup current task and change role to

leader

Sequence Node 1 Node 2 Shared Memory
1 n1.lid:0 n1.cnt:0 n2.lid:0 n2.cnt:0 shm.lid:0 shm.cnt:0
2 ContactLeader(n1.lid:0)7 ContactLeader(n2.lid:0)7 shm.lid:0 shm.cnt:1
3 CASc(0, 0, 1)3 shm.lid:0 shm.cnt:1
4 CASl(0, 0, 1)3 shm.lid:1 shm.cnt:1
5 BecomeLeader() CASc(1, 0, 1)7 shm.lid:1 shm.cnt:1
6 n2.lid:1 n2.cnt:1 shm.lid:1 shm.cnt:1

Table 5.3. Example of two nodes competing to become the new leader

62

Figure 5.2. The possible behaviour of each node participating in the leader election

algorithm

5.5 Examples of the Leader Election Algorithm

A few examples allow us to explain how our proposed leader election algorithm
works in practice. Table 5.3 displays a typical situation in which two nodes
compete in a leader election process. At the beginning, node 0 is the leader of
the system. After the leader has crashed, nodes 1 and node 2 observe that the
leader has crashed and start the leader election method.

Node 1 is faster than node 2 and first executes the CAS instruction to compare
the counter in the shared memory (shm.cnt = 0) to the counter stored in its
local memory (n1.cnt = 0). Since they are equal, node 1 increases the counter
in the shared memory by one (shm.cnt = 1). Afterwards node 1 uses another
CAS instruction to compare the leader id in the shared memory (shm.lid = 0)
to the leader id stored in its local memory (n1.lid = 0). Since they are equal,
node 1 sets its identifier, as a new leader, in the shared memory (shm.lid = 1).
Then node 1 changes its role to the leader role in the system. Finally, node 1
finishes the leader election method.

63

Sequence Node 1 Node 2 Shared Memory
1 n1.lid:0 n1.cnt:0 n2.lid:0 n2.cnt:0 shm.lid:0 shm.cnt:0
2 ContactLeader(n1.lid:0)7 ContactLeader(n2.lid:0)7 shm.lid:0 shm.cnt:0
3 CASc(0, 0, 1)3 shm.lid:0 shm.cnt:1
4 CASc(1, 0, 1)7 shm.lid:0 shm.cnt:1
5 n2.lid:0 n2.cnt:1 shm.lid:0 shm.cnt:1
6 CASl(0, 0, 1)3 shm.lid:1 shm.cnt:1
7 BecomeLeader() shm.lid:1 shm.cnt:1
8 ContactLeader(n2.lid:0)7 shm.lid:1 shm.cnt:1
9 CASc(1, 1, 2)3 shm.lid:1 shm.cnt:2
10 CASl(1, 0, 2)7 shm.lid:1 shm.cnt:2
11 n2.lid:1 n2.cnt:2 shm.lid:1 shm.cnt:2

Table 5.4. One node updates before the new leader is elected

Sequence Node 1 Node 2 Node 3 Shared Memory
1 n1.lid:0 n1.cnt:0 n2.lid:0 n2.cnt:0 n3.lid:0 n3.cnt:0 shm.lid:0 shm.cnt:0
2 ContactLeader(n1.lid:0)7 ContactLeader(n2.lid:0)7 ContactLeader(n3.lid:0)7 shm.lid:0 shm.cnt:0
3 CASc(0, 0, 1)3 shm.lid:0 shm.cnt:1
4 CASc(1, 0, 1)7 shm.lid:0 shm.cnt:1
5 n2.lid:0 n2.cnt:1 CASc(1, 0, 1)7 shm.lid:0 shm.cnt:1
6 n3.lid:0 n3.cnt:1 shm.lid:0 shm.cnt:1
7 CASl(0, 0, 1)3 ContactLeader(n2.lid:0)7 ContactLeader(n3.lid:0)7 shm.lid:1 shm.cnt:1
8 BecomeLeader() CASc(1, 1, 2)3 shm.lid:1 shm.cnt:2
9 CASl(1, 0, 2)7 CASc(2, 1, 2)7 shm.lid:1 shm.cnt:2
10 n2.lid:1 n2.cnt:2 n3.lid:1 n3.cnt:2 shm.lid:1 shm.cnt:2

Table 5.5. Two nodes update before the leader is elected

While node 1 changes its worker role to leader role, node 2 compares the
counter in the shared memory (shm.cnt = 1) to the counter in the local memory
(n2.cnt = 0) using the CAS instruction. In this case, the data that the CAS
instruction compares are not equal. As a result, node 2 does not modify the
shared memory in this leader election and updates its local variables with the
information in the shared memory that node 1 previously set as a new leader.

Table 5.4 shows an example of two nodes, where one node updates its local
information before another node modifies the leader id. As a result, node 2
tries to contact the incorrect leader (n2.lid = 0) and starts the leader election
method. Node 2 has the same counter value (n2.cnt = 1) as the shared mem-
ory (shm.cnt = 1). So node 2 increases the counter in the shared memory
(shm.cnt = 2). Node 2 tries using CAS to modify the leader id in the shared
memory, but does not have the same leader id as the same memory. Therefore,
node 2 fails when using CAS and updates its local memory. In Table 5.5, node 3
does not increase the counter in the shared memory. Therefore, the counter is
always increased by the node that becomes leader, and can perhaps be increased
only once by another leader election participant.

Table 5.6 shows an example in which node 1 crashes after node 1 modifies the
counter. Afterwards, node 1 is reinserted into the system. The counter and the
leader id in the local memory of node 1 are initialized to �1 (n1.lid = �1 and
n1.cnt = �1). So node 1 is reinserted as a worker into the system.

Table 5.7 displays an example in which node 1 modifies the shared memory

64

Sequence Node 1 Node 2 Shared Memory
1 n1.lid:0 n1.cnt:0 n2.lid:0 n2.cnt:0 shm.lid:0 shm.cnt:0
2 ContactLeader(n1.lid:0)7 ContactLeader(n2.lid:0)7 shm.lid:0 shm.cnt:1
3 CASc(0, 0, 1)3 shm.lid:0 shm.cnt:1
4 7 CASc(1, 0, 1)7 shm.lid:0 shm.cnt:1
5 n2.lid:0 n2.cnt:1 shm.lid:0 shm.cnt:1
6 Reinsertion(n1.lid:-1, n1.cnt:-1) ContactLeader(n2.lid:0)7 shm.lid:0 shm.cnt:1
7 ContactLeader(n1.lid:-1)7 CASc(1, 1, 2)3 shm.lid:0 shm.cnt:2
8 CASc(2,�1, 0)7 CASl(0, 0, 2)3 shm.lid:2 shm.cnt:2
9 n1.lid:2 n1.cnt:2 BecomeLeader() shm.lid:2 shm.cnt:2

Table 5.6. Node 1 crashes after it modifies the counter in the shared memory

Sequence Node 1 Node 2 Shared Memory
1 n1.lid:0 n1.cnt:0 n2.lid:0 n2.cnt:0 shm.lid:0 shm.cnt:0
2 ContactLeader(n1.lid:0)7 ContactLeader(n2.lid:0)7 shm.lid:0 shm.cnt:1
3 CASc(0, 0, 1)3 shm.lid:0 shm.cnt:1
4 CASl(0, 0, 1)3 CASc(1, 0, 1)7 shm.lid:1 shm.cnt:1
5 7 n2.lid:1 n2.cnt:1 shm.lid:1 shm.cnt:1
6 Reinsertion(n1.lid:-1,n1.cnt:-1) shm.lid:1 shm.cnt:1
7 ContactLeader(n1.lid:-1)7 shm.lid:1 shm.cnt:1
8 CASc(1,�1, 0)7 shm.lid:1 shm.cnt:1
9 n1.lid:1 n1.cnt:1 shm.lid:1 shm.cnt:1
10 ContactLeader(n1.lid:1)7 ContactLeader(n2.lid:1)7 shm.lid:1 shm.cnt:1
11 CASc(1, 1, 2)3 shm.lid:1 shm.cnt:2
12 CASl(1, 1, 1)3 CASc(2, 1, 2)7 shm.lid:1 shm.cnt:2
13 BecomeLeader() n2.lid:1 n2.cnt:2 shm.lid:1 shm.cnt:2

Table 5.7. Node 1 crashes after modifying the leader in the shared memory and

before taking the leader role

and crashes before taking the leader role.

5.6 Evaluation

The evaluation of the leader election mechanism in sequential algorithms is
measured using time and space complexity. These measures are represented in
terms of the lower bounds that represent the best case, and the upper bounds
represent the worst case [20]. The performance of time and space complexity
for distributed systems is slightly different and message complexity is also used
to evaluate algorithms. Therefore, the following complexity measures are used
in this thesis:

1. Space complexity per node: the memory required by each node for the
best, average and worst cases.

2. Time complexity per node: measures the processing time per node.

3. System-wide time complexity: measures the total processing time of
the leader election for all the nodes.

65

Additionally in our evaluations, we use the standard big ’O’ notation,
also called Landau’s symbol [21]. The big ’O’ notation is a standard
used to describe the performance or complexity of an algorithm. The big
’O’ notation seeks to describe the relative complexity of an algorithm by
lowering the growth rate to the key factors when the key factor tends to-
ward infinity. As a result, the big ’O’ notation has the following rule
for multiplication by a constant. Let k be a constant, then it follows:

O(kg) = O(g) | if k is non zero

5.6.1 Space complexity per node

The space complexity per node is the amount of space memory required for
a node to solve the algorithm. In this case, the information stored in each node
is composed of an integer with the leader id, and another integer that counts
how many times leader election has been done. The integer type is a primitive
data type in computer science. Therefore when using the Big ’O’ notation to
represent space complexity, the space complexity per node is O(1).

5.6.2 Time complexity per node

The time complexity per node is calculated using the total number of steps
that a node needs in the worst case to perform the leader election algorithm.
Each step is an operation that takes a fixed amount of time to perform. The ex-
ecution of an algorithm may halt from time to time because of the interruptions
generated by the operating system. However, the time complexity measure is
immune to these unpredictable interruptions.

Table 5.8 shows that the time complexity of Algorithm 5 is O(1+(2+1+1)⇤x),
where x is the time in which the doWhile loop is performed. Lemma 7.1.6
shows that the maximum times of one node that performs the doWhile loop is
2. Therefore, the time complexity per node at Algorithm 5 is O(1).

Instruction Time complexity
leaderContacted := false 1
If (Communicate(node.lid, buf) == true) 2
leaderContacted := true; 1
LeaderElection(node); 1
leaderContacted == false 1
doWhile() x
Worst case 1 + (2 + 1 + 1) * x

Table 5.8. Time complexity of the algorithm to send messages to the leader

Regarding Algorithm 7, time complexity focuses on the time used to
read/write to the shared memory because these actions use more time than
other instructions. Table 5.9 shows the instructions of Algorithm 7 that have
access to the shared memory. If the CAS instruction returns true, this means

66

that the node makes one read and one write to the shared memory. The node
only makes one read to the shared memory if the CAS instruction returns false.

In the worst case, a node succeeds with the CAS instruction related to the
counter and fails with the CAS instruction related to the leader id. Then the
node updates its local information with two reads to the shared memory. As a
result, and in the worst case, a node reads four times the shared memory and
writes one time to the shared memory. Therefore, the time complexity per node
in Algorithm 7 is O(4 ⇤ T read + Twrite), where Tread is the time needed by the
node to read the data from the shared memory; Twrite is the time needed by the
node to write data to the shared memory.

Instruction Read Write
CAS(shm.cnt, node.cnt, node.cnt + 1) 1 1
CAS(shm.lid, node.lid, node.id) 1 0
node.lid := shm.lid 1 0
node.cnt := shm.cnt 1 0
Worst case 4 1

Table 5.9. Accesses to the shared memory by one node in the algorithm to elect a

leader

5.6.3 System-wide time complexity

If the processing in the distributed system occurs at all the processors concur-
rently, then the system time complexity is not n times the time complexity per
node. However, if the executions by the different processes are done serially, as
with the case of an algorithm in which only the unique token-holder is allowed to
execute, then the overall time complexity is additive. Therefore in this work, the
nodes perform the algorithm in parallel and they can take different behaviours
in the election method as Figure 5.2 shows.

As we stated in the previous section, the time complexity for Algorithm 7
is based on the reading and writing instructions to the shared memory because
these instruction are more expensive in time complexity than the other algorithm
instructions. We present the time complexity for one node in the worst case.

The nodes have three different behaviours for time complexity depending on
the way they acquire them in Figure 5.2:

1. The node becomes leader

2. The node fails in the CAS instruction when comparing counters

3. The node fails in the CAS instruction when comparing leader ids

In the first case, the node wins the leader election, and reading and updat-
ing two times the shared memory using the CAS instruction. Thus the time
complexity used for a winner node is:

67

Sequence Node 1 Node 2 Node 3 Node 4 Shared Memory
1 n1.lid:0 n1.cnt:0 n2.lid:0 n2.cnt:0 n3.lid:0 n3.cnt:0 n4.lid:0 n4.cnt:0 shm.lid:0 shm.cnt:0
2 ContactLeader(n1.lid:0)7 ContactLeader(n2.lid:0)7 ContactLeader(n3.lid:0)7 ContactLeader(n4.lid:0)7 shm.lid:0 shm.cnt:0
3 CASc(0, 0, 1)3 shm.lid:0 shm.cnt:1
4 CASc(1, 0, 1)7 shm.lid:0 shm.cnt:1
5 n2.lid:0 n2.cnt:1 CASc(1, 0, 1)7 shm.lid:0 shm.cnt:1
6 ContactLeader(n1.lid:0)7 n3.lid:0 n3.cnt:1 CASc(1, 0, 1)7 shm.lid:0 shm.cnt:1
7 CASl(0, 0, 1) 3 CASc(1, 1, 2)3 ContactLeader(n3.lid:0)7 n4.lid:1 n4.cnt:1 shm.lid:1 shm.cnt:2
8 BecomeLeader() CASl(1, 0, 2)7 CASc(2, 1, 2)7 ContactLeader(n4.lid:0)7 shm.lid:1 shm.cnt:2
9 n2.lid:1 n2.cnt:2 n3.lid:1 n3.cnt:2 CASc(2, 1, 2)7 shm.lid:1 shm.cnt:2
10 n4.lid:1 n4.cnt:2 shm.lid:1 shm.cnt:2

Totalread:2 Totalwrite:2 Totalread:7 Totalwrite:1 Totalread:6 Totalwrite:0 Totalread:6 Totalwrite:0

Table 5.10. Example with four nodes

TLE,win = 2 * Tread + 2 * TCAS

In the second case, the node fails performing the first CAS instruction, that
means, comparing its counter stored in its local memory to the counter stored
in the shared memory. So the node reads three times from the shared memory.
So the time complexity used for one node when it fails in the first CAS of the
algorithm is:

TLE,loose = 3 * Tread

In the third case, the node fails when comparing its leader id stored in its
local memory to the leader id stored in the shared memory. Thus the node
wins the first CAS instruction and fails performing the second CAS instruction
comparing the leader id. Thus the node reads and updates one time due to the
first CAS instruction (counter) and reads three times due to fail comparing the
leader id using the second CAS instruction. So the time complexity used for one
node when it fails in the second CAS of the algorithm is:

TLE,loose2 = 4 * Tread + TCAS

Table 5.10 shows an example of four nodes, and how many reads and writes
they need to elect a leader.

If the system has n nodes, then the leader election algorithm has one node
that becomes leader; one or the zero node that change the counter in the
shared memory and does not become leader; n-2 nodes updates their local data.
Lemma 7.1.6 shows that the nodes in the worst case perform the algorithm twice
as a maximum. The node that changes the counter without becoming leader
is the node that performs the algorithm twice. While executing the first algo-
rithm, the node fails when comparing the counter stored in its local memory and
the counter stored in the shared memory. Therefore, the node updates its local
memory before another node becomes leader, which means that the node only
updates its local counter and the leader id in its local memory is the leader id
of a crashed leader. So the node performs leader election again. In this second
execution, the node increases the counter in the shared memory, but fails when
comparing the leader ids stored in its local memory to the leader id in the shared
memory.

As a result, the System-Wide Time Complexity (SWTC) for the leader elec-
tion algorithm is:

T SWTC = 1 ⇤ T LE,win + 2 ⇤ (n� 2)T LE,loose) + 1 ⇤ T LE,loose2

where n are the nodes that compete to become leader and:

68

T LE,win = 2 ⇤ T read + 2 ⇤ TCAS;

T LE,loose = 3 ⇤ T read;

T LE,loose2 = 4 ⇤ T read + 1 ⇤ TCAS

Consequently, the system-wide time complexity in the worst case is:

T SWTC = [2 ⇤ T read + 2 ⇤ TCAS] + [(2 ⇤ (n� 2)) ⇤ 3 ⇤ T read] + [4 ⇤ T read + TCAS]

As a result:

T SWTC = [6 ⇤ (n� 1)] ⇤ T read + 3 ⇤ TCAS

In conclusion, the system-wide time complexity in the worst case has a con-
stant time related to the CAS instruction, but the time related to read infor-
mation from the shared memory is lineal depending the number of nodes of the
system.

5.7 Chapter summary

The use of the leader election mechanism is beneficial for distributed systems
with a centralised node that has a specific work, given that the addition of
this fault tolerance mechanism resolves the problem if the leader has crashed.
The leader election chooses a new leader using only non-busy nodes to elect a
new leader, discriminating busy nodes, therefore our approach does not force
all nodes of the system to participate in the leader election. Consequently, a
busy node is not interrupted to participate in the leader election, permitting
that the busy node finishes its work without interruptions. After the busy node
has finished its work, the node updates the previous data related to the old
leader with the new leader data stored in the shared memory. As a result, the
leader election mechanism proposed avoids nodes time waiting until the other
system nodes are finished and other possible interruptions, having an advantage
in terms of time against other algorithms (presented in Section 3), favouring a
faster method and better performance.

At the end of this chapter, it is presented the evaluation of the leader election
proposed in terms of space and time complexity per node, as well as system-
wide time complexity. Given that the leader election algorithm proposed works
asynchronously, the system-wide time complexity for our algorithm, in the worst
case, might depend on the number of nodes that are part of the system. Re-
garding to the space and time complexity per node, our algorithm is constant
independently of the number of nodes used in the system.

69

70

Chapter 6

Log-Based Rollback-Recovery

6.1 Model

In LPEL, a node works as a leader of the system and the remaining nodes
are workers. The leader is responsible for sending tasks to the workers. Then
the workers perform tasks and return the task to the leader when the task is
finished.

This thesis focuses on avoiding transient faults. Transient faults can be re-
covered if the determinants are saved in stable storage [70]. For this reason, a
stable storage is created for each node that works as an independent local buffer
to other nodes in the system. Therefore, each worker has its own stable storage,
called a Log Buffer (LB).

It is assumed that the data stored in the stable storage are failure-free, which
means that we are sure that the information stored until that time is correct.
We need this assumption to be sure that the information stored in th stable
storage are related to the information that it is happening in the system.

Each stable storage is represented by a buffer and each line of the stable
storage, independently of stable storage being for a worker or a leader, has a
boolean flag to indicate if the register stored in that line is obsolete or not, and
a register related with a non-deterministic event. This boolean inside each line
of stable storage can only be changed by the garbage collection mechanism.

Furthermore, a new role is created for the leader, called Fault Tolerance
Control (FTC), to help the restore mechanism used for our rollback-recovery
mechanism proposed. This role is responsible for managing the relevant infor-
mation of the leader and supports the workers that are performing the restore
mechanism. At the beginning, we thought that a separate node acquires this
role, but we decided that the leader can do it and it was not necessary to use a
separate node. Therefore, the leader changes its role to FTC when a message is
received from a worker that performs the restore method.

It is important to remember that fault detection is not a topic of this thesis,
but there a few papers related to that topic [68, 11]. We focus on proposing
two mechanisms (leader election and log-based rollback-recovery) to resolve the
fault after it appears in the system.

71

In our log-based rollback-recovery algorithm, when a worker performs the
restore mechanism, the communication between the leader and this worker stops
until the worker finishes the restoring method.

The restore mechanism consists in restarting the task performed by the worker
and uses the registers stored in its LB to restore the last state of the worker before
the fault appeared. If the necessary register is not in the LB, the worker sends
a message to the FTC (Leader) to ask if any worker has the demanded register.

Last but not least, we propose a garbage collection mechanism to remove the
data stored in FTC and the LB that is not require anymore. This mechanism
is automatic and not periodical, which means that it is activated when one
register is stored in stable storage (FTC or LB). Then the mechanism checks
all the registers stored in the stable storage and removes the obsolete registers.
The Garbage Collection Mechanism (Section 6.1.4) defines the precondition and
the rules followed for each register to be removed.

Figure 6.1 shows an example of how stable storages are distributed among
two workers and one leader.

C/FTC%

W1% W2%

T2%

T1%
LB%of%W1% LB%of%W2%

Task%Queue%

Stable%Storage%of%leader%

Figure 6.1. Example of log-based rollback-recovery with two workers

This section is composed of 5 subsections: Section 6.1.1 describes how each
worker stores the registers in the LB. Section 6.1.2 explains the Fault Toler-
ance Control role. The Section 6.1.3 discusses the property of LPEL to block
tasks and how our algorithm overcomes this issue. The Section 6.1.4 shows how
the Garbage Collection mechanism removes any useless registers in the stable
storages. Finally, Section 6.1.5 presents the restore mechanism used by our
algorithm.

72

6.1.1 Log Buffer

As described in Section 3, during failure-free operations, each node stores
the determinants of all the non-deterministic events observed in its stable stor-
age [84].

The LB is normally only read and written by the associated worker.
The FTC can read and write the LB only when the worker has failed and the
worker has not yet recovered.

A non-deterministic event is created when one of the five following events
occurs:

1. A worker receives a task.

2. A task inside a worker consumes information from the input stream.

3. A task inside a worker writes information to the output stream.

4. A task is finished.

5. A worker returns a task to the leader.

We propose storing in the LB of the worker the following registers related to
the previously described non-deterministic events:

1. <START, Task>

2. <READ, TaskId, StreamId, InputData, Counter>

3. <WRITE, TaskId, StreamId, OutputData, Counter>

4. <BLOCKED, TaskId, IsTaskReceived>

5. <END, TaskId, IsTaskReceived>

where the comma (,) is used to separate the information. START, READ,
WRITE, BLOCKED and END are tokens used by the registers to represent the
non-deterministic event that affects the worker.

<START, Task>

This register is created after the worker has received a task from
the leader. Every time a worker receives a task, the worker creates this
register in its LB.

This register is composed of a token START and a copy of the task that
contains the checkpoint of its state before the worker performs it. Since
that we have developed a log-based rollback-recovery mechanism proposed
for LPEL and S-Net, the copy of the task is stored using the lpel taks t
structure in LPEL.

73

lpel taks t is a data structure used by LPEL to store the task that will
be performed by the workers. If an error is detected while the worker
is performing the task, then the restore mechanism uses the checkpoint
stored in this register to restart the task.

<READ, TaskId, StreamId, InputData, Counter>

A task, performed by a worker, reads input data from the input
stream by creating a copy in the local buffer of the worker and removing
the data from the stream. This event is stored using the register with the
token READ.

The second parameter of this register is the identifier of the task. The
restore mechanism can use this identifier to relate this register with the
task with the same identifier. The third parameter is the identifier of the
stream where the data are read. The forth parameter is a copy of the data
read. Last but not least, the fifth parameter is the Counter parameter
and is a counter. This counter is used to differentiate among the readings
of the same data.

For example, a task wants to read data from a stream, and after reading
these data, they are removed from the stream. There other data with
the same information exist in the stream. Therefore, the task can re-read
the same data from the stream. So this parameter is used to differentiate
between the data read this second time and the first time, and it is used
for the restore mechanism if a failure appears. This parameter is explained
in detail in the FTC section.

We store this register before the task reads the data from the stream
because the data are removed from the stream after the task makes a copy
in the local buffer of the worker. Let’s imagine that the register is created
after reading the data. If a failure appears between this reading and the
creation of the register, the data that the task tries to read is lost and
cannot be used by the restore mechanism. Therefore, this register stores a
copy of the data without removing them from the stream, and before the
reading action is performed.

If an error appears before the task reads the data and after the worker
stores a copy of the data in the register, FTC is responsible for overcoming
any incongruences. Further information is found in the FTC section.

<WRITE, TaskId, StreamId, OutputData, Counter>

Before the task writes data to the output stream, the worker stores
this register in the LB. Let’s imagine that the register is created after
writing the data. If a failure appears between the writing and creating
the register, the data remain in the stream, but there is no proof about
the writing for the restore mechanism. When the task is performed for

74

the second time by the restore mechanism, these data are written for the
second time in the stream. This problem can be avoided if the register is
stored before writing the data and using FTC to know if the data have
been written or not.

The token of this register is WRITE because it is related with the non-
deterministic event when the task inside the worker writes data to the
output stream.

The Counter parameter is similar to the counter parameter in the READ
register and counts how many times the task writes the output data. With
this parameter, the task can write each data per stream more than once.

This register is similar to the READ register, and instead of storing the
input data, it stores the output data that the task writes to the output
stream.

<BLOCKED, TaskId, IsTaskReceived>

LPEL allows a task to be blocked, in which case the worker stops
executing of the task and returns the task to the leader. We created this
register to allow this feature in our proposal which informs the restore
mechanism that the task has been blocked and maybe is in another
worker. Furhter information about this feature is found in the Block Task
section. The BLOCKED register is created before the task is returned to
the leader.

The IsTaskReceived parameter is a Boolean parameter. When this register
is created, this parameter is marked as FALSE and it changes when the
worker receives the confirmation message from FTC that the leader has
received the task.

<END, TaskId, IsTaskReceived>

This register is created after the worker finishes the task and be-
fore the worker sends the task to the leader. This register is the last task-
related register and the following registers have no a reference to the task.

This register is composed of the END token, the identifier of the task and
the IsTaskReceived parameter. The token and the identifier are used by
the garbage collection mechanism to remove any useless registers related
to this task.

The IsTaskReceived parameter is a Boolean parameter that is FALSE
when the END register is created. The worker changes this parameter
to TRUE after the worker receives the confirmation message from FTC
that the leader has received the task. This third parameter is used to
avoid failures in the middle of garbage collection. The Restore Mechanism
section contains further information about this issue.

75

Algorithm 8 Structure of the registers related to the log buffer

1: typedef struct log worker start
2: {
3: lpel task t task;
4: } log worker start;

5: typedef struct log worker read
6: {
7: int task id;
8: int stream id;
9: void * input data;

10: int counter;
11: } log worker read;

12: typedef struct log worker write
13: {
14: int task id;
15: int stream id;
16: void * output data;
17: int counter;
18: } log worker write;

19: typedef struct log worker blocked
20: {
21: int task id;
22: int is task received;
23: } log worker blocked;

24: typedef struct log worker end
25: {
26: int task id;
27: int is task received;
28: } log worker end;

76

The structures of these registers are shown in Algorithm 8. There are five
different types of structures, one per register stored. The READ and WRITE
register have a void pointer to the point the copy of the input data and the
output data, respectively.

6.1.2 Fault Tolerance Control

As said in the beginning of this chapter, a new role in the system is created
called Fault Tolerance Control (FTC) that helps the worker to restore its state
when the restore mechanism is called. This new role helps the system to be
more robust.

In our design a single node serves as both FTC and leader. It is necessary
to differentiate between the leader role and the FTC role. The leader role is
responsible for distributing the available tasks to available workers.

The leader plays the FTC role when the leader receives a message from a
worker that performs the restore mechanism. Additionally, FTC is responsible
for returning the task to the leader if one worker suddenly crashes and the task
in which the worker is involved cannot be returned to the leader. For example,
if a worker crashes in the middle of executing a task and it is not possible to
recover the worker using our proposed log-based rollback-recovery, then FTC
gets the task stored in the LB of the crashed worker and inserts the task back
into the leader’s task queue, to assign it later again to another worker.

FTC uses the registers stored in the leader’s stable storage to help recover a
failed worker when this worker, after having become functional again, calls the
restore mechanism. This is explained in detail in the Section 6.1.5.

A non-deterministic event that affects the leader appears when:

1. The leader sends a task to a worker.

2. The leader receives a task from the worker that has finished performing
its assigned task.

3. The stream is written by a worker.

In addition, FTC is affected by a non-deterministic event related to the writing
of the stream. Therefore, we have three different non-deterministic events that
affect the leader and FTC.

The list below shows the registers created by the FTC to store the previously
explained non-deterministic event:

1. <SENT, WorkerId, Task>

2. <RECEIVED, WorkerId, TaskId, IsFinished>

3. <STREAM, TaskId, StreamId, Data, Counter>

77

where the comma (,) is used to separate information. SENT, RECEIVED
and STREAM are tokens created to know if the register is created when the
leader sends a task or receives a task, or when a worker writes data to a stream.
WorkerId is the identifier used by the leader to contact the worker. TaskId
is the identifier of the task received and Task is a copy of the task sent to a
worker. StreamId is the identifier of the stream where Data are stored. Counter
is a counter that counts how many times data have been written to a stream.
IsFinished is a Boolean parameter that allows the system to know if the received
task is finished in the worker or if the task is blocked and needs to be finished.

<SENT, WorkerId, Task>

The leader creates and stores this register before the leader sends a
task to a worker with the identifier WorkerId. The Task parameter is a
backup of the task. FTC uses this backup if the worker WorkerId crashes
and the leader cannot recover the task from the worker.

<RECEIVED, WorkerId, TaskId, IsFinished>

The leader creates and stores this register after the leader receives
the task TaskId from the worker WorkerId. WorkerId and TaskId are
identifiers that help log-based rollback-recovery to find the relevant
registers related to the worker and the task, respectively.

IsFinished is a Boolean parameter that the garbage collection mechanism
uses to know if the worker has completely performed the task (TRUE) or
if the task is blocked when the worker performs this task (FALSE).

When a RECEIVED register is stored with IsFinished as TRUE, FTC
searches all the RECEIVED registers with the same TaskId and sends
a message to all the workers in those registers which inform that another
worker is finishing the task TaskId. Further information about the blocked
task can be found in the Block Task Section.

<STREAM, TaskId, StreamId, Data, Counter>

FTC stores this register to the leader’s stable storage after FTC
receives a copy of the Data from the worker that writes Data to the
stream StreamId. Therefore, this register contains the TaskId of the task
that writes the data Data in stream StreamId.

The Counter parameter is a counter used to know how many times these
data have been written by a task. This parameter allows the tasks to write
more than once each lot of data per stream.

We need to choose carefully when the register is stored, before or after the
action has been completed, to avoid inconsistency with the data stored into the
LB. For example, if the leader fails after storing a SEND register, but before

78

sending the task, the information in stable storage is incorrect because the task
has not been sent. When a leader fails, it is called the leader election method.
After electing a new leader, the FTC processes the inconsistencies caused by the
previous leader: e.g. the previously described example. The structures of these
registers are shown in Algorithm 9.

Algorithm 9 Structures of the registers stored in the leader’s stable storage

1: typedef struct log leader sent
2: {
3: int worker id;
4: lpel task t task;
5: } log leader sent;

6: typedef struct log leader received
7: {
8: int is finished;
9: int worker id;
10: int task id;
11: } log leader received;
12: typedef struct log leader stream
13: {
14: int task id;
15: int stream id;
16: void * data;
17: int counter;
18: } log leader stream;

C/FTC	

W1	 W2	

T1	

T3	

READ:T2’:ST3’:D2:1	

START:T2	

LB	of	W1	 LB	of	W2	

END:T1’	

WRITE:T1’:ST2’:D2:1	

WRITE:T1’:ST2’:D1:1	

START:T1	

RECEIVED:W1’:T1’:TRUE	

STREAM:T1’:ST2’:D2:1	

SENT:W2’:T2	

STREAM:T1’:ST2’:D1:1	

SENT:W1’:T1	

Task	Queue	

Stable	Storage	of	leader	

T2	

Figure 6.2. Example of the leader storing the register in its stable storage.

Figure 6.2 is an example of a system with two workers and one leader. ID’

79

represents the identifier of a worker (e.g. W1’) or a task (e.g. T1’) or a stream
(e.g. ST2’), whilst ID represents an exact data copy of a task (e.g. T1) or data
(e.g. D1) read from or written to the stream. In this example, the leader sends
task T2 to worker W2. Previously the leader sends and receives task T1 to
worker W1. The garbage collection mechanism is deactivated in this example.
The data stored in the stream cannot be read by a task until FTC confirms that
the data in the stream are correct.

Additionally, FTC is responsible for comparing the data stored in streams
with the data from the workers stored in the LB. When a task writes data in a
stream, FTC receives a notification from the stream that new data are written.
In parallel, the worker where the task is performed sends a message with a copy
of the data written to the FTC, and the FTC creates a STREAM register with
the data received from the worker. Next, the FTC compares the data received
from the worker and the data stored in the stream. If they are equal, the FTC
does nothing. if they are different, the FTC changes the data in the stream with
the data received from the worker.

If the worker crashes and the FTC does not receive the message with the data
from the worker, the FTC reads the information stored in the LB of the worker
to check the data in the stream.

The task restarted by the restore mechanism tries to read or write to a stream,
which leads the worker to ask the FTC whether the READ or WRITE register,
that the task tries to perform, finished before the failure appeared or if the
information stored in the LB is incorrect because the failure appears before the
reading or writing is done. The FTC displays a different behaviour if it receives
a READ or WRITE register from the worker.

If a task is performed by the restore mechanism, wants to read data from the
stream and the LB of the worker has a READ register to that data, the worker
sends a message to the FTC to check if the data were removed from the stream.
If the data are still in the stream, the FTC removes them from the stream,
otherwise the FTC does nothing. Irrespectively of removing the data from the
stream or not, the FTC sends a confirmation message to the worker.

When the restore mechanism performs a task and this task wants to write
data in a stream, the worker sends a message to FTC to know if the data are
written or if the register stored in the LB of the worker is correct. This avoids
a failure to appear after a WRITE register is stored, but before the data are
written to the stream.

6.1.3 Block Task Event

In LPEL, tasks can be blocked at any time by creating a non-deterministic
event called task-blocked [100]. This blocking is caused by the LPEL appli-
cation because the tasks in LPEL have different priorities. So the tasks with
a high priority are performed urgently, which means, LPEL blocks a task with
less priority that a worker performs and changes the task with less priority into
that worker’s task with a higher priority.

80

We have to keep in mind that LPEL cannot block a task while it is reading
from the input stream or writing to the output stream.

The following list shows the possibilities of a task in the system when the task
is blocked:

• The task starts in worker W1 and moves through one worker or more until
the task is finished by another worker other than worker W1.

• The task starts in worker W1 and moves through one worker or more, but
the task is finished by worker W1.

C/FTC%

W1% W2%

T1%

T3%

END:T1’:TRUE%

WRITE:T1’:ST2’:D2:1%

START:T1%

LB%of%W1% LB%of%W2%

READ:T2’:ST3’:D2:1%

START:T2%

BLOCKED:T1’:TRUE%

WRITE:T1’:ST2’:D1:1%

START:T1%
T2#

RECEIVED:W2’:T1’:TRUE%

STREAM:T1’:ST2’:D2:1%

SENT:W2’:T1%

SENT:W1’:T2%

RECEIVED:W1’:T1’:FALSE%

STREAM:T1’:ST2’:D1:1%

SENT:W1’:T1%

Task%Queue%

Stable%Storage%of%leader%

Figure 6.3. Example of a task blocked and finished in another worker

The task starts in one worker and finishes in another
Figure 6.3 shows a system composed of two workers (W1 and W2), one
leader and three tasks (T1, T2 and T3). We focus on task T1. At the
beginning, T1 starts its execution in worker W1. T1 writes the data D1 to
output stream ST2 and then the system blocks T1 and the leader sends T2

to W1 because T2 is more critical than T1. Therefore, T1 is returned to
the leader and the RECEIVED register of T1 in leader’s stable storage is
marked as not finished (FALSE). After the leader receives T1 from the W1,
the FTC sends a confirmation message to W1 confirming that the leader
has received T1. Then the leader sends T2 to W1. W1 receives (START)
and performs T2. The leader sends T1 to worker W2 and W2 creates the
START register in the LB. T1 continues its execution from the last point

81

before it is blocked. T1 writes data D2 to output stream ST2 and finishes
its execution while it is performed by W2.

In this example, the leader saves in its stable storage the information about
the worker where the task was executed with the IsFinished parameter as
FALSE. When the task is returned as finished, the leader sends a message
to all the workers where the task was executed. So W1 receives a message
that T1 was finished by worker W2. The garbage collection mechanism of
W1 uses this message to remove any useless registers. In this example, the
garbage collection mechanism is deactivated.

The leader’s stable storage stores a RECEIVED register with the IsFin-
ished parameter as FALSE every time a task is blocked. For this reason,
the changes made by a task are always recorded in the stable storage.

C/FTC%

W1% W2%

T1%

T3%

T2%

BLOCKED:T1’:TRUE%

WRITE:T1’:ST2’:D2:1%

START:T1%

LB%of%W1% LB%of%W2%

END:T1’:TRUE%

START:T1%

END:T2’:TRUE%

READ:T2’:ST3’:D2:1%

START:T2%

BLOCKED:T1’:TRUE%

WRITE:T1’:ST2’:D1:1%

START:T1%

RECEIVED:W1’:T1’:TRUE%

SENT:W1’:T1%

RECEIVED:W2’:T1’:FALSE%

RECEIVED:W1’:T2’:TRUE%

STREAM:T1’:ST2’:D2:1%

SENT:W2’:T1%

SENT:W1’:T2%

RECEIVED:W1’:T1’:FALSE%

STREAM:T1’:ST2’:D1:1%

SENT:W1’:T1%

Task%Queue%

Stable%Storage%of%leader%

Figure 6.4. Example of a task blocked and finished in the first worker where it was

executed

Task is started by one worker and is performed by other workers, but
is finished by the first worker

In Figure 6.4, task T1 starts in worker W1. T1 is blocked after writing
data D1 to output stream ST2 and goes to worker W2. Then T1 writes

82

the data D2 to output stream ST2 and is blocked again. This time T1

returns to W1. At this time, W1 stores a START register with the last
checkpoint of the task before the task is reperformed by W1. Finally, T1

is finished by W1 and returned to the leader.

The parameter IsFinished related to T1 is marked two times as FALSE
into the stable storage of the leader, being T1 blocked by W1 and W2. The
second time T1 is performed by W1, the execution of T1 is finished and
IsFinished is marked as TRUE. Then this example of a task blocked can
be solved in the same way as in the previous case using the parameter
IsFinished to manage where the task was executed.

6.1.4 Garbage Collection Mechanism

The stable storage used in this presented approach is implemented as double-
linked lists. As a result, we need to create a garbage collection mechanism to
remove the nodes that contain obsolete information related to the log-based
rollback-recovery algorithm.

As you can see in the bibliography [54, 128] we can find different kinds of
garbage collection mechanisms, nevertheless, these mechanisms have a big exe-
cution time overhead. For this reason, we created a specific garbage collection
to minimize the execution time overhead presented in the other mechanisms.
Therefore, the garbage collection mechanism implemented has a low computa-
tion overhead and does not modify the output of the application [75].

At the beginning, the double-linked list has only two nodes: HEAD and TAIL.
The HEAD node is the first node of the double-linked list and the TAIL node
is always the last node of this list. When a new node is created, it is added
between the previous node of the TAIL node and the TAIL node. The created
node contains a register used for the log-based rollback-recovery algorithm.

The garbage collection mechanism is automatic and not periodical. This
mechanism is activated when a node with a new register is added in stable stor-
age (FTC or LB) or when the IsTaskReceived parameter of the END register
changes to TRUE.

The garbage collection mechanism checks all the nodes stored on the double-
linked list, except the node most recently stored. Then the register stored in
each node has a precondition that allows garbage collection to remove it. If the
precondition is accomplished, the node is removed.

The idea is to add a node between the last node and the TAIL node. Garbage
collection checks nodes by starting with the previous node of the node most
recently added. After checking a node, the garbage collection checks the previous
nodes of the checked node. Then the mechanism continues checking nodes until
the checked node becomes the HEAD node.

The following list shows the garbage collection precondition of each register:

83

• START: When the END register is stored in the LB independently of
the IsTaskReceived parameter or when the worker receives a message from
FTC that the task was finished by another worker.

• READ: Same as the START register.

• WRITE: This register has two preconditions that must be accomplished.
The first precondition is the same as the START register. The second pre-
condition is accomplished when the worker receives a confirmation message
from FTC that the data were stored without problems in the stream. As
long as one of these two preconditions is not accomplished, the WRITE
register cannot be removed.

• BLOCKED: This register has two preconditions. The first precondition is
the same as the START register. The second precondition is this register is
the last register removed from the stable storage. That means, the START,
READ or WRITE registers related to the task must not be in the stable
storage to accomplish this precondition. When both preconditions are
accomplished, this register is removed.

• END: This register has two preconditions. The first precondition is related
to the confirmation message sent by FTC. Once the leader has received
the task from the worker, the FTC sends a confirmation message to this
worker. The other precondition is related to the registers of the task. This
means that the END register needs to wait until all the other registers of
the task are removed from the worker’s LB. Then the END register is the
last register related to the task removed from the LB.

• SENT: When the RECEIVED register related to the task is stored with
the IsFinished parameter as TRUE.

• RECEIVED: This register presented two cases. On the one hand, the
register can be stored with IsFinished as FALSE and, on the other hand,
the IsFinished parameter can be stored as TRUE. A RECEIVED register
with IsFinished as FALSE will be removed when another RECEIVED
register related to the same task is stored with IsFinished parameter as
TRUE.

A RECEIVED register with IsFinished parameter as TRUE will be the
last register removed related to the task in the leader’s stable storage.
Accordingly, this register is removed when there are not other registers
related to the task.

• STREAM: This register has two preconditions. The first precondition is
the same as the SENT register. The second precondition is accomplished
after the FTC compares the data in this register to the related data in the
stream.

84

The RECEIVED and BLOCKED registers receive special attention in the
garbage collection mechanism. The RECEIVED register with IsFinished as
FALSE and the BLOCKED register with IsTaskReceived as TRUE or FALSE
are the only registers that do not activate the garbage collection mechanism.

Yet if the RECEIVED register has the IsFinished parameter as TRUE,
garbage collection is performed.

C/FTC%

W1% W2%

T1%

T3%

T2%

Obsolete(

Precondi/on(

END:T1’:TRUE% NoReg%T1%&&%FTC%

confirma;on%

LB%of%W1% LB%of%W2%

Obsolete(

Precondi/on(

BLOCKED:T1’:TRUE% END:T1’%&&%

NoReg%T1%

WRITE:T1’:ST1’:D1:1% END:T1’%&&%FTC%

confirma;on%%

READ:T2’:ST2’:D2:1% END:T1’%

START:T1% END:T1’%

Obsolete(Precondi/on(

RECEIVED:W1’:T1’:TRUE% NoReg%T1%

SENT:W2’:T1% RECEIVED:_:T1’:TRUE%

RECEIVED:W1’:T1’:FALSE% RECEIVED:_:T1’:TRUE%

STREAM:T1’:ST1’:D1:1% RECEIVED:_:T1’:TRUE%&&%

Used%for%check%D1%

SENT:W1’:T1% RECEIVED:_:T1’:TRUE%

Task%Queue%

Stable%Storage%of%leader%

Figure 6.5. Example of the garbage collection mechanism

Figure 6.5 shows an example of the necessary precondition of each register.
In this example workers W1 and W2 perform task T1. The figure includes the
obsolete precondition columns that contain the condition necessary for registers
to be removed. These columns are not represented in the following figures of this
thesis. In the figure, the START register in the LB of W1 is removed when W1

receives the message from FTC that T1 finished in another worker(T2). NoReg
T1 means that the condition is accomplished when all the registers related to T1

in the LB have been removed. A confirmation message from FTC is represented
as the FTC confirmation in the figure. Used for check D1 is accomplished
when FTC compares the data stored in the stream to the data of the STREAM
register.

6.1.5 Restore Mechanism

In this section, we explain the restore mechanism implemented to restore the
state of the system using the checkpoint and log registers stored. The proposed
restore mechanism is based on restarting and replaying [22] the task that the
worker performs according to the information stored into the worker’s LB.
The worker that performs the mechanism stops the task execution and rollback

to last checkpoint the task in the worker. So the execution performed between
the last checkpoint stored and the previous time before the fault was detected

85

is lost. After restarting the task, the worker uses the information stored into its
LB to help the task recover the state before the fault has appeared.

When a worker runs the restore mechanism, the remaining system workers
are not aware of the fault of the worker that runs the restore mechanism. The
remaining workers are not disturbed by the fault of a worker thanks to the
independent failure property of distributed systems [129].

Our restore mechanism begins by reading the last register stored in the LB.
Figure 6.6 shows the behaviour of the restore mechanism depending on the first
read register. In case the first register read by the restore mechanism is an END
register, then the restore mechanism checks the IsTaskReceived parameter of
the register. If the IsTaskReceived parameter is FALSE, then the worker sends
the task to the leader. Therefore the restore mechanism finishes and the worker
waits for the confirmation message from the FTC. It can occur that the leader
receives the same task twice. In this situation, FTC resends a confirmation
message to the worker and the task received this second time is removed since
that it was already received.

Figure 6.6. Restore mechanism behaviour after reading the first register in the

workers’ LB

When the IsTaskReceived parameter is TRUE, the restore mechanism checks
if there are any other registers related to the same END register task. If affir-
mative, the restore mechanism forces the worker to perform garbage collection.
After finishing the garbage collection, the restore mechanism finishes and the

86

worker is restored.

On the other hand, if the first register read by the restore mechanism is a
BLOCKED register, the restore mechanism checks the IsTaskReceived parame-
ter of the register. On the condition that this parameter is TRUE, the restore
mechanism finishes. However, when the parameter is FALSE, the restore mech-
anism forces the worker to send the task to the leader. After this, the restore
mechanism finishes and the worker awaits the confirmation message from the
FTC. The performance of the restore mechanism for BLOCKED register is sim-
ilar to the END register, nevertheless, the garbage collection is not called for
the BLOCKED register.

In case the first register read by the restore mechanism is not an END or
BLOCKED register, then the task that the worker performs is stopped and the
task is restarted using the last checkpoint stored in the START register of the
task. The restore mechanism chooses the last START register stored into the
LB, obtaining the last stored checkpoint of the task.

The restore mechanism reads the checkpoint stored in the START register
and restarts the task with this checkpoint. Next the task is reperformed by
the restore mechanism supervision. During this second execution, the restore
mechanism uses the READ and WRITE registers to recover the task. The
READ and WRITE registers stored in the LB are used to avoid that task reads
or writes data to the input or output stream. The registers stored in the LB are
not modified and are removed by the restore mechanism.

During this second task execution, the worker performs the task by starting
from the checkpoint stored in the START register. Yet when the task needs to
read from the input stream, the task searches a READ register with the data in
the LB instead of the input stream. If the needed data are in the LB, the task
reads the data from the register and the worker sends a message to FTC which
indicates that the data were read by the task. This message contains the task
identifier and is used by FTC to search the data in the stream. If the data is in
the stream, FTC removes the data to the stream, because the READ register
contains the copy of this data and the task has already read this data but not
removed to the stream..

If the data that the task wants to read are not in the LB, the worker sends a
message to the FTC to ask if someone has the required data. Then FTC uses
the information stored into the leader’s stable storage to ask other worker that
had been performing previously the same task.

When the task needs to write a data to an output stream, it checks if there is
a WRITE register in the LB related with the data that the task wants to write.
If the data are already in a register stored in the LB, the worker sends a message
to the FTC to ask if the data were written before the failure affected the worker.
Then the FTC checks if there is a STREAM register related to the data asked
for by the worker. If there is a STREAM register, the FTC replies to the worker
that the data were written before the failure appeared. So the task does not
write the data to the output stream. If there is no a STREAM register, the
FTC replies to the worker that the data were never written in the stream. As

87

a result, the task writes the data to the output stream and the worker creates
the WRITE register with the recently written data.

If there is no WRITE register in the worker’s LB related to the data that the
task wants to write, the worker sends a message to the FTC to ask if another
worker wrote these data in the stream.

Until this point, READ andWRITE await a message from the FTC. The FTC
uses the information stored in the leader’s stable storage to send a message to
all the workers that worked with the task. When the message from FTC reaches
a worker that previously worked in the task, the worker checks to see if there
is a register stored in its LB related to the data requested by the FTC. If the
worker’s LB has a register with the demanded data, the worker sends a message
with a copy of the stored data. If the worker does not have a related data
register, the worker sends a message to the FTC saying that it does not have
the requested data.

The FTC receives all the messages from the workers that previously worked
with the task. If there is a message with the demanded data, the FTC sends this
message to the affected worker, otherwise, FTC sends a message to the affected
worker that the demanded data were never stored in another LB. It should be
pointed out that FTC immediately sends the message that contains a copy of
the data stored in another LB to the affected worker, and it does not await
messages from all the workers.

In both cases, READ and WRITE, if no register related with the demanded
data exits in another LB, the register is created, and the task reads or writes to
the stream. Figure 6.7 shows how the task reads or writes the data when the
restore mechanism performs the task.

The FTC is also responsible for avoiding incorrect data appearing in the
leader’s stable storage. These incorrect data can appear in the following situa-
tions:

• The leader fails after storing a SENT register and before sending the task.

• The leader fails after receiving the task and before storing a RECEIVED
register.

When a leader is elected with leader election, the FTC checks the leader’s
stable storage. If there is a SENT register and there is no RECEIVED register
with the IsFinished parameter as FALSE related to the same task, then FTC
asks the worker of the SENT register for the task status. As a result, the worker
can reply with the following messages:

• NOT RECEIVED: in this case, the FTC sends the task to the worker
related to the SENT register because the leader had failed before imme-
diately after the register was created.

• WORKING: FTC does nothing because the worker performs the task.

88

Figure 6.7. Behaviour of the task that tries to read or write the stream when it is

performed by the restore method

• FINISHED: FTC checks if the task is in the leader’s task queue. If the
task is not in the task queue, FTC copies the task from the SENT register
to the task queue. If the task is in the task queue, a RECEIVED register
related to the task and the worker is created in stable storage, and garbage
collection is performed with this new register.

6.2 Examples of Log-Based Rollback-Recovery

A practical example of log-based rollback-recovery for a distributed system
with streaming communication is explained in this section.

This practical example has one leader (C/FTC), two workers (W1 and W2)
and three tasks (T1, T2 and T3).
In the example, ST1 is the output stream of T1 and the input stream of T2,

ST2 is the output stream of T2 and T1, and the input stream of T3 and ST3 is
the output stream of T3.
Regarding the task, T1 twice writes D1 to stream ST1 and D2 to stream ST2.

T2 reads D1 from ST1 and writes D3 to ST2. T3 reads D2 and D3 from ST2 and
writes D4 to ST3. T2 is not sent to a worker until D1 is in ST1. T3 is not sent
to a worker until D2 and D3 are in ST2.
Figure 6.8 shows the state of the system before tasks are performed.

89

C/FTC%

W1% W2%

T3%

T2%

T1%

Task%Queue%

Stable%Storage%of%leader%

T1# T2# T3#

ST1% ST2% ST3%

LB%of%W1% LB%of%W2%

Figure 6.8. Initial state of the log-based rollback-recovery example

At the beginning, the leader sends T1 to W1 to be performed, but before
sending it, FTC creates a SENT register related to it in the leader’s stable
storage. W1 receives T1, creates a START register of T1 and performs T1. While
T1 is performed by W1, T1 writes D1 in ST1 twice and W1 sends two messages
about D1 to FTC. FTC stores two STREAM registers related to D1 and checks
both D1. Both D1 stored in the stream are saved without errors. After D1

writes the second time in ST1, a fault is detected in W1. So W1 starts the
restore mechanism.

When D1 is written in ST1, the leader sends T2 to W2. W2 receives T2 and
stores a START register of T2. W2 performs T2 while W1 performs T1. T2 reads
D1 from ST2, but before W2 stores a READ register related to D1.

Figure 6.9 shows the exact time when the fault is detected in W1. D1 is
represented as strike-through because it was removed from ST1 when T2 reads
it. The lines removed by garbage collection or removed because the data were
read by a task are represented as strike-through lines in the figure, and they do
not appear in the following figures.

90

C/FTC%

W1% W2%

T3%

READ:T2’:ST1’:D1:1%

START:T2%

WRITE:T1’:ST1’:D1:2%

WRITE:T1’:ST1’:D1:1%

START:T1%

STREAM:T1’:ST1’:D1:2%

SENT:W2’:T2%

STREAM:T1’:ST1’:D1:1%

SENT:W1’:T1%

Task%Queue%

Stable%Storage%of%leader%

T1# T2# T3#

ST1% ST2%

D1# D1#

ST3%

T1# T2#

LB%of%W1% LB%of%W2%

Figure 6.9. Snapshot of the log-based rollback-recovery example when a fault is

detected in W1 and the restore mechanism is called

The restore mechanism searches the START register stored in the LB of W1

and restarts T1 using the checkpoint stored in the START register. W1 performs
T1 from the checkpoint stored by the START register. Meanwhile, W2 finishes
performing T2, because T2 is not returned to the leader, the garbage collection
mechanism is not called yet. Figure 6.10 shows a snapshot of this time. T1 is
represented in red because the task is performed a second time by the restoring
mechanism.

The snapshot shown in Figure 6.11 represents the exact time when the leader
has received T2 and FTC has sent the confirmation message to W2. Then the
garbage collection removes the useless register from the LB ofW2 and the leader’s
stable storage.

T1 wants to write D1 in ST1 for the first time, but it is avoided by the restore
mechanism because a register about D1 exists in ST1 with counter 1.

Furthermore, the restore mechanism forces W1 to ask FTC whether another
worker that performed T1 wrote D1 in ST1 with counter 1. W1 asks FTC because
W1 does not know if the error appeared after the register was stored and before
the data were written.

If the register is in the LB of W1, but is not in the leader’s stable storage, T1

writes D1 to ST1 with counter 1, without modifying the register related in the
LB, while W1 sends a copy of the data to FTC.

In this case, FTC replies that the data were written in ST1, so T1 does not
write D1 to ST1.

91

C/FTC%

W1% W2%

T3%

END:T2’:FALSE%

WRITE:T2’:ST2’:D3:1%

READ:T2’:ST1’:D1:1%

START:T2%

WRITE:T1’:ST1’:D1:2%

WRITE:T1’:ST1’:D1:1%

START:T1%

STREAM:T2’:ST2’:D3:1%

STREAM:T1’:ST1’:D1:2%

SENT:W2’:T2%

STREAM:T1’:ST1’:D1:1%

SENT:W1’:T1%

Task%Queue%

Stable%Storage%of%leader%

T1# T2# T3#

ST1% ST2%

D1#

ST3%

T1# T2#

D3#

LB%of%W1% LB%of%W2%

Figure 6.10. Snapshot of the log-based rollback-recovery example when T1 is

performed by the restore mechanism

C/FTC%

W1% W2%

T2%

T3%

END:T2’:TRUE%

WRITE:T2’:ST2’:D3:1%

READ:T2’:ST1’:D1:1%

START:T2%

WRITE:T1’:ST1’:D1:2%

WRITE:T1’:ST1’:D1:1%

START:T1%

RECEIVED:W2’:T2’:TRUE%

STREAM:T2’:ST2’:D3:1%

STREAM:T1’:ST1’:D1:2%

SENT:W2’:T2%

STREAM:T1’:ST1’:D1:1%

SENT:W1’:T1%

Task%Queue%

Stable%Storage%of%leader%

T1# T2# T3#

ST1% ST2%

D1#

ST3%

T1#

D3#

LB%of%W1% LB%of%W2%

Figure 6.11. Snapshot of the log-based rollback-recovery example when T2 fin-

ishes while T1 is re-performed a second time

Figure 6.12 shows how T1 tries to write D1 a second time in ST1, but the
restore mechanism avoids writing in ST1 because D1 was written before the
fault was detected. W1 asks FTC to confirm if it knows that D1 was written in
ST1. T3 is not yet performed because D2 is not in ST2.

92

C/FTC%

W1% W2%

T2%

T3%

WRITE:T1’:ST1’:D1:2%

WRITE:T1’:ST1’:D1:1%

START:T1%

STREAM:T1’:ST1’:D1:2%

STREAM:T1’:ST1’:D1:1%

SENT:W1’:T1%

Task%Queue%

Stable%Storage%of%leader%

T1# T2# T3#

ST1% ST2%

D1#

ST3%

T1#

D3#

LB%of%W1% LB%of%W2%

Figure 6.12. Snapshot of the log-based rollback-recovery example when T1 tries

to write D1 for the second time

T1 wants to write D2 in ST2, but the LB of W1 does not have a register related
to these data. As a result, W1 asks FTC if another worker wrote D2 with T1.

In this case, FTC replies to W1 that no writing was performed by another
worker. Therefore, W1 creates the register in its LB and sends it, and T1 writes
D2 to ST2. Afterwards, T1 writes D2, W1 sends a copy to FTC, and FTC creates
a STREAM register with the received data. It is possible to perform T3 because
D2 and D3 are in ST2.

Then the leader sends T3 to W2 and W2 creates the START register related
to T3, as it is shown in Figure 6.13.

Figure 6.14 shows that this time T1 is completed without faults and T3 con-
tinues its execution. In the above figure, T1 is still to be sent to the leader, but
garbage collection can remove any useless registers in the LB of W1.

T1 returns to the leader, FTC creates the RECEIVED register with the Is-
Finished parameter as TRUE and sends the confirmation message to W1. The
garbage collection is activated by the RECEIVED register removing the register
related to T1 into the leader’s stable storage. Note that the last removed register
about T1 from the leader’s stable storage was the RECEIVED register with the
IsFinished parameter as TRUE.

Figure 6.15 represents the snapshot whenW1 awaits its next task and garbage
collection finishes with the leader’s stable storage.

93

C/FTC%

W1% W2%

T2%

START:T3%

LB%of%W1% LB%of%W2%

WRITE:T1’:ST2’:D2:1%

WRITE:T1’:ST1’:D1:2%

WRITE:T1’:ST1’:D1:1%

START:T1%

SENT:W2’:T3%

STREAM:T1’:ST2’:D2:1%

STREAM:T1’:ST1’:D1:2%

STREAM:T1’:ST1’:D1:1%

SENT:W1’:T1%

Task%Queue%

Stable%Storage%of%leader%

T1# T2# T3#

ST1% ST2%

D1#

ST3%

T1#

D2# D3#

T3#

Figure 6.13. Snapshot of the log-based rollback-recovery example when the leader

sends T3 to W2

C/FTC%

W1% W2%

T2%

READ:T3’:ST2’:D3:1%

READ:T3’:ST2’:D2:1%

START:T3%

LB%of%W1% LB%of%W2%

END:T1’:FALSE%

WRITE:T1’:ST2’:D2:1%

WRITE:T1’:ST1’:D1:2%

WRITE:T1’:ST1’:D1:1%

START:T1%

SENT:W2’:T3%

STREAM:T1’:ST2’:D2:1%

STREAM:T1’:ST1’:D1:2%

STREAM:T1’:ST1’:D1:1%

SENT:W1’:T1%

Task%Queue%

Stable%Storage%of%leader%

T1# T2# T3#

ST1% ST2%

D1#

ST3%

T1#

D2# D3#

T3#

Figure 6.14. Snapshot of the log-based rollback-recovery example when W1 fin-

ishes T1

94

C/FTC%

W1% W2%

T1%

T2%

READ:T3’:ST2’:D3:1%

READ:T3’:ST2’:D2:1%

START:T3%

LB%of%W1% LB%of%W2%

END:T1’:TRUE%

RECEIVED:W1’:T1’:TRUE%

SENT:W2’:T3%

STREAM:T1’:ST2’:D2:1%

STREAM:T1’:ST1’:D1:2%

STREAM:T1’:ST1’:D1:1%

SENT:W1’:T1%

Task%Queue%

Stable%Storage%of%leader%

T1# T2# T3#

ST1% ST2%

D1#

ST3%

T3#

Figure 6.15. Snapshot of the log-based rollback-recovery example when the leader

receives T1

At the end, T3 writes D4 to ST3 and T3 is returned to the leader. Figure 6.16
shows the state of the system after performing the example.

C/FTC%

W1% W2%

T3%

T1%

T2%LB%of%W1% LB%of%W2%

Task%Queue%

Stable%Storage%of%leader%

T1# T2# T3#

ST1% ST2%

D1#

ST3%

D4#

Figure 6.16. State of the system after performing the log-based rollback-recovery

example

With this example, we demonstrate that the garbage collection is working
and the stable storage are never full with obsolete information. Additionally,
the example shows how the log-based rollback-recovery proposed can restore a
worker after it is affected by a failure without interrupting other workers.

95

6.3 Chapter Summary

The log-based rollback-recovery mechanisms can be very beneficial for dis-
tributed systems to restore the system after a failure has appeared. For this rea-
son in this chapter, the log-based rollback-recovery proposed is focus on restoring
distributed systems with streaming communication affected by transient faults.

We also created a new role in the system called FTC. This new role helps an
affected worker to restore its state before it was affected by a failure, using the
registers stored into the leader’s stable storage. In addition, the FTC checks if
the data stored into the streams is correct, and supervises the tasks sent and
received by the leader to handle the possible errors that can affect the workers.

An advantage of our mechanism proposed is that it only restores the affected
worker, without interrupting or affecting other workers.
Another benefit is that in our algorithm the LPEL characteristic of blocking

task event has been added. So, the smooth running of our log-based rollback-
recovery proposed is not disturbed by this feature.

Last but not least, we developed a garbage collection mechanism for our
log-based rollback-recovery mechanism that allows the use of a low overhead
garbage collection mechanism, in comparison with other existing garbage collec-
tion mechanism presented in Section 3.

96

Chapter 7

Correctness of the Proposed
Fault Tolerance

This chapter shows the definitions, theorems and proofs of the leader election
presented in Section 5 and the log-based rollback-recovery proposed in Section 6
in this thesis.

7.1 Correctness of Leader Election

In the following section, we provide some formal definitions and proofs of the
correctness of the leader election method.

We use a global well-clock time in our definitions and proofs, This clock is de-
fined by us, it is not related to another system clock and it is used to define which
events happen after others. If there are two events and one of them occurs before
the other one, we can know with our global clock, that the time (t1) of the event
happens before and in consequence, it is smaller than the other time (t2) event.

time t1, t2 =) t1 < t2

7.1.1 Definitions

We provide a list of basic definitions, used to formally describe the correctness
of the created leader election algorithm:

• isLeader(n, t) or IL(n, t): node n is the leader of the system at time t,
then the shared memory (shm) stores the id of node n at time t.

isLeader(n, t) () (time = t =) n.id = shm.lid)

• isCounter(c, t) or IC (c, t): counter c is the counter stored in the shared
memory at time t.

isCounter(c, t) () (time = t =) c = shm.cnt)

• hasLeader(n,n0, t) or HL(n,n0, t): node n has leader n0 at time t in its
local memory.

97

hasLeader(n, n0, t) () (time = t =) n.lid = n0.id)

• hasCounter(n,nC, t) or HC (n,nC, t): at time t, node n has counter nC

in its local memory.

hasCounter(n, nC , t) () (time = t =) n.cnt = nC)

• believesLeader(n, t) or BL(n, t): at time t, node n believes it is the leader,
denoted by having its local leader id n.lid indicating itself:

believesLeader(n, t) () (time = t =) n.lid = n.id)

7.1.2 Correctness

In this section, correctness arguments for our leader election algorithm are
provided. The assumptions for the proof of the correctness of this work are:

Assumption 7.1.1 Each node has a unique identifier and knows its own iden-
tifiers, but it does not need to know the identifier of the other nodes.

Assumption 7.1.2 There is no priority among the nodes that take part in
leader election. Any available node can become leader after the leader crashes.

Assumption 7.1.3 The communication timeout is longer than the maximal
time a that complete leader election method takes.

Assumption 7.1.4 Failed node may reintegrate in the future.

Lemma 7.1.5 (Negative Result) Even given the assumption that a given time
exists with a maximum of one node which believes it is leader, Algorithm 6 does
not ensure for all future times that there will be at maximum one node that
believes it is leader. Formally, the following correctness property is violated:

(9t. @n1, n2. (n1 6= n2) ^ BL(n1, t) ^ BL(n2, t)) =)
(8t1. @n3, n4. (t1 � t) ^ (n3 6= n4) ^ BL(n3, t1) ^ BL(n4, t1))

Proof 7.1.5
Proof that Lemma 7.1.5 is sufficient to show a scenario in which the correctness

property is violated. Our scenario arises from the case of the nodes that perform
different leader election rounds at the same time, with failed nodes allowed to
reintegrate (Assumption 7.1.4).

We assume that at time t, two nodes (n1 and n2) are prepared to perform
Algorithm 6, and node nL is the current failed leader. We assume that node n1

was leader before nL became leader, and that n1 reintegrated after it failed as
leader to act since that time as a worker with nL as its leader. Since nL failed,
node n1 looks for a successor of nL as a leader. We further assume that node n2

98

was busy for a longer period, and that it missed the transition of the leader role
from n1 to nL. Since n1 is now a normal worker, it does not response to n2’s
leader service request. Thus we have the following formal states at time t that
results from multiple overlapping leader election rounds:

9t. 9n1, n2, nL. IL(nL, t) ^ HL(n1, nL, t) ^ HL(n2, n1, t) ^ (n1 6= nL) (eq.7.1)

We assume that at after rounds, time t1 (t1 � t) node n1 becomes leader be-
cause n1 performs CAS (shm.lid, nde.lid, nde.id) in line 3 of Algorithm 6 before
node n2 does:

9t1. [eq.7.1] ^ (t1 > t) ^ BL(n1, t1) ^ IL(n1, t1) ^ HL(n2, n1, t1) (eq.7.2)

Later at time t2 (t2 � t1), node n2 performs the CAS in line 3 of Algorithm 6
and becomes leader, while node n1 is still also alive and acts as leader. The
result is an inconsistent state where the system has a new leader (n2) and, at
the same time, another node (n1) also believes to be the leader:

9t2. [eq.7.2] ^ (t2 > t1) ^ BL(n1, t2) ^ IL(n2, t2) ^ BL(n2, t2) (eq.7.3)

In conclusion, this proof shows that Algorithm 6 cannot guarantee that at the
same time at maximum one node believes to be the leader. Note that the shown
scenario is based on the ability to reintegrate failed nodes once they recover from
failure (Assumptions 7.1.4) 2

Lemma 7.1.5 shows that the inconsistent state for Algorithm 6 is caused by
the ABA problem. The ABA problem (Section 5.4) appears when a node reads
the shared memory twice: shared memory has the same value for both reads,
and the value is used to indicate that nothing has changed. However, the other
nodes executed between the two reads may change the variable, perform different
work and then change the variable to its previous value. Then the first node
believes that the shared memory value has not changed.

Resolving the ABA problem avoids that the system can have two leaders at
the same time, what could cause a split in the system resources.

Lemma 7.1.6 If there is a time t with at maximum one node believes that it is
leader, then Algorithm 7 preserves that property for all future times:

uniqueLeader(t) () (time = t) ^ @n1, n2. (n1 6= n2) ^ BL(n1, t)

^ BL(n2, t)
(eq.7.4)

8t1.9t. (uniqueLeader(t) ^ (t1 � t)) =) uniqueLeader(t1) (eq.7.5)

99

Proof 7.1.6 This proof is based on individually showing the behaviour of each
node that performs the leader election of Algorithm 7. We assume a node n
performs the first CAS to test whether the current leader count matches it local
view, i.e., n.cnt = shm.cnt. This CAS (shm.cnt, n.cnt, n.cnt + 1) can return as
either true or false, which we analyse separately:

a) CAS (shm.cnt, n.cnt, n.cnt+ 1) returns false: in this case, before the first
CAS we had n.cnt 6= shm.cnt, which means that at least one other node
already started the Algorithm 7 before and passed the first CAS instruc-
tion. Node n, in this case, merely concludes that another node has become
leader and updates its local view of n.cnt and n.lid. However, there are
still two cases to distinguish:

a.1) Another competing node has already completed the second
CAS instruction of Algorithm 7:

In this case, node n has the node with id shm.lid as its new leader.
Result: Node n finds a new leader in this round

a.2) No competing node has already completed the second CAS
instruction:

In this case, shm.lid still indicates the failed leader. Node n will,
therefore, later recognise that the assumed leader is not available and
will restart leader election. In the second round, node n will encounter
either case a.1 or b.1 rather than case a.2, based on the assumption
that one of the competing nodes will then also have completed the
second CAS instruction. Therefore, in the second round, node n
cannot perform case b.2, because the leader id stored in its local
memory is different than the leader id stored in the shared memory.

Result: Node n will find a new leader in the next round (via
case a.1 or b.1)

b) CAS (shm.cnt, n.cnt, n.cnt+ 1) returns true: in this case, node n will run
the second CAS to test whether the leader id in the shared memory is still
the id of the failed leader, i.e., n.lid = shm.lid. Once again, there are two
cases to consider:

b.1) CAS (shm.lid, n.lid, n.id) returns false, which means another
node has already become new leader and node n will only
update its local view of n.cnt and n.lid, and the leader elec-
tion for node n will finish with node n remaining a worker.
Result: Node n finds new leader in this round

b.2) CAS (shm.lid, n.lid, n.id) returns true, which means that
node n has become the new leader, and the leader election
for node n finishes with node n assuming the leader role.
Result: Node n becomes leader in this round

Concluding from these four subcases, it follows that at maximum one node n
can become leader via case b.2 with the second CAS instruction in the same

100

Figure 7.1. Reaction of nodes to CAS instructions in the leader election

leader election round, where the current leader election round is defined as via
shm.cnt. All the nodes n in the same leader election round have the same n.lid
value before leader election. However since the first node succeeded via case b.2,
it follows that all the other nodes of the same round can fail via case a.1 or a.2.
If the node is in case a.2, the node performs again the leader election and, in this
second round, the node can run the leader election via case a.1 or b.1. Any other
nodes n’ that participate at the same time with a previous leader election round
(i.e., n’.cnt < shm.cnt) will automatically be ruled out as leader via case a)
and will eventually accept the new leader (those in case a.2, but only through
the next round). All the cases demonstrated in this proof are represented in
Figure 7.1. 2

As it is shown in the proof of Lemma 7.1.6, the nodes that achieve case a.2 need
to run twice the leader election. For this reason we can define the Corollary 7.1.7.

Corollary 7.1.7 A node has to run Algorithm 7 at most twice to finish leader
election.

Lemma 7.1.8 The counter stored in the local memory of the nodes (nc) equals
or is less than the counter in the shared memory:

8t. 8n. 9nc, c. HC (n, nc, t) ^ IC (c, t) ^ (nc c)

Proof 7.1.8 At the beginning, the counter in the nodes and the counter in the
shared memory equal zero (n.cnt = 0 and shm.cnt = 0). Leader counters are
modified only by the leader election (Algorithm 7). The leader count is used for
CAS (shm.cnt, n.cnt, n.cnt+ 1) in line 3 of Algorithm 7. CAS can either return
true or false, with the following results:

a) CAS (shm.cnt, n.cnt, n.cnt+ 1) returns true:

Result: The counter in the shared memory is increased by one.

101

b) CAS (shm.cnt, n.cnt, n.cnt+ 1) returns false:

Result: The counter in the shared memory is not modified.

Therefore, the local counter of a node is never increased in Algorithm 7, but
changes when the node updates its local information from the shared memory.
Consequently the local counter of the node never has a greater value than the
counter of the shared memory. 2

Lemma 7.1.9 The space complexity in the shared memory used on each node
is constant.

Proof 7.1.9 The shared memory and each node store two variables:

1. An integer with the leader id

2. An integer of how many leader elections were performed (counter)

In our proposal, the number of nodes does not affect the number of stored
variables. Then the algorithm needs the same two variables independently if
the system has four or four hundred nodes. Therefore, the space complexity is
constant. 2

We will also proof that Algorithm 7 is wait-free. According with the definition
of wait-free, an algorithm can be defined as wait-free when every node performing
the algorithm has a limited number of steps to complete the algorithm. [65, 97].

Lemma 7.1.10 The leader election algorithm is wait-free.

Proof 7.1.10 In our leader election algorithm, there is
There is one loop in the communication algorithm, but no loop in the leader

election algorithm. Corollary 7.1.7 shows how the node has to run the algorithm
a maximum of two runs in order to finish leader election. Consequently, the
number of steps for a node to become a leader or to update its local information
is finite. So, our leader election proposed has a bound of number of operations
and, as a result, we can say that the leader election mechanism presented is
wait-free. 2

Additionally, we will proof that Algorithm 7 is lock-free. The Lock-Free prop-
erty guarantees that at least one node is progress on its work [66]. In theory
this means that a method may take an infinite amount of operations to com-
plete, but in practice it takes a short amount, otherwise it won’t be much useful.
Therefore, an algorithm is Lock-Free if it guarantees that infinitely often some
node calling this method finishes in a finite number of steps. Then all wait-free
algorithms are lock-free.

Lemma 7.1.11 The leader election algorithms is lock-free.

Proof 7.1.11 In Lemma 7.1.10, it is proof that the leader election algorithm is
wait-free, as a result, the algorithm presented is lock-free. 2

102

7.2 Correctness of Log-Based Rollback-Recovery

In the following section, we provide some formal definitions and proofs of the
correctness of the log-based rollback-recovery algorithm proposed.

7.2.1 Definition

In the following section, we provide a list of basic definitions used to formally
describe the correctness of the created log-based rollback-recovery algorithm,
where e denotes a non-deterministic event:

• Depend(e): The set of nodes (workers and/or the leader) need the non-
deterministic event e to continue performing their tasks.

In the example presented in Section 6.2, T3 depends on D2 and D3 to start.
Then the worker that performs T3 is affected by the non-deterministic
events that create D2 and D3.

• Log(e): the set of workers and/or the leader that stored a register related
to event e in their stable storage.

• Stable(e): The non-deterministic event e is converted to a register and the
register is stored in the node’s stable storage.

7.2.2 Correctness

This section contains the correctness proof of the log-based rollback-recovery
algorithm presented in this thesis. The following assumptions are used as proof
of correctness:

Assumption 7.2.1 Log-based rollback-recovery is a method used to recover from
a fault, and not to detect it. Therefore, additional mechanism have to be provided
for detecting a fault and, consequently performs log-based rollback-recovery to
solve a fault appearing.

Assumption 7.2.2 The communication between the leader and workers is
error-free, i.e., there are no communication errors or missing messages. The
reason is because this thesis is not focused on communication protocols.

Assumption 7.2.3 Each task has a unique id and can only be performed by
one worker at the same time.

Assumption 7.2.4 All previous data used before a register has been stored into
the worker’s LB, is error-free. That means, all information used and performed
by a task prior to a register stored in the worker’s LB is error-free.

103

Assumption 7.2.4 is related to the detection method. So, we are assuming
that there is a good detection mechanism allowing that the information stored
in the worker’s LB is error-free, because if a fault affects a worker, the worker
immediately performs the restore mechanism and the LB does not contain any
register affected by the fault.

Assumption 7.2.5 A worker can access only its own LB and cannot access the
LB of other workers. Additionally, the leader cannot access a worker’s LB.

Assumption 7.2.6 There is no direct communication between workers. A task
communicates with other tasks through streams.

Assumption 7.2.7 The information stored into a LB is always just 0 or 1 step
ahead of the real behaviour of the application performed.

Theorem 7.2.8 The log-based rollback-recovery algorithm proposed does not
generate orphan messages and accomplishes the always-no-orphans consistency
condition [6]:

8e. ¬Stable(e) =) Depend(e) ✓ Log(e)

Proof 7.2.8 We need to prove that every non-deterministic event is not lost
after performing the restore mechanism. To prove this, we checked what happens
if a fault is detected between the register written and the action taken, and if
no orphan messages were created.

A START register stores the checkpoint of the task before performing the task.
If a failure appears after storing the register, the restore mechanism restarts the
task and the worker undertakes the task under the restore mechanism’s supervi-
sion . Result: the START register does not generate orphan messages

A READ register has stored a copy of the data read from a stream.
This register is stored before the task performs the data. Let’s assume that
a fault appears after storing the register, and before the task performs the
data and removes the data from the stream. The fault is detected and the
restore mechanism is called. Then the task is restarted until performing
this register again. In this second time performing the register using the
restore mechanism, the task reads the data stored into the register and the
worker sends a confirmation message that the task has read the data from
the LB to the FTC. The FTC uses the message received from the worker
to search if the data has been removed in the input stream. Therefore,
if the data read by the task is still into the input stream, then the FTC
removes this data to the input stream. Otherwise, the FTC does nothing.
Result: there is no orphan message created

A WRITE register stores a copy of the output data before the task
writes it to a stream. Following the same technique, we assume the appearance

104

of a fault after storing the register and before the task writes the data to the
stream. The worker asks FTC if the data were written by the task before
detecting the fault. FTC checks the leader’s stable storage by looking for a
task-related STREAM register with the data the worker asks for. If there
is a register, FTC replies to the worker that the data were written before,
otherwise, FTC answers that the data were not written before, and the task
writes the data to the stream and the worker sends a copy of the data to FTC.
Result: No orphan messages are created

A BLOCKED register allows blocking the LPEL feature to the algo-
rithm. Let’s imagine that a failure appears after storing the register
and before the task is returned to the leader. When the restore mech-
anism reads the BLOCKED register, the IsTaskReceived parameter is
FALSE. So the restore mechanism forces the worker to send the task to
the leader. After sending the task to the leader, the restore mechanism
finishes and the worker awaits the confirmation message from the FTC.
Result: No orphan messages are created by the BLOCKED register

The END register offers two possibilities: On the one hand, a fault can
appear after a task has finished, but before the worker stores an END register
and returns the task to the leader. When that happens, the task is restarted
by our restore mechanism using the other registers stored in the worker’s LB.
In this second round, once the task is finished, the END register is created and
the task is returned to the leader.

On the other hand, a fault can appear after storing the register and
before the task is returned to the leader. The restore mechanism reads the
END and checks the IsTaskReceived parameter. In this case, IsTaskRe-
ceived is FALSE because the task was never sent to the leader and FTC
never sent a confirmation message. Then the restore mechanism forces the
worker to return the task to the leader. As a result, the restore mecha-
nism finishes and the worker awaits the confirmation message from FTC.

Result: No orphan message is created after performing the restore mech-
anism.

In conclusion, our protocol satisfies the always-no-orphans condition.
2

Theorem 7.2.9 The recovery of a process is consistent by assuming a reliable
LB and is free from the domino effect.

Proof 7.2.9 The stored register ensures that a non-deterministic event is unified
in the correct sequence in the workers’ LB. Upon recovery, the latest checkpoint
of the task becomes available at the START register in the workers’ LB. The
worker uses the registers stored in the LB to reconstruct the state of the task.

As the proof in Theorem 7.2.8, all the registers are used to restore the state
of the worker and no orphan messages are generated. Therefore, recovery of the

105

worker is consistent if assuming a reliable worker’s LB. Furthermore, no other
worker is required to rollback. Thus the domino effect of the unbounded rollback
propagation is not possible. 2

Theorem 7.2.10 If a worker is concurrently affected by multiple failures, then
the worker is restored to the status before the first fault appeared.

Proof 7.2.10 If a fault affects a worker, then the restore mechanism is per-
formed by the worker restoring the status of the task before the fault appears.
So the task is restarted by the first step of the restore mechanism. Suddenly,
the worker is again affected by another fault while performing the task with the
restore mechanism. In this case, the restore mechanism is restarted. Execution
of the restore mechanism does not affect relevant registers in the worker’s LB
because the restore mechanism never removes a register from the worker’s LB.

Therefore, this second execution is performed as if the first restore mechanism
had never happened. As a result, multiple concurrent faults in a worker are
handled by restarting the restore mechanism without it affecting the registers
stored in the worker’s LB of the worker. So the worker is restored to the state
that existed before the first fault appears. 2

Theorem 7.2.11 Only the registers that are not used for future recoveries by
the restore mechanism are removed.

(8r.9t.¬useful(r, t)) =) (9t1.(t1 � t) ^ removed(r, t1))

Proof 7.2.11 A register is removed only by garbage collection because its pre-
condition for being removed is accomplished. Then we need to prove if each
register is correctly removed to stable storage.

• START : Let’s assume that the register is removed before storing the END
register, and that a fault appears before the worker finishes the task. The
restore mechanism cannot restart the task because the checkpoint is no
longer in the LB and the worker cannot recovery the status before the fault
appeared. If a task was finished by a worker, restarting the task is use-
less. The reason why is, given Assumption 7.2.4, the task was performed
with no faults and, therefore it was not necessary to perform it again.

Result: the START register can be removed only after storing
the END register related to the same task with IsTaskReceived as
TRUE or FALSE, or if FTC informs that the task was completed
by another worker.

• READ : Let’s assume that the register is removed before storing the
END register, and that a fault appears before the worker finishes the
task. When the task is performed by the restore mechanism, this
task attempts to find a READ register related to the data in the
worker’s LB. The register is removed. So this register is no longer in

106

the LB and the task tries to read the required data from the stream.
However, these data were already removed from the stream before
the fault occurred. So the task cannot continue its execution, which
means that the worker cannot recover the status before the fault ap-
peared. This register only becomes useless when the task is completed.

Result: the READ register has the same precondition as the
START register.

• WRITE : Let’s imagine that garbage collection removes a WRITE register
before the precondition described. When the task is performed a second
time by the worker with the restore mechanism, the task finds no imped-
iment to rewrite the data to the stream. This implied a duplicated data
problem: the data were written twice, first before the fault appeared and
then after restarting the task. The task needs to be completed to avoid
this problem. Therefore, one condition is to wait until the END regis-
ter is stored, regardless of the IsTaskReceived parameter being TRUE or
FALSE.

Now let’s assume that a fault appears when the WRITE register is
stored and before writing the data. If the task is restarted, then the
data are not written to the stream, but are removed when storing
the END. The data were never written to the stream and the register
with a copy of the data was removed when the register was still use-
ful. Therefore, the WRITE register needs confirmation that the data
were written. For this reason, this register awaits a confirmation mes-
sage from FTC. So another condition of the WRITE register is to re-
ceive message from FTC confirming that the data were correctly written.

Result: the WRITE register becomes useless after storing the END
register and the worker receives a message from FTC confirming
that the data were stored in the stream

• BLOCKED : One contradiction is that we can assume that the BLOCKED
register is removed before becoming useless. Then the worker where the
BLOCKED register was prematurely removed is affected by a fault. So
the task stored in the worker’s START register is restarted. Therefore, the
task is performed by the worker, while the original task is either performed
by another worker or is in the leader’s task queue awaiting to be performed
by a worker. This problem creates a duplication task in the system, so the
BLOCKED register can be removed when the task finishes.

Additionally, if a BLOCKED register is removed, but registers re-
lated to the task remain in the LB, then the worker that uses the re-
store mechanism can restart the task and the duplication task prob-
lem appears. The BLOCKED register needs to wait until the START,
READ and WRITE registers of the task are removed from the LB.

107

Result: the BLOCKED register becomes useless when the task iss
finished by this worker or by another worker, and also when there
are no more registers related to the same task in the LB where the
register is stored, except other BLOCKED registers and the END
register

• END : Let’s assume that the END register is removed when it is still use-
ful. The restore mechanism restarts the task and is performed again. The
worker is busy performing the task that was previously performed cor-
rectly. The worker can send the same task to leader twice. So the worker
needs to know if the task was sent to the leader before removing the END
register. Therefore, the END register becomes useless when the worker
receives a message from FTC confirming that the leader has received the
task.

Additionally, if the END register is removed when there is another
register related to the task in the same LB, the worker can restart
the task again. Here a duplication task problem can appear. To
avoid this problem, the END register needs to be the last regis-
ter related to the task that is removed. Therefore, all the other
task-related registers need to be removed from the worker’s LB.

Result: the END register becomes useless when the worker receives
a message from FTC confirming that the task has arrived with no
problems and when are no more registers related to the task in the
LB where the register is stored.

• SENT : If this register is removed before becoming useless, FTC does
not know to which workers to send the relevant registers that another
worker asked for. This register becomes useless when the related task
is finished by a worker and the leader receives the task. So the worker
where the task was performed no longer asks FTC for relevant task data.

Result: the SENT register is useless when the RECEIVED register
is created with IsFinished parameter as TRUE.

• RECEIVED : Following the same strategy, a register RECEIVED with
IsFinished as FALSE is removed before becoming useless.

Let’s imagine that the leader has crashed and a new leader is elected.
Then FTC checks if the tasks with the SENT register and without the
RECEIVED register are still in workers. As a result, FTC finds a SENT
register, which was prematurely removed. In this case, FTC asks the
worker if it performs the task, but the worker replies that it does not. So
the leader tries to send the task to the worker. However, the task is perhaps
not in the task queue and the leader cannot send it to the worker. There-
fore, this register can be removed only when the RECEIVED register with
the IsFinished parameter as TRUE is stored in the leader’s stable storage.

Result: this register has the same precondition as the SENT reg-
ister.

108

Let’s assume that the IsFinished parameter is TRUE for the RECEIVED
register and that this register is removed from stable storage before time.
When this register is created in the leader’s stable storage, FTC sends a
message to inform all the workers related to the task that the task has
finished.

If the leader fails and a new leader is elected, FTC sees that there is a
SENT register and no RECEIVED register. Therefore, FTC asks the
worker if it performs the task and the worker replies that it does not have
the task. Then the leader sends the task to the worker. This is simi-
lar to the RECEIVED register with the IsFinished parameter as FALSE.
However, the solution is to keep it until all the other task-related registers
have been removed. If a new leader is elected and FTC finds this regis-
ter, then FTC calls the garbage collection mechanism. As a result, this
register needs to wait until all the other task-related registers have been
removed to avoid some registers not being removed if the leader crashes.

Result: this register can be removed by garbage collection when
the leader’s stable storage has no more task-related registers.

• STREAM : Last but not least, let’s consider that a STREAM reg-
ister is removed before becoming useless. This register needs to be
in the leader’s stable storage until the worker with the WRITE reg-
ister finishes the task. If it is removed before the worker finishes
and the worker starts the restore mechanism, then FTC thinks that
these data were never written to the stream. As a result, this regis-
ter has to be in the stable storage until the worker finishes the task.

Result: the STREAM register becomes useless when a message
from a worker confirms that the related WRITE register has been
removed from the worker’s LB.

Let’s imagine that this register is removed before FTC confirms
that the data in the stream were correctly written. Thus there
is a worker with a WRITE register that was never removed
from the worker’s LB. Therefore, this register waits until FTC
compares the data in the stream to the data in this register.

Result: the STREAM register can be removed when the RE-
CEIVED register with IsFinished as TRUE is stored in the leader’s
stable storage, and FTC uses this register to compare the data
stored in the register to the data stored in the stream.

2

7.3 Chapter Summary

This chapter presents the definitions, lemmas and proofs to demonstrate that
the leader election and log-based rollback-recovery proposed accomplished their
fault tolerance objectives.

109

The first part of this chapter is focused on the leader election algorithm pro-
posed. Lemma 7.1.5 shows that Algorithm 6 cannot guarantee that only one
leader is elected after the leader election mechanism is completed. For this rea-
son, Lemma 7.1.5 has been replaced with Lemma 7.1.6, to demonstrate that
Algorithm 7 assures that only one node can be elected as a leader. In the mean-
while, the rest of nodes update their local information with the information
stored in the shared memory.

Furthermore, Lemma 7.1.10 confirms that Algorithm 7 has a bound of execu-
tion steps to be completed, what confirms the algorithm proposed is wait-free
and lock-free.

The second part of this chapter is focused on our log-based rollback-recovery
algorithm. A good log-based rollback-recovery must to ensure that a consistent
state is accomplished after a fault is detected and no orphan messages are cre-
ated. It is demonstrated by Theorem 7.2.8 and Theorem 7.2.9 that the log-based
rollback-recovery algorithm proposed in this thesis accomplishes the always-no-
orphan condition and ensures that a consistent state is accomplished in case of
a fault affects a worker.

Last but not least, after performing our garbage collection mechanism is en-
sured that the nodes’ stable storage do not contain obsolete registers. Theo-
rem 7.2.11 corroborates the preconditions defined in Section 6.1.4 to remove
obsolete registers into the nodes’ stable storage.

110

Chapter 8

Assessment

This chapter evaluates the performance of a LPEL [109, 101] prototype that
uses our leader election and the log-based rollback-recovery mechanism in ex-
periments.

The hardware used for testing the experiments is a cluster property of the
University of Hertfordshire. This cluster is a 144-node Linux cluster that con-
tains a SMP machine with 48 cores and 256 GB Ram, and used by members of
the Science and Technology Research Institute.

In this section, the execution time overhead represents the extra percentage of
the execution time, in seconds, that the system needs to finish a program when
a mechanism is called.

8.1 Evaluation of Leader Election

8.1.1 Description of the Experiment

The leader election experiment is based on sending and receiving tasks contin-
uously between the workers and the leader. Tasks used for the experiment have
a small execution time and they are insignificant for the performance metrics
showed in the results.

This experiment forces the workers to keep contact with the leader, as well
as the workers can detect a failure of the leader using the notification message
method described in Section 4.2. Therefore, in case the leader fails, workers will
follow the notification message behaviour explained in Figure 4.1.

Figure 8.1 shows the behaviour of the leader during the experiments per-
formed.

At the beginning of each experiment, the system is forced to select core 0
as a leader, the remaining cores are workers. When each test starts, all the
workers send a request task to the leader and then the leader replies with a task
for each worker. Once the leader has replied all workers, it will wait until it
receives a task from a worker. When the leader receives a task from a worker,
the leader chooses randomly if it replies the worker and continues being the
leader or it destroys itself, being reintegrated as a worker in the system. If the

111

Figure 8.1. Behaviour of the leader into the experiments

leader destroys itself, the system considers the leader fails, then the workers can
start the leader election using the notification message method.

Using the cluster of University of Hertfordshire that has 48 cores, the exper-
iment has been tested for 4, 8, 16, 32 and 48 cores. All the cores participate
in the experiments, if 4, there will be 3 workers and 1 leader; if 8, there will
be 7 workers and 1 leader; and so on. Additionally, for each group of cores, the
experiment has been performed 50 times.

8.1.2 Discussion of Results

Figure 8.2 presents the amount of time used by all the workers to elect a new
leader, as well as the time used by the remaining workers to know that the leader
has changed. The figure shows a comparison of the execution time of every test
realized for each groups of cores.

The average execution time of each group of cores in the figure are:

• 4 cores: 0.1284 seconds

• 8 cores: 0.215 seconds

• 16 cores: 0.3708 seconds

• 32 cores: 0.8662 seconds

112

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

1.4	

1.6	

1.8	

2	

1	 6	 11	 16	 21	 26	 31	 36	 41	 46	

T
im

e
	(
se
co
n
d
s)
	

Test	number	

4	cores	 8	cores	 16	cores	 32	cores	 48	cores	

Figure 8.2. Time (sec) used by the nodes to elect a new leader

• 48 cores: 1.4548 seconds

As we can see, time needed for workers to know that the leader has changed
increases with the number of workers, as usual in this kind of leader election
mechanisms. The reason is because there are more number of workers that need
to update their local information with the new leader information.

0	

50	

100	

150	

200	

250	

300	

N
u
m
b
e
r	
o
f	
re
a
d
in
g
s	
	

4	cores	

8	cores	

16	cores	

32	cores	

48	cores	

Figure 8.3. Number of times all the workers did a reading from the shared memory

Figure 8.3 shows the average number of times all the workers read from the
shared memory per leader election. The figure also represents the amount of

113

readings from the shared memory per group of tested cores. The candidates in
our leader election mechanism always write 2 or 3 times to the shared memory,
so the number of writing to the shared memory to elect a leader is constant
irrespectively of the participants.

The average number of times per group of cores tested 50 times to elect a
leader in the Figure 8.3 are:

• 4 cores: 16 readings

• 8 cores: 39 readings

• 16 cores: 87 readings

• 32 cores: 180 readings

• 48 cores: 276 readings

In consequence, Figure 8.3 shows that the result of the evaluation in Sec-
tion 5.6.3 is correct, since that, in the worst case, the workers reads 6*(n-1)
times when the leader election starts.

In some distributed systems with shared memory, reading data from the
shared memory can have a high execution time, for this reason reducing the
number of readings is important. The figure shows how the amount of readings
to the shared memory depends on the number of participants, given that nodes
need to update their local information with the information stored in the shared
memory about the new leader. Accordingly, our algorithm has been developed
in order to save time, keeping low the number of readings to the shared memory.

Additionally, our algorithm has a constant number of writings independently
of the number of participants, what allows it use with any number of nodes
without increasing the amount of writings.

Figure 8.4 compares the amount of reading that the nodes need to realize,
either shared memory readings or messages related to the leader election. In
this figure, our leader election approach is compared to other leader election
explained in Section 3, such as, RatRace, RMR and Enhanced Bully Algorithm.
Rat RatRace, RMR and our approach do not have reading from messages, in-
stead of Enhanced Bully Algorithm only the leader reads and writes from the
shared memory, but the nodes read and write messages from other nodes. As a
result, our leader election is the mechanism that the nodes make less readings
from the shared memory.

This figure shows the execution time overhead that our leader election gives
to system. As we can see, the overhead of our algorithm is linear. Increasing
the number of nodes in the system increases execution time that all nodes need
to know that the leader has changed.

Figure 8.6 compares the execution time overhead of our approach (Leader
Election) to other approaches, such as, RatRace, RMR and Enhanced Bully
Algorithm.

114

0	

50	

100	

150	

200	

250	

300	

4	cores	 8	cores	 16	cores	 32	cores	 48	cores	

N
u
m
b
e
r	
o
f	
re
a
d
in
g
s	

Amount	of	readings	

Leader	Elec4on	 RatRace	(Alishtarh)	

RMR	(Golab)	 Enhanced	Bully	Algorithm	(Golam)	

Figure 8.4. Number of reading comparative of different approaches including ours

leader election approach.

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

E
x
e
cu
&
o
n
	&
m
e
	o
v
e
rh
e
a
d
	(
%
)	

Execu&on	&me	overhead	of	our	

leader	elec&on	

4	cores	

8	cores	

16	cores	

32	cores	

48	cores	

Figure 8.5. Execution time overhead of our leader election approach.

Our algorithm was developed in order to save time, keeping low overhead.
With this figure we can say that we accomplish the goal to create an efficient
leader election that has a low execution time overhead.

115

0	

1	

2	

3	

4	

5	

6	

7	

8	

9	

10	

4	cores	 8	cores	 16	cores	 32	cores	 48	cores	

E
x
e
cu
&
o
n
	&
m
e
	o
v
e
rh
e
a
d
	(
%
)	

Execu&on	&me	overhead	

Leader	Elec6on	 RatRace	(Alishtarh)	

RMR	(Golab)	 Enhanced	Bully	Algorithm	(Golam)	

Figure 8.6. Execution time overhead comparative of different approaches includ-

ing ours leader election approach.

8.2 Log-based rollback-recovery

8.2.1 Description of the Experiments

A specific kind of tasks have been created for the log-based rollback-recovery
experiments with the purpose they are able to read and write data continuously
to streams. In these experiments, each task has been developed for reading from
the stream 300 times and writing to the stream 500 times. These experiments
were also performed for 4, 8, 16, 32 and 48 cores.

On account of this thesis is not focused on creating a fault detection method,
to simulate the experiments we injected faults into the workers. For this reason,
when a fault is injected into a worker, the worker calls the restore mechanism.

Different behaviours have been tested, the most representatives can be sum-
marize in:

1. Not using our algorithm and without faults: tests perform without our
log-based rollback-recovery algorithm. This is the basic model, the other
experiments are based and compare on this first behaviour case.

2. Using our algorithm and without faults: tests performed base on the basic
model, previous example, but using our log-based rollback-recovery algo-
rithm. Workers are not affected by faults.

3. Using our algorithm and with one fault: tests performed are an alteration
of the second behaviour (using our algorithm and without faults) but there

116

is one worker affected by one fault. The remaining workers are not affected
by the fault.

4. Using our algorithm and with several faults: Following the behaviour 3
but more than one fault occurred. Each time a task reads or writes to the
stream, the worker performing the task can be affected by a fault. The
probability of a fault can affect a worker each time a task reads or writes
to the stream, is 1 in 1000.

8.2.2 Discussion of Results

Figure 8.7 presents the execution time overhead caused by the restore mecha-
nism using the registers stored in the LB of the worker. The following list shows
the possibilities of the registers stored in the LB of the worker when the restore
mechanism is called, as well as the execution time overhead that the workers
receives after it is restarted by the restore mechanism.

0	

1	

2	

3	

4	

5	

6	

7	

8	

9	

10	

E
x
e
cu
&
o
n
	&
m
e
	o
v
e
rh
e
a
d
	(
%
)	

Execu&on	&me	overhead	per	register	

START	

READ	

WRITE	data	was	not	wri=en	to	the	

stream	

WRITE	data	was	wri=en	to	the	stream	

BLOCK	IsTaskReceived	is	true	

BLOCK	IsTaskReceived	is	false	

END	IsTaskReceived	is	true	

END	IsTaskReceived	is	false	

Figure 8.7. Percentage of the execution time overhead depending on the registers

stored in the stable storage

• START register: 5.451

• READ register: 3.512

• WRITE register without data written to the stream: 9.489

• WRITE register with data written to the stream: 6.131

• BLOCK with IsTaskReceived parameter as TRUE: 0.493

117

• BLOCK with IsTaskReceived parameter as FALSE: 3.45

• END with IsTaskReceived parameter as TRUE: 1.623

• END with IsTaskReceived parameter as FALSE: 2.65

The execution time overhead is less than 4%, except for the WRITE and
START registers. The overhead of a START register is because of the restore
mechanism interrupts the execution of the worker and forces the worker to restart
the task using the checkpoint stored in the START register. The WRITE regis-
ters have the highest execution time overhead. This is due to the worker checks
with FTC if the data has been written by the task before the fault was detected.
If the data was not written before, the overhead is highest, since the task has to
write the data into the stream.

Through all these experiments, we can conclude that our restore mechanism
gives to a worker a low execution time overhead per register stored into the LB
of the worker.

Additionally, these practical experiments have demonstrated that the worker
can achieve a consistent state when the restore mechanism is called, avoiding
orphan messages and not modifying the output of the application.

Figure 8.8 illustrates the execution time overhead caused by our log-based
rollback-recovery algorithm. First of all, We obtained the time (te) to perform
the experiments for each group of cores without using our algorithm (behaviour
1). Given that its value is 0, it is not represented in the figure. Secondly, we
obtained the time (tf) of the experiments with the proposed log-based rollback-
recovery without injecting faults in the system (behaviour 2). Comparing be-
haviour 1 and 2, the execution time overhead is represented as (tf ⇤ 100)/te,
where the excess of 100% is the overhead caused by our algorithm. Addition-
ally, in the figure is also represented the execution time overhead caused by
our approach in case a fault only affects one of the workers (behaviour 3), or if
several faults appear in different workers (behaviour 4).

In order to complete the log-based rollback-recovery experiments, we also
checked the overhead caused by our restore mechanism performing each register
stored into the LB of the worker.

As a result, we can conclude that the average execution time overhead caused
by our algorithm is:

• Without faults (Behaviour 2): 8.75%

• One fault affects only one of the workers (Behaviour 3): 12.44%

• Several faults affecting different workers (Behaviour 4): 24.92%

As the figure shows, our log-based rollback-recovery has a constant overhead
when workers are not affected by faults (Behaviour 2), regardless of the number
of workers in the system. For the experiments with one fault (Behaviour 3), the
figure shows how the approach also has a constant overhead, irrespectively of
the number of workers.

118

0	

5	

10	

15	

20	

25	

30	

35	

4	 8	 16	 32	 48	E
x
e
cu
&
o
n
	&
m
e
	o
v
e
rh
e
a
d
	(
%
)	

Number	of	cores	

Execu&on	&me	overhead	of	our	rollback-

recovery	mechanism	

Behaviour	2	 Behaviour	3	 Behaviour	4	

Figure 8.8. Percentage of execution time overhead caused by our log-based

rollback-recovery algorithm

With respect to the experiments with several faults, the number of tasks
increase according to the number of workers used by the system. The more
workers are performing tasks, the more probability of an apparition of a fault
will can be. For this reason, the experiments with 48 cores have more execution
time overhead than the experiments with less cores.

In conclusion, we can assert that our algorithm is scalable, due to the number
of workers does not affect the execution time overhead when our algorithm is
utilised in error-free.

Other of the objectives of our proposal was to create a log-based rollback-
recovery algorithm that could be performed keeping a low execution time over-
head in error-free. For this reason, the garbage collection mechanism is being
performed continuously by our log-based rollback-recovery algorithm, removing
the obsolete registers into the stable storage of the nodes, Based on the data
exposed in Figure 8.8, we can affirm we have accomplished this goal, since our
garbage collection mechanism minimises the execution time overhead.

Our restore mechanism is performed in the worker affected, avoiding the inter-
ruption of other workers or leader, achieving a consistent state after the restore
mechanism is called. This is due to our algorithm is asynchronous, conferring
this feature to the workers performance in case a fault appears. For this reason,
in Figure 8.8, the results of Behaviour 3 are constant, given that the fault only
affects one worker while the remaining workers can continue with their execution.
The results shows how the restore mechanism avoids the domino effect.

Figure 8.9 shows the execution time overhead when the system is not af-
fected by faults comparing our proposed mechanism to other rollback-recovery
mechanism explained in Section 3, such as, MPICH-V, Mutable Checkpoints
and Chaoguang. One of the objectives was to create a rollback-recovery that

119

0	

10	

20	

30	

40	

50	

60	

4	cores	 8	cores	 16	cores	32	cores	48	cores	

E
x
e
cu
&
o
n
	&
m
e
	o
v
e
rh
e
a
d
	(
%
)	

Compara&ve	with	several	faults	

Our	approach	

MPICH-V	

Mutable	Checkpoints	

Chaoguang	

Figure 8.9. Percentage of execution time overhead when the system is not af-

fected by faults comparing other approaches to our log-based rollback-recovery

approach

can keep a low execution time overhead. Our algorithm accomplishes this goal
thanks to the creation of the garbage collection mechanism and the implementa-
tion of the restore mechanism using the registers stored, we create and efficient
rollback-recovery mechanism that minimizes the execution time overhead.

Figure 8.9 compares algorithms without faults, that means, in error-free time.
Figure 8.10 compares same algorithms when the system is affected by several
faults. Our algorithm is still the algorithm with less execution time overhead,
because our restore mechanism is performed only by the affected worker, avoid-
ing interruption and synchronization of other workers, achieving a consistent
state after the restore mechanism is called. For example, MPICH-V has the
higher overhead because the nodes can be affected by the domino effect. As it is
demonstrated in Theorem 7.2.9 (Section 7.2), our algorithm is free from domino
effect.

120

0	

10	

20	

30	

40	

50	

60	

4	cores	 8	cores	 16	cores	32	cores	48	cores	

E
x
e
cu
&
o
n
	&
m
e
	o
v
e
rh
e
a
d
	(
%
)	

With	several	faults	

Our	approach	

MPICH-V	

Mutable	Checkpoints	

Chaoguang	

Figure 8.10. Percentage of execution time overhead when the system is not af-

fected by faults comparing other approaches to our log-based rollback-recovery

approach

121

122

Chapter 9

Conclusion

This chapter summarizes the main features and contribution of this thesis. It
also contains an overview of possible future research directions in fault tolerance
in distributed systems with shared memory.

9.1 Thesis Summary

As it is shown in the related work (Section 3), there are not too many works
oriented to create a fault tolerance mechanism for distributed system with stream
processing networks. Therefore, we developed two fault tolerance mechanisms,
leader election and log-based rollback-recovery, that work with stream process-
ing networks. Then the combination of the leader election and the log-based
rollback-recovery proposed are optimised, using the properties of the stream
programs, such as, asynchronous property.

These two fault tolerance mechanism are being implemented as a prototype
using LPEL. These fault tolerance mechanisms help increase the dependability
of applications, and can handle permanent and transient faults that affect the
system’s hardware.

Both presented mechanisms have been optimised for distributed systems with
shared memory, a paradigm that is becoming increasingly important because
many-core processors feature network on chip (NoC).

The first mechanism that we have presented is for leader election in systems
that depend on a central leader process. Such processes are often used to manage
shared resources, or to distribute work over several worker processes. They are,
therefore, crucial for correct system operation. If the leader process fails, a new
leader process is elected from a collection of candidate processes.

In our research, we found only a few leader election approaches for shared
memory [130, 120, 45]. Unlike them, Chapter 5 proves that our leader election
method has less space complexity and a faster response time. As proved in Sec-
tion 7.1, our algorithm has a constant space complexity per node O(2) and has
a constant time complexity per node. However, the algorithm’s time complexity
with all number of cores is linear O(n) = [6 ⇤ (n� 1)] ⇤ T read + 3 ⇤ Twrite for the
worst case, where n is the number of nodes used in the system.

123

Additionally, the communication protocol and the topology of the network
related to the system are not a restriction for our leader election algorithm. Thus
they are not decisive elements in our proposal, which facilitates the application
of our algorithm to other distributed systems.

Regarding the second mechanism, log-based rollback-recovery is based on tak-
ing snapshots of the state of a task, and offers the possibility of recovering a pre-
vious state should the worker fail where the task is performed. The suggested
restore mechanism uses the information stored in the stable storage to rollback
the task to the previous state found before the fault appeared.

Furthermore, specific garbage collection for the algorithm is created for the
algorithm and is presented in Section 2.1.5. In is unlike other approaches [23,
108] where the recovery strategy is presented, but garbage collection is never
used. Thus the presented garbage collection can be used for other rollback-
recovery strategies for distributed systems.

In summary, our log-based rollback-recovery approach has the following ad-
vantages respect with other algorithm developed for the same task (presented
in Section 3):

1. It is a domino effect-free algorithm

2. The experimental result in Chapter 8 shows that the proposed log-based
rollback-recovery has a lower overhead and that no faults appeared.

3. The recovery overhead depends on how many faults appear in the system.

4. A global consistent state after a worker is restored is ensured.

5. It is scalable since log-based rollback-recovery is insensitive to the number
of workers in the system.

Besides, the Compiler Technology and Computer Architecture Group
(CTCA) of the University of Hertfordshire is an important member in the
CRAFTERS [116] project and contributes to work for compiler-supported fault
tolerance to allow the design of robust concurrent systems with manageable
complexity to confer LPEL and S-Net in order to achieve this purpose.
I am a member of the CRAFTERS project and a researcher at the in Univer-

sity of Hertfordshire. Therefore, given the combination of these two mechanisms
and their implementation into LPEL, consequently S-Net has contributed to cre-
ate a strong compiler-supported fault tolerance which the CRAFTERS project
requires to achieve its objective.

9.2 Future work

The work conducted in this thesis provides some basis for future research
lines. These research lines can be:

• Stateful components

124

• Dynamic changes of the network structure

• Granularity of the logging approach

• Adding additional fault tolerance mechanisms to the proposed LPEL pro-
totype

• Creating a fault detector

• Correctness of log-based rollback-recovery

Stateful components
The log-based rollback-recovery approach presented in this thesis only ag-
gregates messages and it does not value computations to produce the re-
sult. The research in this thesis about log-based rollback-recovery was
conducted with the objective to create an efficient mechanism to solve the
transient and permanent faults that can affect workers of the system. So,
the experimental approach created is adapted to LPEL which does not
have stateful components. However, S-Net that uses LPEL to communi-
cate with the hardware has stateful components. As a result, the approach
should be modified to integrate stateful components that allow the full re-
cuperation of S-Net in case of being affected by a transient or permanent
fault; allowing the utilization of stateful components to produce the appli-
cation’s output.

Dynamic changes of the network structure
The system network topology is not a restriction of our approaches, leader
election and log-based rollback-recovery. Nevertheless, both approaches
presented do not have a mechanism to support dynamic changes of the
network structure. Therefore, it would be a good idea to investigate and
add a mechanism to the approaches presented in this thesis, allowing the
adaptation of leader election and log-based rollback-recovery when the
network topology changes during the application performance.

Granularity of the logging approach
The log-based rollback-recovery presented in this thesis works on all work-
ers of the system without synchronisation among the workers. Besides,
the approach presented cannot work correctly if the system is separated in
clusters, because the approaches see all workers in only one cluster. Con-
sequently, a modification of the approach could allow the user to select a
group of workers to activate log-based rollback-recovery or participate in
the leader election.

Adding additional fault tolerance mechanisms to the proposed LPEL
prototype
There are a few fault tolerance techniques that can be added to this pro-
totype as well.

The paper [80] discusses different fault tolerance techniques that can be
added to S-Net and presents also three fault tolerance mechanisms:

125

• Checkpointing/restoring the program state

• Dynamic Reconfiguration

• Redundant Computation

In the present thesis, we are focused on the checkpoint/restore mechanism
for log-based rollback-recovery. In the same way, the other two mecha-
nisms proposed in the paper mentioned, might be an encouraging research
direction. For example, these techniques could be focused on ensuring the
communication protocol is error-free.

Creating a fault detector
Another objective of this thesis was the creation of two fault tolerance
techniques for distributed systems with shared memory. In Chapter 8, the
experiments presented use the notification message method to detect the
leader’s failure. In the log-based rollback-recovery experiments, a fault is
injected into a worker and, at the same time, the worker is forced to call
the restore mechanism to resolve the appearance of the fault. However,
the thesis is focused on these two techniques and did not focus on fault
detection to detect the appearance of faults in the system. In conclusion,
no proper fault detector for both mechanisms exists.

In this case, a promising research line would be to create a fault detector
that detects the fault and uses the correct fault tolerance technique to
repair it. For example, a good start for a future research could be the used
of a fault detection mechanism with signals models [67] as well as could
be developed a fault detection mechanism with a process-identification
method [69].

126

Bibliography

[1] A. Acharya and B. Badrinath. Checkpointing distributed applications on mobile
computers. In Parallel and Distributed Information Systems, 1994., Proceedings
of the Third International Conference on, pages 73–80, Sep 1994.

[2] Y. Afek, E. Gafni, J. Tromp, and P. M. Vitányi. Wait-free test-and-set. In
Distributed Algorithms, pages 85–94. Springer, 1992.

[3] D. Alistarh and J. Aspnes. Sub-logarithmic test-and-set against a weak adver-
sary. In Distributed Computing, pages 97–109. Springer, 2011.

[4] D. Alistarh, H. Attiya, S. Gilbert, A. Giurgiu, and R. Guerraoui. Fast ran-
domized test-and-set and renaming. In Distributed Computing, pages 94–108.
Springer, 2010.

[5] L. Alvisi, E. Elnozahy, S. Rao, S. Husain, and A. de Mel. An analysis of com-
munication induced checkpointing. In Fault-Tolerant Computing, 1999. Digest
of Papers. Twenty-Ninth Annual International Symposium on, pages 242–249,
June 1999.

[6] L. Alvisi and K. Marzullo. Message logging: Pessimistic, optimistic, causal and
optimal. IEEE Transactions on Software Engineering, pages 149–159, 1998.

[7] L. Alvisi, S. Rao, and H. M. Vin. Low-overhead protocols for fault-tolerant
file-sharing. In In Proceedings of the IEEE 18 th International Conference on
Distributed Computing Systems, pages 452–461, 1998.

[8] A. F. Anta, E. Jiménez, and M. Raynal. Eventual leader election with weak
assumptions on initial knowledge, communication reliability, and synchrony.
Journal of Computer Science and Technology, 25(6):1267–1281, 2010.

[9] A. W. Appel. Garbage collection can be faster than stack allocation. Informa-
tion Processing Letters, 25(4):275–279, 1987.

[10] H. Attiya and J. Welch. Distributed computing: fundamentals, simulations, and
advanced topics, volume 19. John Wiley & Sons, 2004.

[11] A. Avizienis and J. Kelly. Fault tolerance by design diversity: Concepts and
experiments. Computer, 17(8):67–80, Aug 1984.

[12] A. Avižienis, J.-C. Laprie, B. Randell, and C. Landwehr. Basic concepts and
taxonomy of dependable and secure computing. IEEE Transactions on Depend-
able and Secure Computing, 1(1):11–33, Jan. - Mar. 2004.

[13] D. Avresky and D. Kaeli. Fault-Tolerant Parallel and Distributed Systems.
Springer US, 2012.

[14] O. Babaoglu and K. Marzullo. Consistent global states of distributed systems:
Fundamental concepts and mechanisms. Distributed Systems, 2:63–75, 1993.

[15] M. Balazinska, H. Balakrishnan, S. R. Madden, and M. Stonebraker. Fault-
tolerance in the borealis distributed stream processing system. ACM Transac-
tions on Database Systems (TODS), 33(1):3, 2008.

[16] F. Bause and P. S. Kritzinger. Stochastic Petri Nets. Springer, 1996.

127

[17] B. N. Bershad, M. J. Zekauskas, and W. A. Sawdon. The Midway distributed
shared memory system. IEEE, 1993.

[18] B. Bhargava and S.-R. Lian. Independent checkpointing and concurrent roll-
back for recovery in distributed systems-an optimistic approach. In Reliable
Distributed Systems, 1988. Proceedings., Seventh Symposium on, pages 3–12,
Oct 1988.

[19] B. Bieker, E. Maehle, G. Deconinck, and J. Vounckx. Reconfiguration and
checkpointing in massively parallel systems. In K. Echtle, D. K. Hammer, and
D. Powell, editors, EDCC, volume 852 of Lecture Notes in Computer Science,
pages 353–370. Springer, 1994.

[20] G. Birkhoff and S. Mac Lane. Algebra. AMS Chelsea Publishing, New York,
1999.

[21] P. E. Black. big-o notation. Dictionary of Algorithms and Data Structures,
2007.

[22] A. Borg, J. Baumbach, and S. Glazer. A message system supporting fault
tolerance. In Proceedings of the Ninth ACM Symposium on Operating Systems
Principles, SOSP ’83, pages 90–99, New York, NY, USA, 1983. ACM.

[23] G. Bosilca, A. Bouteiller, F. Cappello, S. Djilali, G. Fedak, C. Germain, T. Her-
ault, P. Lemarinier, O. Lodygensky, F. Magniette, V. Neri, and A. Selikhov.
Mpich-v: Toward a scalable fault tolerant mpi for volatile nodes. In Supercom-
puting, ACM/IEEE 2002 Conference, pages 29–29, Nov 2002.

[24] A. Bouteiller, T. Hrault, G. Krawezik, P. Lemarinier, and F. Cappello. Mpich-v
project: A multiprotocol automatic fault-tolerant mpi. IJHPCA, 20(3):319–333,
2006.

[25] A. Bouteiller, P. Lemarinier, G. Krawezik, and F. Cappello. Coordinated check-
point versus message log for fault tolerant mpi. In CLUSTER, pages 242–250.
IEEE Computer Society, 2003.

[26] A. Bouteiller, T. Ropars, G. Bosilca, C. Morin, and J. Dongarra. Reasons for a
pessimistic or optimistic message logging protocol in mpi uncoordinated failure,
recovery. In CLUSTER, pages 1–9. IEEE, 2009.

[27] B. Bouteiller, F. Cappello, T. Herault, K. Krawezik, P. Lemarinier, and M. Mag-
niette. Mpich-v2: a fault tolerant mpi for volatile nodes based on pessimistic
sender based message logging. In Supercomputing, 2003 ACM/IEEE Confer-
ence, pages 25–25, Nov 2003.

[28] F. V. Brasileiro, P. D. Ezhilchelvan, S. K. Shrivastava, N. Speirs, S. Tao, et al.
Implementing fail-silent nodes for distributed systems. Computers, IEEE Trans-
actions on, 45(11):1226–1238, 1996.

[29] A. Campos and M. Castillo. Checkpointing through garbage collection. In
I. Acta Press, editor, EDCC, PARALLEL AND DISTRIBUTED COMPUTING
AND SYSTEMS;Parallel and distributed computing and systems. International
conference; 8th, Parallel and distributed computing and systems. Springer,
1996.

[30] G. Cao and M. Singhal. Mutable checkpoints: a new checkpointing approach
for mobile computing systems. Parallel and Distributed Systems, IEEE Trans-
actions on, 12(2):157–172, Feb 2001.

[31] M. Carkci. Dataflow and Reactive Programming Systems. CreateSpace Inde-
pendent Publishing Platform, 1 edition, 2014.

[32] M. Castro, B. Liskov, et al. Practical byzantine fault tolerance. In OSDI,
volume 99, pages 173–186, 1999.

128

[33] K. M. Chandy and L. Lamport. Distributed snapshots: Determining global
states of distributed systems. ACM Trans. Comput. Syst., 3(1):63–75, Feb.
1985.

[34] K. M. Chandy and C. V. Ramamoorthy. Rollback and recovery strategies for
computer programs. Computers, IEEE Transactions on, 100(6):546–556, 1972.

[35] G.-M. Chiu and C.-R. Young. Efficient rollback-recovery technique in dis-
tributed computing systems. Parallel and Distributed Systems, IEEE Trans-
actions on, 7(6):565–577, Jun 1996.

[36] D. Clark. The design philosophy of the darpa internet protocols. In Symposium
Proceedings on Communications Architectures and Protocols, SIGCOMM ’88,
pages 106–114, New York, NY, USA, 1988. ACM.

[37] I. Corporation. Paragon user’s guide, 1993.
[38] G. Coulouris, J. Dollimore, T. Kindberg, and G. Blair. Distributed Systems:

Concepts and Design. Addison-Wesley Publishing Company, USA, 5th edition,
2011.

[39] J. Crawford, M. Ginsberg, E. Luks, and A. Roy. Symmetry-breaking predicates
for search problems. In Proceedings KR’96, pages 148–159. Morgan Kaufmann,
1996.

[40] F. Cristian. Understanding fault-tolerant distributed systems. Commun. ACM,
34(2):56–78, Feb. 1991.

[41] F. Cristian, S. Mishra, and Y. Hyun. Implementation and performance of a
stable-storage service in unix. In Reliable Distributed Systems, 1996. Proceed-
ings., 15th Symposium on, pages 86–95, Oct 1996.

[42] A. Derhab and N. Badache. A self-stabilizing leader election algorithm in
highly dynamic ad hoc mobile networks. Parallel and Distributed Systems,
IEEE Transactions on, 19(7):926–939, 2008.

[43] D. Dice, D. Hendler, and I. Mirsky. Lightweight contention management for
efficient compare-and-swap operations. In Euro-Par 2013 Parallel Processing -
19th International Conference,Aachen, Germany, August 26-30, 2013. Proceed-
ings, pages 595–606, 2013.

[44] A. Duarte. RADIC: A Powerful Fault-tolerant Architecture. Universitat
Autònoma de Barcelona, 2007.

[45] M. Effatparvar, N. Yazdani, M. EffatParvar, A. Dadlani, and A. Khonsari.
Improved algorithms for leader election in distributed systems. In Computer
Engineering and Technology (ICCET), 2010 2nd International Conference on,
volume 2, pages V2–6–V2–10, April 2010.

[46] I. Egwutuoha, D. Levy, B. Selic, and S. Chen. A survey of fault tolerance mecha-
nisms and checkpoint/restart implementations for high performance computing
systems. The Journal of Supercomputing, 65(3):1302–1326, 2013.

[47] E. Elnozahy and W. Zwaenepoel. Manetho: Transparent roll back-recovery with
low overhead, limited rollback, and fast output commit. IEEE Transactions on
Computers, 41(5):526–531, 1992.

[48] E. N. Elnozahy. On the relevance of communication costs of rollback-recovery
protocols. In Proceedings of the Fourteenth Annual ACM Symposium on Prin-
ciples of Distributed Computing, PODC ’95, pages 74–79, New York, NY, USA,
1995. ACM.

[49] E. N. M. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson. A survey
of rollback-recovery protocols in message-passing systems. ACM Compututing
Surveys, 34(3):375–408, 2002.

129

[50] N. EPSRC. Archer is the latest uk national supercomputing service. the archer
service started in november 2013 and is expected to run for 5 years.

[51] A. Fernandez, E. Jimenez, and M. Raynal. Electing an eventual leader in an
asynchronous shared memory system. In Dependable Systems and Networks,
2007. DSN ’07. 37th Annual IEEE/IFIP International Conference on, pages
399–408, June 2007.

[52] A. Fernandez, E. Jimnez, M. Raynal, and G. Trdan. A timing assumption and a
t-resilient protocol for implementing an eventual leader service in asynchronous
shared memory systems. In ISORC, pages 71–78. IEEE Computer Society, May
2007.

[53] L. Fialho. Fault Tolerance Configuration for Uncoordinated Checkpoints. PhD
thesis, Univ. Autonoma de Barcelona, Spain, 2011.

[54] W. Fu and C. Hauser. A real-time garbage collection framework for embedded
systems. In Proceedings of the 2005 Workshop on Software and Compilers for
Embedded Systems, SCOPES ’05, pages 20–26, New York, NY, USA, 2005.
ACM.

[55] S. E. George, I.-R. Chen, and Y. Jin. Movement-based checkpointing and
logging for recovery in mobile computing systems. In Proceedings of the 5th
ACM international workshop on Data engineering for wireless and mobile ac-
cess, pages 51–58. ACM, 2006.

[56] W. Golab, D. Hendler, and P. Woelfel. An $o(1)$ rmrs leader election algorithm.
SIAM J. Comput., 39(7):2726–2760, May 2010.

[57] W. M. Golab, V. Hadzilacos, D. Hendler, and P. Woelfel. Constant-rmr im-
plementations of cas and other synchronization primitives using read and write
operations. In I. Gupta and R. Wattenhofer, editors, PODC, pages 3–12. ACM,
2007.

[58] C. Grelck and F. Penczek. Implementing s-net a typed stream processing lan-
guage part i compilation, code generation and deployment. Technical report,
University of Hertfordshire, Hatfield, Herts, AL10 9AB, Dec. 2007.

[59] C. Grelck, S.-B. Scholz, , and A. Shafarenko. A gentle introduction to s-net:
Typed stream processing and declarative coordination of asynchronous compo-
nents. Parallel Processing Letters, 18(2):221–237, 2008.

[60] C. Grelck and S.-B. Scholz. Saca functional array language for efficient multi-
threaded execution. International Journal of Parallel Programming, 34(4):383–
427, 2006.

[61] C. Grelck, S.-B. Scholz, and A. Shafarenko. A gentle introduction to S-Net:
Typed stream processing and declarative coordination of asynchronous compo-
nents. Parallel Processing Letters, 18(2):221–237, 2008.

[62] C. Grelck and A. Shafarenko. Report on S-Net: A typed stream processing
language, part I: Foundations, record types and networks. Technical report,
University of Hertfordshire, Department of Computer Science, Compiler Tech-
nology and Computer Architecture Group, Hatfield, England, United Kingdom,
2006.

[63] R. Guerraoui and M. Raynal. A leader election protocol for eventually syn-
chronous shared memory systems. In Software Technologies for Future Embed-
ded and Ubiquitous Systems, 2006 and the 2006 Second International Workshop
on Collaborative Computing, Integration, and Assurance. SEUS 2006/WCCIA
2006. The Fourth IEEE Workshop on, 2006.

130

[64] V. Hadzilacos and S. Toueg. Fault-tolerant broadcasts and related problems.
In S. Mullender, editor, Distributed Systems (2Nd Ed.), pages 97–145. ACM
Press/Addison-Wesley Publishing Co., New York, NY, USA, 1993.

[65] M. Herlihy. Wait-free synchronization. ACM Trans. Program. Lang. Syst.,
13(1):124–149, Jan 1991.

[66] M. Herlihy. A methodology for implementing highly concurrent data objects.
ACM Trans. Program. Lang. Syst., 15(5):745–770, Nov 1993.

[67] R. Isermann. Fault detection with signal models. In Fault-Diagnosis Systems,
pages 111–146. Springer Berlin Heidelberg, 2006.

[68] R. Isermann. Fault-diagnosis systems : an introduction from fault detection to
fault tolerance. Springer, Berlin, 2006.

[69] R. Isermann. Fault-diagnosis systems: an introduction from fault detection to
fault tolerance. Springer Science & Business Media, 2006.

[70] P. Jalote. Fault tolerance in distributed systems. Prentice-Hall, Inc., 1994.

[71] Q. Jiang, Y. Luo, and D. Manivannan. An optimistic checkpointing and message
logging approach for consistent global checkpoint collection in distributed sys-
tems. Journal of Parallel and Distributed Computing, 68(12):1575–1589, 2008.

[72] D. B. Johnson. Distributed System Fault Tolerance Using Message Logging and
Checkpointing. PhD thesis, Rice University Houston, Houston, TX, USA, 1990.
AAI9110983.

[73] D. B. Johnson and W. Zwaenepoel. Sender-based message logging. Springer,
1987.

[74] D. B. Johnson and W. Zwaenepoel. Recovery in distributed systems using
asynchronous message logging and checkpointing. In Proceedings of the seventh
annual ACM Symposium on Principles of distributed computing, pages 171–181.
ACM, 1988.

[75] R. Jones, A. Hosking, and E. Moss. The Garbage Collection Handbook: The
Art of Automatic Memory Management. Chapman & Hall/CRC, 1st edition,
2011.

[76] R. Jones and R. D. Lins. Garbage collection: algorithms for automatic dynamic
memory management. Wiley, 1996.

[77] T.-Y. T. Juang and M.-C. Liu. An efficient asynchronous recovery algorithm in
wireless mobile ad hoc networks. Journal of Internet Technology, 3(2):147–155,
2002.

[78] S. Kalaiselvi and V. Rajaraman. A survey of checkpointing algorithms for
parallel and distributed computers. Sadhana, 25(5):489–510, 2000.

[79] W. H. Kersting. Distribution system modeling and analysis. CRC press, 2012.

[80] R. Kirner, V. S. Marco, M. Zolda, and F. Penczek. Fault-tolerant coordination
of S-Net stream-processing networks. In Proc. 2nd Workshop on Feedback-
Directed Compiler Optimization for Multi-Core Architectures, Berlin, Germany,
Jan. 2013.

[81] R. Koo and S. Toueg. Checkpointing and rollback-recovery for distributed sys-
tems. Software Engineering, IEEE Transactions on, SE-13(1):23–31, Jan 1987.

[82] R. Koo and S. Toueg. Checkpointing and rollback-recovery for distributed sys-
tems. Software Engineering, IEEE Transactions on, SE-13(1):23–31, Jan 1987.

[83] H. Kopetz, A. Damm, C. Koza, M. Mulazzani, W. Schwabl, and C. Senft.
Distributed fault-tolerant real-time systems: The mars approach. Micro, IEEE,
9(1):25–40, 1989.

131

[84] A. D. Kshemkalyani and M. Singhal. Distributed Computing: Principles, Al-
gorithms, and Systems. Cambridge University Press, New York, NY, USA, 1
edition, 2008.

[85] J. G. Kuhl and S. M. Reddy. Distributed fault-tolerance for large multiprocessor
systems. In Proceedings of the 7th annual symposium on Computer Architecture,
pages 23–30. ACM, 1980.

[86] L. Lamport, R. Shostak, and M. Pease. The byzantine generals problem. ACM
Trans. Program. Lang. Syst., 4(3):382–401, July 1982.

[87] B. W. Lampson. Atomic transactions. In Distributed Systems - Architecture
and Implementation, An Advanced Course, pages 246–265, London, UK, UK,
1981. Springer-Verlag.

[88] J.-C. Laprie. Dependable computing: Concepts, limits, challenges. In Proceed-
ings of the Twenty-Fifth International Conference on Fault-tolerant Computing,
FTCS’95, pages 42–54, Washington, DC, USA, 1995. IEEE Computer Society.

[89] P. A. Lee and T. Anderson. Fault tolerance: principles and practice, volume 3.
Springer Science & Business Media, 2012.

[90] P. Lemarinier, A. Bouteiller, T. Herault, G. Krawezik, and F. Cappello. Im-
proved message logging versus improved coordinated checkpointing for fault
tolerant mpi. In Cluster Computing, 2004 IEEE International Conference on,
pages 115–124, Sept 2004.

[91] R. Luling, B. Monien, and F. Ramme. Load balancing in large networks: a
comparative study. In Parallel and Distributed Processing, 1991. Proceedings of
the Third IEEE Symposium on, pages 686–689, Dec 1991.

[92] N. A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1996.

[93] C. Men, Z. Xu, and X. Li. An efficient checkpointing and rollback recovery
scheme for cluster-based multi-channel ad hoc wireless networks. In Paral-
lel and Distributed Processing with Applications, 2008. ISPA’08. International
Symposium on, pages 371–378. IEEE, 2008.

[94] M. M. Michael. Aba prevention using single-word instruction. Technical report,
Thomas J. Watson Research Center, P.O. Box 218 Yorktown Heights, NY 10598,
Jan 2004.

[95] V. Mikolasek and H. Kopetz. Roll-forward recovery with state estimation. In
Proc. 14th IEEE International Symposium on Object-oriented Real-time dis-
tributed Computing, pages 179–186, Newport Beach, CA, USA, Mar. 2011.

[96] N. Mohammed, H. Otrok, L. Wang, M. Debbabi, and P. Bhattacharya. Mecha-
nism design-based secure leader election model for intrusion detection in manet.
Dependable and Secure Computing, IEEE Transactions on, 8(1):89–103, 2011.

[97] M. Moir and J. H. Anderson. Wait-free algorithms for fast, long-lived renaming.
Science of Computer Programming, 25(1):1 – 39, 1995.

[98] V. Nelson and B. Carroll. Tutorial: fault-tolerant computing. IEEE Computer
Society Press, 1987.

[99] V. Nguyen and R. Kirner. Demand-based scheduling priorities for performance
optimisation of stream programs on parallel platforms. In Algorithms and Ar-
chitectures for Parallel Processing, volume 8285 of Lecture Notes in Computer
Science, pages 357–369. Springer International Publishing, 2013.

[100] V. T. N. Nguyen. An Efficient Execution Model for Reactive Stream Programs.
PhD thesis, University of Hertfordshire, 2014.

132

[101] V. T. N. Nguyen, R. Kirner, and F. Penczek. A multi-level monitoring frame-
work for stream-based coordination programs. In Proc. 12th International
Conference on Algorithms and Architectures for Parallel Processing, LNCS,
Fukuoka, Japan, Sep. 2012. Springer.

[102] U. of Hertfordshire. Compiler technology and computer architecture group.
[103] J. Park, M. Smelyanskiy, K. Vaidyanathan, A. Heinecke, D. D. Kalamkar,

X. Liu, M. M. A. Patwary, Y. Lu, and P. Dubey. Efficient shared-memory
implementation of high-performance conjugate gradient benchmark and its ap-
plication to unstructured matrices. In Proceedings of the International Confer-
ence for High Performance Computing, Networking, Storage and Analysis, SC
’14, pages 945–955, Piscataway, NJ, USA, 2014. IEEE Press.

[104] T. Park and H. Yeom. An asynchronous recovery scheme based on optimistic
message logging for mobile computing systems. In Distributed Computing Sys-
tems, 2000. Proceedings. 20th International Conference on, pages 436–443,
2000.

[105] T. M. Parks. Bounded scheduling of process networks. PhD thesis, University
of California, 1995.

[106] F. Penczek, J. Julku, H. Cai, P. Hölzenspies, C. Grelck, S.-B. Scholz, and
A. Shafarenko. S-Net language report (Version 2.0). Technical Report No.
499, University of Hertfordshire, Hatfield, United Kingdom, Apr. 2010.

[107] G. L. Peterson and M. J. Fischer. Economical solutions for the critical section
problem in a distributed system. In Proceedings of the ninth annual ACM
symposium on Theory of computing, pages 91–97. ACM, 1977.

[108] R. Prakash and M. Singhal. Low-cost checkpointing and failure recovery in
mobile computing systems. IEEE TRANSACTIONS ON PARALLEL AND
DISTRIBUTED SYSTEMS, 7:1035–1048, 1994.

[109] D. Prokesch. A light-weight parallel execution layer for shared-memory stream
processing. Master’s thesis, Technische Universität Wien, Vienna, Austria, Feb.
2010.

[110] A. Pullini, F. Angiolini, D. Bertozzi, and L. Benini. Fault tolerance overhead
in network-on-chip flow control schemes. In Integrated Circuits and Systems
Design, 18th Symposium on, pages 224–229. IEEE, 2005.

[111] B. Randell. System structure for software fault tolerance. SIGPLAN Not.,
10(6):437–449, Apr. 1975.

[112] S. Rao, L. Alvisi, and H. Vin. The cost of recovery in message logging protocols.
Knowledge and Data Engineering, IEEE Transactions on, 12(2):160–173, Mar
2000.

[113] S. Rao, L. Alvisi, and H. M. Vin. Egida: An extensible toolkit for low-overhead
fault-tolerance. In Fault-Tolerant Computing, 1999. Digest of Papers. Twenty-
Ninth Annual International Symposium on, pages 48–55. IEEE, 1999.

[114] M. Raynal. Concurrent Programming: Algorithms, Principles, and Founda-
tions. Springer, Heidelberg, 2013.

[115] D. A. Reed, C. L. Mendes, et al. Reliability challenges in large systems. Future
Generation Computer Systems, 22(3):293–302, 2006.

[116] I. Ring Nielsen. Constraint and application driven framework for tailoring em-
bedded real-time systems, 2012.

[117] B. Schroeder, G. Gibson, et al. A large-scale study of failures in high-
performance computing systems. Dependable and Secure Computing, IEEE
Transactions on, 7(4):337–350, 2010.

133

[118] H. Sekhar Paul, A. Gupta, and A. Sharma. Finding a suitable checkpoint and
recovery protocol for a distributed application. J. Parallel Distrib. Comput.,
66(5):732–749, may 2006.

[119] A. Shafarenko. Nondeterministic coordination using s-net. In W. Gentzsch,
L. Grandinetti, and G. Joubert, editors, High Speed and Large Scale Scientific
Computing, volume 18 of Advances in Parallel Computing, pages 74–96. IOS
Press, 2009.

[120] M. Shirali, A. Toroghi, and M. Vojdani. Leader election algorithms: History
and novel schemes. In Convergence and Hybrid Information Technology, 2008.
ICCIT ’08. Third International Conference on, volume 1, pages 1001–1006, Nov
2008.

[121] G. S. Sohi, M. Franklin, and K. K. Saluja. A study of time-redundant fault tol-
erance techniques for high-performance pipelined computers. In Fault-Tolerant
Computing, 1989. FTCS-19. Digest of Papers., Nineteenth International Sym-
posium on, pages 436–443. IEEE, 1989.

[122] R. E. Strom and S. Yemini. Optimistic recovery in distributed systems. ACM
Transactions on Computer Systems, 3:204–226, 1985.

[123] Y. Tamir and C. H. Squin. Error recovery in multicomputers using global
checkpoints. In In 1984 International Conference on Parallel Processing, pages
32–41, 1984.

[124] A. S. Tanenbaum and M. v. Steen. Distributed Systems: Principles and
Paradigms (2Nd Edition). Prentice-Hall, Inc., Upper Saddle River, NJ, USA,
2006.

[125] W. Torell and V. Avelar. Mean time between failure: Explanation and stan-
dards. White Paper, 78, 2004.

[126] M. Treaster. A survey of fault-tolerance and fault-recovery techniques in parallel
systems. CoRR, abs/cs/0501002, 2005.

[127] J. Tromp and P. Vitányi. Randomized two-process wait-free test-and-set. Dis-
tributed Computing, 15(3):127–135, 2002.

[128] P. Tsigas and Y. Zhang. A simple, fast and scalable non-blocking concurrent
fifo queue for shared memory multiprocessor systems. In Proceedings of the
Thirteenth Annual ACM Symposium on Parallel Algorithms and Architectures,
SPAA ’01, pages 134–143, New York, NY, USA, 2001. ACM.

[129] P. Veŕıssimo and L. Rodrigues. Distributed Systems for System Architects. Ad-
vances in Distributed Computing and Middleware. Springer US, 2012.

[130] D. Yadav, C. Lamba, and S. Shukla. A new approach of leader election in
distributed system. In Software Engineering (CONSEG), 2012 CSI Sixth In-
ternational Conference on, pages 1–7, Sept 2012.

134

Appendix A

Appendix 1

A.1 Experiments Data

This appendix contains the results of the experiments described in Section 8.

135

Leader election experiments 4 cores 8 cores 16 cores 32 cores 48 cores
1 0.07 0.27 0.26 0.81 1.2
2 0.1 0.21 0.34 0.92 1.4
3 0.09 0.17 0.47 0.78 1.24
4 0.08 0.23 0.49 0.84 1.34
5 0.07 0.15 0.44 0.95 1.56
6 0.11 0.25 0.2 0.82 1.62
7 0.13 0.31 0.37 0.77 1.22
8 0.09 0.19 0.38 0.79 1.33
9 0.07 0.13 0.27 0.86 1.29
10 0.16 0.23 0.5 0.91 1.43
11 0.13 0.19 0.25 0.73 1.59
12 0.16 0.21 0.33 0.83 1.62
13 0.13 0.24 0.34 0.97 1.41
14 0.15 0.25 0.43 0.91 1.51
15 0.15 0.29 0.28 0.94 1.58
16 0.09 0.21 0.43 0.86 1.43
17 0.15 0.25 0.19 0.81 1.52
18 0.1 0.22 0.4 0.74 1.44
19 0.15 0.19 0.32 0.92 1.71
20 0.14 0.14 0.23 1.01 1.42
21 0.15 0.25 0.3 0.87 1.53
22 0.15 0.15 0.23 0.77 1.48
23 0.16 0.15 0.39 0.87 1.36
24 0.14 0.13 0.27 0.91 1.61
25 0.13 0.12 0.51 0.84 1.41
26 0.1 0.14 0.48 0.85 1.41
27 0.16 0.29 0.25 0.77 1.14
28 0.16 0.28 0.23 0.9 1.69
29 0.17 0.26 0.34 0.82 1.37
30 0.16 0.2 0.47 0.78 1.54
31 0.08 0.28 0.43 0.79 1.44
32 0.14 0.12 0.46 0.92 1.39
33 0.11 0.28 0.33 0.84 1.47
34 0.16 0.27 0.29 0.99 1.37
35 0.17 0.31 0.23 0.97 1.52
36 0.15 0.22 0.46 0.87 1.58
37 0.14 0.15 0.54 0.88 1.78
38 0.08 0.15 0.51 0.93 1.39
39 0.18 0.12 0.49 0.9 1.23
40 0.1 0.3 0.52 0.76 1.49
41 0.14 0.33 0.26 0.92 1.53
42 0.11 0.15 0.42 0.8 1.61
43 0.13 0.13 0.54 1.01 1.23
44 0.16 0.22 0.36 0.96 1.56
45 0.14 0.37 0.26 0.81 1.69
46 0.16 0.13 0.55 0.79 1.39
47 0.09 0.12 0.4 0.84 1.46
48 0.13 0.28 0.52 0.98 1.43
49 0.14 0.25 0.36 0.91 1.38
50 0.11 0.27 0.22 0.89 1.4

AVG 0.1284 0.215 0.3708 0.8662 1.4548

Table A.1. Execution time of leader election experiments

Reading experiments 4 cores 8 cores 16 cores 32 cores 48 cores
1 17 42 91 184 279
2 18 40 90 186 282
3 16 41 87 180 276
4 17 39 91 178 274
5 18 42 85 180 284
6 16 39 87 175 283
7 17 40 86 179 281
8 16 39 87 182 285
9 16 37 88 183 280
10 16 39 85 181 276
11 17 41 87 174 278
12 16 38 88 184 277
13 17 39 85 180 279
14 16 42 87 186 283
15 16 37 88 185 270
16 17 39 86 173 281
17 16 38 87 181 280
18 16 39 88 179 285
19 17 38 85 183 273
20 16 39 87 176 279
21 18 42 89 178 273
22 16 38 90 180 275
23 17 39 87 181 276
24 18 41 88 185 280
25 16 39 87 183 273
26 16 39 90 182 284
27 16 38 85 186 276
28 18 39 87 185 274
29 16 39 85 182 275
30 16 37 88 179 273
31 17 38 87 183 274
32 18 42 86 181 275
33 16 39 87 176 271
34 16 37 89 178 270
35 16 38 87 177 276
36 18 39 88 180 271
37 16 42 92 179 270
38 16 38 87 178 276
39 17 37 91 179 273
40 16 39 87 175 270
41 16 39 87 174 278
42 17 37 85 183 276
43 16 39 86 186 270
44 18 37 87 181 276
45 16 39 85 176 275
46 16 41 87 179 270
47 18 39 86 187 281
48 17 42 88 183 270
49 18 38 87 181 284
50 16 39 90 180 281

AVG 16.63265306 39.10204082 87.32653061 180.4489796 276.5714286

Table A.2. The amount of reading by nodes to the shared memory in the leader

election experiments

Log-based rollback-recovery experiments 4 cores 8 cores 16 cores 32 cores 48 cores Average
Time without fault tolerance 124.57 260.7 630.85 1235.72 1582.93 766.954

Time with fault tolerance and without failures 135.04 282.94 688.26 1345.69 1722.64 834.914
Time with fault tolerance and one failure 139.78 290.67 708.89 1393.32 1794.36 865.404

Time with fault tolerance and several failures 149.4 319.93 790.47 1573.71 2046.82 976.066
Percentage without failure 8.4049129 8.530878404 9.100420068 8.899265206 8.826037791 8.752302874
Percentage with one failure 12.21000241 11.49597238 12.37061108 12.75369825 13.35687617 12.43743206
Percentage with failures 19.93256803 22.71960107 25.30236982 27.35166543 29.30578105 24.92239708

Table A.3. The log-based rollback-recovery experiments results

Percentage of failure can appear each time a
stream is read or written

4 cores 8 cores 16 cores 32 cores 48 cores

0.8 in 1000 140.2 288 700 1430 1900
0.9 in 1000 141.3 301 750 1500 1950
1 in 1000 149.4 319.93 790.47 1573.71 2046.82
2 in 1000 155 331 805 1630 2140
3 in 1000 161 350 828 1680 2222
4 in 1000 170 379 880 1800 2431

Table A.4. Results of changing the percentage of failure into the log-based

rollback-recovery experiments

Registers used by restore mechanism Percentage of execution time overhead
START 5.5
READ 3.512

WRITE data was not written to the stream 9.49
WRITE data was written to the stream 6.15

BLOCK IsTaskReceived is true 0.493
BLOCK IsTaskReceived is false 3.45
END IsTaskReceived is true 1.623
END IsTaskReceived is false 2.65

Table A.5. Percentage of execution time overhead caused by the registers used

by the restore mechanism proposed

