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Abstract—Collaboration in sensor networks must be fault-tolerant due to the harsh environmental conditions in which such networks

can be deployed. This paper focuses on finding algorithms for collaborative target detection that are efficient in terms of communication

cost, precision, accuracy, and number of faulty sensors tolerable in the network. Two algorithms, namely, value fusion and decision

fusion, are identified first. When comparing their performance and communication overhead, decision fusion is found to become

superior to value fusion as the ratio of faulty sensors to fault free sensors increases. As robust data fusion requires agreement among

nodes in the network, an analysis of fully distributed and hierarchical agreement is also presented. The impact of hierarchical

agreement on communication cost and system failure probability is evaluated and a method for determining the number of tolerable

faults is identified.

Index Terms—Collaborative target detection, decision fusion, fault tolerance, sensor networks, value fusion.
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1 INTRODUCTION

RECENT advances in computing hardware and software
are responsible for the emergence of sensor networks

capable of observing the environment, processing the data,
and making decisions based on the observations. In
particular, the development of technologies such as Blue-
tooth [3] or the IEEE 802.11 standard [16] enables us to
connect the nodes together wirelessly. This allows for
deployment of ad hoc networks that do not require
backbone infrastructure. This, together with progress in
sensing and computing technology, give rise to many new
applications. Such sensor networks can be used to monitor
the environment, detect, classify, and locate specific events,
and track targets over a specific region. Examples of such
systems are in surveillance, monitoring of pollution, traffic,
agriculture, or civil infrastructures [23].

The essence of sensor networks is to have nodes within a

region make local observations of the environment and

collaborate to produce a global result that reflects the status

of the region covered [5]. This collaboration requires local

processing of the observed data, communication between

different nodes, and information fusion. For many applica-

tions, the network is deployed in a harsh environment and

some of the nodes may be faulty or may fail during the

network’s lifetime, thus requiring collaboration to be robust

to node failures. Two other constraints in wireless networks

of autonomous nodes come from the limited bandwidth

and power source of these elements, requiring collaboration

to be communication and power efficient.

Thus, the challenges of sensor networks include dis-
tributed signal processing that makes use of the processing
power of all the nodes, ad hoc routing, and communication
protocols that enable information sharing among nodes and
fault tolerance that accounts for the possible misbehaviors
of a subset of the nodes. All these challenges need to cope
with the power constraint of the network. This paper
focuses on finding and analyzing algorithms for robust
collaborative target detection. Therefore, it addresses both
the distributed signal processing and fault tolerance
challenges. This work completes a preliminary study
presented in [6]. The basic premise of target detection is
that sensors are deployed over a region of interest and are
required to determine if a target is present in that region. In
general, targets emit signals characterizing their presence in
the region that can be measured by the sensors. For
example, a vehicle produces a sound when traveling on a
road or when at rest if the engine is on. The strength of this
signal usually decreases with distance and the presence of
noise makes the target more difficult to sense as the distance
between target and sensor increases. Since sensors are, in
general, spread over the region, they measure signals of
different strength and, were they merely to use their own
measurement, they may conclude differently upon the
presence or absence of a target in the region. Therefore,
sensor nodes need to collaborate by exchanging and fusing
their local information to produce a result global to the
region. The presence of faulty sensor nodes affects this
fusion process and can potentially corrupt the detection
result. Algorithms for target detection need to specify a way
to fuse the signals measured at each sensor to produce one
consistent and useful result characterizing the whole region.
These algorithms can be evaluated for their performance in
terms of accuracy, communication overhead, and robust-
ness to sensor node failure.

This paper first presents the sensor model considered and
formulates the target detection problem in Section 2. Section 3
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presents previous work conducted in signal processing and
distributed systems fault tolerance that is relevant to this
study. Section4presents twodetection schemesanddevelops
an analytical model of the system. Section 5 gives perfor-
mance results of the algorithms presented in Section 4.
Section 6 presents an approach for reducing the communica-
tion overhead of the fusion algorithms developed and the
paper concludes with Section 7.

2 MODEL AND PROBLEM FORMULATION

This section presents the model for the sensor network and
formulates the target detection problem being investigated.
The sensor network is assumed to be composed of a set of
nodes connected to sensors as presented in Fig. 1, called
sensor nodes or simply nodes. A model is developed for
each sensor node in fault-free and faulty mode and for the
collaboration among nodes. The target is modeled by the
signal it emits.

2.1 Sensors for Target Detection

Sensor nodes, with possibly different sensing modalities,
are deployed over a region R to perform target detection.
Sensors measure signals at a given sampling rate to
produce time series that are processed by the nodes. The
nodes fuse the information obtained from every sensor
according to the sensor type and location to provide an
answer to a detection query. The nodes are assumed to
have the ability to communicate with each other.
However, this work is not concerned with communication
issues and, therefore, the node peer-to-peer communica-
tion is assumed to be reliable through the use of
appropriate communication techniques [17], [25].

This work assumes that the sensor nodes obtain a target
energy measurement after T seconds while a target was at a
given position inside or outside the region R. Obtaining that
energy requires preprocessing of the time series measured
during period T and, possibly, fusion of data from different
sensors by each node. The detection algorithm consists of
exchanging and fusing the energy values produced by the
sensor nodes to obtain a detection query answer. Note that
a more accurate answer can be obtained in general if the
sensors exchange their time series rather than energies;
however, that would require high communication band-
width that may not be available in a sensor network. The
performance of fusion is partly defined by the accuracy that

measures how well sensor decisions represent the environ-

ment or “ground truth.”
Finally, this work assumes that detection results need to

be available at each node. The reason for such a require-

ment is that the results can be needed for triggering other

actions such as localization of the target detected. This

requirement can be fulfilled by having a central node make

a decision and disseminate that decision to all the nodes in

the network. The correctness of such a scheme relies on the

central node’s correctness, therefore, central node-based

schemes have low robustness to sensor failure. Distributing

the decision making over several or all the nodes improves

reliability at the cost of communication overhead. That

trade off is analyzed in detail in Section 6.

2.2 Fault Model

The network considered is likely to contain faulty sensor

nodes due to harsh environmental conditions. Faults

include misbehaviors ranging from simple crash faults,

where a node becomes inactive, to Byzantine faults, where

the node behaves arbitrarily or maliciously. In this work,

faulty nodes are assumed to send inconsistent and arbitrary

values to other nodes during information sharing. Fig. 2

gives an example of such behavior where four nodes, A, B,

C, and D, measure energy values to determine if a target is

in region R.
As the target is outside region R, sensor A measures an

energy level of 1.4 (including noise), whereas sensors B and

D measure an energy level of 0.1 and 0.5, respectively.

Sensor C is assumed to be faulty and sends different

measurements to the other sensors (10, 1, and 10 to A, B,

and D, respectively). As a result, nonfaulty sensors obtain

different global information about the region and may

conclude differently on the presence of the target (e.g.,

sensors A and D may conclude that a target is present while

sensor B concludes that no target is present).
The algorithm for target detection needs to be robust to

such inconsistent behavior that can jeopardize the colla-

boration in the sensor network. For example, if the detection

results trigger subsequent actions at each node, then

inconsistent detection results can lead each node to operate

in a different mode, resulting in the sensor network going

out of service. The performance of fusion is therefore also

defined by precision [4], [18]. Precision measures the

closeness of decisions from each other, the goal being that

all nodes obtain the same decision.
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Fig. 2. Byzantine faulty behavior.



2.3 Target Energy

A target at location u emits a signal which is measured by
the sensors deployed at locations si, i ¼ 1; . . . ; n. The
strength of the signal emitted by the target decays as a
polynomial of the distance. If the decay factor is k, the signal
energy of a target at location u measured by a sensor at
location si is given by:

SiðuÞ ¼
K:T; if d < d0;
K:T

ðd=d0Þk
; otherwise;

(

ð1Þ

where K is the power emitted by the target during time T
and d ¼ jju� sijj is the geometric distance between the
target and the sensor and d0 is a constant that accounts for
the physical size of the sensor and the target. Depending on
the environment, e.g., atmospheric conditions, the value k
typically ranges from 2.0 to 5.0 [15]. The energy SiðuÞ also
depends on the possible presence of obstacles lying
between the target and the sensors. But, this study assumes
no such obstacles to be present in the region considered.

Energy measurements at a sensor are usually corrupted
by noise. If Ni denotes the noise energy at sensor i during a
particular measurement, then the total energy measured at
sensor i when the target is at location u is

EiðuÞ ¼ SiðuÞ þNi: ð2Þ

3 PREVIOUS WORK

Detecting targets’ signals in a noisy environment can make
use of decision theory, a well-developed branch of
engineering and mathematics. For the distributed detection
problem, results from data fusion theory are also of primary
interest. Further, robustness to inconsistent sensor nodes
behavior is also related to studies carried out on the
consensus problem and general fault tolerance theory.
Below, these concepts are described along with their
relation to the work presented in this paper.

3.1 Distributed Detection

Classical multisensor detection assumes that all local
sensors communicate their data to a central processor
performing optimal or near optimal detection using con-
ventional statistical techniques [14]. Later studies, however,
focused on decentralized processing in which some
preliminary processing of data is performed at each sensor
node so that compressed information is gathered at the
fusion center [27]. Decentralizing the detection results in a
loss of performance compared to the performance of
centralized systems since the fusion center of a decentra-
lized system has only part of the information collected by
the sensor nodes. However, decentralized schemes require
reduced communication bandwidth and it will be argued in
this paper that they may achieve increased reliability.
Further, the performance loss of decentralized schemes may
be reduced by optimally processing the information at each
sensor node.

Fig. 3 illustrates the sensor network parallel topology
where N sensors measure a signal yi produced by a
phenomenonH [28]. Each sensor Si processes its signal yi to
generate a quantized information ui and all the uis are then

fused into u0 at the fusion center. In the binary hypothesis
testing problem, the observations at all the sensors either
correspond to the presence of a target (hypothesis H1) or to
the absence of a target (hypothesis H0). The performance of
detection is measured by the false alarm probability PF and
the probability of miss PM . The false alarm probability is the
probability of concluding that a target is present when the
target is absent, i.e., PF ¼ P ðu0 ¼ 1 j H0Þ. The miss prob-
ability is the probability of concluding that a target is absent
when a target is actually present, i.e., PM ¼ P ðu0 ¼ 0 j H1Þ.

The Neyman-Pearson criterion can be used to find
optimum local and global decision rules that minimize the
global probability of miss PM assuming that the global
probability of false alarm PF is below a given bound � [27].
For this criterion, the mapping rules used at the nodes to
derive ui and the decision rule at the fusion center are
threshold rules based on likelihood ratios [22].

The thresholds used at each sensor and at the fusion
center need to be determined simultaneously to minimize
the miss probability PM under the constraint PF � �. This is
a difficult optimization problem since the number of fusion
rules to be considered, i.e., the number of choices for
thresholds, is large. The problem becomes somewhat
tractable when assuming conditional independence of
sensor observations and when limiting the number of
quantization levels used for values of uis. Although many
studies assume uis to be binary values, design of multilevel
quantizers for distributed hypothesis testing has also been
considered [27]. Increasing the number of levels improves
the system performance and coding quantized values into
3 bits was shown to give a near-optimum solution, i.e.,
performance close to the one of the centralized system [19].

The Neyman-Pearson criterion is applicable when ob-
servation statistics under each hypothesis are completely
known a priori. This is often not the case and probability
distributionmaybeknownapproximatively or very coarsely.
When detecting a target in a region, the probability distribu-
tion depends on the noise, the target emitted energy, and its
position, which are unknown a priori. If only very coarse
information about the observations is available, detection
performance can be guaranteed only by nonparametric
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techniques. Such techniques usually make some general
assumptions about observation statistics, such as symme-
try of the probability density functions or continuity of the
cumulative distribution functions. Most nonparametric
detectors employ the sign or the rank of the observed
samples, two common examples being the sign detector
and the Wilcoxon detector [2], [12].

3.2 Agreement Problem and Fault Tolerance

Building a robust sensor network for target detection
requires an understanding of the agreement problem in
unreliable distributed systems. As processors in such a
system cooperate to achieve a specified task, they often
have to agree on a piece of data that is critical to subsequent
computation. Although this can be easily achieved in the
absence of faulty processors, for example, by simple
message exchange and voting, special protocols need to
be used to reach agreement in the presence of inconsistent
faults, as presented in Section 2. Three problems have
drawn much attention in trying to develop these protocols,
namely, the consensus problem, the interactive consistency
problem, and the generals problem [1], [11]. The consensus
problem considers n processes with initial values xi and
these processes need to agree on a value y ¼ fðx1; . . . ; xnÞ,
with the goal that each nonfaulty process terminates with a
value yi ¼ y. Further, the protocols for consensus need to be
nontrivial, i.e., the consensus value y must depend on the
initial values xi and should not be just a constant. They also
need to meet the unanimity requirement, i.e., the consensus
value is y ¼ x if all nonfaulty processes have the same initial
value x. The interactive consistency problem is like the
consensus problem with the goal that the nonfaulty
processes agree on a vector y ¼ ðy1; . . . ; ynÞ with yi ¼ xi if
process i is nonfaulty. Finally, the generals problem
considers one specific processor, named “general,” trying
to broadcast its initial value x to other processors with the
requirement that all nonfaulty processes terminate with
identical values y and y ¼ x if the general is nonfaulty.

The consensus problem can be solved using a protocol
for interactive consistency by having each processor apply
the function f to its result vector yi. Also, the interactive
consistency problem can be solved using n copies of a
protocol for the generals problem. Finally, the generals
problem can be solved using a protocol for the consensus
problem by having the general broadcast its value to all
processes and having the processes agree on the value sent.
This shows that the three problems are equivalent when
considering their solvability, although optimal protocol for
each problem may not make use of the protocols for the
other problems.

The solvability of the problems and the complexity of
solutions depend on the models for computation and the
kind of faults considered. Further, distinction needs to be
made between synchronous and asynchronous computa-
tions. A synchronous system proceeds in a sequence of
rounds of fixed duration where each process sends
messages to other processes and then receives messages
from other processes. Only synchronous systems are
considered in this paper. A distinction is also made between
authenticated and unauthenticated message exchange.
Authenticated protocols assume that messages exchanged
by the processes are signed so that the receiver of a message

can reliably know the sender and/or originator of the
message. Unauthenticated protocols assume that messages
exchanged by the processors are not signed. Regarding
process failure, two types of faults are often considered,
namely, crash and Byzantine faults. The crash fault model
assumes that, when a processor fails, it stops all activity.
The Byzantine fault model assumes that a faulty processor
can behave in an arbitrary manner, in particular acting
maliciously against the protocol. A protocol is said to be
t-resilient if it runs correctly when no more than t out of
N processes fail before or during operation. The following
results were derived regarding the generals problem under
different assumptions.

Theorem 1. There is a t-Byzantine resilient authentication
synchronous protocol which solves the generals problem [18].

Theorem 2. There is a t-Byzantine resilient synchronous protocol
without authentication which solves the generals problem if
and only if t=N < 1=3 [21].

A commonly used protocol for the generals problem,
namely, the oral message algorithm (OM), was developed
in [18]. Whenever t out of N nodes are faulty, the
OMðtÞ algorithm is guaranteed to provide agreement
among the N nodes if and only if N � 3tþ 1. Below is an
example where a protocol for the generals problem is used
to reach interactive consistency among the four nodes of
Fig. 2. After the OM algorithm is performed for each node
acting as general, inconsistent values sent by node C are
replaced by a common value (i.e., 10.0) also, node C is not
able to corrupt the values broadcasted by nodes A, B, and
D. Note that, in this example, the final decisions of the
nonfaulty sensors are incorrect since the target is outside
the region of interest; however, the decisions are consistent.

The overhead of agreement protocols can be measured
by the number of rounds and the number of messages
required. The t-Byzantine resilient OMðtÞ algorithm pre-
sented above requires tþ 1 rounds and a number of
messages that is exponential in t. Protocols using fewer
messages but requiring more rounds were developed;
however, it was shown that the number of rounds required
in the presence of t faults is at least tþ 1. Stopping criteria
can be used to reduce the number of rounds necessary
whenever fewer than t processors are faulty. A large variety
of results have been derived to address the complexity issue
that depend on the assumptions on the computation model
and fault model [9], [8], [10].

In applications where processors hold an estimate of
some global value, it may be sufficient to guarantee that the
nodes agree on values that are not exactly identical but are
relatively close (by some predetermined measure) to one
another. This was formulated as the approximate or inexact
agreement problem. Protocols for approximate agreement
require, in general, fewer messages exchanged among
nodes at the cost of degraded precision [7], [20], [4].
However, it is not the focus of this paper to study the
trade off between precision and communication overhead.
In this study, protocols that achieve perfect precision are
mainly used, although less precise protocols could be
applicable. Finally, some agreement protocols attempt to
diagnose the identity of faulty nodes so that diagnosis
results can be used in subsequent agreement procedures
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[26]. Again, such protocols are not considered in this study
although they could be applicable and improve the
reliability of the system.

4 ALGORITHMS AND ANALYTICAL MmODEL

This section presents two algorithms for target detection:
value fusion and decision fusion. Then, it develops
analytical expressions for the false alarm and detection
probabilities for both algorithms in the presence and in the
absence of faults.

4.1 Algorithms

The problem of target detection differs from previously
studied problems in distributed signal detection because of
the presence of faults that require special processing of the
data. The problem also differs from previously studied
problems in agreement in the sense that nodes sharing
information may contain local information that can be
totally different from one node to another. In target
detection, nodes close to the target report high energy
measurement, while nodes far from the target report low
energy measurements. Thus, in fusion, there is a lack of
common truth in the measured values. Yet, it is desirable to arrive
at a common value or common values and determine the impact of
faults in the methods developed to arrive at consensus.

The algorithms considered are nonparametric detection
algorithms that let the nodes share their information and
use a fusion rule to arrive at a decision. They use exact
agreement to reach consensus, although other agreement
types such as inexact agreement might be appropriate.
Exact agreement guarantees that all the nonfaulty nodes
obtain the same set S of data and the data sent by the
nonfaulty nodes are part of this set. However, consistent
outlying data can remain in the set, as shown in Table 1. To
prevent corruption of the decision by these outliers, the
largest and smallest data values are dropped from the set S
and the average data is computed over the remaining data.
Different fusion algorithms can be derived by varying the
size of the information shared between sensor nodes. Two
extreme cases are explored: 1) value fusion where the nodes
exchange their raw energy measurements and 2) decision
fusion where the nodes exchange local detection decisions
based on their energy measurement [6]. Both algorithms are
described below.

Value Fusion (with faults)
at each node:

1. obtain energy from every node
2. drop largest n and smallest n values

3. compute average of remaining values
4. compare average to threshold for final decision

Decision Fusion (with faults)
at each node:

1. obtain local decision from every node
2. drop largest n and smallest n decisions
3. compute average of remaining local decisions
4. compare average to threshold for final decision

In the case where all the nodes are known to be
nonfaulty, there is no need for dropping data and the
algorithms reduce to:

Value Fusion (fault-free)
at each node:

1. obtain energy from every node
2. compute average of values
3. compare average to threshold for final decision

Decision Fusion (fault-free)
at each node:

1. obtain local decision from every node
2. compute average of local decisions
3. compare average to threshold for final decision

4.2 Evaluation Metrics

The algorithms presented in the previous subsection can be
evaluated with the following metrics: precision, accuracy,
communication overhead, and robustness. Precision, as
introduced in Section 2, measures the closeness of the final
decisions obtained by all sensors, the goal being that all
nonfaulty nodes obtain the same decision. Since the
algorithms developed use exact agreement during fusion
and then redundancy during dissemination, consistency
among nonfaulty nodes is guaranteed as long as the
number of faulty nodes doesn’t exceed the necessary
bound. If this bound is exceeded, no level of precision is
guaranteed and the system is considered failing. Accuracy,
also introduced in Section 2, measures how well the node
decisions represent the environment, the goal being that the
decision of nonfaulty nodes is “object detected” if and only
if a target is present. Again, if the bound on the number of
faulty nodes tolerable is exceeded, no level of accuracy is
guaranteed and the system is considered failing. However,
when this bound is not exceeded, only relative accuracy is
attainable due to background noise. The accuracy is
measured by the false alarm probability and the detection
probability introduced in Section 3.

False alarm and detection probability are determined by
the threshold defined in the algorithms of Section 4.1, the
noise level, the target position, and the node layout.
Analytical models for false alarm and detection probability
are developed in the next section. The last two metrics are
communication overhead and robustness. The communica-
tion overhead can be evaluated by counting the number and
the size of messages exchanged. This is not the focus of this
paper and only qualitative evaluations are made. Also,
system failure occurs when the bound on the number of
faulty nodes acceptable is violated and robustness is
measured by the system failure probability, as discussed
in Section 6 of this paper.
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4.3 Comparison of Algorithms

To compare the fusion algorithms identified in this section,
these different metrics need to be evaluated in the absence
and in the presence of faulty nodes. As mentioned, the
communication overhead will not be evaluated here and
will only be used qualitatively. Due to the reduced amount
of information shared in decision fusion, the communica-
tion cost is lower in decision fusion than in value fusion.
The system failure probability is identical for value and
decision fusion since failures depend on the number of
faulty nodes present and not on the algorithm used.
However, the performance measured in terms of precision
and accuracy differs from one option to the other. The exact
agreement guarantees final consistency among nonfaulty
nodes and, therefore, the faulty nodes can only degrade the
accuracy of the system. Let us now identify those faulty
behaviors that have highest impact on accuracy to identify
the worst-case scenario.

Assume that a faulty node reports inconsistent values
v1 � v2 � . . . � vN to the other nodes. During exact agree-
ment, the nodes will remove the inconsistency and agree on
a value v̂v between v1 and vN . However, if the faulty node
reports the value v consistently, then v̂v ¼ v. Furthermore, in
the absence of a target, the accuracy is lower if the value
obtained for the faulty node after exact agreement is high
(i.e., v̂v ¼ vN ) and, in the presence of a target, the accuracy is
lower if the value obtained for the faulty node after exact
agreement is low (i.e., v̂v ¼ v1). From these remarks, we
conclude that, when using exact agreement, a faulty node
acting consistently can degrade the system accuracy more
than a faulty node acting inconsistently. Therefore, the
performance evaluation was restricted to the case where all
the nodes act consistently as this applies for the worse-case
scenario in the faulty case.

4.4 Performance

This subsection derives equations for false alarm and
detection probability in the absence and in the presence of
faulty nodes. It first gives a set of notations used in the
equations.

4.4.1 Notations and Assumptions

Let N be the total number of sensors. n is the number of
maximum and minimum values dropped in fault tolerant
fusion. t is the number of faulty sensors in the network. �v
and �d are the thresholds for value and decision fusion. � is
the second threshold for decision fusion. Pfa and Pd are the
false alarm and detection probabilities. fXðxÞ is the
probability density function (pdf) of noise energy that is
assume to be �2

1: chi-square with one degree of freedom
[13]. Since the sensors hold energy values that are squares
of the signal time series, the chi-square assumption for the
noise corresponds to the common Gaussian assumption for
the signal. The pdf is given by

fXðxÞ ¼
1
ffiffiffiffiffiffiffiffi
2�x

p exp � x

2

h i

Ið0;1ÞðxÞ: ð3Þ

FXðxÞ is the cumulative distribution function (cdf) of noise
and is given by The noise has �2

1 distribution, therefore, the
cdf FXðxÞ can be expressed as:

FXðxÞ ¼ erf

ffiffiffi
x

p
ffiffiffi

2
p
� �

; ð4Þ

where erf is the error function given by

erfðxÞ ¼ 2
ffiffiffi
�

p
Z x

0

e�u2du:

Furthermore, the noise at different sensors is assumed to be
independent.

4.4.2 Value Fusion

Expressions for the false alarm probability and the detection
probability in the absence of faults are first derived.

False alarm probability. For non-fault-tolerant value
fusion, false alarms occur when the average of the N values
measured by the sensors is above the threshold �v in the
absence of target. The measured values contain noise and
the false alarm probability is given by:

Pfa ¼ P
1

N

XN

i¼1

Ni > �v

" #

Pfa ¼ 1� P
XN

i¼1

Ni � N�v

" #

:

ð5Þ

PN
i¼1 Ni is Chi-square noise with N degrees of freedom with

a cumulative distribution function F�2
N
ðxÞ. Therefore, (5)

becomes:

Pfa ¼ 1� F�2
N
ðN�vÞ: ð6Þ

Detection probability. For non-fault-tolerant value fu-
sion, detections occur when the average of the N values
measured by the sensors is above the threshold �v in the
presence of target. The values measured consist of energy
(function of the distance of the target from the sensor) plus
noise and the false alarm probability for a given position of
target u is given by:

PdðuÞ ¼ P
1

N

XN

i¼1

ðEiðuÞ þNiÞ > �v

" #

PdðuÞ ¼ P
XN

i¼1

Ni > N�v �
XN

i¼1

EiðuÞ
" #

PdðuÞ ¼ 1� F�2
N

N�v �
XN

i¼1

EiðuÞ
 !

:

ð7Þ

For varying position of target, the detection probability is
given by:

Pd ¼ 1� F�2
N

N�v �
XN

i¼1

EiðuÞ
 !* +

; ð8Þ

where hfðuÞi denotes the average of f over different
positions u of the target in the region considered.

Expressions for the false alarm probability and the
detection probability in the presence of faults are now
derived.

False alarm probability. The false alarm probability
given that t faults are present is determined in the worst-
case scenario, i.e., t sensors report the maximum allowed
value. In fault-tolerant value fusion, the n highest and
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n lowest values are dropped so that the decision is based on
the N � 2n middle-range values. Let wi; 1 � i � N � 2n be
the N � 2n values that are not dropped (with w1 � w2 �
� � � � wN�2n and �1 � wi � þ1). False alarms occur when
the average of wi is above the threshold �v. There are N�t

n

� �

ways of choosing the n sensors that have lowest values (i.e.,
value less than w1) and the probability for each of these
sensors to have a value lower than w1 is FXðw1Þ. There are
N�n�t
n�t

� �
ways of choosing the m� t nonfaulty sensors that

have highest values (i.e., values greater than wN�2m) and the
probability for each of these sensors to have a value greater
than wN�2m is 1� FXðwN�2mÞ. The probability for the
remaining N � 2n sensors to have value w1; w2; . . . ; wN�2n

is fXðw1Þ; fXðw2Þ; . . . ; fXðwN�2nÞ and there are ðN � 2nÞ!
possible permutations of these sensors (these permutations
need to be considered since the values wi are ordered).
Therefore, the false alarm probability is given by:

Pfa ¼
Z þ1

w1¼0

Z þ1

w2¼w1

� � �
Z þ1

wN�2n¼wN�2n�1
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

1
N�2n

PN�2n

i¼1
wi � �v

N � t

n

� �

FXðw1Þn

N � n� t

n� t

� �

1� FXðwN�2nÞð Þn�tðN � 2nÞ!
YN�2n

j¼1

fXðwjÞdwj:

ð9Þ

Detection probability. The following terms are now
defined before deriving the expressions for detection
probability.

Definition. Let Pn be the set of one-to-one functions from f1 �
i � ng to f1 � i � ng. Pn is the set of permutations of
n elements and cardðPnÞ ¼ n!.

Definition. Elements p1, p2 of the set Pn are said to be Rk

(k; 0 � k � n) related provided

fp1ðiÞ; 1 � i � kg ¼ fp2ðiÞ; 1 � i � kg:

It can be easily shown that Rk is an equivalence relation.

LetCk;n be the setPn under the relationRk.Ck;n is the set of
combinations of k objects among n. For example, to choose a
combination ofN � t nonfaulty sensors amongN sensors, let
f 2 CN�t;N so that ffðiÞ; 1 � i � N � tg is the set of indices of
nonfaulty sensors. Note that cardðCk;nÞ ¼ n

k

� �
.

The detection probability given that t faults are present is
determined in the worse case scenario, i.e., t sensors report
the minimum allowed value. In fault-tolerant value fusion,
after dropping the n highest and n lowest values
N � 2n values are left, wi; 1 � i � N � 2n (with w1 � w2 �
� � � � wN�2n and �1 � wi � þ1). Detections occur when
the average of values ðwi þ EiðuÞÞ is above the threshold �v.
Since the energy measured is a function of the position of
the sensor, the detection probability depends on which
sensors are faulty and which nonfaulty sensor values are
dropped. The N sensors are divided into t faulty sensors
with low values, n� t nonfaulty sensors with low values
that are dropped, n nonfaulty sensors with high values that
are dropped, and N � 2n nonfaulty sensors with middle
values that are not dropped. Let f 2 CN�t;N be the
combination which represents the nonfaulty sensors (i.e.,

ffðiÞ; 1 � i � N � tg is the set of indices of nonfaulty

sensors and ffðiÞ; N � tþ 1 � i � Ng is the set of indices

of faulty sensors). Similarly, let h 2 CN�t�n;N�t be the

combination which represents the N � t� n nonfaulty

sensors that do not have highest values. Also, let l 2
CN�2n;N�t�n be the combination which represents the N �
2n remaining nonfaulty sensors that do not have lowest

values. And, let p 2 PN�2n be a permutation ordering the

remaining N � 2n nonfaulty sensors. The probabilty that a

given set of values fwig is obtained for given f , h, l, and p is:

Yn

i¼1

1� FXðmaxf;h;l;pðu;wÞ �EfðhðiþN�n�tÞÞðuÞÞ
� �

Yn�t

j¼1

FXðminf;h;l;pðu;wÞ � EfðhðlðjþN�2nÞÞÞðuÞÞ

YN�2n

k¼1

fXðwkÞ;

ð10Þ

where:

maxf;h;l;pðu;wÞ ¼ max
1�i�N�2n

EfðhðlðpðiÞÞÞÞðuÞ þ wi

� �
ð11Þ

minf;h;l;pðu;wÞ ¼ min
1�i�N�2n

EfðhðlðpðiÞÞÞÞðuÞ þ wi

� �
: ð12Þ

Integrating (10) over the sets fwig that trigger a detection

and over the possible permutations p and combinations l

and h, and averaging over the different combinations of

faulty sensors f and the different target positions u, the

detection probability is given by:

Pd ¼
*

1
N
n

� �

X

f2C
N�t;N

X

h2C
N�n�t;N�t

X

l2C
N�2n;N�n�t

Z þ1

w1¼�1

Z þ1

w2¼w1

� � �
Z þ1

wN�2n¼wN�2n�1
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

1
N�2n

PN�2n

i¼1
wi � �v� 1

N�2n

PN�2n

i¼1
EfðhðlðiÞÞÞðuÞ

X

p2PN�2n

Yn

i¼1

1� FXðmaxf;h;l;pðu;wÞ �EfðhðiþN�n�tÞÞðuÞÞ
� �

Yn�t

j¼1

FXðminf;h;l;pðu;wÞ � EfðhðlðjþN�2nÞÞÞðuÞÞ

YN�2n

k¼1

fXðwkÞdwk

+

:

ð13Þ

4.4.3 Decision Fusion

Expressions for the false alarm probability and the detection

probability in the absence of faults are first derived.
False alarm probability. For decision fusion, false alarms

occur when more than �N sensors have a value above the

threshold �d in the absence of target, where � is the

threshold used in Step 3 of the non-fault-tolerant decision

fusion algorithm presented in Section 3.2. The probability

that i sensors have a value above �d is ð1� FXð�dÞÞi and the

probability that the remaining N � i sensors have a value

below �d is FXð�dÞN�i. Since there are N
i

� �
ways of choosing

the i sensors among N sensors and i can vary from d�Ne to
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N for a false alarm to occur, the false alarm probability is

given by the following equation:

Pfa ¼
XN

i¼d�Ne

N

i

� �

FXð�dÞN�ið1� FXð�dÞÞi: ð14Þ

Detection probability. Detections occur when i � d�Ne
sensors have a value above the threshold �d in the presence

of a target. For a given set of detecting sensors defined by

the permutation h (such that the set fhðjÞ; 1 � j � ig are the

indices of detecting sensors), the probability of detection is
Qi

j¼1 1� FXð�d � EhðjÞðuÞÞ
� �QN

j¼iþ1 FXð�d � EhðjÞðuÞÞ. T h e

detection probability for a given position of target is the

sum of these terms for different combinations h and

different number of detecting sensors (from d�Ne to N).

The detection probability is the average of this expression

over different position u of the target in the region:

Pd ¼
XN

i¼d�Ne

X

h2Ci;N

Yi

j¼1

1� FXð�d � EhðjÞðuÞÞ
� �

"*

YN

j¼iþ1

FXð�d � EhðjÞðuÞÞ
#+

:

ð15Þ

Expressions for the false alarm probability and the

detection probability in the presence of faults are now

derived.
False alarm probability. In the presence of t faults

reporting a detection, only d�Ne � t out of N � t sensors

need to detect for a false alarm to occur. Therefore, the false

alarm probability is given by the following equation:

Pfa ¼
XN�t

i¼d�Ne�t

N � t

i

� �

FXð�dÞN�t�ið1� FXð�dÞÞi: ð16Þ

Detection probability. In the presence of t faulty sensors

reporting a nondetection, d�Ne out of N � t sensors need to

locally detect for a global detection to occur. The detection

probability is averaged over the different possible sets of

faulty sensors (defined by the combination f) and is given

by the following equation:

Pd ¼
1
N
t

� �

X

f2CN�t;N

XN�t

i¼d�Ne

X

h2Ci;N�t

*

Yi

j¼1

1� FXð�d �EfðhðjÞÞðuÞÞ
� � Y

N�t

j¼iþ1

FXð�d � EfðhðjÞÞðuÞÞ
" #+

:

ð17Þ

5 SIMULATION RESULTS

Although equations to evaluate the performance of value

and decision fusion were derived and validated for a small

number of nodes, they were found computationally

impractical when the number of nodes exceed 20. Simula-

tion was therefore used to compare the performance of the

algorithms.

5.1 Design of Experiment

The performance of the algorithms was evaluated using
simulations in which sensor nodes were placed randomly in
a region of size 20� 20 unit length. To measure false alarm,
no target is placed in the region. To measure detection
probability, the target is placed in a random position. The
results presented here are averages of many random target
placements. The number of placements simulated is
determined so as to obtain a 80 percent confidence that
the mean found is within 10 percent of the actual mean,
using the central limit theorem [24]. The target energy and
noise models are the same as the analytical model.

Simulations were performed for a variable number of
sensors, variable target maximum power, and a variable
number of faulty sensors. The number of values dropped
(i.e., n) is chosen using Table 3 in Section 6 satisfying the
bound N � 3nþ 1 so that the number of values dropped
does not exceed the number of faults the system can
tolerate. The false alarm and detection probability in the
presence of faults is evaluated, given that the system does
not fail. Algorithms are compared for their detection
probability at constant false alarm probability, which
depends on the values of the thresholds used in the fusion
algorithms.

5.2 Results

5.2.1 Without Faulty Nodes

First, value and decision fusion are compared assuming no
sensor nodes are faulty. In such a case, no values/decisions
need to be dropped and n is set to 0. The detection
probability of both algorithms was measured for different
false alarm probability, number of nodes, maximum power,
and decay factor as defined in (1). Fig. 4 shows the average
detection probability for value and decision fusion as a
function of the false alarm probability for N ¼ 9 and 100

nodes and decay factors of 2, 3, and 4. Results for different
N and different maximum power were found similar to
those presented here. The graphs show that, for a decay
factor of 2, value fusion is superior to decision fusion for all
false alarms and all number of nodes. Also, the superiority
of value fusion over decision fusion decreases as the decay
factor increases. At a decay factor of 4, decision fusion is
better than value fusion for a small number of nodes and
low false alarm probability. However, in this case, the
detection probability of both approaches is small.

The observations can be explained as follows: Value
fusion lets the nodes exchange more information about the
target since all the nodes obtain all the energy measure-
ments. Furthermore, for low decay factors, the target is
detectable by all or most nodes over a large region and,
therefore, most of the nodes collect meaningful information
about the presence of the object. Sharing this information
benefits the overall performance and, therefore, value
fusion is superior to decision fusion. As the energy decay
factor increases, only the nodes close to the target collect
meaningful information and there is no benefit for other
nodes to share their information. Decision fusion becomes
superior since it gives more weight to the nodes closest to
the target, indeed, for the threshold parameter used, the
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final decision is “target present” as soon as one node locally
decides that the target is present.

To complete the performance evaluation, Table 2 pre-
sents the standard deviation of the detection probability
measured with the simulator. The standard deviation of
value and decision fusion are comparable and are functions
of the average detection probability. The standard deviation
becomes very large when the detection probability mean is
below 95 percent and, considering the statistical distribu-
tion of the difference between the two approaches, one
approach is not found to be consistently better than the
other. Therefore, one approach is not superior to the other
when the mean detection probability is below 95 percent.
Limiting the comparison to the region where the detection
probability is above 95 percent, value fusion is superior to
decision fusion in the absence of faults.

5.2.2 With Faulty Nodes

Value and decision fusion are now compared in the
presence of faulty nodes. As mentioned in Section 5.1, all
the nodes are assumed to act consistently and the faulty
nodes are consistent outliers defined as follows: In the
absence of a target, a faulty node reports the highest
permissible value in value fusion and a “local detection” in
decision fusion. In the presence of a target, a faulty node
reports the lowest permissible value in value fusion and a
“local no detection” in decision fusion. Again, the detection
probability of both algorithms was measured for varying
false alarm probability, number of nodes, maximum power,
decay factor, number of values dropped, and number of

faults. Only results for constant false alarm probability of
5 percent are presented here, but, throughout the simula-
tions, the conclusions were similar for different false alarm
probabilities. The graph of Fig. 5 represents the average
detection probability for value and decision fusion as a
function of the maximum power for 9, 36, and 99 nodes and
decay factors 2, 3, and 4. For these simulations, the number
of values dropped is taken from Table 3 and the number of
faults injected is t ¼ n. Note that the maximum power was
increased substantially in the presence of faults to obtain
comparable performance than in the absence of faults.

The graphs show that value fusion is superior to decision
fusion for a small number of nodes, but decision fusion
becomes superior as the number of nodes increases. For
increasing decay factor, the superiority of decision fusion
occurs for a larger number of nodes. The difference in
performance of the two algorithms decreases as the decay
factor increases. Overall, faults have more impact on value
fusion than on decision fusion. Unlike in the fault-free case,
decision fusion performs better than value fusion when the
detection probability is 0.8 or above. The reason for this
switch is that the value fusion algorithm is often forced to
discard meaningful readings from the nonfaulty sensor
nodes since it does not know the identity of the faulty nodes.
Although decision fusion may also discard decisions by
nonfaulty sensor nodes, decisions contain less information
than energy readings and, therefore, dropping themdoes not
adversely impact decision fusion as much as value fusion.

Limiting again the comparison to the region where the
detection probability is above 95 percent, we conclude that
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TABLE 2
Performance Standard Deviation



the performance of value fusion and decision fusion are
comparable in the presence of faults.

The performance of value and decision fusion is now
presented when the number of faulty nodes t varies from 0
to n. Fig. 6 shows the average detection probability of value
and decision fusion as a function of t for a fixed maximum
power of 50, decay factor of 3, and for 15, 48, and 99 nodes.
The number of values dropped is as specified in Table 3.
The graph shows that the performance of both algorithms
decreases as the number of faulty nodes increases. How-
ever, for the region of interest (i.e., when the mean detection
probability is high), the mean performance of decision
fusion remains about equal to the one of value fusion for
any number of faulty nodes t. When t ¼ n, the results
become identical to the one in the graph of Fig. 5 for a
power of 50.

We conclude that, for a given number of values/
decisions dropped n, the relative superiority of one
approach over the other doesn’t vary with the number of
faults t present in the system.

Fig. 7 shows the average detection probability as a

function of n, the number of values/decisions dropped,

when the number of faults present in the system is t ¼ n.

We observe that, when n ¼ 0, value fusion is superior to

decision fusion, but, as n increases, decision fusion becomes

comparable to value fusion (due to large standard devia-

tion, we cannot conclude that one algorithm is better than

the other for large n).
Since the two algorithms have comparable performance,

it can be argued that, if one were to take into account the

cost of communication, decision fusion would be consid-

ered superior to value fusion.

6 HIERARCHICAL APPROACH FOR

INFORMATION SHARING

This section presents and analyzes an approach for

reducing the communication cost of the fault-tolerant target

detection algorithms.
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Fig. 5. Performance of value and decision fusion with faulty nodes.

Fig. 6. Performance of value and decision fusion for variable number of

values dropped.

Fig. 7. Performance of value and decision fusion for variable number of
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6.1 Approach

Agreement algorithms used in value and decision fusion

offer robustness to node failure at the cost of extra

communication overhead. For exact agreement, in the

presence of t faults for a total of N nodes in the network,

tþ 1 rounds of message exchanges and a total of OðNtÞ
messages of size Oðt2Þ are necessary to obtain consistency,

provided N � 3tþ 1 [1], [18]. This communication over-

head becomes critical as the number of nodes in the

network increases provided that a fixed proportion of the

nodes are faulty. Because of power constraints and limited

bandwidth, communication efficient agreement needs to be

developed. One approach is to perform agreement in a

centralized manner in a subset of all the nodes in the region,

called manager nodes. Fig. 8 illustrates this hierarchical

approach for a set of six nodes, four of them being

managers.
In the first phase, every node in the region monitored

sends its information to all the M manager nodes. Faulty

nodes may send inconsistent information to different

manager nodes and, therefore, all manager nodes may not

obtain the same global information. In the second phase,

manager nodes perform agreement in order to guarantee

that nonfaulty manager nodes obtain the same global

information. In the third phase, manager nodes disseminate

their global information to all the nonmanager nodes in the

region. Note that several manager nodes need to send the

global information since some manager nodes can be faulty

and can disseminate wrong or inconsistent information.

Assuming that m or fewer manager nodes are faulty, only

2mþ 1 manager nodes need to send their global informa-

tion to all the nonmanager nodes in the region for them to

obtain the global information the manager nodes agreed

upon using simple voting.
Overall, the number of message exchanges reduces from

OðNnÞ in fully distributed agreement to OðN þMmÞ in

hierarchical agreement. Note that this gain in communica-

tion overhead comes along with a loss in system reliability

since the hierarchical approach requires that less than one

third of the manager nodes be faulty. This is a stronger

requirement than in fully distributed agreement, where it is

required that less than one third of all the nodes be faulty.

6.2 Algorithms

The basic structure of the hierarchical algorithms is:
gathering, manager agreement and fusion, and dissemination,
described as phases 1, 2, and 3, respectively, in Fig. 8. In this
study, managers use exact agreement to reach consensus,
although other agreement types such as inexact agreement
might be appropriate. Exact agreement guarantees that all
the nonfaulty managers obtain the same set S of data and
the data sent by the nonfaulty nodes are part of this set.
However, consistent outlying data can remain in the set, as
shown in Table 1. To prevent corruption of the decision by
these outliers, the largest and smallest data are dropped
from the set S and the average data is computed over the
remaining data.

Fig. 9 represents different fusion algorithms using the
hierarchical approach. For gathering, sensor nodes can
either report their raw energy measurement or report a local
decision based on their energy measurement. We call the
first approach value fusion and the second approach
decision fusion, as shown in the first-level branch of Fig. 9.
Value fusion lets the sensors exchange more information at
the cost of higher communication overhead. Once the
managers obtain a vector of values or decisions from every
node, they can perform agreement on these vectors or fuse
the vectors into a single value to perform agreement on the
fused values. We call the first approach raw agreement and
the second approach fused agreement, as shown in the
second-level branch of Fig. 9. Again, raw agreement lets the
sensors exchange more information at the cost of higher
communication overhead. In the case of fused agreement,
the manager nodes can then perform exact agreement on
the fused values or convert these into decisions and
perform exact agreement on decisions. This is shown with
a third-level branch leading to options 2 and 3 on the value
fusion side and options 5 and 6 on the decision fusion side.
Note that, for option 1, transforming the raw value vector
into a decision vector is equivalent to option 4, but is more
expensive in terms of communication. Therefore, option 1 is
not subdivided with a third-level branch.

These six options can be reduced to two options in the
worst-case scenario identified in Section 4.3, i.e., when the
nonfaulty nodes send consistent outliers. Looking at value
fusion in Fig. 9, if all the vectors obtained by the manager
nodes during gathering are identical, then exact agreement
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doesn’t modify these vectors and option 1 functionally

reduces to: Drop maximum n and minimum n values,

average and compare to threshold. For options 2 and 3, all

the manager nodes obtain an identical fused value when

performing fused agreement; therefore, the fused agree-

ment doesn’t modify this value and options 2 and 3

functionally reduce to: Drop top n and bottom n values,

average, and compare to threshold. This shows that all the

value fusion options are equivalent in the worst-case

scenario when all the nodes act consistently. Similarly, all

the decision fusion options are equivalent in the worst-case

scenario and they functionally reduce to: Drop top n and

bottom n decisions, average, and compare to threshold.
The performance evaluation was restricted to the case

where all the nodes act consistently, which applies for the

worst-case scenario and the nonfaulty case. Under such an

assumption, the six options identified above reduce to value

and decision fusion and their precision and accuracy

performance have been studied. As we observed that the

two algorithms have comparable performance, the best

option from Fig. 9 is chosen by comparing communication

overhead. We conclude that decision fusion algorithms

using fused agreement on hard decision (option 5) is

superior.

6.3 Impact on Performance

6.3.1 System Failure Probability

The system failure probability is the probability that the

system cannot make a precise and accurate decision. It is a

function of the number of values/decisions dropped, n and

m, defined in Fig. 9, as well as the number of manager

nodesM. Here, the system failure probability is studied and

a method of determining the parameters n;m and M is

developed. Note that the six options in Fig. 9 have identical

system failure probability as long as they use the same

parameters n;m and M.
Reducing the number of nodes performing agreement

affects the probability of system failure. The system is

considered to have failed if the nodes cannot make a precise

and accurate decision. For the system to be precise,

consistency needs to be achieved by exact agreement

among M manager nodes. This requires M � 3sþ 1, where

s is the number of faulty manager nodes [18]. For the system

to be accurate, outlying values/decisions need to be

dropped. Assuming that as many as t nodes can be faulty,

the t highest and lowest values/decisions (i.e., a total of 2t)

need to be dropped when collecting values/decisions to

remove outliers. Therefore, it is required that n � t. Also,

outliers introduced by the s faulty manager nodes during

exact agreement need to be removed and, therefore, m � s.
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In this study, m ¼ bM�1
3
c so that M � 3sþ 1 guarantees m �

s (bxc denotes the floor of x).
To evaluate the probability of system failure, every node

is assumed to have the same probability of failure p and the

node failures are assumed independent. For a system with a

total of N nodes, M manager nodes, and algorithms

dropping highest n and lowest n values/decisions, the

probability of system failure is given by the following

equation:

Psys failure ¼ P

�

s �
�
M

3

�

and s � t � n

�

þ P ðt > nÞ ð18Þ

Psys failure ¼ P

�

s �
�
M

3

�

and 0 � r � n� s

�

þ P ðt > nÞ;

ð19Þ

where dxe denotes the ceiling of x and r ¼ t� s is the

number of faulty nonmanagers.

Psys failure ¼
XM

s¼dM
3
e

M

s

� �

psð1� pÞM�s

�

1�
XN�M

r¼maxðn�s;0Þ

N �M

r

� �

prð1� pÞN�M�r

�

þ

XN

t¼nþ1

N

t

� �

ptð1� pÞN�t:

ð20Þ

The graph of Fig. 10 shows the probability of system

failure as a function of n for different values of M. Values

considered are M ¼ 4; 7; 10 and larger values of M are not

considered, primarily to limit the communication overhead.
The graph shows that the system failure probability

decreases as M and n increase. It saturates as n becomes

large. This is because, for small n, the probability is that

t > n is predominant in the system failure probability, but,

as n increases, the probability of failure among managers

becomes predominant in the system failure probability.

Since the system accuracy decreases as more values are

dropped (i.e., when n increases), the best accuracy is

obtained for small n provided the system doesn’t fail. The

graph can be used to first determine a value for M and then

a value of n such that n is as small as possible and a given

system failure is met. Setting M ¼ 7, optimum values of n
for various total number of nodes N are shown in Table 3.

6.3.2 Communication Overhead

Among the six algorithms options identified, it was argued

that value fusion or fused agreement-based approaches are
more costly than decision fusion or raw agreement-based
approaches. We conclude that option five is the less costly
algorithm and option one the more costly. The communica-

tion overhead is also determined by the number of manager
nodes and it was argued that centralizing the fusion process
reduces the communication cost. There is a clear trade off
between the system failure probability and the communica-

tion overhead when choosing the number of manager nodes
for a given total number of nodes.

7 CONCLUSION

This paper studied the problem of target detection by a

sensor network deployed in a region to be monitored. A
model of sensor network for target detection was devel-
oped, specifying the signal energy measured by the sensors
function of the target characteristics and the faulty sensor
behavior. Previous work in the field of signal detection and

distributed systems was presented and their relevance to
this study was highlighted. Two algorithms using exact
agreement were identified to solve the problem: value
fusion and decision fusion. They were analyzed for their

robustness to sensor nodes failure and compared for their
performance and communication overhead. Also, a hier-
archical approach for reducing the communication over-
head induced by exact agreement was proposed and

analyzed. Several hierarchical algorithms were identified
and they were shown to reduced to value fusion and
decision fusion in the worse case scenario.

The performance comparison was performed both in the
presence and in the absence of faulty nodes. The scope of

the comparison was limited to the worst-case scenario,
where all faulty nodes act consistently. The performances of
value and decision fusion were first analyzed analytically
and then evaluated through simulation. Value fusion-based

algorithms were found to perform better than decision
fusion-based algorithms in the absence of faults. However,
value fusion-based and decision fusion-based algorithms
performance become comparable as faults are introduced in

the system and decision fusion-based algorithms are then
preferred for their lower communication overhead.

The performance of localization and tracking algorithms,
as opposed to detection algorithms, and the replacement of
exact agreement by other agreement algorithms such that

inexact or approximate agreement need to be investigated.
Also, methods for determining how to deploy the sensors in
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Fig. 10. System failure probability for p ¼ 0:05 and N ¼ 48.

TABLE 3
Optimum n for Various N, Given M ¼ 7, p ¼ 0:05, and

Psys failure � 0:005



the region of interest need to be developed to optimize the

detection performance.
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