
Int. J. Communications, Network and System Sciences, 2015, 8, 471-482
Published Online December 2015 in SciRes. http://www.scirp.org/journal/ijcns
http://dx.doi.org/10.4236/ijcns.2015.812042

How to cite this paper: Sari, A. and Akkaya, M. (2015) Fault Tolerance Mechanisms in Distributed Systems. Int. J. Commu-
nications, Network and System Sciences, 8, 471-482. http://dx.doi.org/10.4236/ijcns.2015.812042

Fault Tolerance Mechanisms in Distributed
Systems
Arif Sari, Murat Akkaya
Department of Management Information Systems, Girne American University, Kyrenia, Cyprus

Received 13 October 2015; accepted 14 December 2015; published 17 December 2015

Copyright © 2015 by authors and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/

Abstract
The use of technology has increased vastly and today computer systems are interconnected via
different communication medium. The use of distributed systems in our day to day activities has
solely improved with data distributions. This is because distributed systems enable nodes to or-
ganise and allow their resources to be used among the connected systems or devices that make
people to be integrated with geographically distributed computing facilities. The distributed sys-
tems may lead to lack of service availability due to multiple system failures on multiple failure
points. This article highlights the different fault tolerance mechanism in distributed systems used
to prevent multiple system failures on multiple failure points by considering replication, high re-
dundancy and high availability of the distributed services.

Keywords
Fault Tolerance, Distributed System, Replication, Redundancy, High Availability

1. Introduction
A faulty system creates a human/economic loss, air and rail traffic control, telecommunication loss, etc. The
need for a reliable fault tolerance mechanism reduces these risks to a minimum. In distributed systems, faults or
failures are limited or part. A part failure in distributed systems is not equally critical because the entire system
would not be offline or brought down, for example a system having more than one processing cores (CPU), and
if one of the cores fails the system would not stop functioning as though that’s the one physical core in the sys-
tem. Hence, the other cores would continue to function and process data normally. Nevertheless, in a non-dis-
tributed system when one of its components stops functioning, it would lead to a malfunction of the entire sys-
tem or program and the corresponding processes would stop.

Fault tolerance is the dynamic method that’s used to keep the interconnected systems together, sustain relia-

http://www.scirp.org/journal/ijcns
http://dx.doi.org/10.4236/ijcns.2015.812042
http://dx.doi.org/10.4236/ijcns.2015.812042
http://www.scirp.org
http://creativecommons.org/licenses/by/4.0/

A. Sari, M. Akkaya

472

bility, and availability in distributed systems. The hardware and software redundancy methods are the known
techniques of fault tolerance in distributed system. The hardware methods ensure the addition of some hardware
components such as CPUs, communication links, memory, and I/O devices while in the software fault tolerance
method, specific programs are included to deal with faults. Efficient fault tolerance mechanism helps in detect-
ing of faults and if possible recovers from it.

There are various definitions to what fault tolerance is. In dealing with fault tolerance, replication is typically
used for general fault tolerance method to protect against system failure [1] [2]. Sebepou et al. highlighted three
major forms of replication mechanism which are [1] [2]:

The State Machine;
Process Pairs;
Roll Back Recovery.
1) State Machine
In this mechanism, the process state of a computer system is replicated on autonomous computer system at

the same time, all replica nodes process data in analogous or matching way and also there’s coordination in their
process among the replica nodes and all the inputs are sent to all replica at the same time [2] [3]. An active rep-
lica is an example of state machine [3] [4].

2) Process Pairs
The process pairs functions like a master (primary)/slave (secondary) link in replication coordination. The

primary workstation acts in place of a master to transmit its corresponding input to the secondary node. Both
nodes maintain a good communication link [3]-[5].

3) Roll Back Recovery (Check-Point-Based)
This mechanism collects check point momentarily and transfers these checkpoint states to a stable storage de-

vice or backup nodes. This enables a roll back recovery to be done successfully when or during recovery process.
The checkpoint is been reconstructed prior to the recent state [3]-[6].

2. Distributed System
Distributed system are systems that don’t share memory or clock, in distributed systems nodes connect and relay
information by exchanging the information over a communication medium. The different computer in distri-
buted system have their own memory and OS, local resources are owned by the node using the resources. While
the resources that is been accessed over the network or communication medium is known to be remote resources
[5]-[7]. Figure 1 shows the communication network between systems in the distributed environment.

In distributed system, pool of rules are executed to synchronise the actions of various or different processes
on a communication network, thereby forming a distinct set of related tasks [6]-[9]. The independent system or
computers access resources remotely or locally in the distributed system communication environment, these

Figure 1. Distributed system.

Processor

Memory

Processor

Memory

Processor

Memory

A. Sari, M. Akkaya

473

resources are put together to form a single intelligible system. The user in the distributed environment is not
aware of the multiple interconnected system that ensures the task is carried out accurately. In distributed system,
no single system is required or carries the load of the entire system in processing a task [8] [9].

3. Distributed System Architecture
The architecture of distributed system is built on existing OS and network software [8]. Distributed system en-
compasses the collection of self-sufficient computers that are linked via a computer network and distribution
middleware. The distribution middleware in distributed system, enables the corresponding computers to manage
and share the resources of the corresponding system, thus making the computer users to see the system as a sin-
gle combined computing infrastructure [9] [10]. Middleware is the link that joins distributed applications across
different geographical locations, different computing hardware, network technologies, operating systems, and
programming languages. The middleware delivers standard services such as naming, concurrency control, event
distribution, security, authorization etc. Figure 2 shows the distributed system architecture, with the middleware
offering its services to the connected systems in the distributed environment [10] [11].

In distributed system, the structure can be fully connected networks or partially connected networks [12]-[15].
As shown in Figure 3, a full connected network, is a network where each node is connected together. The dis-
advantage of this network is that when a new computer added, it physically increase the number of nodes con-
nected to nodes, because the network connects node to node. Because of the increase in nodes, the number of
file descriptors and difficulty for each node to communicate are increased heavily. File Descriptors is an intel-
lectual indicator used to access a file or other input/output resource, such as a pipe or network connection [15]-
[17]. Hence, the ability for the networked systems to continue functioning well is limited to the connected nodes
ability of open the file descriptors and also the capability to manage new connections. The fully linked network
systems are reliable because the message sent from one node to another node goes through one link, and when a
node fails to function or a link fails, other nodes in the network can still communicate with other nodes.

Figure 2. A simple architecture of a distributed system.

Figure 3. Fully connected network.

Machine CMachine BMachine A

Distributed applications

Local OS

Network

Middleware service

Local OSLocal OS

A. Sari, M. Akkaya

474

In the partially connected network, some node have direct links while others don’t. Some models of partially
connected networks are star structured networks, multi-access bus net work, ring structured network, and tree
structured network. In Figures 4-7 illustrates the corresponding networks. The disadvantages in these network

Figure 4. Tree structured network.

Figure 5. Ring structured network.

Figure 6. Multi-access bus network.

Figure 7. Star structured network.

A. Sari, M. Akkaya

475

in are: in the Star designed network, when the main node fails to function the entire networked system stops to
function they collapse. In multi-access bus network, nodes are connected to each other through a communication
link “a bus”. If the bus link connecting the nodes fails to function, all other nodes can’t connect to each other,
and the performance of the network drops as more nodes or computers are added to the system or heavy traffic
occurs in the system. In the ring network, nodes are connected at least to two other nodes in the network creating
a path for signals to be exchanged between the connected nodes. As new nodes are added to the network, the
transmission delay becomes longer. If a node fail every other node in the network can be inaccessible. In the tree
structured network, this is like a net work with hierarchy, each node in the network have a fixed number nodes
that is attached to it in the sub level of the tree. In this network messages that are transmitted from the parent to
the child nodes goes through one link.

For a distributed system to perform and function according to build, it must have the following characteristics;
Fault Tolerant, Scalability, Predictable Performance, Openness, Security, and Transparency.

4. Fault Tolerance Systems
Fault tolerance system is a vital issue in distributed computing; it keeps the system in a working condition in
subject to failure. The most important point of it is to keep the system functioning even if any of its part goes off
or faulty [18]-[20].

For a system to be fault tolerant, it is related to dependable systems. Dependability covers some useful re-
quirements in the fault tolerance system these requirements include: Availability, Reliability, Safety, and Main-
tainability.

Availability: This is when a system is in a ready state, and is ready to deliver its functions to its corresponding
users. Highly available systems works at a given instant in time.

Reliability: This is the ability for a computer system run continuously without a failure. Unlike availability,
reliability is defined in a time interval instead of an instant in time. A highly reliably system, works constantly in
a long period of time without interruption.

Safety: This is when a system fails to carry out its corresponding processes correctly and its operations are
incorrect, but no shattering event happens.

Maintainability: A highly maintainability system can also show a great measurement of accessibility, espe-
cially if the corresponding failures can be noticed and fixed mechanically.

As we have seen, fault tolerance system is a system which has the capacity of or to keep running correctly and
proper execution of its programs and continues functioning in the event of a partial failure [21] [22]. Although
sometimes the performance of the system is affected due to the failure that occurred. Some of the fault is nar-
rowed down to Hardware or Software Failure (Node Failure) or Unauthorised Access (Machine Error). Errors
caused by fault tolerance events are separated into categories namely; performance, omission, timing, crash, and
fail-stop [22]-[24].

Performance: this is when the hardware or software components cannot meet the demands of the user.
Omission: is when components cannot implement the actions of a number of distinctive commands.
Timing: this is when components cannot implement the actions of a command at the right time.
Crash: certain components crash with no response and cannot be repaired.
Fail-stop: is when the software identifies errors, it ends the process or action, this is the easiest to handle,

sometimes its simplicity deprives it from handling real situations.
In addition to the error timing, three situations or form can be distinguished: 1) Permanent error; these causes

damage to software components and resulting to permanent error or damage to the program, preventing it from
running or functioning. In this case a restart of the program is done, an example is when a program crashes. 2)
Temporary error; this only result to a brief damage to the software component, the damage gets resolved after
some time and the corresponding software continues to work or function normally. 3) Periodic errors; these are
errors that occurs occasionally. For example when there’s a software conflict between two software when run at
the same time. In dealing with this type of error, one of the programs or software is exited to resolve the conflict.

Most computers if not all have some fault tolerance technique such as micro diagnosis [25] [26], parity
checking [27]-[29], watchdog timers [30]-[34], etc. an incompletely fault tolerant system have inbuilt resources
to cause a reduction in its specified computing capability and reduce to a smaller or lower system by removing
some programs that have been used previously or by reducing the rate at which specified processes are executed.

A. Sari, M. Akkaya

476

The reduction is due to the decrease or slowdown in the operational hardware configuration or it may be some
design faults in the hardware.

5. Basic Concept of Fault Tolerance Systems
Fault tolerance mechanism can be divided into three stages; Hardware, Software, and System Fault [34].

Hardware Fault Tolerance: This involves the provision of supplementary backup hardware such as; CPU,
Memory, Hard disks, Power Supply Units, etc. hardware fault tolerance can only deliver support for the hard-
ware by providing the basic hardware backup system, it can’t stop or detect error, accidental interfering with
programs, program errors, etc. In hardware fault tolerance, computer systems that resolves fault occurring from
hardware component automatically are built. This technique often partition the node into units that performance
as a fault control area, each module is backed up with a defensive redundancy, the reason is that if one of the
modules fails, the others can act or take up its function. There are two approach to hardware fault recovery
namely; Fault Masking and Dynamic Recovery [35]-[37].

Fault Masking: This is an important redundancy method that fully covers faults within a set of redundant units
or components. Other identical units carry out or implement the same tasks, and their outputs were noted to have
removed errors created by a defective module. Commonly used fault masking module it the Triple Modular Re-
dundancy (TMR). The TMR triplicate the circuitry and selected [38] [39]. The selected electrical system can al-
so be triplicated so that the selected circuitry failures can be corrected by the same process. The selected system
in the TMR needs more hardware, this enables computations to continue without been interrupted when a fault
is detected or occurs, tolerating the operating system to be used [40] [41].

Dynamic Recovery: In dynamic recovery, special mechanism is essential to discover faults in the units, per-
form a switch on a faulty module, puts in a spare, and carryout some software actions necessary to restore and
continue computation such as; rollback, initialization, retry, and restart. This requires special hardware and
software to make this work in single computer, but in a multicomputer situation, the function is carried out by
other processors [42]-[45].

Software Fault Tolerance: This is a special software designed to tolerate errors that would originate from a
software or programming errors. The software fault tolerance utilize the static and dynamic redundancy methods
similar to those used for hardware fault [46]. N-version programming approach uses the static redundancy like
an independently program that does the same function creating out that are selected at special checkpoint.
Another approach is the Design Diversity which this adds both hardware and software fault tolerance by dep-
loying a fault tolerant system using diverse hardware and software in the redundant channels. In the Design di-
versity, every channel is intended to carry out the same function and a mechanism is in check to see if any of the
channels changes from others. The aim of the Design Diversity is to tolerate faults from both hardware and
software. This approach is very expensive, its use mainly is in the aircraft control applications.

Note: Software Fault Tolerance also consists of checkpoints storage and rollback recovery. Checkpoints are
like a safe state or snapshot of the entire system in a working state. This is done regularly. The snapshot holds all
the required information to restart the program from the checkpoint. The usefulness of the software fault toler-
ance is to create an application that would store checkpoints regularly for targeted systems.

System Fault Tolerance: This is a complete system that stores not just checkpoints, it detects error in applica-
tion, it stores memory block, program checkpoint automatically. When a fault or an error occurs, the system
provides a correcting mechanism thereby correcting the error. Table 1 shows the comparison of three fault to-
lerance mechanism.

Table 1. Comparison of fault tolerance mechanism.

Mechanism Hardware
Fault Tolerance

Software
Fault Tolerance

System
Fault Tolerance

Major technique Hardware backup Checkpoint storage
Rollback recovery

Architecture with error
detecting & correcting

Design complexity Low Medium High

Time/cost expenditure Low Medium High

Fault-tolerance Level Low Medium High

A. Sari, M. Akkaya

477

6. Fault Tolerance Mechanism in Distributed Systems
6.1. Replication Based Fault Tolerance Technique
The replication based fault tolerance technique is one of the most popular method. This technique actually rep-
licate the data on different other system. In the replication techniques, a request can be sent to one replica system
in the midst of the other replica system. In this way if a particular or more than one node fails to function, it will
not cause the whole system to stop functioning as shown in Figure 8. Replication adds redundancy in a system.

There are different phase in the replication protocol which are client contact, server coordination, execution,
agreement, coordination and client response. Major issues in replication based techniques are consistency, de-
gree of replica, replica on demand etc.

Consistency: This is a vital issue in replication technique. Several copies of the same entity create problem of
consistency because of update that can be done by any of the user. The consistency of data is ensured by some
criteria such as linearizability [47], sequential consistency and casual consistency [48] etc. sequential and linea-
rizability consistency ensures strong consistency unlike casual consistency which defines a weak consistency
criterion. For example a primary backup replication technique guarantee consistency by linerarizability, likewise
active replication technique.

Degree or Number of Replica: The replication techniques utilises some protocols in replication of data or an
object, such protocol are: Primary backup replication [49], voting [50] and primary-per partition replication [51].
In the degree of replication, to attain a high level of consistency, large number of replicas is needed. If the num-
ber of replica is low or less it would affect the scalability, performance and multiple fault tolerance capability.
To solve the issue of less number of replica, in [51] adaptive replicas creation algorithm was proposed.

6.2. Process Level Redundancy Technique
This fault tolerance technique is often used for faults that disappears without anything been done to remedy the
situation, this kind of fault is known as transient faults. Transient faults occurs when there’s a temporary mal-
function in any of the system component or sometimes by environmental interference. The problem with tran-
sient faults is that they are hard to handle and diagnose but they are less severe in nature. In handling of transient
fault, software based fault tolerance technique such as Process-Level Redundancy (PLR) is used because hard-
ware based fault tolerance technique is more expensive to deploy. As shown in Figure 9, the PLR compares
processes to ensure correct execution and also it creates a set of redundant processes apiece application process.
Redundancy at the process level enables the OS to schedule easily processes across all accessible hardware re-
sources.

The PLR provides improved performance over existing software transient fault tolerance techniques with a
16.9% overhead for detection of fault [53]. PLR uses a software-centric approach which causes a shift in focus
from guaranteeing hardware execution correctly to ensuring a correct software execution.

Check Pointing and Roll Back: This is a popular technique which in the first part “check point” stores the
current state of the system and this is done occasionally. The check point information is stored in a stable sto-
rage device for easy roll back when there’s a node failure. Information that is stored or checked includes envi-
ronment, process state, value of the registers etc. these information are very useful if a complete recovery needs
to be done [50] [51]. Figure 10 illustrates the check pointing techniques. The two most known type or roll back

Figure 8. Replication based technique in distributed system.

replica1

replica2
Replica Manager

Replication Protocol

Consistency Management

replica3

A. Sari, M. Akkaya

478

Figure 9. Process redundancy.

Figure 10. Check pointing technique.

recovery are the checkpoint and log based roll back recovery technique. Each of the type of rollback recovery
technique uses different mechanism; the checkpoint based uses the checkpoints states that it has stored in a sta-
ble storage device, while the log based rollback recovery techniques combines both check pointing and logging
of events [51].

In recovery form system failures, there are two type of check point technique that is used; coordinated and
uncoordinated checkpoint techniques, these techniques are related with message logging [34].

Coordinated Check Point: In this technique, check are coordinated to save a consistent state because the coor-
dinated checkpoint are consistent set of checkpoint. If the checkpoints are not consistent a full and complete
rollback of the system can’t be done [52]. In a situation where there’s frequent failure, coordinated check point
technique can’t be used. The recovery time can be set to a higher value or lower value, when set to a lower value,
it improves performance of the technique because it only select the recovery to last correct state of the system
instead from the very first state or checkpoint.

Uncoordinated Check Point: This technique combines the message logging to ensure that the rollback state is
correct. The uncoordinated check point technique executed checkpoints independently as well as recovery.
There are three type of message logging protocols: optimistic, pessimistic and casual. In the optimistic protocol
ensures all messages are logged. The pessimistic protocol makes sure that all the message that is received by a
process are logged appropriately and stored in a stable and reliable storage media before it is forwarded into the
system. While the causal protocol just log the message information of a process in all processes that are causally
dependent [53].

6.3. Fusion Based Technique
Replication is the most widely used method or technique in fault tolerance. The main downside is the multiple of
backups that it incurs. Because the backups increase as faults increase and the cost of management is very ex-
pensive, the fusion based technique solves that problem. Fusion based technique stands as an alternative because
it requires fewer backup machines compared to the replication based technique. As shown in Figure 11, the
backup machines are fused corresponding to the given set of machines [53] [54]. The fusion based technique has
a very high overhead during recovery process and it’s acceptable in low probability of fault in a system.

From Table 2, it is clear that all methods having capability to handle multiple faults. In all methods

p3p2

p1

p1

p2 p3p2

node

node node

node

Checkpoint serverDistributed System
Checkpoint scheduler

dispatcher

A. Sari, M. Akkaya

479

Figure 11. Fusion process technique.

Table 2. shows compares the different fault tolerance technique or mechanism in distributed system.

Major Factors Replication Based
Technique

Checking Point/Roll
Back Technique Fusion Based Technique Process Level

Redundancy Technique

Working Redirected to replica State saved on stables to
rage used for recovery Back up machine A set of redundant

process

Consistency Some criterion;
linearizability. Avoiding orphan messages Among backup machines Not a major issues

Multiple Faults
Handling

Depend upon number
of replica.

Depend upon Check
pointing scheduling

Depends upon number of
back machine

Depends upon set of
redundant process

Performance Decreases as number
of replica increases.

Decrease with frequency
and size of checkpoint

Decrease in case of faults as
recovery cost is high

Decrease as faults
appears disappear

N-Faults N replicas ensure
n-1 faults

Uncoordinated
Pessimistic and
N level disk less
used for N-1 Faults

In order handle Extra N
faults N backups machine
are required

Scaling the number of
process and
Majority voting

Multiple Failure
Detector

Reliable, Accurate,
Adaptive

Reliable, Accurate,
Adaptive Reliable, Accurate, Adaptive Reliable, Accurate,

Adaptive

performance can be improved by focusing on or addressing the serious aspects involved. In all the techniques
involved, there is strong need for reliable, accurate and pure adaptive multiple failure detector mechanism [53],
[54].

7. Conclusion
Fault tolerance is a major part of distributed system, because it ensures the continuity and functionality of a sys-
tem at a point where there’s a fault or failure. This research showed the different type of fault tolerance tech-
nique in distributed system such as the Fusion Based Technique, Check Pointing and Roll Back Technique, and
Replication Based Fault Tolerance Technique. Each mechanism is advantageous over the other and costly in
deployment. In this paper we highlight the levels of fault tolerance such as the hardware fault tolerance which
ensures that additional backup hardware such as memory block, CPU, etc., software fault tolerance system
comprises of checkpoints storage and rollback recovery mechanisms, and the system fault tolerance is a com-
plete system that does both software and hardware fault tolerance, to ensure availability of the system during
failure, error or fault. Future research would be conducted on comparing the various data security mechanisms
and their performance metrics.

References
[1] Sebepou, Z. and Magoutis, K. (2011) CEC: Continuous Eventual Checkpointing for Data Stream Processing Operators.

Proceedings of IEEE/IFIP 41st International Conference on Dependable Systems and Networks, 145-156.
http://dx.doi.org/10.1109/dsn.2011.5958214

[2] Sari, A. and Necat, B. (2012) Impact of RTS Mechanism on TORA and AODV Protocol’s Performance in Mobile Ad
Hoc Networks. International Journal of Science and Advanced Technology, 2, 188-191.

[3] Chen, W.H. and Tsai, J.C. (2014) Fault-Tolerance Implementation in Typical Distributed Stream Processing Systems.

M1 M2

FUSE

http://dx.doi.org/10.1109/dsn.2011.5958214

A. Sari, M. Akkaya

480

[4] Sari, A. and Necat, B. (2012) Securing Mobile Ad Hoc Networks against Jamming Attacks through Unified Security
Mechanism. International Journal of Ad Hoc, Sensor & Ubiquitous Computing, 3, 79-94.
http://dx.doi.org/10.5121/ijasuc.2012.3306

[5] Balazinska, M., Balakrishnan, H., Madden, S. and Stonebraker, M. (2008) Fault-Tolerance in the Borealis Distributed
Stream Processing System. ACM Transactions on Database Systems, 33, 1-44.
http://dx.doi.org/10.1145/1331904.1331907

[6] Sari, A. (2014) Security Approaches in IEEE 802.11 MANET—Performance Evaluation of USM and RAS. Interna-
tional Journal of Communications, Network, and System Sciences, 7, 365-372.
http://dx.doi.org/10.4236/ijcns.2014.79038

[7] Elnozahy, E.N.M., Alvisi, L., Wang, Y.M. and Johnson, D.B. (2002) A Survey of Rollback-Recovery Protocols in
Message-Passing Systems. ACM Computing Surveys, 34, 375-408. http://dx.doi.org/10.1145/568522.568525

[8] Sari, A. (2014) Security Issues in RFID Middleware Systems: A Case of Network Layer Attacks: Proposed EPC Im-
plementation for Network Layer Attacks. Transactions on Networks & Communications, 2, 1-6.
http://dx.doi.org/10.14738/tnc.25.431

[9] Andrew, S. (1995) Tanenbaum Distributed Operating Systems. Prentice Hall, Upper Saddle River.
[10] Sari, A. (2015) Lightweight Robust Forwarding Scheme for Multi-Hop Wireless Networks. International Journal of

Communications, Network and System Sciences, 8, 19-28. http://dx.doi.org/10.4236/ijcns.2015.83003
[11] Coulouris, G., Dollimore, J. and Kindberg, T. (2001) Distributed Systems: Concepts and Design, 4th Edition, Pearson

Education Ltd., New York.
[12] Carter, W.C. and Bouricius, W.G. (1971) A Survey of Fault-Tolerant Computer Architecture and Its Evaluation. Com-

puter, 4, 9-16.
[13] Short, R.A. (1968) The Attainment of Reliable Digital Systems through the Use of Redundancy—A Survey. IEEE

Computer Group News, 2, 2-17.
[14] Sari, A. (2015) Two-Tier Hierarchical Cluster Based Topology in Wireless Sensor Networks for Contention Based

Protocol Suite. International Journal of Communications, Network and System Sciences, 8, 29-42.
http://dx.doi.org/10.4236/ijcns.2015.83004

[15] Cooper, A.E. and Chow, W.T. (1976) Development of On-Board Space Computer Systems. IBM Journal of Research
and Development, 20, 5-19. http://dx.doi.org/10.1147/rd.201.0005

[16] Tanenbaum, A. and Van Steen, M. (2007) Distributed Systems: Principles and Paradigms. 2nd Edition, Pearson Pren-
tice Hall, Upper Saddle River.

[17] Koren, I. and Krishna, C.M. (2007) Fault-Tolerance Systems. Elsevier Inc., San Francisco.
[18] Sari, A. and Onursal, O. (2013) Role of Information Security in E-Business Operations. International Journal of In-

formation Technology and Business Management, 3, 90-93.
[19] Avizienis, A., Kopetz, H. and Laprie, J.C. (1987) Dependable Computing and Fault-Tolerant Systems, Volume 1: The

Evolution of Fault-Tolerant Computing. Springer-Verlag, Vienna, 193-213.
[20] Sari, A. and Çağlar, E. (2015) Performance Simulation of Gossip Relay Protocol in Multi-Hop Wireless Networks. So-

cial and Applied Sciences Journal, Girne American University, 7, 145-148.
[21] Harper, R., Lala, J. and Deyst, J. (1988) Fault-Tolerant Parallel Processor Architectural Overview. Proceedings of the

18st International Symposium on Fault-Tolerant Computing, Tokyo, 27-30 June 1988.
[22] Sari, A. and Rahnama, B. (2013) Addressing Security Challenges in WiMAX Environment. In: Proceedings of the 6th

International Conference on Security of Information and Networks, ACM Press, New York, 454-456.
http://dx.doi.org/10.1145/2523514.2523586

[23] Briere, D. and Traverse, P. (1993) AIRBUS A320/A330/A340 Electrical Flight Controls: A Family of Fault-Tolerant
Systems. Proceedings of the 23rd International Symposium on Fault-Tolerant Computing, Toulouse, 22-24 June 1993.

[24] Charron-Bost, B., Pedone, F. and Schiper, A. (2010) Replication: Theory and Practice. Lecture Notes in Computer
Science, 5959.

[25] Sari, A. (2015) Security Issues in Mobile Wireless Ad Hoc Networks: A Comparative Survey of Methods and Tech-
niques to Provide Security in Wireless Ad Hoc Networks. New Threats and Countermeasures in Digital Crime and
Cyber Terrorism, IGI Global, Hershey, 66-94.

[26] Sari, A. and Rahnama, B. (2013) Simulation of 802.11 Physical Layer Attacks in MANET. Proceedings of the Fifth
International Conference on Computational Intelligence, Communication Systems and Networks (CICSyN), Madrid,
5-7 June 2013, 334-337. http://dx.doi.org/10.1109/cicsyn.2013.79

[27] Tanenbaum, A.S. and van Steen, M. (2002) Distributed Systems: Principles and Paradigms. Pearson Education Asia.

http://dx.doi.org/10.5121/ijasuc.2012.3306
http://dx.doi.org/10.1145/1331904.1331907
http://dx.doi.org/10.4236/ijcns.2014.79038
http://dx.doi.org/10.1145/568522.568525
http://dx.doi.org/10.14738/tnc.25.431
http://dx.doi.org/10.4236/ijcns.2015.83003
http://dx.doi.org/10.4236/ijcns.2015.83004
http://dx.doi.org/10.1147/rd.201.0005
http://dx.doi.org/10.1145/2523514.2523586
http://dx.doi.org/10.1109/cicsyn.2013.79

A. Sari, M. Akkaya

481

[28] Sari, A., Rahnama, B. and Caglar, E. (2014) Ultra-Fast Lithium Cell Charging for Mission Critical Applications.
Transactions on Machine Learning and Artificial Intelligence, 2, 11-18. http://dx.doi.org/10.14738/tmlai.25.430

[29] Ebnenasir, A. (2005) Software Fault-Tolerance. Computer Science and Engineering Department, Michigan State Uni-
versity, East Lansing. http://www.cse.msu.edu/~cse870/Lectures/SS2005 /ft1.pdf

[30] Birman, K. (2005) Reliable Distributed Systems: Technologies, Web Services and Applications. Springer-Verlag, Ber-
lin.

[31] Obasuyi, G. and Sari, A. (2015) Security Challenges of Virtualization Hypervisors in Virtualized Hardware Environ-
ment. International Journal of Communications, Network and System Sciences, 8, 260-273.
http://dx.doi.org/10.4236/ijcns.2015.87026

[32] Avizienis, A. (1975) Architecture of Fault-Tolerant Computing Systems. Proceedings of the 1975 International Sym-
posium on Fault-Tolerant Computing, Paris, 18-20 June 1975, 3-16.

[33] Sari, A. (2015) A Review of Anomaly Detection Systems in Cloud Networks and Survey of Cloud Security Measures
in Cloud Storage Applications. Journal of Information Security, 6, 142-154. http://dx.doi.org/10.4236/jis.2015.62015

[34] Short, R.A. (1968) The Attainment of Reliable Digital Systems through the Use of Redundancy—A Survey. IEEE
Computer Group News, 2, 2-17.

[35] Sari, A. (2014) Influence of ICT Applications on Learning Process in Higher Education. Procedia—Social and Beha-
vioral Sciences, 116, 4939-4945. http://dx.doi.org/10.1016/j.sbspro.2014.01.1053

[36] Huang, M. and Bode, B. (2005) A Performance Comparison of Tree and Ring Topologies in Distributed Systems.
Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium, Denver, 4-8 April 2005,
258.1. http://dx.doi.org/10.1109/IPDPS.2005.57

[37] Huang, M. (2004) A Performance Comparison of Tree and Ring Topologies in Distributed System. Master’s Thesis.
www.osti.gov

[38] Minar, N. (2001) Distributed Systems Topologies: Part 1. http://openp2p.com
[39] Wiesmann, M., Pedone, F., Schiper, A., Kemme, B. and Alonso, G. (2000) Understanding Replication in Databases

and Distributed Systems. Research Supported by EPFL-ETHZ DRAGON Project and OFES.
[40] Herlihy, M. and Wing, J. (1990) Linearizability: A Correctness Condition for Concurrent Objects. ACM Transactions

on Programming Languages and Systems, 12, 463-492. http://dx.doi.org/10.1145/78969.78972
[41] Ahamad, M., Hutto, P.W., Neiger, G., Burns, J.E. and Kohli, P. (1994) Causal Memory: Definitions, Implementations

and Programming. TR GIT-CC-93/55, Georgia Institute of Technology, Atlanta.
[42] Rahnama, B., Sari, A. and Makvandi, R. (2013) Countering PCIe Gen. 3 Data Transfer Rate Imperfection Using Serial

Data Interconnect. Proceedings of the 2013 International Conference on Technological Advances in Electrical, Elec-
tronics and Computer Engineering (TAEECE), Konya, 9-11 May 2013, 579-582.
http://dx.doi.org/10.1109/TAEECE.2013.6557339

[43] Budhiraja, N., Marzullo, K., Schneider, F.B. and Toueg, S. (1993) The Primary-Backup Approach. In: Mullender, S.,
Ed., Distributed Systems, ACM Press, New York, 199-216.

[44] Gifford, D.K. (1979) Weighted Voting for Replicated Data. Proceedings of the Seventh ACM Symposium on Operating
Systems Principles, Pacific Grove, 10-12 December 1979, 150-162. http://dx.doi.org/10.1145/800215.806583

[45] Osrael, J., Froihofer, L., Goeschka, K.M., Beyer, S., Galdamez, P. and Munoz, F. (2006) A System Architecture for
Enhanced Availability of Tightly Coupled Distributed Systems. Proceedings of the First International Conference on
Availability, Reliability and Security, Vienna, 20-22 April 2006.

[46] Cao, H.H. and Zhu, J.M. (2008) An Adaptive Replicas Creation Algorithm with Fault Tolerance in the Distributed
Storage Network. Proceedings of the Second International Symposium on Intelligent Information Technology Applica-
tion, Shanghai, 20-22 December 2008, 738-741.

[47] Shye, A., Blomstedt, J., Moseley, T., Reddi, V. and Connors, D.A. (2008) PLR: A Software Approach to Transient
Fault Tolerance for Multicore Architectures. IEEE Transactions on Dependable and Secure Computing, 6, 135-148.
http://dx.doi.org/10.1109/TDSC.2008.62

[48] Agarwal, V. (2004) Fault Tolerance in Distributed Systems. Indian Institute of Technology, Kanpur.
www.cse.iitk.ac.in/report-repository

[49] Jung, H., Shin, D., Kim, H. and Lee, H.Y. (2005) Design and Implementation of Multiple Fault Tolerant MPI over
Myrinet (M3). In: Proceedings of the 2005 ACM/IEEE Conference on Supercomputing, IEEE Computer Society,
Washington DC, 32. http://dx.doi.org/10.1109/SC.2005.22

[50] Elnozahy, M., Alvisi, L., Wang, Y.M. and Johnson, D.B. (1996) A Survey of Rollback-Recovery Protocols in Message
Passing Systems. Technical Report CMU-CS-96-81, School of Computer Science, Carnegie Mellon University, Pitts-
burgh.

http://dx.doi.org/10.14738/tmlai.25.430
http://www.cse.msu.edu/%7Ecse870/Lectures/SS2005%20/ft1.pdf
http://dx.doi.org/10.4236/ijcns.2015.87026
http://dx.doi.org/10.4236/jis.2015.62015
http://dx.doi.org/10.1016/j.sbspro.2014.01.1053
http://dx.doi.org/10.1109/IPDPS.2005.57
http://www.osti.gov/
http://openp2p.com/
http://dx.doi.org/10.1145/78969.78972
http://dx.doi.org/10.1109/TAEECE.2013.6557339
http://dx.doi.org/10.1145/800215.806583
http://dx.doi.org/10.1109/TDSC.2008.62
http://www.cse.iitk.ac.in/report-repository
http://dx.doi.org/10.1109/SC.2005.22

A. Sari, M. Akkaya

482

[51] Alvisi, L. and Marzullo, K. (1995) Message Logging: Pessimistic, Optimistic, and Causal. Proceedings of the 15th In-
ternational Conference on Distributed Computing, Systems (ICDCS 1995), Vancouver, 30 May-2 Jun 1995, 229-236.
http://dx.doi.org/10.1109/ICDCS.1995.500024

[52] Garg, V.K. (2010) Implementing Fault-Tolerant Services Using Fused State Machines. Technical Report ECE-PDS-
2010-001, Parallel and Distributed Systems Laboratory, ECE Department, University of Texas, Austin.

[53] Xiong, N., Cao, M., He, J. and Shu, L. (2009) A Survey on Fault Tolerance in Distributed Network Systems. Proceed-
ings of the 2009 International Conference on Computational Science and Engineering, Vancouver, 29-31 August 2009,
1065-1070. http://dx.doi.org/10.1109/CSE.2009.497

[54] Tian, D., Wu, K. and Li, X. (2008) A Novel Adaptive Failure Detector for Distributed Systems. Proceedings of the
2008 International Conference on Networking, Architecture, and Storage, Chongqing, 12-14 June 2008, 215-221.
http://dx.doi.org/10.1109/NAS.2008.37

http://dx.doi.org/10.1109/ICDCS.1995.500024
http://dx.doi.org/10.1109/CSE.2009.497
http://dx.doi.org/10.1109/NAS.2008.37

	Fault Tolerance Mechanisms in Distributed Systems
	Abstract
	Keywords
	1. Introduction
	2. Distributed System
	3. Distributed System Architecture
	4. Fault Tolerance Systems
	5. Basic Concept of Fault Tolerance Systems
	6. Fault Tolerance Mechanism in Distributed Systems
	6.1. Replication Based Fault Tolerance Technique
	6.2. Process Level Redundancy Technique
	6.3. Fusion Based Technique

	7. Conclusion
	References

