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Fault Tolerance of Magnetic Bearings with Material
Path Reluctances and Fringing Factors

Uhn Joo Na and Alan B. Palazzolo

Abstract—An equivalent magnetic circuit of an eight-pole
heteropolar magnetic bearing with path reluctances is developed
with nondimensional forms of flux, flux density, and magnetic
force equations. The results show that fluxes and magnetic forces
are considerably reduced for the magnetic circuit with relatively
large path reluctances. A Lagrange multiplier optimization
method is used to determine current distribution matrices for the
magnetic bearing with large path reluctances. A cost function is
defined in a manner that represents load capacity in a specific di-
rection. Optimizing this cost function yields distribution matrices
calculated for certain combinations of five poles failed out of eight
poles. Position stiffnesses and voltage stiffnesses are calculated
for the fault-tolerant magnetic bearings. Fault-tolerant control
of a horizontal rigid rotor supported on multiple-coil failed
magnetic bearings including large path reluctances is simulated to
investigate the effect of path reluctances on imbalance response.

Index Terms—Fault tolerance, magnetic bearings, optimization,
path reluctances.

NOMENCLATURE

Pole face area.
Saturation flux density.
Air gap energy matrix.
Nominal air gap distance.
Current vector.
Bias current.
Bias, - and -control voltages.
Input voltage vector.
Current map matrix.
Number of active poles.
Number of coil turns.
Reluctance matrix.
Distribution matrix.
Rotor displacements.
Power amplifier gain.
Leakage and fringing factor.
Magnetic flux.
Lagrange multiplier.
Sensor sensitivity.
Permeability of air.
Relative permeability.
Pole face angle.
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I. INTRODUCTION

CRITICAL applications of magnetic bearings benefit from
a fail-safe control approach. Without this, the many

advantages of a magnetic bearing over conventional bearings,
such as oil film or rolling element bearings, may be diminished.
Fault-tolerant control seeks to provide continued operation of
the bearing when power amplifiers or coils suddenly fail. The
strong coupling property of a heteropolar magnetic bearing and
redefined remaining coil currents make it possible to produce
desired force resultants in the- and -directions even when
some coils fail.

Lyonset al. [1], [14] used a three-control axis radial bearing
structure with control algorithms for redundant force control
and rotor position measurement. Therefore, if one of the coils
fails, its control axis can be shut down while maintaining con-
trol. A bias current linearization method to accommodate the
fault tolerance of magnetic bearings was developed; so the re-
distribution matrix that linearizes control forces can be obtained
even if one or more coils fail [2], [3]. The fault tolerant magnetic
bearing system was demonstrated on a large flexible-rotor test
rig [4]. Na and Palazzolo [5] developed an optimization method
to realize fault-tolerant magnetic bearings; up to five poles failed
out of an eight-pole heteropolar magnetic bearing.

Fault-tolerant schemes seek to provide uninterrupted control
and high load capacity. Many researchers have investigated the
load capacity of a magnetic bearing. Maslenet al. [6] presented
an expression that describes a maximum bearing load. Bornstein
[7] derived equations to express the dynamic load capacity. Rao
et al. [8] shows that the stiffness capacity of a magnetic bearing
can be described as a function of the ratio of dynamic and static
loads.

Material path reluctances are usually neglected for the anal-
ysis of a small magnetic bearing. However, path reluctances can
affect the magnetic forces for a large magnetic bearing or a mag-
netic bearing with low permeability material. The main con-
tribution of the present work is a determination of the current
distribution matrix, which linearizes a fault-tolerant heteropolar
magnetic bearing with large material path reluctances, and the
resulting load capacity.

II. BEARING MODEL

The magnetic and electric fields of a magnetic bearing
can be generally described by using Maxwell’s equations.
Some discrepancies exist between Maxwell’s equations and a
one-dimensional magnetic circuit, mainly due to flux leakage,
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Fig. 1. Eight-pole heteropolar equivalent magnetic circuit.

fringing, and eddy current effects. Finite material path per-
meability may be included in the magnetic force equations to
better predict the current-force relation [9], [10]. Fig. 1 shows
the equivalent magnetic circuit of an eight-pole heteropolar
magnetic bearing, including material path reluctances.

Material path reluctances for back iron, pole leg, and journal
iron segments are described as

(1)

where the areas of the poles, the back iron, and the journal iron
are expressed in terms of the pole face area, such as ,

, and . The length of the pole legs and
the length of the back iron and the journal iron between the
two poles in terms of the nominal gap distance are ,

, and . The reluctances in the air gap
are described as

(2)

The nondimensional air gap equations are

(3)

where the rotor displacements in nondimensional form are
and . Apply Ampere’s loop law, Gauss’s law, and

the conservation law of fluxes of the magnetic circuit to obtain
a matrix relation

(4)

The reluctances in the magnetic bearing can be partitioned into
the gap reluctance matrix and the material path reluctance ma-
trix

(5)

The gap reluctance matrix is

(6)
The material path reluctance matrix is defined as

(7)

where, as shown in the equation at the bottom of the next page.
The coil turn matrix is

(8)

The magnetic flux vector is then described as

(9)

The flux density in the air gap may be substantially reduced
due to the leakage and fringing effects. Allaire [11] showed that
the flux leakage and fringing effects in a thrust magnetic bearing
can be approximated by a simple scaling factor. The flux density
vector in the air gap can be scaled by the leakage and fringing
factor

(10)

where

The magnetic forces along thedirection is given as

(11)

where and . is either or .
The current-force relation, including material path reluctances
and leakage and fringing effects, is then described as

(12)

where

The empirically determined value of for a typical ho-
mopolar magnetic bearing ranges from 0.8 to 0.9. The currents
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distributed to the bearing are related to the control voltage
vector with the distribution matrix [2], [5].

(13)

where

The bias flux density should be set equal to to obtain
maximum magnetic forces at the point of magnetic material sat-
uration. The bias voltage for obtaining the maximum magnetic
force is then set as

(14)

Magnetic force along the-direction with the selected and a
nondimensional parameter is

(15)

where

The magnetic force along the-direction becomes a max-
imum when is equal to . Two examples of distribution ma-

trices for an unfailed eight-pole heteropolar magnetic bearing
are

Eight independent currents are distributed to the bearing via
the distribution matrix of , whereas four independent currents
are distributed via . The row number for these matrices cor-
responds to the pole number in Fig. 1. The typical distribution
matrix used in a C core heteropolar magnetic bearing control
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is . Only two controller outputs are needed for the distribu-
tion matrix of , whereas eight independent controller outputs
are needed for the distribution matrix of. The magnetic force
generated by currents distributed with or is completely
decoupled. The control voltage of does not affect the mag-
netic force along the -direction. The parameter with the
distribution matrix of in case of no path reluctances at the
bearing center position ( ) and is equal to
eight. Thus, the maximum magnetic force of the eight-pole het-
eropolar bearing calculated with no material path reluctances is
simplified as

(16)

where . A distribution matrix for the four-pole het-
eropolar magnetic bearing is

Similarly, the maximum magnetic force of the four-pole het-
eropolar bearing without path reluctance is calculated as

(17)

The eight-pole heteropolar magnetic bearing used in this
analysis has (0.000 508 m), (0.000 602 m), (0.03 m),

(0.065 m), (0.021 m), (50), (0.985), (0.98), and
(0.985). The parameters , , and are assumed to be 1.2

Tesla, 0.85, and 1, respectively. The maximum magnetic forces
and corresponding bias voltages and with and with
respect to are shown in Fig. 2.

The maximum force does not decrease much asis in-
creased; however, the bias voltage needed for the maximum
force increases rapidly. Therefore, saturation of magnetic
bearing will occur at a higher current as is
increased. The maximum magnetic force calculated withis
just 92% of the maximum magnetic force calculated with,
whereas the same current inputs are required. This shows that
the control with eight independent control currents maximizes
the magnetic force with lower risk of flux saturation.

III. L INEARIZED FORCES

Linearized forces can be determined for a heteropolar mag-
netic bearing, including path reluctances. Nonlinear magnetic
forces are defined as

(18)

where

Fig. 2. Maximum force, bias voltage, andh versus�: : F (T )=100,
: F (T )=100,4: v , +: h (T ), �: h (T ).

Partial differentiations of can be rewritten as a nondimen-
sional form

(19)

where

Similarly

(20)

where

and both represent - or -direction. The nonlinear mag-
netic forces with path reluctances can also be linearized about
the bearing center position and the zero control voltages by
using Taylor series expansion

(21)

(22)

where position stiffnesses and voltage stiffnesses are defined as

(23)

(24)
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The position stiffnesses and voltage stiffnesses are calculated
with the distribution matrices of and at the center position
of the bearing. No cross-coupled position and voltage stiffnesses
exist because the distribution matrices and completely
decouple the magnetic forces. Linearized forces withand
are then reduced as

(25)

(26)

Fig. 3 shows that and calculated with the distribution
matrices and are reduced as is increased. The values of

, , and with at are 1 358 000 N/m, 142.2
N/V, and 4.851, respectively.

IV. DETERMINATION OF THEDISTRIBUTION MATRICES

It is shown that large path reluctances in a heteropolar mag-
netic bearing have a considerable influence on the flux distri-
bution. The coil current distribution of bias currents,-control
currents, and-control currents must be redefined in the case of
single or multiple coil failures to produce the same force resul-
tants. If some coils fail, the reduced current vector is related by
defining a matrix

(27)

where the reduced current vector is defined as

(28)

The reduced distribution matrix is

(29)

where

To yield the linearized forces that are described as

(30)

The necessary conditions are [2], [5]

(31)

where

The optimization method for obtaining distribution matrices
using Lagrange multipliers can be applied on a heteropolar mag-
netic bearing, including path reluctances. A cost function is de-
fined in a manner that the Euclidean norm of flux density vector

is weighted with a diagonal matrix

(32)

The weighting matrix can be assigned so that the load ca-
pacity in a specific direction is increased. The weighting matrix

is selected as

(33)

(a)

(b)

Fig. 3. (a) Position stiffness (K ) (same forT andT ). (b) Voltage stiffness
(+: K (T ), �: K (T )).

The cost function then represents the magnetic force along the
-direction. Twelve equality constraint equations are also de-

rived from (31)
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(34)

The Lagrange multiplier method can be applied to the basic
problem to solve for that satisfies (31). Define

(35)

The partial differentiation of (35) with respect toand leads
to nonlinear algebraic equations to solve forand

(36)

(37)

A vector form of nonlinear algebraic equations is

(38)

V. OPTIMAL SOLUTIONS FOR THEDISTRIBUTION MATRICES

Distribution matrices for a heteropolar magnetic bearing, in-
cluding path reluctances, are obtained by solving the system of
nonlinear algebraic equations shown in (38). A least-squares
iterative method (MATLAB) was used to solve the system of
nonlinear algebraic equations, which yields multiple solutions.
Various initial guesses of and may be tested to obtain con-
verged solutions. The parameter equals 500 for calcula-
tion of the distribution matrices. The distribution matrices for
1–3rd coils failed, 1–2–3rd coils failed, 5th–8th coils failed, and
2–4–6–7–8th coils failed magnetic bearings are calculated as

Fig. 4. Load capacity of the fault-tolerant magnetic bearing with path
reluctances for 1–3rd coils failed (upper left), 1–2–3rd coils failed (upper
right), 5–6–7–8th coils failed (bottom left), and 2–4–6–7–8th coils failed
(bottom right).

The solutions for a multiple-coils-failed bearing are well con-
verged; so the solutions satisfy (31) with tolerable errors. For
example, satisfies (31) with minimal error, such as

The load capacities of a heteropolar magnetic bearing in-
cluding path reluctances with multiple poles failed, are calcu-
lated for the calculated distribution matrices of , , ,
and and shown in Fig. 4.

The outer locus shows the unfailed bearing load capacity,
whereas the inner locus shows the failed bearing load capac-
ities for eight directions. The position stiffnesses and voltage
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TABLE I

Fig. 5. Schematic of control system.

stiffnesses for the distribution matrices of , , ,
and are also calculated at the center position of the
bearing. The voltage stiffnesses are completely decoupled for
valid . However, some cross-coupled position stiffnesses for
failed bearings exist due to unevenly distributed flux densities.
The calculated position stiffness and voltage stiffness and bias
voltage gain are shown in Table I. The voltage stiffnesses
and for a valid should be equal to the bias voltage
because the distribution matrixis calculated for the linearized
forces shown in (30).

VI. CONTROL SYSTEM DESIGN AND SIMULATIONS

A fault-tolerant control system of a horizontal rigid rotor sup-
ported on magnetic bearings is constructed. The schematic of
the fault-tolerant control system is shown in Fig. 5. A sym-
metric, horizontal rigid rotor has mass of 10.7 kg, polar moment
of inertia of 0.008 kgm, transverse moment of inertia about the
mass centor of 0.36 kgm, and bearing locations of 0.22 m on
each side of the mass center. Unbalances of eccentricity of 2.5
E-6 are applied on two bearing locations with a relative phase
angle 90.

The sensor sensitivity is 7874 V/m. The power amplifier
gain is 1 A/V. The control law was designed with simple PD
control and low-pass filters. The closed loop bearing stiffness
and damping can be adjusted by tuning the PD controller gains,

and [12]. Rotor critical speeds and their corresponding
dampings can be designed by tuning active bearing properties
[13].

Fig. 6. Orbit plot for normal operation to the 5–6–7–8th poles failed operation.

Fig. 7. Current inputs for normal operation to the 5–6–7–8th poles failed
operation.

The following system dynamics simulation illustrates the
transient response of a rotor supported by magnetic bearings
during a coil failure event. A distribution matrix of is used
to distribute currents to the unfailed bearings. The parameters

, , and with at ( ) for
unfailed bearings are 1 152 000 N/m, 116.78 N/V, and 5.836,
respectively. The designed PD control gainsand for the
unfailed bearings are 4.6 and 0.02, respectively. A new
distribution matrix and control gains should be provided to
produce desired force resultants when some coils in a magnetic
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Fig. 8. Flux densities for normal operation to the 5–6–7–8th poles failed
operation.

bearing fail suddenly. The transient response from normal op-
eration to fault-tolerant control with 5–6–7–8th coils failed for
both bearings was simulated for nonlinear bearings with path
reluctances at 10 000 RPM. The distribution matrix ofwas
switched to when four adjacent coils failed at 0.1 second.
The PD control gains and for the failed bearings were
adjusted as 92 and 0.35, respectively. Transient response
of the orbit at bearing A is shown in Fig. 6. The orbit after
failure becomes elliptic due to asymmetric position stiffnesses
of the failed bearings. Transient response of the current inputs
to bearing A for the 5–6–7–8th poles failed case is shown in
Fig. 7. This shows that large currents are required to maintain
similar dynamic properties before and after failure. Transient
response of the flux densities in Bearing A is shown in Fig. 8.
The adjusted distribution matrix of yields the required
inactive pole fluxes so that the bearing has the necessary forces
to maintain stability. The load capacity is considerably reduced,
though, in the failed bearing.

VII. CONCLUSION

Material path reluctances are usually neglected for the cal-
culation of fluxes and magnetic forces; however, they may sig-
nificantly influence fluxes and magnetic forces for a large mag-
netic bearing or a magnetic bearing with low relative perme-
ability. Therefore, material path reluctances should be included

in the calculation of distribution matrices for fault-tolerant con-
trol. The control with eight independent control currents maxi-
mizes the magnetic force but requires more controller outputs.
A Lagrange multiplier optimization method is used to determine
distribution matrices for the magnetic bearing, including large
path reluctances. The distribution matrices are calculated up to
a certain combination of five poles failed out of eight poles.
Nondimensional forms of the position stiffnesses and voltage
stiffnesses are calculated for the fault-tolerant magnetic bear-
ings. Simulations show that distribution matrices calculated for
a magnetic bearing with large material reluctances can still pro-
vide good control.

ACKNOWLEDGMENT

The authors would like to thank A. Kascak, G. Montague,
R. Jansen, A. Provenza, T. Calvert, L. Peterson and G. Bell for
technical support.

REFERENCES

[1] J. P. Lyons, M. A. Preston, R. Gurumoorthy, and P. M. Szczesny, “Design
and control of a fault-tolerant active magnetic bearing system for aircraft
engine,” inProc. 4th Int. Symp. Magnetic Bearings, ETH Zurich, 1994,
pp. 449–454.

[2] E. H. Maslen and D. C. Meeker, “Fault tolerance of magnetic bearings
by generalized bias current linearization,”IEEE Trans. Magn., vol. 31,
pp. 2304–2314, 1995.

[3] D. C. Meeker, “Optimal solutions to the inverse problem in quadratic
magnetic actuators,” Ph.D. dissertation, Univ. Virginia, 1996.

[4] E. H. Maslen, C. K. Sortore, G. T. Gillies, R. D. Williams, S. J. Fedigan,
and R. J. Aimone, “Fault tolerant magnetic bearings,”J. Eng. Gas Tur-
bines Power, vol. 121, pp. 504–508, 1999.

[5] U. J. Na and A. B. Palazzolo, “Optimized realization of fault-tolerant
heteropolar magnetic bearings for active vibration control,” inProc.
1999 ASME Design Eng. Tech. Conf., Las Vegas, NV, Sept. 12–15, 1999,
Paper VIB-8258.

[6] E. H. Maslen, P. Hermann, M. Scott, and R. R. Humphris, “Practical
limits to the performance of magnetic bearings: Peak force, slew rate,
and displacement sensitivity,”J. Tribol., vol. 111, pp. 331–336, 1989.

[7] K. R. Bornstein, “Dynamic load capabilities of active electromagnetic
bearings,”J. Tribol., vol. 113, pp. 598–603, 1991.

[8] D. K. Rao, G. V. Brown, P. Lewis, and J. Hurley, “Stiffness of magnetic
bearings subjected to combined static and dynamic loads,”J. Tribol.,
vol. 114, pp. 785–789, 1992.

[9] J. D. Knight, Z. Xia, E. McCaul, and H. Hacker Jr., “Determination of
forces in a magnetic bearing actuator: Numerical computation with com-
parison to experiment,”J. Tribol., vol. 114, pp. 796–801, 1992.

[10] P. E. Allaire, R. L. Fittro, E. H. Maslen, and W. C. Wakefield, “Measured
force/current relations in solid magnetic thrust bearings,”J. Eng. Gas
Turbines Power, vol. 119, pp. 131–142, 1997.

[11] P. E. Allaire, “Design and test of a magnetic thrust bearing,”J. Franklin
Inst., vol. 326, pp. 831–847, 1989.

[12] F. J. Keith, R. D. Williams, and P. E. Allaire, “Digital control of magnetic
bearings supporting a multimass flexible rotor,”STLE Tribol. Trans.,
vol. 33, pp. 307–314, 1990.

[13] J. M. Vance,Rotordynamics of Turbomachinery. New York: Wiley,
1988.

[14] J. C. Maxwell, A Treatise on Electricity and Magnetism, 3rd
ed. Oxford: Clarendon, 1892, vol. 2, pp. 68–73.


