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ABSTRACT
As device scales shrink, higher transistor counts are avail-
able while soft-errors, even in logic, become a major con-
cern. A new class of architectures, such as Merrimac and
the IBM Cell, take advantage of the higher transistor count
by exposing control, communication, and a large number
of functional-units at the architectural level, thus achiev-
ing high performance and efficiency. This paper explores
soft-error fault tolerance in the context of these compute-
intensive architectures, which differ significantly from their
control-intensive CPU counterparts. The main goal of the
proposed schemes for Merrimac is to conserve the critical
and costly off-chip bandwidth and on-chip storage resources,
while maintaining high peak and sustained performance. We
achieve this by allowing for reconfigurability and relying
on programmer input. The processor is either run at full
peak performance employing software fault-tolerance meth-
ods, or reduced performance with hardware redundancy. We
present several methods, their analysis, and detailed case
studies.

1. Introduction
Advances in semiconductor technology allow much higher

performance levels on a single chip. At the same time, the
ever-shrinking device dimensions and voltages have given
rise to an increased problem of soft errors, which are tran-
sient faults caused by noise or radiation [36]. These errors
must be dealt with not only at a system level, for which a
large body of work exists, but also at the single-processor
level. In this paper we explore these trends of increased
performance and the need for greater reliability in the case
of the Merrimac streaming processor. Merrimac [9], along
with the IBM/Sony/Toshiba Cell [19] and other academic
and industry processors [12, 16, 34, 4, 28], belongs to a
new class of architectures that are compute-intensive and
achieve high performance by reducing dynamic control, pro-
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viding a large number of programmable functional units,
and exposing low-level hardware communication to the pro-
gramming system. These features differ significantly from
modern general-purpose CPUs and offer opportunities for
novel fault-tolerance schemes.

In this paper we will focus on soft-error fault-tolerance
techniques within the Merrimac processor, as the details
for other fault types and full system reliability follow com-
mon practice and the large knowledge base developed over
many years of dealing with reliable high-performance com-
puters. For the most part Merrimac follows a dynamic re-
dundancy approach to fault-tolerance, and relies on robust
fault-detection followed by re-execution for fault-correction.
Therefore, the discussion concentrates on fault-detection me-
thods, and only briefly touches on the mechanism for recov-
ery. Strong fault-detection capabilities are particularly im-
portant and difficult for compute-intensive processors. The
reason is that a vast majority of instructions are data-manip-
ulation instructions and do not affect program control or
make off-chip memory references. These types of instruc-
tions are not likely to lead to a catastrophic failure, where a
violation is easy to detect (e.g., a segmentation fault), but
rather remain a silent error that corrupts the computed re-
sult without producing a warning [25]. This is in contrast to
control-intensive high-performance CPUs where a fault will
many times quickly lead to a catastrophic failure, and other
times be squashed in the speculative pipeline without even
affecting the architectural state of the machine [41].

In order to detect soft-errors in execution, some degree
of redundancy must be introduced in either hardware, soft-
ware, or both. Building redundant hardware increases cost
which adversely affects peak performance as the additional
units consume die area that could have been used otherwise.
Redundant instruction execution, on the other hand, places
greater demands on the execution and bandwidth resources
possibly leading to degraded sustained performance when a
large number of redundant instructions are introduced.

The Merrimac reliability scheme uses a careful balance of
hardware and software redundancy to ensure that the most
vital resources are not squandered. For compute-intensive
architectures such as Merrimac, careful management of the
bandwidth hierarchy is crucial for achieving high utilization
of the large number of arithmetic units available. There-
fore, the fault-tolerance mechanisms stress conservation of
the critical resources in this respect – off-chip bandwidth
and on-chip memory capacity. These two resources are of-
ten responsible for limiting application performance [9, 10],



as compute resources are relatively cheap in modern VLSI
technology (discussion in Section 2).

Careful attention is also paid to the amount of hardware
overheads incurred in supporting fault-tolerance. Certain
application classes contain information that allows sanity
checks or algorithmic based techniques to be used to en-
sure correct execution with minimal performance impact
and no additional hardware. In such cases, all available
execution resources may be applied towards improving per-
formance without loss of reliability. For other application
classes, however, transient fault detection requires redun-
dant execution. Therefore, the Merrimac system allows the
programmer and/or the programming system to reconfig-
ure the degree of hardware redundancy support depending
on the availability of application-specific, efficient, software
fault-detection methods.

Our analysis shows that in current 90nm technology, ECC
protection of large arrays is enough to achieve reasonable
failure rates and requires a small increase of only about 4%
in chip area. However, in a future 50nm technology, using
the same architectural unit mix, the computational clusters
and interfaces will require coverage as well. Our proposed
schemes will need up to 30% area overheads, but the ability
to reconfigure the level of redundancy allows applications
which can effectively be protected in software to suffer only
small performance degradations.

Section 2 describes the Merrimac architecture in general,
and is followed by a discussion of existing fault-detection
methods and the degree in which they are suitable for Mer-
rimac in Section 3. Section 4 explores fault-tolerance specif-
ically for Merrimac and provides a general analysis of costs
and performance, while a detailed treatment of case-studies
highlighting the interplay between software and hardware
techniques is presented in Section 5. We conclude the paper
and suggest future work in Section 6.

2. Merrimac Processor Architecture
The Merrimac stream processor exploits the capabilities

and constraints of modern VLSI and signaling technologies
and matches them with application characteristics to achieve
high performance at lower power and cost than today’s state
of the art systems. In a 90nm modern semiconductor fabri-
cation process a 64-bit floating-point functional unit (FPU)
requires an area of roughly 0.5mm2 and consumes less than
50pJ per computation. Hundreds of such units can be placed
on an economically sized chip making arithmetic almost free.
Device scaling of future fabrication processes will make the
relative cost of arithmetic even lower. On the other hand,
the number of input/output pins available on a chip does
not scale with fabrication technology making bandwidth the
critical resource. Thus, the problem faced by architects is
supplying a large number of functional units with data to
perform useful computation.

In this section we present a detailed description of the
base-line design of the Merrimac processor, as a good under-
standing of how it differs from conventional CPUs is critical
to understand the new reliability trade-offs afforded. The
full reliability details are deferred to Section 4. In addition,
we will not describe the full Merrimac supercomputer sys-
tem and refer the reader to [9].

Some of the key differences between Merrimac and a con-
ventional CPU detailed in this section are listed below.

1. A large portion of the Merrimac die is devoted to func-
tional unit logic and register-files.

2. Merrimac is tuned for arithmetic intensive scientific
applications and does not support speculative execu-
tion. In addition all functional units are tightly sched-
uled by an optimizing compiler that is aware of all
machine details. As a result a vast majority of in-
structions are actual floating-point computation in-
structions that can contribute to silent errors (in more
technical terms, the architectural vulnerability factor

(AVF) is close to 1 as explained in Subsection 4.1).

3. Merrimac contains no prediction tables and has very
little micro-architectural state. That is, all storage ar-
rays are architecturally exposed and must be protected
against silent errors.

4. Most execution resources are rarely idle and never op-
erate on speculative state, and as a result many of the
recently suggested opportunistic fault-detection tech-
niques cannot be applied.

2.1 Merrimac processor
The Merrimac processor is a stream processor that is

specifically designed to take advantage of the high arithmetic-
intensity and parallelism of many scientific applications. It
contains a scalar core for performing control code and issuing
stream instructions to the stream processing unit, as well as
the DRAM and network interfaces on a single chip. Most of
the chip area is devoted to the stream execution unit whose
main components are a collection of arithmetic clusters and
a deep register hierarchy. The compute clusters contain 64
64-bit FPUs and provide high compute performance, rely-
ing on the applications’ parallelism. The register hierarchy
exploits the applications’ locality in order to reduce the dis-
tance an operand must travel thus reducing global band-
width demands. The register hierarchy also serves as a data
staging area for memory in order to hide the long memory
and interconnection network latencies.
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Figure 1: Architecture of Merrimac’s stream core

As shown in Figure 1, Merrimac’s stream architecture con-
sists of an array of 16 clusters, each with a set of 4 64-
bit multiply-add (MADD) FPUs, a set of local register files

(LRFs) totaling 768 words per cluster, and a bank of the
stream register file (SRF) of 8KWords to form a 1MB SRF
for the entire chip. At the planned operating frequency of



1GHz each Merrimac processor has a peak performance of
128GFLOPS, where the functional units have a throughput
of one multiply-add per cycle.

Each FPU in a cluster reads its operands out of an ad-
jacent LRF over very short and dense wires. Therefore the
LRF can provide operands at a very high bandwidth and
low latency, sustaining 3 reads per cycle to each FPU. FPU
results are distributed to the other LRFs in a cluster via
the cluster switch over short wires, maintaining the high
bandwidth required (1 operand per FPU every cycle). The
combined LRFs of a single cluster, or possibly the entire
chip, capture the short term producer-consumer locality of
the application. This type of locality arises from the fact
that the results of most operations are almost immediately
consumed by subsequent operations, and can live entirely
within the LRF. In order to provide instructions to the FPUs
at a high rate, all clusters are run in single instruction mul-

tiple data (SIMD) fashion. Each cluster executes the same
very long instruction word (VLIW) instruction, which sup-
plies a unique instruction to each of the cluster’s FPUs. In-
structions are fetched from the on-chip micro-code store.

The second level of the register hierarchy is the stream reg-
ister file (SRF), which is a software managed on-chip mem-
ory. The SRF provides higher capacity than the LRF, but at
a reduced bandwidth of only 4 words per cycle for a cluster
(compared to over 16 words per cycle on the LRFs). The
SRF serves two purposes: capturing long term producer-

consumer locality and serving as a data staging area for
memory. Long term producer-consumer locality is similar
to the short term locality but cannot be captured within
the limited capacity LRF. The second, and perhaps more
important, role of the SRF is to serve as a staging area
for memory data transfers and allow the software to hide
long memory latencies. An entire stream is transferred be-
tween the SRF and the memory with a single instruction.
These stream memory operations generate a large number
of memory references to fill the very deep pipeline between
processor and memory, allowing memory bandwidth to be
maintained in the presence of latency. FPUs are kept busy
by overlapping the execution of arithmetic kernels with these
stream memory operations. In addition, the SRF serves as
a buffer between the unpredictable latencies of the memory
system and interconnect, and the deterministic scheduling
of the execution clusters. While the SRF is similar in size
to a cache, SRF accesses are much less expensive than cache
accesses because they are aligned and do not require a tag
lookup. Each cluster accesses its own bank of the SRF over
the short wires of the cluster switch. In contrast, accessing a
cache requires a global communication over long wires that
span the entire chip.

The final level of the register hierarchy is the inter-cluster
switch which provides a mechanism for communication be-
tween the clusters, and which interfaces with the memory
system which is described in the following subsection.

In order to take advantage of the stream architecture, the
stream programming model is used to allow the user to ex-
press both the locality and parallelism available in the appli-
cation. This is achieved by casting the computation as a col-
lection of streams (i.e. sequences of identical data records)
passing through a series of computational kernels. The se-
mantics of applying a kernel to a stream are completely par-
allel, so that the computation of the kernel can be performed
independently on all of its stream input elements and in any

order. Thus data level parallelism is expressed and can be
utilized by the compiler and hardware to drive the 64 FPUs
on a single processor and the 1 million FPUs of an entire
system. An additional level of task parallelism can be dis-
cerned from the pipelining of kernels. Streams and kernels
also capture multiple levels and types of locality. Kernels en-
capsulate short term producer-consumer locality, or kernel

locality, and allow efficient use of the LRFs. Streams capture
long term producer-consumer locality in the transfer of data
from one kernel to another through the SRF without requir-
ing costly memory operations, as well as spatial locality by
the nature of streams being a series of data records.

While the Merrimac processor has not been fabricated we
have estimated an implementation of it based on a currently
available 90nm fabrication process and a clock frequency of
1GHz (37 FO4 inverters in 90nm[35]). Each MADD unit
measures 0.9mm × 0.6mm and the entire cluster measures
2.4mm × 1.6mm. Our area estimates for the baseline con-
figuration with no fault tolerance is 144mm2. The bulk of
the chip is occupied by the 16 clusters while the second
largest contributors to area are the high bandwidth exter-
nal memory and network interfaces. Our current example
design point for the scalar control calls for a MIPS64 20kc
[22] scalar processor. The node memory system consists
of a set of address generators, a line-interleaved eight-bank
64KWords (512KB) cache, and interfaces for 16 external
Rambus DRDRAM chips. A network interface directs off-
node memory references to the routers. We estimate that
each Merrimac processor will cost about $200 to manufac-
ture1 and will dissipate a maximum of about 30W of power.
Area and power estimates are for a standard cell process
in 90nm technology and are derived from models based on
a previous implementation of a stream processor [18, 17]
and careful examination of modern commercial processor
die photographs.

2.2 Memory system
The memory system of Merrimac is designed to support

efficient stream memory operations. As mentioned in Sub-
section 2.1 a single stream memory operation transfers an
entire stream, which is typically many thousands of words
long, between memory and the SRF. Merrimac supports
both strided access patterns and gathers/scatters through
the use of the stream address generators. Each processor
chip has 2 address generators, which together produce up to
8 single-word addresses every cycle. The address generators
take a base address in memory for the stream, and either
a fixed stride and record-length or a pointer to a stream
of indices in the SRF. The memory system provides high-
bandwidth access to a single global address space for up
to 16, 384 nodes. Each Merrimac chip has a 128KWords
cache with a bandwidth of 8 words per cycle (64GB/s),
and directly interfaces with the node’s external DRAM and
network. The 2GB of external DRAM is composed of 16
Rambus DRDRAM chips providing a peak bandwidth of
38.4GB/s and roughly 16GB/s, or 2 words per cycle, of ran-
dom access bandwidth. Remote addresses are translated
in hardware to network requests, and single word accesses
are made via the interconnection network. The flexibil-
ity of the addressing modes, and the single-word remote
memory access capability simplifies the software and elim-
inates the costly pack/unpack routines common to many

1Not accounting for development costs.



parallel architecture. The Merrimac memory system also
supports floating-point and integer streaming add-and-store
operations across multiple nodes at full cache bandwidth.
This scatter-add operation performs an atomic summation
of data addressed to a particular location instead of simply
replacing the current value as new values arrive. This opera-
tion is used in the molecular dynamics application described,
and is also common in finite element codes.

3. Existing Fault Tolerance Techniques
In this section we will describe existing techniques relating

to soft-error fault detection. The failure mechanisms here
are energetic particle strikes that cause hole-electron pairs
to be generated, effectively injecting a momentary (< 1ns)
pulse of current into a circuit node. Our fault model of this
is a transient 1-cycle flip of a single bit in the circuit, which
is also applicable in the case of supply noise briefly affecting
a circuit’s voltage level. For more detail, and for a discussion
of the general fault-tolerance problem we refer the interested
reader to [37] and [36].

As mentioned in the introduction fault-detection tech-
niques can broadly be classified into software and hardware.
We will briefly describe the main methods in each cate-
gory as well as their strengths, weaknesses, and suitabil-
ity for Merrimac. Note that many of the recently reported
hardware techniques have been developed in the context of
multi-threaded and multi-core CPUs and are not well-suited
for compute-intensive architectures as discussed in Subsec-
tion 3.3.

3.1 Software Techniques
Software techniques range from algorithm specific modi-

fications for fault-tolerance, through techniques relying on
program structure and sanity of results, to full instruction
replication.

3.1.1 Algorithmic Based Fault Tolerance (ABFT)
Algorithmic-based checking allows for cost-effective fault

tolerance by embedding a tailored checking, and possibly
correcting, scheme within the algorithm to be performed.
It relies on a modified form of the algorithm that operates
on redundancy encoded data, and that can decode the re-
sults to check for errors that might have occurred during
execution. Since the redundancy coding is tailored to a spe-
cific algorithm various trade-offs between accuracy and cost
can be made by the user [7, 1]. Therein also lies this tech-
nique’s main weakness, as it is not applicable to arbitrary
programs and requires time-consuming algorithm develop-
ment. In the case of linear algorithms amenable to com-
piler analysis, an automatic technique for ABFT synthesis
was introduced in [7]. ABFT enabled algorithms have been
developed for various applications including linear algebra
operations such as matrix multiply [14, 8] and QR decom-
position [30] as well as the compiler synthesis approach men-
tioned above, FFT [15], and multi-grid methods [23]. A full
description of the actual ABFT techniques is beyond the
scope of this paper. It should be mentioned that the finite
precision of actual computations adds some complication to
these algorithms, but can be dealt with in the majority of
cases.

ABFT methods only apply to the actual computation and
not control code, or data movement operations. This how-
ever fits well with the overall design of the Merrimac fault

tolerance schemes as will be explained in Section 4, as it
allows for efficient software fault-detection in conjunction
with hardware detection when software algorithms are not
available.

3.1.2 Assertion and Sanity-Based Fault Detection
A less systematic approach to software fault detection,

which still relies on specific knowledge of the algorithm and
program, is to have the programmer annotate the code with
assertions and invariants [3, 21, 32]. Although it is difficult
to analyze the effectiveness of this technique in the general
case, it has been shown to provide high error-coverage at
very low cost.

An interesting specific case of an assertion is to specify a
few sanity checks and make sure the result of the computa-
tion is reasonable. An example might be to check whether
energy is conserved in a physical system simulation. This
technique is very simple to implement, does not degrade
performance and is often extremely effective. In fact, it is
probably the most common technique employed by users
when running on cluster machines and grids [43].

As in the case of ABFT, when the programmer knows
these techniques will be effective, they are most likely the
least costly and can be used in Merrimac without employing
the hardware methods.

3.1.3 Instruction Replication Techniques
When the programmer cannot provide specialized fault-

tolerance through the algorithm or assertions, the only re-
maining software option is to replicate instructions and re-
execute the computation. Several automated frameworks
have been developed in this context ranging from intelligent
full re-execution [42] to compiler insertion of replicated in-
structions and checks [27, 29, 31]. These recent techniques
devote much of their attention to control flow checking which
is not necessary in the context of compute-intensive archi-
tectures. In Section 4.2 we discuss how similar, simpler,
methods can be used within the Merrimac fault-detection
scheme.

3.2 Hardware Techniques
Many hardware techniques have been introduced over the

years to combat the problems of reliable execution in gen-
eral. Even when limiting the discussion to transient er-
rors, the amount of prior work is very large. The high-level
overview below is not intended to summarize this vast body
of knowledge, and only describes some of the techniques
that are relevant to Merrimac. A more detailed treatment
of several recent techniques can be found in [24]. A hard-
ware fault-tolerant system will usually use a combination of
multiple techniques, as shown in [38, 6, 2].

3.2.1 Code Based Fault-Tolerance
Arguably the most cost-effective and widely employed re-

liability technique is the protection of memory-arrays and
buses using bit-redundancy. Typically, a set of code bits is
added to a group of bits or bus-lines and uses a Hamming
code to add redundancy. Examples include the common
SEC-DED (single error correction – double error detection)
code which requires 8 code bits for each 64 bit word, and
simple 1-bit parity for small arrays and buses.

Merrimac’s stream unit uses an SEC-DED code to pro-



tect the SRF, cache, micro-code store and global chip buses
(Subsection 4.2.1).

3.2.2 Fault Tolerant Circuits
Fault-tolerance and redundancy can be introduced at design-

time with little effect on the overall architecture. These
techniques are attractive when dealing with small parts of
the design, or when some amount of redundancy is already
present for other reasons (one example is scan-chains that
are used for testing) [24]. This type of circuit is sometimes
referred to as a hardened circuit as many were originally
designed for high-radiation environments. Most commonly,
these designs use latches based on multiple flip-flops and
possibly special logic circuits with built-in verification. To
the best of our knowledge, hardened designs typically re-
quire roughly twice the area and a longer clock-cycle than
an equivalent conventional circuit [13, 20]. As we do not
have a design of Merrimac at this point, we do not employ
circuit level techniques. Such techniques may be applicable
to Merrimac’s external interfaces as mentioned in Subsec-
tion 4.2.3.

3.2.3 Replication of Hardware Units
Instead of replication at a circuit-level, entire structures

can be replicated in the architecture or micro-architecture.
This option is very useful when dealing with structures that
consume modest die area, or are not visible to software.
Good examples of employing these techniques are presented
in [38, 6]. In Merrimac hardware replication is enabled
through reconfigurability and a software-hardware hybrid
approach (see Subsection 4.2.2).

3.3 Fault Tolerance for Superscalar Architec-
tures

The Merrimac processor includes a scalar control-processor
core, which can use some of the recently developed fault-
tolerance techniques aimed at superscalar processors. We
briefly reference a few such options and explain why they are
not an appropriate choice for the compute-intensive stream
unit.

[5] suggests that a simple checker module can be used
to detect errors in execution. Further analyses show that
the hardware costs are modest and that performance degra-
dation is low. While a promising design point for com-
plex modern control-intensive superscalar processors, this
method is not applicable to compute-intensive architectures.
The reason is that the main computational engine is in
essence as simple as the suggested checker, and the over-
all scheme closely resembles full hardware replication of a
large portion of the processor.

A different set of techniques relies on the fact that control-
intensive processor execution resources are often idle, and
utilize them for time-redundant execution that can be ini-
tiated by the micro-architecture [33]. In compute-intensive
processors, resources are rarely idle and these schemes are
not directly applicable.

Another fault-tolerance option is to concurrently run two
(or more) copies of the program/thread on a chip multi-
processor. Again, hardware can be introduced to reduce
software overhead for initiation and comparison [11]. Ef-
ficient comparison is an important issue [39] and its opti-
mizations may apply to the scalar portion of the Merrimac
processor.

4. Merrimac Fault Tolerance
In this section we detail the Merrimac fault-tolerance and

detection mechanisms and perform a general analysis related
to fault susceptibility, hardware costs, and impact on per-
formance. A more detailed treatment of these analyses for
specific case-studies appears in Section 5.

An overarching goal of the Merrimac architecture is to
achieve high utilization of scarce resources such as off-chip
bandwidth and on-chip memory capacity as emphasized in
Section 2. These priorities pervade the fault-tolerance mech-
anisms of Merrimac as well. Hardware fault-tolerance mech-
anisms are favored where they can be supported without
incurring high area overheads and eliminate potential per-
formance or bandwidth bottlenecks. Where hardware mech-
anisms are costly, the flexibility to trade off performance and
reliability is provided, particularly in cases where algorith-
mic/sanity techniques may be possible with low overheads.

We will first examine the fault susceptibility of the base-
line architecture, and proceed by describing and discussing
various options for fault-detection and recovery in Merrimac
based on a dynamic redundancy scheme. ECC is used to en-
able large arrays and buses to mask a single fault (Subsec-
tion 4.2.1), but if two or more faults occur in a single word,
or when an error is caught during execution in the com-
pute clusters (Subsection 4.2.2), external interfaces (Subsec-
tion 4.2.3), or the scalar core (Subsection 4.2.4), the system
will raise a fault-exception, roll back to a previously verified
checkpoint, and restart execution (Subsection 4.2.5).

4.1 Fault Susceptibility
A full analysis of the architecture’s susceptibility to faults

is beyond the scope of this paper, as it requires a complete
design as well as deep knowledge of the circuit style em-
ployed and foundry process parameters. Moreover, we hope
that the research presented here is general and will be appli-
cable to architectures and processors other than Merrimac
as well, and therefore present and analyze multiple options
and not just a single “optimal” point.

In order to understand the importance of good fault de-
tection and the affect on performance, we will give an order-
of-magnitude type analysis based on the observations of [36],
which deal with trends of soft error rates (SER) for storage
arrays and logic circuits, and [26] that discusses a methodol-
ogy to refine a fault rate estimate based on the architectural
vulnerability of the structure under consideration.

Table 1 lists the major components of the baseline Mer-
rimac architecture (buses and scalar unit already include
ECC based fault-detection) along with our area estimates,
expressed in percentage of die area, the dominant circuit
type, and an estimate of the architectural vulnerability fac-

tor (AVF). The AVF represents the likelihood that a fault
in the structure will affect the outcome of a computation.
For example, a fault in an invalid cache-line will not affect
the result, so a cache will have an AVF < 1. The area es-
timates are based on extrapolating data gained from our
experience of designing and fabricating the Imagine stream
processor [17], as well as careful examination of commercial
processor die-photos. Due to brevity considerations, we will
not provide the full details of these and the AVF calcula-
tions.

Based on these numbers and the figures of [36], we report
the expected soft-error rate (SER) in FIT/chip for both a
current 90nm and a future 50nm technology in Table 2. We



also present the results in terms of contribution to total
SER so that we can more clearly understand the effects of
adding fault-tolerance techniques later in this section. Note
that as we are assuming an existing CPU design as a scalar
unit, we also assume SER rates typical of ECC protected
arrays within the CPU (based on [36] and [37]). Even with
architecture vulnerability taken into account we can expect
a SER of about 500 FIT for a Merrimac chip in current
technology, which amounts to a processor soft error every
few days on a large supercomputer configuration with 16K
nodes. Clearly fault tolerance is necessary and the Merrimac
scheme will be described below.

Component % of Die Area Circuit Type AVF

CPU 7% mixed 0.1–0.2
FPUs 22% logic 0.1–0.5
LRF 9% SRAM 0.7
SRF 11% SRAM 0.9
cache 9% SRAM 0.8
AG 2% logic 0.9
micro-controller 1% SRAM 0.7
mem. interface 15% mixed 0.9
net. interface 19% mixed 0.7
global buses 5% bus 0.6

Table 1: Area and AVF of major Merrimac com-
ponents (based on total baseline area of 144mm2 in
90nm ASIC technology)

Component SER 90nm SER 50nm
FIT FIT

CPU 5 (1%) 10 (1%)
FPUs 5 (1%) 50 (7%)
LRF 40 (7%) 45 (6%)
SRF 270 (48%) 280 (38%)
cache 190 (34%) 200 (27%)
AG 1 (0%) 10 (1%)
micro-controller 40 (7%) 45 (6%)
mem. interface 5 (1%) 50 (7%)
net. interface 4 (1%) 40 (5%)

Total 560 730

Table 2: Expected SER contribution in current and
future technologies with no fault-tolerance

4.2 Fault-Tolerance Scheme
Fault detection in the Merrimac architecture is tailored

to the specific characteristics of each component. We will
detail the schemes below and also provide an estimate of the
hardware costs and impact on performance.

4.2.1 On-Chip Arrays and Buses
As can be seen in Table 2 large SRAM arrays are the

main contributor to SER. Following standard practices we
use SEC-DED ECC codes based fault-tolerance on all large
arrays and buses. This includes the SRF, micro-code store,
cache, and global chip buses such as the inter-cluster and
memory switches. ECC techniques reduce the expected SER
of these structure by a factor of 100 to over 1000 and re-
quire an area increase of roughly 10%. Analysis of the exact
numbers is beyond the scope of this paper, and we will ap-
proximate the reduction in SER factor as 1000.

Although this area cost is not negligible, we are not aware
of any more cost-effective mechanism for protecting these
large arrays, and therefore require that ECC be used at all

times. After adding ECC to the SRF and cache for example,
their SER contribution drops from 48% to 0.45% and 34%
to 0.31% respectively in 90nm technology, and the drop is
even more dramatic in future processes.

There is little to no performance impact as error-detection
can proceed concurrently with data movement.

4.2.2 Stream Unit Fault Detection
After protecting large arrays with ECC, the compute clus-

ters are responsible for over 70% of the SER. In addition, we
estimate that the stream execution unit, excluding the ECC
protected SRF, occupies over 20% of the Merrimac proces-
sor die area. Therefore, replicating any significant portion
of these resources leads to high area overheads, reducing the
amount of compute clusters that can be accommodated on
a fixed sized die. Such an overhead is particularly wasteful
in cases where algorithmic fault detection techniques can be
applied. Therefore, we explore a range of software-only and
software/hardware hybrid techniques that can be selectively
applied only in cases where algorithmic approaches are not
applicable, and high reliability is desired. These techniques
are discussed below.

We would like to emphasize that even if the LRF contri-
bution were reduced using ECC or parity (a technique which
may reduce the operating frequency and adds a significant
amount of encoding/decoding logic), cluster logic will still
account for almost 25% of the SER today and over 31% in
50nm technology. Moreover, the overall SER of a future chip
without protecting logic will still be 160 FIT, equivalent to
about two contiguous weeks of correct execution on a fully
configured Merrimac supercomputer, just from soft faults in
the processor chips. Therefore, we should look at techniques
which are able to detect faults in both registers and logic.

We propose multiple techniques below, all of which effec-
tively check for errors by performing the computation twice
and comparing results at a granularity of either SRF or
memory writes. Again, a full analysis of the SER reduc-
tion is beyond our means at this time, but based on a sim-
ple model given in [37] we estimate that this dual-modular
redundancy approach with fine-grained checking should re-
duce SER by at least a factor of 1000, providing more than
enough protection for this hardware unit, and bringing the
chip SER to 15 FIT in 90nm and 100 FIT in 50nm. Un-
like ECC on the memory arrays and buses which is able
to correct single bit errors, faults detected in cluster logic
are handled via the rollback technique described in Subsec-
tion 4.2.5.

Full Program Re-execution (FPR)
A straight-forward software-only technique is to execute en-
tire applications twice and compare the final results. The
main appeal of this technique is that it requires no changes
to hardware or application binaries. However, effective sys-
tem throughput for applications that require checking is re-
duced by more than half due to time spent in re-execution
and result comparison.

Instruction Replication (IR)
An alternative software-only technique is to insert instruc-
tions at compile time to perform each computation twice and
compare results. Unlike full program re-execution, this tech-
nique requires different versions of binaries for full through-
put execution and fault-tolerant execution modes. However,



it has several advantages over full program re-execution.
First, since scalar code and memory accesses are already pro-
tected through other mechanisms, redundant instructions
need only be inserted in kernel code. Second, memory ac-
cesses are performed only once since only the computation is
replicated. Third, on multiple-issue architectures, unused is-
sue slots can be used to perform redundant computation and
checking, reducing execution time relative to full program
re-execution. However, the applications targeted by Merri-
mac have abundant parallelism, resulting in very high issue
slot utilization [9, 16]. Therefore, on Merrimac, this tech-
nique results in essentially doubling kernel execution time.
In addition, replicated computation within the instruction
stream increases register pressure and instruction storage
capacity requirements potentially leading to hardware over-
heads as well.

Kernel Re-execution (KR)
A third software-only technique is to re-execute each kernel
twice in succession using the same SRF input streams, and
compare the result streams. This enables much of the ben-
efit of instruction replication for applications with high is-
sue slot utilization. However, register pressure in LRFs and
instruction storage requirement increases are avoided since
comparisons are performed on streams in the SRF. Since the
kernel is executed twice, the start-up and shut-down over-
heads must be performed two times as well. In addition,
instructions must be inserted to first read the first kernel’s
result from the SRF and to compare with the newly cal-
culated results. As a mismatch on the comparison signifies
a fault there is no need to write the results a second time.
This overhead can be eliminated through modest hardware
support. During the second execution of a kernel the hard-
ware will perform the comparison as it writes the second
result, using the already existing stream-buffers and newly
added comparators.

Mirrored Clusters (MC)
A hardware-software hybrid technique is to perform the same
computation on a pair of compute clusters simultaneously
and compare the stream writes. This mimics the behavior of
replicated compute clusters, but allows the software to de-
termine whether to duplicate execution for high reliability,
or to use each cluster to perform an independent compu-
tation for high performance. Since the SRF is protected
by ECC, it is not necessary to replicate SRF contents be-
tween mirrored clusters. Hence the entire SRF capacity is
available even when clusters perform mirrored computation.
Further, SRF reads are broadcast to both clusters in a mir-
rored pair, avoiding redundant SRF reads. On SRF writes,
the results from mirrored cluster pairs are compared to de-
tect transient errors. Figure 2 shows a simplified diagram
of the read and write paths between a mirrored pair of clus-
ters and the corresponding SRF banks. Therefore, only very
modest additional hardware is required in the form of the
communication paths for SRF reads between the two clus-
ters and the result comparators.

Table 3 compares the performance and bandwidth over-
heads of the four options considered above for detecting
transient faults in the compute clusters. For applications
with no known efficient ABFT techniques, Merrimac im-
plements the MC approach due to its minimal performance
and bandwidth overheads relative to the other options con-
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Figure 2: Mirrored cluster hardware arrangement

sidered. Where efficient ABFT techniques do exist, no re-
dundant execution is performed in hardware, enabling high
system throughput.

FPR IR KR MC

Requires recompilation x x
≈2x application execution time x
≈2x kernel execution time x x x
≈2x memory system accesses x
≈2x SRF accesses x x
Increased register pressure x

Table 3: Stream execution unit fault detection per-
formance and bandwidth overheads

4.2.3 External Interfaces
The memory and network interfaces, including the address

generators, also rely on hardware replication and circuit-
based detection techniques. Note that applying software-
based re-execution techniques at these units would double
the off-chip bandwidth requirements. While the address
generators are simple structures occupying only 2% of the
chip area and can easily be replicated, the memory and
network interfaces are significantly larger and more com-
plex. However, given the design goal of avoiding redundant
accesses at the performance-critical off-chip interfaces, we
intend to fully replicate the logic portions of these units.
Based on our current area estimates, this would increase
the chip area by almost 20%. We are not aware of any
research conducted on efficient fault-detection within these
structures.

4.2.4 Scalar Unit
In the scalar processor, which is essentially a general-

purpose CPU, fault-detection relies on one of the superscalar
specific techniques mentioned in Section 3. The current
specification is to use full hardware replication and check-
ing of results between two independent cores, as described
in [39], which should reduce the SER contribution of the
scalar core by a factor of over 1000 at a cost of full repli-
cation. However, as the choice of a specific scalar core and
design have not been finalized, the details of the scalar fault-
detection scheme may change as well. It is also interesting
to note that the scalar unit occupies a small portion of the
total chip area, and therefor does not greatly contribute to
the overall SER. It may be possible to use less expensive
software-based techniques with no hardware replication to
protect it, provided the slowdown in the control processor



does not dramatically reduce the performance of the stream
unit under its control.

4.2.5 Recovery from Faults
The above techniques are aimed at detecting the occur-

rence of transient faults. Once a fault is detected, the sys-
tem must recover to a pre-fault state. The ECC protecting
the memories are capable of correcting single bit errors, and
hence do not require system-level recovery. However, on all
other detectable faults, recovery is based on checkpoints.
Periodically, the system state is backed up on non-volatile
storage. Once a fault is detected, the system state is restored
from the last correct checkpoint. A simple calculation, that
is not presented in this paper, can be performed to determine
the optimal checkpoint interval and expected performance
degradation due to re-execution. Our initial estimates point
to an interval of several hours with less than 5% slow-down.
Note that this a good solution for the Merrimac supercom-
puter as it is intended to run a single job over a long period
of time.

4.2.6 Summary of Fault-Detection Scheme
Table 4 summarizes the estimated expected SER reduc-

tion, as well as area and performance overheads of the tech-
niques described above. Each line in the table represents
adding a technique to the design and the cumulative increase
in area compared to the baseline described in Subsection 4.1.

Adding ECC to the large arrays (including the LRF) is the
most cost-effective way to increase fault-tolerance. With an
area overhead of 4% the SER is reduced by a factor of almost
30 down to 21 FIT in 90n, technology. However, this method
will not be sufficient in future technologies, where we still
expect an SER of 161 FIT arising from logic. The focus of
this paper is on fault-tolerance for the compute clusters, and
we see that with practically no area over-head we are able to
improve SER by close to an additional 40% over ECC alone.
The final two methods at our disposal are costly hardware
replication of the external interfaces and scalar unit. While
protecting the interfaces is necessary in 50nm, we can see
that the scalar unit contributes only a small amount to the
total SER as it consumes a small fraction of the total chip
area.

Technique Cumulative Performance SER SER
Area Overhead Impact 90nm 50nm

Baseline 0% N/A 560 730
ECC on 4% minimal 21 161
Arrays
IR/KR/MC 4% ∼ 2× kernel 15 100

exec. time
Interface 23% none 6 11
Redundancy
Scalar 30% none 0.6 0.7
Redundancy

Table 4: Summary of Fault-Detection Schemes

5. Case Studies
To demonstrate the trade-offs involved we now evaluate

the techniques discussed in the previous section on two case
study applications. The first example is of dense matrix-
matrix multiplication that can employ a very efficient algo-
rithmic based fault tolerance technique [14], and the second
is a molecular dynamics application [40, 10] that has more

dynamic behavior and for which no ABFT technique has
been developed.

5.1 Methodology
We measured the performance of each application with

all applicable reliability schemes using the Merrimac cycle-
accurate stream simulator. The simulator reflects the Merri-
mac stream processor described in Section 2, and can be run
at full performance with 16 clusters or in mirrored-cluster
mode with only 8 active clusters accessing the entire SRF.
As mentioned before, our experiments only measure the ef-
fect of adding reliability on performance and do not involve
fault injection.

Full program re-execution runtime is measured by run-
ning the application twice and accounting for the compar-
ison time of the final results including the memory access
times. To evaluate instruction-replication we manually in-
troduced the redundant computation instructions into the
kernels’ source code and disabled the compiler’s dead code
elimination optimization. To support kernel re-execution
we modified the Merrimac stream compiler to run the ker-
nel twice back-to-back (the comparison of results written
back to the SRF is performed by hardware comparators in
this scheme), and shift any dependencies to the later kernel.
ABFT is applied to matrix multiplication only, as described
below.

5.2 Matrix Multiplication
Our matrix multiplication example consists of multiply-

ing two dense matrices A and B of sizes (304 × 512) and
(512× 384) to form the result matrix C of size (304× 384).
The matrices sizes were chosen to be large enough to ex-
ceed the size of the SRF, thus being representative of much
larger matrices while not requiring unduly large simulation
times on the cycle accurate simulator. The computation
was hierarchically blocked to take advantage of locality at
both the SRF and LRF levels, as well as utilize Merrimac’s
inter-cluster communication. The full details of this imple-
mentation are not described in this paper. The resulting
code is memory bandwidth limited on Merrimac, yet still
achieves over 80% of Merrimac’s 128GFLOPS only account-
ing for actual matrix computation instructions.

Our ABFT implementation of matrix multiplication fol-
lows the ideas discussed in [14] and uses a simple column
checksum. As we process a block of the A matrix in the SRF
we compute the sum of each of its columns. This checksum
row is then multiplied with the block of the B matrix and
stored back to the SRF. Once an entire block of the result
matrix C is computed in the SRF we run a kernel that com-
putes the column sums of the C matrix block and compares
them against the multiplied checksum row. Due to the lin-
earity of matrix multiplication, any difference in the results
indicates an erroneous computation and a fault exception
can be raised.

Table 5 summarizes the results for matrix multiplication.
The runtime is given relative to the baseline implementa-
tion that does not use any of the stream unit fault-detection
mechanisms. The register-pressure column lists the maxi-
mum number of registers in a single LRF required to run
each variant, and the instruction-pressure column shows the
number of instructions that need to be present in the micro-
code store.

As expected, FPR, the simplest fault-detection method,



Scheme Normalized Register Instruction
Runtime Pressure Pressure

Baseline 1.00 17 117
FPR 2.09 17 117
IR 2.51 52 258
KR 1.77 17 117
MC 1.76 17 117
ABFT 1.03 22 255

Table 5: Evaluation of matrix-multiplication under
the five reliability schemes

has a large impact on runtime requiring a full re-execution
with an additional 10% increase due to the final comparison.

The poor performance of the IR software scheme, which
has a slow-down of about 20% compared even to FPR, is the
result of the large number of comparisons that were added
to the compute kernel and the fact that the baseline kernel
fully utilized all the available multiply-add units. Moreover,
IR requires over two times as many instructions in the kernel
and increases the register requirements in a single LRF by
a similar factor.

Both the KR and MC approaches essentially double the
computation only without increasing register or instruction
pressure and rely on comparators in hardware. As the base-
line implementation is memory bandwidth limited on Mer-
rimac, the additional computations fill the idle execution
slots resulting in a speedup of 18% over naive FPR. The
small difference of 1% in runtime in favor of MC over KR is
due to the necessity of doubling the small kernel overhead
in the KR scheme.

Finally ABFT is clearly superior for matrix multiplica-
tion, and requires only a small overhead of 3% to achieve
fault detection. While the increase in code size is significant
(a factor of almost 2.2), the total size is still small and easily
fits within Merrimac’s instruction store.

5.3 Molecular Dynamics
Unlike matrix multiplication, force calculation in molecu-

lar dynamics displays dynamic behavior and non-linear com-
putations and we are not aware of any ABFT technique that
is applicable to it. We use the Merrimac implementation of
the GROMACS ([40]) water-water force calculation detailed
in [10], as an example of such an application.

Scheme Normalized Register Instruction
Runtime Pressure Pressure

Baseline 1.00 27 170
FPR 2.01 27 170
IR 1.85 47 328
KR 1.90 27 170
MC 1.88 27 170

Table 6: Evaluation of molecular dynamics applica-
tion under the four applicable reliability schemes

Table 6 lists our results for the molecular-dynamic appli-
cation, and follows the format of Table 5 described in the
previous subsection.

The force calculation requires significant computation and
a large input set, yet only produces a small number of val-
ues as a result (the total force on each atom in the sys-
tem). Therefore, FPR has little overhead for comparison

and requires 2.01× the runtime of the baseline case. An-
other differentiation point from matrix-multiply is that the
molecular dynamics application is not as memory limited2.
This makes FPR a more attractive alternative, where the
best performing reliability technique is only 8% faster.

While IR did not perform well in the case of matrix mul-
tiplication, it is the most efficient technique applicable to
molecular dynamics. The reason is that the structure of the
computation is such that there is significant slack in kernel
schedule and not all instruction slots are filled during kernel
execution (as in matrix multiplication). As a result some of
the additional instructions required to duplicate the compu-
tation and perform the comparison can be scheduled in the
empty slots leading to a kernel that requires less than twice
the execution time of the baseline kernel. This is not the
case for the KR and MC schemes, which fully double the ex-
ecution time the main kernel loop, trailing the performance
of IR by 3% and 2% respectively. However, achieving this
speedup requires increasing the number of registers in each
LRF and roughly doubling the kernels instruction count.

The performance difference between the KR and MC tech-
niques is again quite low, at 1% due to the small overhead
of priming the kernel software pipelined main loop.

5.4 Discussion
The two case studies presented above span diverse charac-

teristics in the trade-off space. Matrix multiplication shows
the power of applying an ABFT technique, but also repre-
sents applications with a relatively high overhead for final-
result comparison, memory bandwidth limited applications,
very tight kernel schedules, and low kernel startup over-
heads. Molecular dynamics on the other hand, requires very
few comparisons of its final result, is not memory limited,
and has kernels with significant scheduling slack. We can
draw a few interesting observations from these characteris-
tics.

The most obvious observation is that ABFT techniques
should be applied when possible. While not all cases will
be as efficient as dense matrix multiplication, we expect
that ABFT will almost always offer better performance than
other schemes, possibly requiring modifications to the input
set of the application. One exception to this general rule is
applications that are extremely memory bandwidth limited,
for which even doubling the computation will not change
the total runtime.

Another interesting point is that kernels that do not have
a very tight schedule offer the opportunity to hide much
of the cost of instruction replication. This matches with
many observations of using this technique with conventional
CPUs, which usually display significant idle execution slots.

In both applications discussed above, the kernel startup
overheads are low, and therefore KR is almost as efficient
as MC. The small amount of additional hardware required
to enable MC execution (a local switch between the SRF
lanes of each cluster pair) may be more attractive for other
applications. Our future work will include modeling this be-
havior and testing a larger number of applications to explore
this part of the trade-off space.

The final point we want to bring out regards the cost of
protecting the external interfaces against undetected faults.
As discussed in Subsection 4.2.3, we are not aware of an area-
efficient hardware technique to perform fault-detection on

2We chose to use the “fixed” variant described in [10].



the memory and network interfaces. However, with the ex-
ception of FPR the fault-detection schemes discussed above
rely on accurate data transfers. This is true for many ABFT
techniques as well, including the one we employed for ma-
trix multiplication. While it is not clear that the interfaces
have to be protected in all cases (our analysis in Subsec-
tion 4.1 shows this to be the case in current technology),
when fault-detection is added it might be more effective to
resort to FPR instead. For example, growing the die-area by
30% to only gain 8% in runtime as is the case for molecular
dynamics, may not be a good trade-off.

6. Conclusions
In this paper we describe the methods that allow the

Merrimac streaming supercomputer to achieve reliable op-
eration in the presence of soft errors. With modern VLSI
logic processes we show that fault detection covering all logic
modules is required for reliable operation. Our fault toler-
ance strategy is aimed at making the most efficient use of
scarce and expensive off chip bandwidth and on-chip mem-
ory. In comparison it is relatively inexpensive to replicate
on-chip logic. Our strategy uses dynamic redundancy with
strong fault-detection followed by re-execution from check-
pointed state. For fault-detection we made sure that hard-
ware techniques were used when they conserve the expen-
sive off-chip bandwidth and on-chip storage resources, and
a hybrid hardware-software approach for dealing with com-
putational redundancy.

In our analysis we showed that the bulk of the reduction
in soft error rate (SER) can be gained by employing ECC
methods on large arrays, and that in 90nm technology a
low SER of 21 FIT can be achieved. However this standard
techniques will not be enough in future semiconductor tech-
nologies, where we expect the SER to be over 161 FIT. Then,
we will need to both protect the execution clusters and the
external interfaces. Merrimac and other recently introduced
compute-intensive architectures dedicate a large portion of
the chip to functional units, and rely on simple control, no
speculation, and optimized static compilation to gain high
cost/performance and power/performance efficiencies. As
a result, many of the techniques developed for superscalar
processors do not carry over. Moreover, as logic consumes
significant area, replication and circuit fault-detection meth-
ods are very costly.

Our hybrid software-hardware approach allows the pro-
grammer or programming system to use the full compu-
tational capabilities of the Merrimac chip, when effective
and efficient software fault-tolerance techniques are avail-
able. Yet, when no software-technique is known, the pro-
cessor can be configured to mimic hardware functional-unit
duplication while utilizing the full available bandwidth and
storage. For example algorithmic based fault tolerance was
used for the matrix-multiply case study, and instruction
replication in the hybrid schemes was employed in the molec-
ular dynamics example.

A final interesting observation about the results, is that
the scalar unit’s contribution to the total SER is very small
yet protecting it in hardware is relatively expensive. In this
paper we proposed several cost-effective mechanisms for de-
tecting faults in the clusters, but have simply used expensive
replication for the interfaces and scalar unit. We believe fur-
ther study is warranted into reducing this overhead and this
study is left for future work. In the case of the scalar unit

is is possible to employ software-only detection mechanisms,
yet careful analysis of the effects a slowdown in the control
processor will have on overall performance is necessary. As
for the external interfaces, a more careful analysis of the
micro-architecture is required to identify cost-effective solu-
tions.
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