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Abstract

The purpose of this report is to outline the major concepts and developments in the area of fault-tolerant
computing. Both hardware and software fault tolerance issues are addressed. The topics covered include
module. function and system-level fault detection methods. redundancy and reconfiguration strategies. valid
fault models. and roding and checking in computer svstems. Software fault tolerance methods such as
recovery blocks, design diversity, and checkpointing and recovery are also discussed. Major issues in modeling
and evaluation of fault-tolerant systems are outlined. The design of two successful commercial systems is
discussed.
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1. Introduction

The study of fault-tolerant computing has paralleled the development of modern computers. One of the very
early contributions was due to von Neumann (1], the designer of the first stored program machine. Von
Neumann’s work addressed the question of synthesizing reliabie computers frcm vnreliable components and
developed the ideas of redundancy and replication that are common in many computers today. Strong impetus for
fault tolerance came frorn the space program in the early 1960’s. There was the need to build systems that would
survive without naintenance for extended periods of time. Manned space flights provided a further boost to fault
tolerance. Reliability technique< advanced rapidly during this period. In this initial period, interest in fault toler-
ance largely remained the domain of the space, defense and telephone industries. With the rapid introduction of
computers intc all areas of science, business and the humarities, that domain of interest has broadened
sigruficantly. High reliability and availability have become critical for efficient functioning of our modemn scciety.
In this regard, the development of VLSI techniques has provided a major impews w0 the advancement of fault-
tolerant computing VLSI designs have made replication and redundancy both cost ffective and practically feasi-

ble.

In the past twenty years, fault-tolerant computing has mawed into a broad discipline encompassing many
aspects of computer design. This article is intended 0 provide the readar with an overview of the difierent thrust
arcas which encompass hardware and sofiware fault tolerance. Three factors dnive the interest i fault tolerance:
first is the need for high reliability: second is the need for high availability. (For example. AT&T's ESS switch-
ing systems have an availability requirement ot l2ss than 2 minutes of down-time per year.) Third is the direct

impact of a loss in reliability on system performance (also veferred to as performability).

This arucle 1s divided into six sections. Section 2 deals with the broad subject of hardware fauit tolerance.
‘mponant charactenisics of hardware fault-tolerance techniques such as hardware, mntormation and ame radun-
dancy and the development of self-checking circuits are discussed. The question of software fau.t tolerance 15 dis-
cussed n Section 3. This is an important area since software failures are fast becoming the Jommnant fulure made
i1 zomplex computer sysiems. The Apollo and shuttle mussions aboried due 10 sottsare tautls. Recentis . seLiions

AF thapo T T oty - e .- s e ey 3 =i iw % M $
e AT&T nutwork were virtually paralyzed duc 0 a software bug. Section 4 addresses the quesions .f iosting

L]




GIX G GWm N B O a0 B aE e e

'

and design for testability. Basic to the design of fault-tolerant systems is the availability of defect-free parts.
Efficient testing strategies are critical to determine the presence of defects and faults. Section 5 addresses the
question of evaluation, an issue which is critical from both the designer and the user perspecli-vc. Methods and
tools to determine the dependability of the overall system, and to make coraparative evaluations are discussed.
Both, analytical and measurement-based methods are outlinea. The final section discusses the design of two suc-

cessful commercial fault-tolerant systems,

2. Hardware Fault-Tolerance Techniques

A reliable computer system needs to provide its normal level of service in the presence of hardware and
software faults [2]. There are two philosophies of achieving this reliability: (1) fawlt avoidance, which is any tech-
nique to prevent the occurrence of faults in the first place; (2) fault tolerance, which is any technigue o allow the
system to behave normally despite the occurrence of faults. Fauit tolerance can be implemented using one of tvo
kasic approaches: (1) fault masking, where the system masks the effect of a fauit through some form of majornity
voung; (2) fault detection and recovery. where a system has a method for first detecting the presence of a fault.
subsequendy locating where the fault has occurred, next isolating the fault, reconfiguring i a spare, and restarting
the system 3],

This section will describe fault-tolerance techniques for hardware faults. Hardware fault-tolerance can be
achieved through the use of some form of redundancy [4]: hardware redundancy (such as spare hardware); time
redundancy (Such as repeating operaticns in time on existing hardware); information redundanc {such as some
‘orm of codingj; algorithmic redundancy (modifying the aigorithm ruaning in parallel hardware with eatra SCPS s
and software redundancy fsuch as extza lines of software code). We will discuss the basic techniques used in each

of these approaches for hardware fault-wlerance in both uniprocessor and multiprocessor systems,




2.1. Hardware Redundancy

There are three basic forms of hardware redundancy: passive, active and hybric (4). Passive hardware
redur.dcncy relies on voting mechanisms to mask the occurrence of faults by using the concept of majority voting.
Thev do not need fault detection or system reconfiguration. The most common form of passive redundancy is
called wiple modular redundancy (TMR) which triplicates the hardware necessary 1o perform the required opera-

tions and uses a voter 10 determine the output of the system. In this approach, the primary difficulty is the voter.

If that fails, the entire system fails. A common approach to avoid this problem is o use three voiers and provide
three independent outputs. Figure 1 shows the two forms of TMR. Ser:ral stages of TMR can be interconnected
1
Module |
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FIGURE 1. Triplication and voting.
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using this approach by connecring the outputs of the voters of one TMR stage via the inputs of modules of the
next TMR stage. The voting can be performed by either a hardware voter (which can pcrform the voting very
fast, but requires 2 lot of extra hardware logic) or a software voter (which is performed on some existing proces-
sors performing normal computations as well, but this approach is generally slow). A generalization of the TMR
approach is N-modular redundancy (NMR) which uses N copies of a module instead of 3. The NASA Space

Shutzle onboard computer system uses four computers on which a majority vote is performed.

Active hardware redundancy attempes to achieve fault wlerance by fault detection, fault location, and fault
recovery. The most common form of fault detection is duplication and companson which uses two identical
copies of hardware, having them perform ihe same computations in parallel, and comparing the results as shown in
Figure 2. One of the commercial products from Stratus Computers uses a pair-and-spare approach ~here two
duplexed components are used for self-checking and fault wlerance. Two processor boards are used, where each

board contains a pair of microprocessors used in duplicate and compare mode to check themselves.

Another form of fault detection includes off-line fauit diagnosis, which involves applying a set of 1est inpu.
patterns to various components of the system and comparing the outputs 10 the expected outputs for zach com-
ponent. Other forms of fauit detection include periodically interleaving nommal computations with diagrostic 1ests,

or using self-checking hardware as will be described later.

A second form of active redundancy is called standby sparing where one module is operationai and cne or
more modules serve as standbys. or spares. Various fzalt detection schemes are used o determine when 2 modul:
has become faulty, and fault location is used to determine exactly which module is faulty. The recconfiguration
operation in standby sparing can be viewed concepually as a switch whase output is sclected from ene of the
modules providing inputs tw the switch. Standby sparing can bring a sysiem back into rull operauon after
accurrence of a fault, but it requires that a momentary disruption in performance occur while reconfiguration s
performed. If the disruption of processing must be minimized. hot standby sparing czn be used. where the spares
operate synchronously with the on-line modules, and are prepared (o take over at any ume. Cold standby spanng
uses unpowered spares that must be powered up ard initalized pror to bringing the module into yotve ~ervice,

The advantage of cold sparing 1s that spares do not consume power until needed to replace a fawity module. A key

n
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Figure 2. Duplication and comparison.

advamage of standby sparing is that in a system containing » identical modules, such as a multiprocessor, fault
tolerance can be provided with £ < » spare modules.

Hbrid hardware redundancy combines the attractive feamures of both the active and passive approaches.
Fault 74King is used to prevent the system {rom producing erroncous resulis. and fault Jetccizon. lucauon and

reco v are used to reconfigure the system in the event of a fault. The most common form of hyvbnd redundancy

18 thet ¥ iodular redundancy with spares. In this approach, a hasic core of N adules i armn
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a ume. therefore the failure of one chip mamifests wseil as one-hit error. Parity codes iro

22. Information Redundancy

Information redundancy 1s the addition of redundant information to data to allow fuilt detection, fault mask-
ing, and fault wierance. Examples of information -edundancy are error detecting and correcting codes (ECC). A
code’s error detection and correction properties are based on its ability to partition a ser of 2* »-bit words. each

n-bits wide, into a code space of 2» words and a noncode space of 2*-2= words. Each code is constrected such
that a given number of errors wansforms a code-space word into 3 word in a noncode space. E.'-:c-xsa.re,ée:cczcd
by decoding circuits that identify any word outside the code space. Emror correction is performed by more exten-
sive decoding that uniquely associalzs a noncode space word with the original code word ransformed by the
errors.

An exampie of an eror detecting code is the parity code, where given an n-bit word, one auaches an exu
bit to convert it to an ¢ven or odd parity word.  Any single bit error in the parity coded word will be detected by 2
simple decoding circuit using a set of XOR gawes.

Within a single word, the number cf errors detectabie or comrectable is related 0 the minimuim separsiion of
Hamming distance berween the words of a code space, which is the minimum aumber of bu positions by which
two words from the code space differ. Codes tha: neea 10 deiect d errors need © have a Hammung distance of
d-1, and codes that need to comect ¢ errors need a Hamming distance of 2¢ +1. Error deteciion and comrection

codes vary widely in detection and correction properties, encoding and decoding complexity. and code ¢fficiency.

e most commoniy used codes are the panty check codes that are characienized by the panty ook matns.
H. For example, consider a length-6 code, n =6, with three information bits, £ = 3, and three check bits. r = 3.
The wo H mamrices in Figure 3 provide the same error-comecting property.  Since all the columns are Jdissinct. the
code can correct ail single bit errors, but the parity check circuit for #; is less compiex than Ha. H; requires

aput XORs 1o compute the panity checks, whereas #: requires two 2-nput XORs. and one Tamput NUR,

hence the encoder/decoder for the H 2 code will be slower and more complex.

In high-speed memories. single-bit emor-correcting and Joukie-hit error RS NS
masi commoniy used. This is Decause most semicenductor RAM chips are argamuzed for one Mt of Jaiz safpun it
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Figure 3. Parity check matrices for two simple codes.

computers 1o check ermors in busses, memory and registers. Cyclic redundancy checks are ased o detect evors in
commumnication channeils, wpes, and disks. M-cut-of-N codes detest ervors in conmrol store memeories. Arthmetic
<ies Jetsot errors in anthmeud ynits lke adders and maiupliers. For more information sbout codng o rolabie

CEmpUier sYsiems.

Seif-chezking logic designs use the error detecting codes and some extzz hardware fo detect faully log -

pomis of failures in a sydem. Each <elfgh
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or any specified {auit witun the cucwit. the cwou never prdnces an

alaied by 3 correct input code word.
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word for at least one code word input for each possible fault. A totally self-checking circuit has properties of both
fault-secure and self-testing circuits [8], Seli-checking circuits have been used widely in the AT&T Electronic

Switching Systems 3A processors,

2.3. Time Redundancy

The basic concept of time redundancy is the repetition of computations two or more times and comparing
the results to determine if a discrepancy exists. If an error is detected, the computations can be performr  again to
see if the disagreement remains or disappears. Such approaches are good for detecting errors due to transient

faults, but cannot protect against errors resulting from permanent faults,

Another form of time reduniancy to handle permanent faults modifies the way the computations are per-
formed the second time. One approach uses alternating logic for self-dual combinational circuits (9], which per-
forms a function on some set of inputs in one time instant, and performs the same function on the complemented
input in a subsequent time step, the output of which should be the complement of the original function value of

the original input. If the second value of the function is not the complement, an error is detected.

The second approach uses rccomputing with shifted operands {10], which is applicable to bit-sliced organi-
zations of hardware. In the first time step, the normal computation is performed on the operands and the results
stored in a register. In the next time step, the operands are shifted left by kbits, and the output is shifted right by
k bits and compared with the result of the previous computation. Any error in k-1 consecutive bit slices of an
arithmetic or logical operation will be detected by this method. The additional hardware requirement is the three

shifters, the storage register to hold the results of the first computation, and the comparator.

A variant of this method is called recomputing with swapped operands, where in the first ume step, the
operation is performed in the normal form. In the following time step, the upper and lower halves of the operands
are swapped such that a faulty bit slice operates on opposite halves of the operands in two computations. The

additional hardware requirements are in the form of several multiplexers, a storage register and a comparator.




24, Algorithmic Redundancy

A relatively new approach to fault tolerance is the use of algorithm-based fault tolerance which is useful in
developing low-cost techmques for error detection and fault tolerance in parallel processor systems while perform-
ing specific computation-intensive applications [11]. Contrary to conventional data encoding, which is done at the
word level in order to protect against errors which affect bits in a word, in algorithm-based approaches, data is
encoded at a higher level. This encoding can be done by considering the set of input data to the algorithm and
cnc'oding this set. The original algorithm must then be redesigned to operate on this encoded data and to produce
encoded output data, The redundancy in the encoding would enable the correct data to be recovered or, at least, to
recogruze, that the data are erroneous. This technique has been applied to systolic arrays performing a variety of
computations such as matrix operations, Fast Fourier Transform, matrix equation solvers, sorting, QR factoriza-

tion, recursive least squares, filtering, and singular value decomposition {12].

We illustrate the application of an algorithm-based checking technique by an example: the muluplication of
two N X N matrices, In e checksum encoding, an extra row and an extra column are appended to the original
matrix, which are the sums of the elements of the columns and rows, respectively [11]. After the matrix-matnx
muluplication 1s performed, the result matrix also preserves the checksum property. If there is an error in the
result matrix element (i /), it will be 1dentified by verifying the equality of the sum of the row elements with the
checksum for row i, and by verifying the equality of the sum of the column elements with the checksum for
column j. Once the erroneous element is identified, the correct element can be reconstructed by taking the sum of
all elements of that row (column) except the erroneous element and subtracting this sum from the row {(column)
checksum. This is illustrated in Figure 4 which shows a 5 x 4 row checksum encoded matrix multiplied by a 4 x
5 column checksum encoded matnx on a 5 x S processor array having row and column broadcasung capability 0

produce a 5 x 5 full checksum matrix.

Recently algonthm-based checking techniques have been applied on more general-purpose multiprocessors
such as hypercubes [13]. Studies on actual measurements of various algorithms on a hypercube have revealed that
it is possible to get very high error coverages (90-95%) for detection at relatively low cost «10-137% uime over-

head).
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Figure 4. Algorithm-based fault tolerance for matrix multiplication.

2.5, Software Redundancy

In applicauons that use programmable computers, many fault-detection techniques can be impiemented 1n
software as several extra lines of code to verify the consistency of a result, such as 10 check the magnitude of a
signal, A consistency check uses a prior: knowledge about the characteristics of informauon o verify the comrect-

ness of information. In Randell, [14] such checks are application specific.

Capability checks are often performed to verify that a system possesses the capability expected. For cxam-
ple, 1f a processor has the privilege of rcading or writing to a set of regions in memary under the presence of an

addressing fault. Another form of capability check is used to verify if a ; can execute g specitic
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instruction on specific data.

3. Software Fault Tolerance

Software plays a crucial role in a computer system’s ability to tolerate design, manufacturing, and wear-out
faults. Faults in software are typically due to problems in design or implementation, while faults in hardware can
be due to design, manufacturing, wear-out, or environmental upsets. This section presents ‘an overview of the
ways in which software design and implementation techniques can be used to detect and tolerate both software

design errors and hardware faults.

The development of highly rliable software necessitates more than just software fault-tolerance techniques.
The development process must include rigorous application of fault avoidance approaches, which include the
correct use of formal specification languages, structured programming, formal proof of correctness, and extensive
testng at all levels of implementation. Design for fault avoidance is a necessary prerequisite for effective software
fault tolerance [2]. Software fault tolerance addresses the issues of detecting and 'rccovering from residual design
and implementation errors in the software and detecting and recov.ring from wear-out and environmentally-

induced hardware faults.

3.1. Detection and Recovery from Software Faults

The fundamental approach to detecting software design errors is through exploiting diversity.  Diversity in
implementation an? design can be in the form of acceptance tests, executable assertions, alternative software
modules. or full diversity through designing and implemenung multiple versions of the complete softwarc by
different teams of software engineers. Diversity can be captured through encoding knowledge of the expected
behavior at various leveis of the software and then comparing what is expected against what is observed. This
encoding of knowledge can be at the level of the process outputs, intermediate results, system bcehavior, or
expecied algorithm behavior.  The two primary approaches to software fault tolerance that provide o omplete

framework for capturing diversity in both design and implementation, as well as providing formal mechamians i




error detection, error containment, and recovery, are: (1) recovery blocks {14]; and (2) N-version software [15].

3.1.1. Recovery Blocks

Recovery blocks, as developed by Randell [14], implement diversity in the form of acceptance tests and

alternative software modules. Software is partitioned hierarchically into self-contained modules called "recovery

blocks.” Each recovery block validates its own operation and either returns correct results or notifies the system

of an error.  As illustrated in Figure 5 [16], each recovery block is composed of an acceptance test, the primary

alternative software module, and the secondary software modules. The acceptance test is used to determine the

correctness of a software module’s results (error detection) and the alternative modules provide recovery from a

detected error. Diversity can be captured in both the acceptance test and the secondary altemnative software

modules.

Error Recovery
Block

Recovery Point

/

N

Primary Secondary Secondary
Alternative Alternative . Alternative
Module Module Module

#1 ) #N
AN | /
Acceptance Fail

cst

r

Error Containment
Boundary

Figure 5. The recovery block approach to software fault tolerance.

lPass

13




An example of the acceptance test and alternative modules employed in recovery blocks can be seen in the
following sorting algorithm described by Randell [14],
ensure sorted (S) A (sum(S)=sum(prior S))
by quickersort(S)
else by quicksory(S)
else by bubblesort(S)
else error
The acceptance test should verify that none of the elements have changed and that the elements are, indeed, sorted.

The primary algorithm can be the most efficient preferred algorithm, while the alternatives may be less efficient

and are invoked only if the primary module results in an eror.

Note should be made that the recovery block approach can also be implemented with distributed or parailel
architectures in which the alternatives are initiated ir parallel with the primary module. Also, full design diversity
can be implemented if a formal specification forms the basis of each recovery block and diverse programming

teams develop the alternative modules and diverse acceptance tests.

3.1.2. N Version Programming

The N version programming approach to fault tolerant software has been extensively des_ribed by Avizienis
{15]. N version progran'xming differs from recovery blocks in that it employs design diversity at the software sys-
tem level through designing and implementing multiple (N) versions of the software with different teams of pro-
grammers. Instead of employing an acceptance test, N version programming utilizes voters to reach a consensus
of two or more outputs among the N member versions. This approach neressarily must rely on diversity in the
design to detect programming errors in the N versions of the software, If diversity ts not eaforced i the design
and implementation, there may be an undetected or unrecoverable failure due to a single cause. Both the recovery
block and N version programming approaches require a reliable executiGi environment {or voung or exccuting

assertions - nd for time-efficient execution of the software modules.

{4
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3.1.3. Error Detection Techniques

Although recovery blocks and N ver an programming are the best kno-vu approaches that provide complete
frameworks for software fault tolerance for programming errors, there are also a wide variety of individual tech-
niques that are commonly emploved outside of these frameworks. Examples of these techniques in:lude accep-
tance tests and executable assertions that are commonly used to detect anomalies due to either programming errors

or hardware failures {18-22]. Fail-stop tests, such as tmers for detecting time-out conditions, are also cammot.

3.2. Software Approaches to Detection and Recovery from Hardware Fauits

3.2.1. Masking and Voting

The N version programming approach is directly applicable to detection and recovery of hardware faults
when the muluple versions are executed on different hardware units. This is a variant of the classic NMR (TMR,
form of fault tolerance 3~ described earlier in this article. It is possible that hardware faults can be tolerated cven
without diversity if the hardware anc software are replicated N times and the voter is designed to be fault tolerant.
However, the application cf design diversity to both the N software and N hardware units can provide a line of
defense against software programming fzults, hardware design faults, environmental upsets, and wear-out {auits

{31

3.2.2. Assertio:s and Al'ernative Execution

The recovery %iock approach is also direcuy applic.«™s!~ *n detaction and recovery from nardware failurss, as
&¢li as from programming faults. As descitbed elsew s 1n this article. recent alge™ thm-~pecific technques ior
encoding inputs and checking expected outputs (agorithm and behavior-based fault tolerance) have hesn
deveioped for detection and recovery from hardware faults. These algorithm-specine appicactcs are & combina-
don of hardware und -ofrware fault tolerance in that they employ argorithm modificaton for Jetection and

recovery ‘from hardware {ailures.




3.2.2.1. Fault-Tolerant Data Structures

Linked dada structures nrovide a specific example of specialized techniques for error detection and recovery.
The initial work concemning detection of - ~-- in links (Structural integrity) utilizing redundant links was
developed by Taylor, Morgan and Bl ° < tion and correction algorithms for data structures. when used
concurrenty with nom.al data structure o >, pr.ally desrade performance. If data structure checking opera-
tions are performed in a small locality arourn.  .urrently accessed node then error detection and correction can
potentially be performed concurrentdy with 71 data <tructure accesses without severely degrading the system
performance. In additicn, an arbitrary numbe: of errors in the data structure may be detected and corrected assum-

ing not (oG many eITors exist within ~ 7iven locality.

One example of such a techmique for detecung and correcting structural errors in data structures is the vir-
tugl! backpointer {24]. The virtual backpointer provides the capabilities of structural error detection and correction
as well as the generation of backpointer values used in backward traversals. The Virtual Double-Linked List
{VDLL) is a uniform data structure that employs the virtual backpointer for local error detecnsa and correction
~nd for backward traversals. The VDLL requires the same storage space as e standard double-linked list (DLL),
and re1ains the simplicity o. e DLL, since it is possible to move directly from a node to its parent, using the vir-
wal backpointer. In addition, the VDLL has enhanced error detection and correction capabilities over the DLL.
An exampic of the VDLL is shown m Figure 6. In additicn to the normal forward pormnter, a virtual backpointer is
storcd in each node.  The virtual backpomnter is a function of the address of the previous (back) node and i1e
current forward pointer. It can be shown that it is pussible tn detect any two errors in 2 VDLL and correct

single error for forward moves.

3.2.3. Reexec':un Through Checkpointing and Rollback

Checkponting is an important techmque for recovery after error detection by means of rollback reexecuuon
of a pracess. Checkpomung schemes can be broadly classified as full or incremental checkpoinung, The former

~aves the entire active state space of 1 process winle the latter saves the difference berween the current and 4 preve-

ous state space. A checkpointing scheme can be implemented at the system or application fevel.
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Figwe 6. Example VDLL robust data structure.

Research on classic ¢t pointing and rollback reccvery has been extensive [16-20]. Graph-ihesretic
methods by which the programmer can cCecidc where to insert checkpoints have been developed. The program is
decomposed by the programmer into a sequence of tasks between which the checkpoints can be inserted. It is
assumed that the exccuticn time, the checkpoint time, and the recovery time of each of these tasks = %7wn in
advance. With this information, the algonthms can determine the opumal places to insert checkpoints so that the

maximum checkpoint time, the expected checkpoint time, or the expected run time is minimized.

3.2.3.1. Compiler-Assisted Checkpointing

Compiler-assisted techniques for implementing a checkpointing scheme have recently been developed [231.
This approach can achieve. in some instances, both programmer transparency and reduced checkpoint size without
madification of the hardware or operating system. Compiler-generated sparse poteatial chechpoinit wade v wsed 10
maintain the desired checkpoint interval. The compiler-assisted approach to checkpointing uuiizes several meas-

urement and a- puve lcamning techniques to exploit periodic reduction in memory requirements to reduce the size
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of checkpoints, when possible [25].

3.23.2. Error Detection and Recovery in Distributed Systems

Fault tolerance in distributed systems has long been the focus of extended research [26-29]. Practical appli-
cations of this research include distributed databases and real-time systems. Important elements in fauli-tolerant
distributed systems include reliable communication and synchronization protocols, reliable storage media and

storage algorithms (replic: tion), and reliable individual processing nodes [.26].

One of the important cancepts in distributed systems is that of atomis: actions and commit protocols. They
are used to ensure the completion or rollback of transa.tions. Nested transactions have been proposed as a
mechanism for encapsulating the synchronization and failure properties of distributed systems [26]. Recovery in
distributed database systems is ofter implemented through rollback of transactions and use of shadow paging or
undoing a write ahead log. Network partitioning and data replication have also been used to tolerate node failures
{29]. Examples of protocols developed to deal with data partit:oning and replication include weighted voting,

majority consensus, and quorum-based commit [26].

3.2.3.3. Recovery through Checkpointing and Rollback in Shared Memory Parallel Multiprocessors |

Since different processors in a shared memory multiprocessor sy.tem can access the same memory space, a
rollback of one process in multiprocessor systems may tequire a mollback of another, as well. [t has recently heen
shown that through appropriate medification of cache coherence protocols, periodic checkpointing of the cache
contents can be made into the shared memory in such a way that a consistent shared memory state is maintained
30]. The consistent shared memory state ensures that oni,’ the process encountering the eror, resulung irom 2a
processor transicat fault, is involved in the rollback recovery at the point of error detection and no rollback propa-
gauon 1s required. Without rollback propagation, rapid rollback recovery is thus achieved simply by invalidating
the cache contents and then restarting the process from the cherkpoint after reloading the program counter and

registers.
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In the multiprocessor cache-based checkpointing approach there are two instances in which a process has to
be checkpointed. The first instance occurs whenever a cache block modified since the last checkpoint is to be
written back to the shared memory, which happens when a cache block is replaced on a cache miss. The second
instance occurs when another processor is to read a dirty block modified in a processor’s cache since its last
checkpoint. Check jointing is initiated by the cache controller in hardware and is transparent to system or applica-
tion scftware. Checkpointing a process includes flushing the cache blocks modified since the last checkpointing

session and saving the processor internal registers.

Once a processor error is detected, all cache blocks, except those that are unwritable in the private cache of
that processor are invalidated. The processor internal registers are reloaded and execution is restarted. Cache
misses occurring when a processor resumes execution are serviced by data from the global checkpoint which is
stored i the shared memory and caches of other processors. The cache coherence protocol enforces delivering the

correct version of data if another cache has a block which rmatches the miss.

To integrate the multiprocessor cache-based checkpointing scheme into cache coherence protocols, one extra
state for a cache block is inroduced. A modified cache block is split into twe classes: writable-modified and
unwritable. Figure 7 illustrates the [llinois cache coherence protocol [30], which has been modified by adding one

state to incurporate the cache-based checkpointing scheme.

There have been numerous recent developments in implementing shared memory programming environ-
ments on distributed memory multiprocessors.  Typically called distributed shared memory. such ensironments
utilize memory coherence protocols to implement the shared memory paradigm in software. Memory coherence-
based checkpointing techniques have been devcloped for distributed shared memory, similar <0 those for cache-
pased checkpomnting [31]. A checkpoint occurs by an ndividual processor if a page of memory 1s requested by
another processor that has been moditied since the last checkpoint.  Roilback is implemented by simply insal:dat-

ing all local pages and restoring processor registers,

The advantage of maost checkpoinung schemes that are embedded in the memon. manasement sroteel
that they are ransparent to the apphication programmer.  They potentially can he mplemented <o as 0 mummuse

perfermance Jegradauon. However, therr disadvantage 1s that it is not ¢asy (o change or control the requency of
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Figure 7. Cache coherence protocol incorporating cache-based checkpointing.
checkpointing with such approaches. In general, an integrated approach applying a hierarchy of checkpoinung sma-
tegies (memory management, operating sysiem, and application level) is neces ary to effectively address the

shornicomings of individual techniques.

4. Testing

Testing 1s the process of discovering fau’ defects or malfunctions in the system under test. The test pro-

cess consists of exercising the system with a set of test vectors and analyzing its response for comrectness. Design
} of a reliable computer system involves many levels of abstractions. Typical levels of abstractions from lowest to
the highest are: logic level, register level, instruction set level, processor level and system level. Tesung closely
follows these levels of abstraction and separate testing procedures apply to each level. The sumuli and responses
defining a test experiment use the information being processed relevant o each level. For cxample, tesung at
logic level mvolves binary vectors or vecior sequences. Similarly, higher levels of testing invoive machine
nstrucucns, anthmeuc numbers. texwal data, messages, procedure and application programs. Thus. tesung is 4

very broad term cncompassing many different activities and environments. Testng theory and pracuce is most




mature at the logic level. Tesung at logic level is well-defined and rigorous. Testing becomes less precise with
increasing levels of abstraction. At the system level testing is largely ad hoc and based on inwition and experi-

ence.

Testing begins at the semiconductor chip manufacturing level and continues at higher levels of assembly and
packages, such as printed circuit boards, the hardware system and finally the complete system including the
operating system and applicadon software. The initial purpose of testing at chip level is for diagnosis of chip
defects. The diagnosis process identifies what is specifically wrong with a bad caip. The information is valuable
in fine-tuning the semiconductor fabrication process. Defects at this level consist of open or shorted wires and
transistors, slow transistors, too high a power consumption, weak drivers and so forth. Once the process is fine-
tuned and mature, the main purpose of chip level testing becomes that of sorting good chips from bad chips. This
is where the most rigorous testing takes place. The cost of testing a chip is a significant fraction of the overall
cost of manufactunng. However, the cost of testng the same chip at higher levels is even higher. Expenence
shows that a defective chip, escaping as a good chip due 1 an imperfect testing procedure, costs 10 times as much
to test on a prnted circuit board. The cost includes increased difficulty in testing, and locaung and replacing the
bad chip on the board. If the defective chip escapes detection at the board testing, it costs 100 umes as much ©
locate and f}x at the processor tesung level. The cost of a defective chip increases 10 fold at every isvel, There-

{ore, the goal of chip tesung 15 a near perfect differentiation between a good chip and a defective chip (321

Testing continues after a system becomes operational and deploved in the field. The purpose of testing in
the field can be of a preventive nature or can be for repair of an unoperational system. Testing for preventive
maintenance locates defective chips or boards which have not been exposed in the normal operation of the svs-
iem. Such unexposed Jefects are called fatent fulures. Eventually they +all be exposea by -ome ~yvsicm opena-
tion. In highly reliable systems. latent failures reduce the fault tolerance capabilities of the <vstem ume. :f uch
farlures are aflowed o accumulate. Therefore, highly reliable systems require penodic tesung o flush ou? latent
farlures. Tesung for Jiagnosis and repair zonsists of narrowing Jown the focauon of a fault © 4 fieid-repiacoabic
umt FRUS An FRU for 2 compuuag sysiem s tymically a board or a mulu-chip madse. Locaung the

Locauny the tauit 0

e cip boundary s ery ifficuit and expensive and therefore reparr of ihe board 15 aostponcd entd the and can




be retumed to a repair facility. The testing discipline can be broadly classified into these fields: Fault Modeling,
Fault Simulation, Automatic Tast Pattern Generation {ATPG), Design and Synthesis of Testable Circuits. and

Built-In Self-Test (BIST).

4.1. Fault Modeling

For testing purposes, all physical faults are abstracted/modeied to a level appropriate for the component
under test. At the chip level the most widely accepied Fault model is that of line stuck-at-0 or stuck-at-i. In prac-
e, the st:ck-at fauit model is further restricted to single stuck-at fault model. meaning the test ~ocedure
assumes that ihere is, at most, one fauit in the circuit. This assumption reduces the fest generation compiexity.
Physical defects such as an open connection. or a short o ground or power can be madeizd as constant logic Hor
1 in many situations. Also, experience shows that even when some physical defecis do no? behave as siuck-at
faules, tne test patterns that detect all single stuck-at faults also detect a large percentage of such physical defects.
Ancther advantage of Ur stuck-at fault model is that it is a logic model and therefore many of the resulis from
Booiean algebma can be esed in the test generation and analvsis of such faults. For this reason. stuck-af faufz s 3
widely accepred fault model for most digital circuits. The stuck-at fault model is usefui in proving stnscteral
integrity of a circuit within the consmaint of Boolean equivaience. Thers are also otier ogic fault models that

have become very imporiant for highly reliable components. A short berween two wires is cailed a bridsing St

which is logically equivalent to 2 wired AND or OR depending on wechnology and relative eiectrical strengths of

two opposing polarity signais on ihe short. Other physical faults, such as resistive shorts and opens, wapped
cmmmmaﬁmmmmmmamwgmwmmm
specuicauon of a circuit. Such {auits are modeled as deiav fzuiis.

The next nigher leve! of abstraction for fault models is broadiv called functional fauize. A funcrior

simply an incarrect execution of a function. For specific functions these incomect Behaviors <an be aamowed

dowr. For cxampie. 3 resincied fault model for an address decoder might <ay. “for mput address « the faulty
decadder ncorrectly selects address 1.7 A slightly more general moded mught sav, “the foadder solots anaiing, oy

selects 4. or scizets « and 1 and a very general functional fauk model & sught
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(including null) of all addresses.” Similarly functional fault models have been derived for many other functions
such as, adders, multipliers, arithmetic and logic units of a processor, PLAs, micro-sequencers, instruction set pro-
cessors and mem~ries. We give two more examples, one for an n-bit adder and the second for an instruction set
processor.

A restricted functional fauit model for an n-bit adder is that the sum differs by #2i. Such a model can be
derived from the assumption that, at most, one internal carry or an output sum is faulty. If we extend the physical
faults to a full adder in a ripple-carry adder implementation, then it can be shown that the functional fault model

for the n-bit adder is that the sum differs by (2 +2i+1) in the presence of a fault.

For a processor, a widely accepted functional fault model is that when instruction I has to be executed, the
processor: (a} does not execute any instruction; or, (b) it executes some other instruction J; or, (c) it executes I
and some other instruction J. Such abstraction allows one to generate a test <et for the processor without the struc-

tural gate level information.

The higher the level of abstraction of the fault model, the more generally applicable it becomes, independent
of specific implementations. At any level of abstraction the fault model can be very general or very restrictive.
Very general fault models give a higher degree of confidence in the quality of the test set, in the sense that the test
set will cover a large number of physical failures and a broad class of failures (e.g., stuck-at, bridging and delay).
Restrictive functional fault models correspondingly give a lower quality of test sets. More information can be

found in [33, 34].

4.2. Fault Simulation

Fault simulation consists of simulating a circuit in the presence of faults. The most common fault model
used by fault simulators is the single stuck-at fault. However, in theory any fault model can be used dunng simu-
lation. By comparing the outputs from simulation of fault-free circuits with the faulty circuit one can determine if
the fault 1s detected by the applied test. For a given test set, T, a fault simulation produces the list of faults which
are detected by T. The wmber of detected faults expressed as a percen: of all faults 1s called Sault coverage.

Fault coverage ts a meas're of the quality of a test set. The process of finding the fault coverage of T 1s called




fault grading the test set T. \ perfect test set will have 100% fault coverage for the assumed fault model. A
component passing 100% tes. .~t may still have other faults not covered by the assumed fauit model. There are
several applications of fault simulation. Fault simulation is used: 1) in fault grading a given test set; 2) in diag-
nosis of a faulty circuit; 3) in automatic test generation, and; 4) in verification of error detection/correction cir-

cuits in highly reliable systems.

Fault grading a test set is the most common use of fault simulators. A test set derived using a higher fault
model may be graded for lower fault models. For example, circuit designers use functional verification tests to
check for design errors. The same tests are often used to test the circuits for stuck-at faults. Therefore, the fault
simulation is used to evaluate the effectiveness of a functional test as a stuck-at test. If the fault coverage is not
satisfactory, the designer can add more functional vectors to improve the fault coverage. Thus indirectly, the fault

simulator is used to generate test vectors for a circuit.

In the diagnosis applications, a fault simulator is used to generate fault dictionaries. A fault dicuonary is a
list of faults detected for each tes: vector. Additionally, a fault dictionary may also store the actual output
response for each fault, or a compressed version of the response, called a signature of the fault. The diagnosis pro-
cess (idenufication and locauon of the fault) relies cn matching the response (or signature) from the circuit under

test to the simulated response (or signature) stored in the dictionary.

Fault injection experiments are an important aspect in the design and verifc.don o; ughi. r Lable circuits.
Hardware experiments are slow and expensive and very limited in the types of fault. tha’ cc.: v ge~sed. Fault
simulators on the other hand are easy to use and are flexible in terms of fault type, location =rd method of injec-

tion. Fault simulators can also evaluate the effects of several thousand faults in a single pass.

The simplest method of simulating faults is the serial fault simulation. It consists of taking the fault-free
circwit and transforming it into a faulty circuit by injecting one fault and then simulating the curcut with a stan-
dard logic simulator. The main advantage of this method is that no special fault simulator code is needed. In
addition, it can simulate just about any type of fault. However, the senal method 1s very ume-consuming, consid-
ering the fact that a 10,000 gate circuit can have close to 50,000 single stuck-at faults. This tme can be reduced

by appropriately simulaung many faults simultaneously. Three well-known methods are: 1) Parallel Fault Simu-




lation; 2) Concurrent Fault Simulation, and; 3) Deductive Fault Simulation.

Parallel fault simulation exploits the word parallel operations of a computer by using each bit in the word to
represent a different fault. Thus, one can simulate 32 to 256 faults in a single pass depending on the machisne
used. Another efficiency added to most practical parallel fault simulators is the use of event-drive= simuiation
techniques. Experience shows that a fault causes only a few logic values to change from fanii-free raiues. there-
fore, an event-driven fault simulator will need to execute \-/ery few events (gate evaluations,. Coucurrent fault
simulator is also an event-driven fault simulator. It keeps all faulty machine states but only simulaies differences
between a fault-free and faulty machine. Deductive fault simulation is a symbolic simulation method and it
deduces faulty behavior of all faulty machines in one pass (subject to available memory). The operations used in
the deductive simulator are the union and intersection of symbolic fault lists. Tlhie execution speed of the above
three methods depend to a large degree on the programming techniques and as a result are hard 0 compare prrely
based on methodology. Parallel is the easiest to implement of the three. Deductive is potentally the {astest for
stuck faults in synchronous sequential circuits, but implementation complexities may make it slower than parallei.
The concurrent is the most general and flexible in terms of extending it to inclade detziled circuit timing any type

of fault behavior, and higher level functional models. For further reading on fauit simulation see {33, 25, 341,

4.3. Test Generation

The simplest method to test a circuit is to subject it to random test patterns. In fact, it is qus.e an acceptable
method for many circuits. One can use the fault simulator to calculate the fault coverage and add more random
vectors if the coverage is not sufficient and iterate the process until desired coverage is rcached. However, to
achieve a hugh fault coverage experience shows that many circuits require an nurdinate aumber of rangom pai-
terns. The cost of fault simulating a large number of patterns could be far more than using « ron-random algo-
rnithmic method of test generation to achieve the same coverage. There are several such dutermnisie test genera-
uon methods. Test vector of a stuck-at fault in combinational logic implemenung & Booleun function F o . he
derived by waking the Boolean function F’ of the faulty circust and forming F XOR F’. Lany » 2ctor that sroduces

F XOR F'=1 15 a test vector for that fault. In pracuce, this procedure of taking symbolic Boolean functions af




faulty and fauit-free circuits and forming exclusive-or is quite iime-consuming and getting a vector that makes the
F XOR F’ function 2 1 is a ¥ .own hard proplem, Efb. ént t29 on2 stors are bused on _ne of the tws known algo-
nttms: 1) Roth’s D Algonhm and 2) Goei’s PODREM algorithm. Both of these methods use a S-valued algebra
®, I,D,E‘. 2nd X). D i5 a symbol representing a login 1 in fault-free and logic O in a faulty circuic Similariy,
sy.nbol ) represents logic O it fault-free and logic 1 ir a faulty circuit. X is an unknown value. In both methods,
the cbjective is to jusdfy logic values on various lines in the circuit to accomplish a; Fanlt Exciation and b) Fault
Propagation. Fault exciiaﬁon' is we process of applving a logic value opposite to the stwk-3t fault value. Fault
propagation is the process of applying inputs such that a fault effect (i.e., s‘gnal D or 5) is propagated to an output
of the crrcwt. The D-algorithm assigns a oropriate logic values ivcally to a fault site and then makes assignments
torward cr backward in the circunt {c justify the assigned vaiue, These assignments are further justified by more
assignments to other Lines. This provess is iterated until all internal assignments are justfied solely by primary
mput assignments. During the justificanon process of an assigned logic value on a line, conflicts of signal values
may anse on some other lines, iu "shich case, the assignment must be undone. This is a systematic tnial and error
procedare, and it will find a test vector if one exists. In PODEM, assignments are made only to primary inputs.
PODi:M 15 a branch-and-bound search method, in which the inputs are assigned one at a time and the effect of
eacn assignment s propagated before another pnimary input is assigned. If the effect of an assignment causes a
bounding condition then the ass:znment 15 hacktracked, and re assigned a different value. In both PGDEM and D-
algorithm, the procedures will find a test vector if one exists or will detunine that the fault can not be detected.
In the worst cas~, both procedures must try all binary combiztions of the irputs. The worst case rarely happens
in real circunts, however, the procedure can sometimes make a i g® numxr of backtracks, A large number of
backrr cks occur mostly for fauits which are not detectabie. Undctectable fauits w2 associated with redundant
gates or lines in a circuit. For bigh reliability it is important w0 remove any uninter.*ional redundancy in the cir-
cuit. There are no other algorithms which detect redundancy more ~fficiently than a test gencravun disutiuna. As
a result, test generution algorithms are also used in milti-level circuit miimization procedures to remove unneces-

sary gates.

Tast aeneration for synchronous sequenual circuns are extensins of combinationai test Jeneralion wgo-

ritvm. The extnsion is based on wansforming a sequential circuit into an iterauve combinational logic array ee
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Figure 8). One cell of the array is called a time ,rame. In this ransformation each flip-flop is modelea as a com-
binational element with input equal to current state and output equal to the next state of the flip-dop. The iterative
array is simply a very deep combinational circuit. The number of cells (time frames) in the array correspond o
the number of vectors in the test sequence. It can be shown that any detectable fault can be detected in 4= vectors
in a sequential circuit with n flip-flops. Therefore, the worst case bound on tie number of time frames needed is
4=, -yhich is generally too large for any practical circuit. Therefore, during the test generation process the number
of time frames are dynamically expanded, as needed. One additional complexity for sequential circuits test gen-
eratior is t ‘at of initialization of flip-flops. If a reset sequence is given then it simplifies the problem somewhat.
Huwever, one has to be careful that the reset sequence can become invalid in the presence of a fault. If the reset
sequence is not given, the test generztor must find such a sequence. Sequential test generators can be helped by
nigh fevel informauon such as state transition diagrams. In most cases, though, the state transition diagrams are

erther ton large or not given, therefore the applicability of such a test generator is limited.

in addition 0 cw.rsinational test genzrator. ihere are simulaiion-based test generators, which is a trial-and-
error approsch. First, a set ot wial vectors are applied and fauit simulated. Based on the fault simulation results
the "best" vector 1s tctuned and added to wie iest segience. The process is repeated until desired fault coverage 1s
reached. The "best” vector 1s defined by some cost crii2nia such as, number of new faults detected, nr aumber of
flip-flops set. The sclecuion of the trial set is somewhat random vat can be constrained to meet certain uming
requirements. For eéxample, we can restrict the successive vectors to differ by, at most. one bit to prevent races in
asynchronous circunts.  An important advantage of this method is that it is more general than combinauonal-based
test generators. Any circuit and any fault type the simulator is able to handle is acceptable for this test generation
method. One disadvartage 1s that. in some circuits, to achieve very high fault coverage the number ot tnal vectors
that need to be simulated can be very larg, and the resulting test sequence also tends o be very long compared to

the deterministic approach descnibed above.

Finally, there are test wchniques specific to certain funcuions such as, adders, mulupliers, iterauve logic
arrays. random access memones (RAM), associative memorics and micrepricessors. These technijues are termad

fuicnonal tesang. The term functional testing comes from the fact that each function speurfic test nrocedure
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assumes a very precise functional fault model. For example, for adders and multipliers which are made of 3-bit
full adders. the fault mode!l assumed is that the fauit affects the truth table of full-adder in any way. If one
assumes that at most one-full adder is faulty, one can derive tests analytically which are far more compact than
possible with automatic tes: gencrators. Ripple carry adders can e tested with 8 test vectors, the number 8 is con-
stant independent of the length of the adder. Such regular structures with a constant number of tests independent
of the number of cells are called C-restable. Ripple carry adders and two-dimensional combinational multipliers

and many other iterative logic structurcs have proven to be C-testable.

Difficulty in memory testing is not how to generate a test set, but what realistic fault models to use and how
to get a short test for such faults. The complexity of test length is very important in memories because of the
number of bits involved in present RAMs. For example, if a test length grows as the square of the number of bits
in the memory then a 1-Megabit RAM will require the order of 1012 test vectors. Most commonly used funcuonal
fault modeis for RAM are; bits stuck-at () or 1; fauits in address decoder resulting in failure to address a bit;
addressing the wrong bit; addressing more than one bit; coupling faults between two bits resulting in unwanted
read-write operation on a coupled-bit; pattern sensitive faults resulting in failure of read or write of a bit in the
presence of a specific bit pattern in the neighboring bits; and so on. In memory testing, the single fault assump-
tion 1s not used. Furthermore, no upper bound on the number of faults is assumed. For all of the above funcuonal

fault models efficient test algorithms have been derived. Resources for more information on test generauon

methods are {33-38).

4.4. Desion for Testshility

[n spite of major advances in test generatioi and fault simulation techriques, teatng of Yigual systems suil
remains a very difficult problem. Testing cost remains a significant fraction of the overali “ost of manufacturing
VLSI chips. The complexity of test generation and cost of testing can be reduced by the process of design for tes-
tabulity (DFT). Two important factors in a testable circut are controflabulity and observability of individual nodes
in the circuit. Controllability 1s the ability to establish a specific signal value at an internal node n 4 wircu.t by

seting values on (directly accessible) inputs. Observability s the ability to determine the sienal value at anv node
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by setting values or inputs and observing subsequent ouiputs.

Most DFT techniques either resynthesize an existing design or add exwa hardware to the design. Resyn-
thesis systems remove most redundancies in combinational circuits. In sequential circuits, the resynthesis system
encode the states 10 make them easier to reset. control and observe. All DFT methods affect the original design in
terms of chip area, I/O pins and speed. The goal of a DFT method is to achieve the desirable testability with
minimal overhead. The cost benefit of the DFT is hard to quantify in real money. Since the DFT benefits are
spread over many factors such as reduction in test generation time, enhanced quality (fault coverage) and hence
reducticn in return rate of bad parts. It can also affect test length, test application time, tester memory, diagnosis
and field maintenance time. Because of a lack of precisc quantitative cost-benefit analysis, manufacturers,

designers, test engineers and users disagree a great deal in their assessment of cost benefits of DFT.

A great deal of testability techniques are ad hoc. For example, adding reset lines, partitioning large circuits,
removing redundancies, inserung control points and observation points (test points), converting asynchronous t
synchronous logic, breaking long feedback paths, breaking long counters and shift registers into smaller parts, and
so on. Figure 9 shows test point insertion. Addiuon of test poinis can result in too many I/O pins on a chip. The
pin overhead can be reduced by employing a scan register to control and observe the test pins. A scan register 1s
simply a shift register with parallel load capability. A typical scan register has 4 /O pins: shift data-n, shift
data-out, load, and shift clock, Test data is shufted in from outside and applied to the control pomnts. The
responses are captured from observation points into the scan register with a load signal and then shifted out for

later analysis. The scan register trades off test point I/O pins with increased area and increased test time.

There are several methods to select test points in a circuit. Some methods are ad hoc. some based on
analysis, and test generauon and fault simulation, and some based on converting sequenual crcwts mto combina-
tional logic. Good candidates for ad hoc sclection of test points are: lines with high fanouts. globai feedback
paths. (intenuonal) redundant lines, fiip fiops, ad-resses, +aia and conirol signals of cmbedded memones. and
mternal clocks.  Analysis-based methods use quantifiable controllability und observability measures, or nther
measures such as sequenual Jepth, ard aumber of feedback paths passing through a no-e. These are used i put-
ung test points at the least controllable and observable nodes. A global opum:zatton program witi pur test pomts

it
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such that the overall gain in controllability and observability is maximum. Since all such measures are approxi-
mate, the effect of test points on test generation time and fault coverage can not be accurately predicted. All of
the methods rely on a test generator and fault simulation to find which nodes should be the best candidates for test
points. One can use a limited trial-and-error method to insert the test points, and then generate a test to accurately
see its effect. One can combine the above two methods by first selecting a few test points, based purely on struc-

tural analysis, and then augmenting it by more test points selected by a test generator.

When test points are inserted at all flip-flops and only at flip-flops in conjunction with a scan register, the
methods are generically called scan designs. 1f the flip-flops are master-slave or edge-triggered then additional
flip-flops for the scan register are not needed. The scan register is implemented directly on the original flip-flops
in the design. Of course, one stll needs additional pins, shift-in, shift-out, shift-clock and load. The load signal
may be combined with the system clock, thus saving a pin. A scan design makes all flip-flops completely con-
rollable and observable. This means that the circuit can be placed in any state and its next state completely
observed. Since the inputs to the combinational logic either come from primary inputs or from some flip-flops,
the scan allows one to apply any test vector to the combinational logic portion of the circuit. And since the out-
puts from the combinational logic go to primary outputs or to some flip-flops, the responses are completely
observable. This method essentially reduces the sequentd! tesi problem to a combinational test problem. There
are several slighly different scan-based structures used by different computer manufacturers. The most widely
known structure is Level Sensitive Scan Design (LSSD), used by IBM in many of its systems. LSSD uses level
sensitive (not edge triggered), hazard free latches. Two latches form a master-slave flip-flop. It is estimated that

the LSSD scan designs have 10% to 15% area overhead.

Scan has also become a standard for board-level tesing. When scan 1s applied (o the penphery ot 4 chup it
is termed boundary scan. The goal is to make every chip on a board completely controllable and observable from
the edge connector of the board. In addition, the boundary scan registers are designed 1n such a way that they can
also be used 0 test the interconnect between chips. At the board level, predominant fatlures are in the intercon-
nects and pins. Therefore, boundary scan is very useful in board tesung. Of course the shups, themseives, must be

deszgned for testability.  Boundary scan anly provides access to the chips. not testability on the Jhips. Soundar

el
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scan is useful only if all chip manufacturers follow a standard method of communication on board. IEEE has put
out a standard for boundary scan that many manufacturers have agreed to follow. Further details on a variety of

designs for testability techniques can be found in {33, 39].

4.5, Built-In Self-Test (BIST)

.Built-in self-test is the capability of a circuit (chip, board or system) to test itself. Most circuits are tested
by external testers, which apply the test vectors and monitor the responses. In BIST circuits, the test vectors are
internally generated and applied, and the responses are also internally monitored. A general organization for BIST
is shown in Figure 10. The test generator and response monitor have to be very simple to keep the overhead of
BIST very small. As a result, the test generator is generally a counter, which produces exhaustive test patterns, or
it is a linear feed-back shift register (LFSR) which produces pseudo-random patterns. The response monitor is
similarly very simple. The monitor compresses the responses into a single word, called signature. Compression
methods include, counting number of 1's and 0’s in the response stream, counting O-to-1 or i-to-0 transitions,
forming a checksum, taking parities and so on. The circuits that produce the signature are also called signature
analyzers. Signature produced by the compression is calculated by simulation of the fault-free machine and stored
on the chip. During the actual test of the circuit, the signature is procuced by the compressor on chip and then
compared with the stored, good signature. A mismatch between signatures indicates a faulty chip. At times, a
fauity chip produces the same signature as a good signature and the fault goes undetected. This can happen for
two reasons: 1) the test set failed to detect the- fault; or, 2) the test set detected the fault but the compressor
"lost” the information. The loss of information is always possible in any compressor. For example, a parity
compressor vl produce the same parity if the faulty responses have an even number of bits in error. This situa-
tion is referred to as error masking, and the faulty output which produces the same signature as the good output is
called an alias of the good output. Aliasing probability can be analytically estimated if one can accurately charac-
terize all error responses of a faulty circuit. The actual loss of fault coverage due to aliasing is not »0 casy to csti-
mate. A fault simulauon of the BIST circust with the signature analyzer m place, can accurately give the loss of

coverage.
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Of all the compression methods, the checksum methods have proven to be the most effective in practice. A
checksum is simply an addition of numbers modulo a constant. A modulo addition can also be viewed as a divi-
sion by a constant in which the quotient is discarded and the remainder is retained. Since in the test context, the
numbers themselves have no specific meaning (i.e., they are simply some binary strings) one can use any number
system and any constants, as long as the compressor has low hardware complexity and low aliasing. Linear feed-
back shift registers (LFSRs) can form the checksums in polynomial algebras over the b.nary strings, and they are
easy to design. Aliasing probabilities of LFSRs have been analyzed for specific error models and all analyses lead

t0 the conclusion that aliasing probability is -y for an n-bit LFSR. Experimental studies of some circuits using

fault simulators have shown that the loss in fault coverage due 1o aliasing is usually much less than 1%. More

details on pseudo-random techniques for BIST can be found in [40].

5. Evaluation

The foregoing sections have outlined a wide range of techniques useful for desigrng fault-tolerant systems.
In any given situation, the relative efficiency of these techniques must be evaluated so that design trade-offs can be
made. Such analysis is an integral part of the design process. The next two sections introduce the question of
evaluation and discuss the different methods available to model, analyze and measure the dependability of fault-
tolerant systems. In section 5.1, methods to develop analytical models for computer system reliability, availability
and performability are outlined. A wide range of automated tools that allow an informed user to conduct evalua-

tions of complex structures have been developed. The characteristics of some of these tools are given.

Measurement-based methods for evaluation techniques are discussed in section 3.2.

5.1. Analytical Models

In this section e briefly review computer sysiem dependability modeling issues. We first discuss tao
wadely used combinaional models “31]. Then we address Siarkov modeis, including avatlabiins . rebaniin, wnd

FHY

performability (reward) models. Finally, we take a look at six representauve software modelng tools,




5.1.1. Simple Models for Fault-Tolerant Systems

If T is a random variabie thai denotes the lifetime or time-1o-failure of a system component (and t its partc-
ular value) then T has a cumulative distributicn function (CDF) given by

v,

= P{Is Hy
The reliability R(1), of the component is the probability that the component survives until time
RO)=PX>9p=1-FHp . {2
Typically, R(t) is assumed to be an exponential distribution thus R(t) = exp(—~(A)) , where A is failure rate.
As explained in section 2, the elementary reliability models of fault-wolerant computing systems are often varia-

tions on the so-called NMR Model (N-Modular Redundant). The system is composed of n identical and indepen-

oy aa e

dent components, m or more of which must be functioning for the system © be operational. Thus. the sysiem has

{n — m) "hot standby”™ componens. Under these simplifying assumptions, we can express the reliability of the

system as:

Rom() = 3 !;ék(:);(:-Rg:})a-é i3

Special cases include the serial system (m = n), the parallel system {m = 1). and the uiple modular redundant vor-
ing system{n=3,m=2).

The second elementary reliability mode! represents an N-modular Standby Redundant sysiem ¢NSR). it has

{n— 1) of n identical components maintained in a powered-off, {cold standby) state. Upon failure of the single

acuve component, onc of the (n — 1) powered-off components is switched into operauon. [t is assumed that there

is no chance of a failure associated with switching. The system lifetime randon variable in this case is ths sum of

a identical component lifeume random variables, so

t
Rusr(t) = 1-—1 dFes 5
where dF = denctes a-fold conveluuon. If the probability of falure duning switching is wken inio xcount. the

1bove expression must be appropriately modified (431




5.1.2. Markov Models

Markov models allow us to describe complex intecactions among components and are widely used. A
discrete-state Markov process is a collection of states together with the transition rates among these states. When
a Markov process is used to model dependability of a computer system, each state in the model represents a dis-
tinct combination of operational and failed states of individual compounents or modules of the system. The process
of failing and recovering of the components is described by the transition from one state to another in the Markov
model [42]. In a discrete time Markov process transitions can only occur at fixed intervals, while in a continuous
time Markov model transitions can occur at any time. A Markov process has the property that the future state of
the process depends only on its present state and not on the past (i.e., it is memoryless). A continuous time Sys-

tem is said to have the Markov property if:

P{X(t + s)=j|X(s)= i, Xu)=k,0su<s) = P(X(t+5s)=jlX(s)=1i) )]
where s, t = 0 and i, j, k denote the states of the model.

If, in addition, |
P{X(t+5)=jIX(s) =i} = P(X() =jIX(0) =i} =y, (2)

the Markov process 15 said 10 be stationary or homogeneous. In other words, a continuous-time, homogeneous
Markov model represents a time-evolving process that changes states according to the following rules:
(1) The holding time in each state 1 is exponentally distributed with mean h,.
(2)  Given that the system is n state i, it goes to state j with a probability (transition probability) p;;.

[f the exponenual distnbuuon (1) above s not satisfied, (1.¢., the distribution 15 of 4 zeneral {orm) the model
ic said to be semi-Markov. Usually, analytical models assume that the holding time in cach state is exponentially

distnbuted. From a pracucal point of view, this assumption can limit the accuracy of the model results.

The deuils of the theory and applications of Markov models to reliable systems are given in [43]. Figure 11
shows a Markov model for a simple system with two components. The system 1s assumed 0 tal i both com-
ponents fail (a 1-out-of-2 system), The fatdures of the two components are assumed to be independent. There are

four sta - n the model: the normal state Sy — both components are operational; the single component fwlure
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state S; (i = 1,2) — where component i has failed; the system failure state Sp — where both components have

failed. The A, and p. denote the mean failure rate and recovery rate for component i, respectively.

5.1.2.1. Availability Evaluation

Given that there are n states (1,2,...,n) in a Markov (or semi-Markov) model, then, at any time t = 0, the

state distribution can be expressed by the probability vector

P(0) = @10, p2(t), ..., Pa(V) ©))

where pi(t) is the probability that the process is in state i at time t and satisfies the following condition:
Spm=1. )
Further, assume that the components in the system can be in one of two states; operationai or failed. The
system is considered operational, or available, if at least a minimum set of components is operational, The failure
and repair process of these components can be represented by a Markov (or semi-Markov) model with state space
¥ [44'. 45]. We can partition the total set of states (\V) into an ~_ rational set (\¥,) and a failed set (‘W). The pro-

bability, A(), that the system is operational at a time t, is referred to as the insiantaneous availability:

A= 3 (5
The interval availabiiity, X(t), 1s the proportion within a given interval of time that the system 1s operational. This

is given by:

Figure 11. Markov Model for a 1-out-of-2 System.
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AW = +['acax ©)

The steady-state availability, A, is the limit of the interval availability as t goes to infinity:

A =Jim AQV M
Equation (7) above is equivalent to the following commonly used definition of availability:

A= FITTFFMTTR ®)

5.1.2.2. Reliability Evaluation

To evaluate reliability based on a Markov model, we make all failure states (¥r) be absorbing states so that
once the system enters ‘P, it is destined to stay there. That is, we modify the model by setting all transition pro-
babilities out of a state in ¥r to zero. For example, Sr in Figure 11 is an absorbing state. If this modified model

is solved, the system reliability can be evaluated as:

R = 2 p(t) )
where ¥, is the operational set of states in the model. It is seen that R(t) is a special case of the instantaneous

availability when failure states are set to absorbing states.

5.1.2.3. Performability (Reward Rate) Evaluation

In evaluating availability and reliability, we assume that a system is fully-operational (in an up state)
without any degradation. If a system is allowed to operate in a degraded mode, a combined measure of perfor-
mance and availability, called performability [46], is often used. Typically, performability can be evaluated via
reward models by defining a reward rate r, (47} (0 < 1, < 1) for state i, rather than simply a zero or a one, as 1 the
case of availability and reliability models. Performability measures are generalizations of availability measures,

they fall mnto three basic classes, namely instantaneous reward rate at t,

Y= Zme®, (10)
interval reward rate over t,
_Y-(t =1 I*v \d i
) T4 Y(x)dx . (1
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and steady-state reward rate,

Y=lim Y.

(12)

5.1.3. Modeling Tools

Various software tools have been created to evaluate dependability for computer systems, using both ana-
lytic and simulation techniques. These software tools are sophisticated and require a user with a good degree of
expertise in reliability engineering and computer design. A summary of characteristics of six representative tools
is listed n Table 1 [41, 48]. All of these tools can be used to evaluate dependability measures for both repairable

and nonrepairable systems. Most are based on Markov models.

5.2. Measurement-Based Analysis

Measurement is an essential part of the evaluation process. In the final analysis, evaluation techniques dis-
cussed above must be supported by measurements in the field. A study of production systems is valuable not only
for accurate evaluation but also for gaining insight into reliability bottlenecks in system design. Measurements are

made through the different stages of design, development and manufacturing and provide the basis for ganing

Table 1. Summary of Characteristics of Six Dependability Evaluation Tools

' Tool HARP(49] | METASAN[50] SAVE[51] SHARP(52] SURE[53] | SURF[54] !
' Nonhomogeneous | Stochastic Fault trees Directed graphs | Semu-Markov | Markov '
Models Markov activiry Continuous-state | Fault trees
netwarks Markov Semi-Markov
Solution Runge Kutta Gaussian elimin. | SOR* SOR* i Computauon ¢ Laplace '
* Techniques : Simulation : Irerative method | Randomization Laplace " of hounds
Simulation Simulation |
‘ Any failure distr. | Description of Exp. distr. Multistage Exp. | Markov Transition 1,
; Input i Fault uee stochastic Fauit tree distr.; Multiple ! chain matrix :
Markov chain activity network | Markov chain levels of models ! i
Output Reliability Performability Availability Reliability | Reliability ! Reliability |
I ! \ ’
; Availability Performance Availability !
*Operaung | UNIX, VMS UNTX b VM L UNIX A%V H LIBM TSO
- Systems | MS-DOS 1 I MVS VMS .

* SOR: Successive overrelaxauon
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understanding and insight into the system and the manufacturing process.

In some instances, measurements are: made directly on production systems in the field (i.e., uncontrolled
phenomena). In other instances, experiments are devised in the laboratory under controlled conditions. Fauits are
deliberatelv introduced. and their impact on svstem hardware and software is measured. Both apnroaches have
their relative advantages and disadvantages and are used by manufacturers and researchers as a basis for design
and evaluation. The lessons learned are useful for developing improved validation techniques and also to de\:'elop

fault masking and recovery methods to lessen the impact of defects on the user.

More than a dozen years of research effort have measured, analyzed, and modeled over 80 machine-years of
data. Issues ranging from the monitoring of computer reliability to the analysis of the measured data to quantify
sysiem dependability (reliability and availability) in the field have been addressed. Laboratory techniques involv-
ing a wide variety of fauit injection techniques ranging from physical fault insertion to simulation have been
developed and tested. The measured hardware and software data have been used not only to charactenize the sys-
tem reliability and fault tolerance in the field, but also to jointly characterize the interdependence between reliabil-
ity and performance. Measurement-based research has revealed the dependence of failure rates on workload, led
to the development of improved diagnosis strategies, and has also contributed to the development of accurate
modeling and validation techniques. Finally, such measurements are crucial in evaluaung the coverage of different

fault tolerance and recovery mechanisms in the system.

5.2.1. Field Measurements

From a research point of view, field measurements have provided much valuable information on aciual
tailure charactenistics and their disirbuuons. They provide esumates for parameters used analyucal models.
Some examples are component failure rates, coverages and the relative frequency of different wpes of laults.
Often, the interactions among hardware, software, and application programs are complex and hence not casily
amenable to analysis. Measurements serve as an cxploratory iool to understand the effect of faults on these

different system components and therr interactions.
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Specifically, research based on field experiments has resuited in several significant findings. First, results
have shown that the commonly used, simple exponential model is representative of only a small fraction of system
failures. Second, the failure distributions are best characterized by the Weibull function [4). Depending on the
failure type, the hazard function can be decreasing, increasing or constant. Finally, both hardware and software
failures have a tendency to occur in bursts [55]. Even though the cause of the burst is often a single fault, its
effect impacts several components leading to multiple errors or failures. Thus, unless error detection and diagnosis

techniques substantially improve, the single point failure assumption common to many system design strategies

may not be fully justified.

Importantly, the above investigations also showed that the dependability of both hardware and software was
sigmificantly affected by the operational environmznt of the system, Experimental investigations conducted to

quantify this phenomenon are discussed in the next section.

5.2.1.1. Workload Impact on Failure Characteristics

Expenmental research, based on over a decade of measurements on several generations of IBM, DEC and
other mawnframes (56, 57] has established the influence of the level and type of operational workloads on system
reliability. Measured error and workload data from IBM and DEC systems undcr-diﬁ‘ercm operauonal environ-
ments have shown that, on the average, the falure rate of a system was four to five times as hign, under heavy
workloads than at low workloads. On a dynamic level, the measurements showed that the risk of a failure at high
workloads was 50 to 100 umes greater than that at low loads. These results are significant because, even though
some (e.g., process control) computers repetitively execute the same program with effectively the same input
requests, most have aidely-varyig workloads as measured by such metrics as processor auitzauon. Thus, Lic
results brought 1nto question the validity of conventional reliability models. which do not take the aperational

environment nto account and hence added a new dimension 1o dependability evaluauon.

The dependency of reliability on workload 15 due 10 several phenomena. The first 1 referred 1o as error
fatency - As failures occur sithin a sysiem, they must be detected in order 1o aifect e statistics. Many {atiares

fie dormant for latents until a parucular module or subsystem s exercised. These latent tatits are more likels 10
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manifest during the high workload conditions since an increase in the workload implies an increase in the state
transiuons and path executions in the computgr. Thus, even if failures are not caused by increased utilization, they
are revealed by this factor. Secondly, as system utilization approaches saturation levels, a statistically higher
software failure rate results due to increased stress on these programs. Timing and synchronization problems are
also more likely to be revealed at high workioads and often these conditions are difficult to reproduce in the
laboratory. Also, many load-dependent failures occur in the area of code involved with exception handling. Usu-
ally, this section of code is not well debugged. Under high workload conditions, as critical resources get saturated
the exception handling code may be executed and reveal software faults and design errors. There is also some evi-

dence to show that higher workloads result 1n higher operating temperatures and hence 1n increased fadure rates.

The resuits of these studies are significant. They indicate that it is not useful to push a system close to its
performance limits (the generally accepted operational goal). The slight gain in performance improvement 1s more
than offset by the degradation in system reliability. Thus, classical computer reliability models need to be re-
evaluated in order to take system workload explicitly into account. This research has had a strong impact on the
modeling community. Several researchers, [58, 591 have since proposed analytcal models that take workload
variations into account. The second impact has been to bning out the importance of validation as an integral part

of the modeling process.

5.2.2. Measurement-Based Models

Given the above results, it is reasonable to ask how workload parameters can be taken into account in gen-
erating reliability/availability models. One approach is to model the workload as a daily 24 hour ¢ cle and
assume 4 hinear relatonship between workload and fadures. The cnswiry model 1s cyclostationary in nature and

has been shown to represent real system behavior {57].

Experimental research has developed methods for idenufying and building Markov models of the resource-
usage/failure/recovery process direcly from measured data. The approach uses sampled system activiy parame-
ters 1o wdenufy headers of usage which can then be wdentified ds a state i a performancesreliabthity model (o], A

sach mterval of ume the measured workload 15 represented by a pomnt :n four-dimensional space « CPU uuh/auon,
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CPU wzn:;3 for input/output, /O controller activity, and disk activity). A statistical cluster analysis technique
was used u divide the workload into similar classes. Each cluster was represented as a system state, and a state

transition diagram with intercluster transition probabilities was developed.

5.2.2.1. Software Reliability Evaluation

There has been a great deal of research in the area of software reliability evaluation and a large number of
models have been proposed. By and large, the tarm software reliability refers to the manufacture of software. The
models are usually empirical in nature and attempt to describe the reliability growth of the candidate software dur-
ing the manufacturing, debugging and testing phases. A large number of models have been developed. In general
the models can be divided into 'wo classes. The first class is based on tue number of remaining defects in the
software. The simplest such model referred to as the Jelinski-Moranda model {61] assumes that the ame i0
failure is proportional to the number of remaining defects. Also, perfect repair of a software bug 15 assumed.
There are a number of generalizations of this approach. Imperfect debugging, uncertainty in the projected number
of ininal defects, have all been modeled [62]. The vast majority of these models have been shown to be valid in
their measured environments. The second class of models (63] does not depend on knowledge of the number of
remaining defects or their distributiod. Thus, while most models assume that the failure rate s a function of the
number of remaining defects, the Littlewood-Verall model assumes th2 failure rate is a random variable with a
gamma distribuuon. Thus the software reliability becomes a Joubly stochastic process. The concept of the failure
rate as a random variable is expected to treat the uncertainty :n the efficiency of the bug-fixing process. A com-
parison of many of the existing models has been made by several rewzarchers [62. 64] using different data sets.
Although most models perform well within their own contexts, their performance varies significantly from one
data set to another. Thus, no single model can be expected to perform well under all circumstances. In other
words, the question of deciding a prior: as to what is the best model for a given situation remains open at this
stage. Additionally, few models address the question of operational reliability of software systems. Studies on the

tmpact of the operaung cnvironment on software reliability 15 given in [57, 65°




5.23. Controlled Experiments: Fault Injection

Although field data provides a rich source of information, an adequate number of machine years of data are
not always available, Fault injection is an important method to mimic the occurrence of errors in a controlled
environment that can be instrumented to make the necessarv measurements {66, 67]. Several automated tools to
allow both physical and simulated faults have been developed both in academia and in industry. Some of the

measurements of interest are latency [67] and coverage (63, 69].

There are numerous theoreticat and practical difficulties associated with making measurements. The ques-
uon of what to measure, and how to measure it, is indeed a difficult one. From a statistical point of view, sound
evaluations require a considerable body of data. The usual assumptions regarding uniform populations and sta-
uonarity may not fully hold in computing environments. Fault-injection experiments have known input error dis-
tributions but the question remains as to how representative of .aaturally-occurring errors are those that are selected
for injecnon. The success of such experiments depends on the choice of fault models, a realistic workload, and

finally, valid experimental design.

6. Commercial Fault-Tolerant Computing

Fault-wicrant computing has evolved from specialized military and communications systems to seneral-
purpose, high-availability commercial systems. The evolution of fault-tolerant computers has been well docu-
mented {4, 76]. The earliest high availability systems were developed in the 1950's by IBM, Univac, and Rem-
ington Rand for military applications. In the 1960’s, NASA, IBM, SRI, the C. S. Draper Laboratory and the Jet
Propuision laboratory began to apply fault tolerance (o the Jdevelopment of guidance OMPULSTS (0T JCrOSpacy

applications. The 1960°s also saw the development of the first AT&T electronic switching systems.

The first commercial fault-tolerant machines were introduced by Tandem Computers in the 1970°s for use
on-line transacuon processing applicauons [71]. Several other commercial fault-toierant systems were introduced
m the 198G°s {72} Current commercial fault-tolerant systems include distributed memory muit-processors an-

=

dem NonStop {731, Tolerant Eternuty {74)), shared-memory transaction-based systems (Sequoma 7St “parr-and-

spar* hardware fault-tolerant systems (Stratus [76], DEC VAXft 3000 {75]), and tniple-modular-redundant
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systems (Tandem Integrity S2).

Most applications of commercial faul -tolerant computers fall into the category of on-line transaction pro-
cessing. Financial institutions require high availability for electronic funds transfer, control of automatic teller
machines. and stock market trading svstems. Manufacturers use fault t.lerant machines for actomated “ctory con-
trol, inventory management, and on-line document access systems. Other applications of fault telerant machines

include reservation systems, government databases, wagering systems, and telecommunications sysicms.

Vendors of fault tolerant machines attempt to achieve both increased system availability and continuous pro-
cessing. Depending on the system architecture, either processes continue to run despite failure: or the processes
are automatically restarted from a recent checkpoint. Some traditional systems have enough r dundancy to
reconfigure around failed components, but preszsses running in the failed modules are losi. Vendnrs of commer-
cial fault-tolerant systems have extended fauit tolerance beyond the processors and disks. To make large improve-
ments in reliability, all sources of faiture must be addressed, including power supplies, fans and inter-module con-

necaons.

The Tandem NonStop and Integnty architecture. will be descnibed to illustrate two current approaches to

commercial fault-tolerant computing.

6.1. Tandem NonStop Systems

Tandem NonStop systems are designed to continue operaton despite the falure of any singie haraware
component. In normal operation, each system uses its major components independently and concurrently, rather
than as "hot standbys.” Figure 11 shows the architecture of the NonSwp Cyclone system. A svsfem consisis of
up to 16 processors interconnected by dual busses. Each processor has its own memory which contains a copy of
the message-based Guardian cperaung system. Each processor controis one or more [0 busses. Dual-porung ot
I/O controllers and devices provides multiple paths to each device. Disks may be mirrared to mantamn redundant

permanent data storage

“onStop, Guardian, [ntegnty $2, NonStep Cyclone and NonStop V+ are trademarks of Tandem Computers. Lacomora. d
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Each module has self-checking hardware to provide "fail-fast” operation -- either a module operates
correctly, Or it Stops to prevent contamination of other modules. Faults are detected by parity checking, duplica-
tion and comparison, and error detection codes. Fault detection is primarily the responsibility of the hardware,

while fault recovery is the responsibility of the software.

Processes under Guardian may run as process-pairs. A primary process runs in one processor and a backup
process runs in a different processor. The backup is usually dormant, but periodically updates its state in response
to checkpoint messages from the primary. A checkpoint can take the form of a complete state update, or as a
delta checkpoint which communicates only the changes from the previous checkpoint. Originally, checkpoints
were manually inserted in application programs, but currently most application code runs under transaction pro-
cessing software which provides recovery through a combination of checkpoints and transaction two-phase commut

protocols.

When a processor fails, the failing processor is identified by the absence of periodic "I'm Alive” messages.
Guardian directs the appropriate backup processes to begin primary execution from the last checkpoint. New
backup processes may be started in another processor, or the process may be run with no backup unti the

hardware has been repaired.

Each [/O controller is managed by one of the two processors 0 which it is attached. Management of the
controller is periodically switched between the processors. If the managing processor fails, ownership of the con-
woller is automatically switched to the other processor. If the controller fails, access to the data 1» maintuned

through another controller.

in addition to providing hardware fauit tolerance. process pairs provide some measure of software fault
tolerance, When a processor fails due to a software bug, the backup processes frequently are able to continue pro-
cessing without encountering the same bug. The software environment in the backup processor typucalls has
different queue lengths. table sizes, and process mixes. Since most of the software bugs cscaping the software

quality assurance tests involve infrequent data dependent boundarv conditions. the backup processes often succead.

Conunuous operatton requires the capability for fauity modules to be wdentfied. servteed. and ramtegrated

while the system 1s on-line. A fault-tolerant diagnosuc system monitors system operation. solates the most hkely
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failing module, and optionally dials a remote center to request service. Modules such as processor boards, con-

wollers, disks, rfans, and power supplies may be replaced on-line.

6.2. Integrity S2

The Integrity S2 illustrates another approach to fault-tolerant computing. $2, which was introduced in 1990,
was designed to run a standard version of the UNIX operating system. In systems where compatibility is a major

goal, hardware fault recovery is the logical choice since few modifications to the software are required.

A diagram of the Integrity S2 system is shown in Figure 12. The processors and local memories are
configured using triple-modular-redundancy (TMR). All processors run the same code stream, but clocking of
each module is independent to tolerate faults in the clocking circuits. Execution of the three streams is asvnchro-
nous, and may drift several clock periods apart. The streams are re-synchronized periodically and during accass of

global memory. Voters on the TMR Controller boards detect and mask failures in a processor module.

Memory is partitioned between the local memory on the wriplicated processor boards and the global memory
on the duplicated TMIRC boards. The duplicated poruons of the system use self-checking techniques to detec:
failures. Each global memory is dual ported and is interfaced to the processors as well as o the O Processors
(IOPs). Each IOP controls a NonStop V+ bus. Standard VME peripheral controllers are interfaced to a parr of
NonStop V+ busses through a Bus Interface Module (BIM). If an IOP fails, the BIM switches conmrol of ail con-

trotlers 10 the remaining IOP. Mirrored disks may be attached to two different VME controliers.

In Integrity S2, all hardware failures are masked by the redundant hardware. After repair, components are

remntegrated on-line.

The preceding examples have shown ways in which commercial vendors have incorporated fault tolerance
into data processing systems. Approaches involving software recovery require less redundant hardware. and oder
the potenual for some software fault tolerance. Hardware approaches use extra hardware regundancy to allow fuil
compatibihiy vith siandard operating systems and o wansparently run apphications which have heen dou crped on

other systems. Commercial fauli-tolerant computing will zrow in IMPOTIANCS A8 COMPanics orow moreaieh
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dependent on the correct operation of their computer systems.
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