
June 1991 UILU-ENG-91-2232
CRHC-91-22

Center for .Rdiable and High-Performance Computingl
AD-A238 266

| FAULT-TOLERANT
| COMPUTING: AN OVERVIEW
I

IE R. K. Iyer
J. H. Patel
W. K. Fuchs
P. Banerjee DTIC
R. Horst #%ELECTE

UL03 19g t'u

I 91-03753

Coordinated Science Laboratory

College of Engineering

I UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Approved for Public Release. Distribution Unlimited.

SlCIJAITY CLASSIFICAIIUN UP IIJ)AIJI;

REPORT DOCUMENTATION PAGE OWN6 AI

1b.~OM@ RESRITIE MRKNG
1I4. RPORT SECURITY CLASSIFICATION Nb. eICVEMRNS

Unclassified Nn
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION IAVAILABIUTY OF REPORT

I - Approved for public release;

2fb. DCLASSIFICATION/DOWNGADING SCHEDULE distcribution unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S S. MONITORING ORGANIZATION REPORT NUMBER(S)

UILU-ENG-9 1-:2232 CRHC-9 1-22

6s. NAME OF PERFORMING ORGANIZATION r6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

Coordinated Science Lab (ifai ~ NS,'/ SRC /JTS EL

University of TIllinois _________________________

6C. ADDRESS (C01Y, Stat, a&W ZIP 1Cd) 7b. ADDRESS (City, Stat a&W ZIP Co*.)

1101 W. Springfield Ave. . NASA: Hampton, Virginia 23665

Urbana, IL 61801 SRC: Research Triangle Park, NC 27709
JSEP: Arlington, Virginia 2.2217

I&. NAME OF FUNDING I SPONSORING 8' b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMPER
ORGANIZATION (if appkabile) NASA: NAG-1-613/ SRC: 90-DP-109

NASA/SRC/JSEP [I_______ JSEP: NOG 1.4-90-J-1270

6L. ADDRESS (City, Stat, and ZIP Cade) 10. SOURCE OF FUNDING NUMBERS

NASA: Hampton, Virginia 23665 PROGRAM IPROJECT TASK IWORK UNIT

SRC: Research Triangle Park, NC 27709 ELEMENT NO. NO. NO. JCCESSION NO.

JSEP: Arlington, Virginia 22217 II
11 . TITLE (Inclde Secuniv Claw flcatzon)

Fault Tolerant 'orputing: An Overview

12. PERSONAL AUThOR(S)

R.K. Iver, J.l{. Patel, W.K. Fuchs, P. Banerjee and R. Horst

13a. TYPE OF REPORT 113b. TIME COVERED j14. DATE OF REPORT (Year, MMhDy S1 AE COUNT

Technical IFROM TO 3.:8

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 1S. SUBJECT TERMS (Cotinue on rvv if neconary and edhnail by bkxA nuflm.,)

FIEL GRUP SB~GOUPfault tolerance, reliability, test generation, simulation,

modeling, measurement, and 'commercial dIesigns

19. ABSTRACT (Continue an mvevi if wnceaiy ant idenfyj by bdock number)

The purpose of this report is to outline the major concepts arnd developments in the area of fault-tolerant
rotIing., Both hardware and software fault tolerance sisies are addressed The topirs 'cnvpred(indlide.

recovery blocks, design diversit), and checkpointing and recovery are also discussed. Major issues in modeling

20. OiSTRIBUTION/ AVAILABILITY OF ABSTRACT I1 ABSTRACT SECURITY CLASSIFICAION

OUNCLASSIFIEDUNLIMITED 03 SAME AS RPT C0 OTIC USERS Unclassified

22aNAMIE OF0 RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Alea Code) 22c. OFFICE SYMBOL

Db Form 1473, JUN U ftviaw edftions ane 000100 . SECURITY CLASSIFICATIION OF THIS P/

3 UNCLASSIFIED

I2

I
i

Fault Tolerant Computing: An Overview

R.K. Iver, J.H. Patel, W.K. Fuchs, P. Banerjee and R. Horst"

Center for Reliable and High-Performance Computing

Coordinated Science Laboratory
University of Illinois at Urbana-Champaign

Urbana, IL 61801

3-June 18. 1991

I
S
U
I
I

U I ;I work wva.s .-ipporttd by NAbA grant NAG-1-613 at tht Ilhnoi , (:omptter L.LbUrAtur% r .\erO.l.,: .4:.flts

.Ml -ofwtir,, -[CL.\SS). t NASA Center of Excelhunce. the Simiconductor Resarch Cu:rporttfion tnter tzilt I(
i uDI-P'. and th ,' IrAnw -,prrvices Electronics Program (I.S. Army. 1'.S. Navy, and I'.. Air Force, intdr coutract

N00014-90-J- 1270.

U

U
I
I
I
I
I
U

Abstract

The purpoie of this report is to outline the major concepts and developments in the area of fault-tolerant
computing. Both hardware and software fault tolerance issues are addressed. The topics covered include
module, function and system-level fault detection methods, redundancy and reconfiguration strategies. valid
fault models, and coding and checking in computer systems. Software fault tolerance methods such as

recoverv blocks, design diversity, and checkpointing and recovery are also discussed. Major issues in modeling
and evaluation of fault-tolerant systems are outlined. The design of two successful commercial system, is

I disc ussed.

I

Acoession ?or

PTIS
DTIC 7A3 0
Unannounced Q
Justificatio

Distrbutoa/ __

Availability CodosU Dit - Avail and/or
Dist iSpecial-Il[

U
U
U
I

I.
I
I

I
U

I C.pyr,~4 ht @R.K. Iy.-r. .J.H. Pat.~Z W.K Fuci~s. P. Banerj-'~ 1u(I R. Har-t.

I
I
I
I
3

U
I
I
I

1. Introduction

The study of fault-tolerant computing has paralleled the development of modern computers. One of the very

early contributions was due to von Neumann (1], the designer of the first stored program machine. Von

Neumann's work addressed the question of synthesizing reliable computers from unreliable components and

developed the ideas of redundancy and replication that are common in many computers today. Strong impetuc for

fault tolerance came from the space program in the early 1960's. There was the need to build systems that would

survive without naintenance for extended periods of time. Manned space flights provided a further boost to fault

tolerance. Reliability techniques advanced rapidly during this period. In this initial period, interest in fault toler-

ance largely remained the domain of the space, defense and telephone industries. With the rapid introduction of

computers inte all areas of science, business and the humanities, that domain of interest has broadened

significantly. High reliability and availability have become critical for efficient functioning of our modem society.

In this regard. the development of VLSI techniques has provided a major impetus to the advancement of fault-

tolerant computing VLSI designs have made replication and redundancy both cost effective and practically feasi-

ble.

In the past twenty years, fault-tolerant computing has matt..ed into a broad discipline encompassing many

aspects of computer design. This article is intended to provide the reader with an overview of the different thrust

areas which encompass hardware and software fault tolerance. Three factors drive the interest in fault tolerance:

first is the need for high reliability: second is the need for high availability. (For example. AT&T's ESS switch-

ing systems have an availability requirement ot less than 2 minutes of down-time per year.) Third is the direct

impact of a loss in reliability on system performance (also referred to as performability).

This article is divided into six sections. Section 2 deals with the broad subject of hardware fault toleranc..

:mportant charactensucs of hardware fault-tolerance techniques such as hardware. intormation and :im rMun-

dncy and the development of self-checking circuits are discussed. The question of software fatt tolerancc is dis-

cussed in Section 3. This is an important area sinc.e software failures are fast becomine the dlominant faduii. mode

in comples computer iystems. The .Apollo and ,hutle rnissionN aborted djue to %olt.arc iiti.,,. Rmutts t. .,x .ofn

f te \T&T ietwork were virtually paralyzed due to a software bug. Section 4 addre: ,c: .,ue,umn, .it io' ting

U

U
and design for testability. Basic to the design of fault-tolerant systems is the availability of defect-free parts.

E Efficient testing strategies are critical to determine the presence of defects and faults. Section 5 addresses the

i question of evaluation, an issue which is critical from both the designer and the user perspective. Methods and

tools to determine the dependability of the overall system, and to make ccaparative evaluations are discussed-

I Both, analytical and measurement-based methods are outlinea. The final section discusses the design of two suc-

cessful commercial fault-tolerant systems.I

3 2. Hardware Fault-Tolerance Techniques

3 A reliable computer system needs to provide its normal level of service in the presence of hardware and

software faults [2]. There are two philosophies of achieving this reliability: (l)faudt avoidance, which is any tech-

U nique to prevent the occurrence of faults in the first place; (2) fault tolerance, which is any technique to allow the

system to behave normally despite the occurrence of faults. Fault tolerance can be implemented using one of two

Ibasic approaches: (I) fault masking, where the system masks the effect of a fault through some iorrn of majority

voting; (2) fault detection and recovery. whee a system has a method for first detecting the presence of a fault.

subsequently locating where the fault has occurred. next isolating the fault, reconfiguring in a spare, and restartng

3 the system [3].

This section will describe fault-tolerane techniques for hardware faults. Hardware fault-tolerance can be

achieved through the use of some form of redundancy (4]: hardware redundancy (uch as spare hardware); time

3 redundancy (such as repeating operations in time on existing hardware); information redundancy (such as some

o.rn of zoding); algorithmic redundancy (modifying the algorithm runnzng in parallel hardware %,th extra. .eps';

3 and ioftwa-e redundancy (such as extra lines of software code). We will discuss the basic tehniqucs used each

of these approaches for hardware fault-tolerance in both uniprocessor and multiprocessor systems.

3

3

2.1. Hardware Redundancy

There are three basic forms of hardware redundancy: passive, active and hybrid [41. Passive hardware

redur.dcncy relies on voting mechanisms to mask the occurrence of faults by using the concept of majority voting.

They do not need fault detection or system reconfizuration. The most common form of passive redundancy is

called triple modular redundancy (TIMR) which triplicates the hardware necessary to perform the required opera-

tions and uses a voter to determine the output of the system. In this approach, the primary difficulty is the voter-

If that fails, the entire system fails. A common approach to avoid this problem is to use three voters and provide

three independent outputs. Figure I shows the two forms of TMR. Se a ral stages of TMR can be interconnected

Module I

inpu Output

Moduie 2-

Moddiie 3

T.A) Rwi onc v)Ecr

ZI

2 Module 2 N/ on- -

N,: p:t "._! Voter i

] O- mu, 3

Module 3 Vot 3;3

,' TMR ,v:: -3vtr

FIGURE 1. Triplication and voting.

4

I

U
using this Vach by connecting the outputs of the voUs of one TMR stage via the inputs of modules of the

U next TM stage. The voting can be performed by either a hardwae vot (which can perform the voting very

I fast, but requires a lot of e.ta hardware logic) or a software voter (which is performed on some existing proces-

sors performing normal computations as well, but this approach is generally slow). A generalization of the TMR

I approach is N-modular redundancy (NMR) which uses N copies of a module instead of 3. The NASA Space

Shutfle onboard computer system uses four computers on which a majority vote is performed.

I Acve hardware redwdancy allemps to achieve fault olerance by fault detection, fault location, and fault

I recovery. The most common form of fault detection is duplication and companson which uses two identical

copies of hardware, having them perform the same computations in parallel, and comparing the results as shown in

I Figure 2. One of the commercial products from Stratus Computers uses a pair-and-spare approach .4here two

duplexed components are used for self-checking and fault tolermce. Two processor boards are used. where each

E board contains a pair of microprocessors used in duplicate and compare mode to check themselves.

Another form of fault detection includes off-line fauit diagnosis, which involves applying a set of test inpu.

patterns to various components of tie system and comparing the outputs to the expected outputs for cach cor-

3 ponent. Other forms of fault detection include periodically interleaving normal computations with diagmostic tests.

or using self-checking hardware as will be described later.

I A second form of active redundancy is called standby sparing where one module is operational and one or

more modules serve as standbys. or spares. Various failt detection schemes are used to determine when a modul

has become faulty, and fault location is used to determine exactly which module is faulty. The reconfiguration

3 operation in standby sparing can be viewed coi.ceptually as a switch -,Hse output is scle-ed from one of ,he

modules providing inputs to the switch. Standby sparing can bring a system back into fall operauon after

i ccurrence of a fault, "ut it requires that a momentary disruption in performance occur hi!¢ reconnigumtion is

performed. If the disruption of processing must be minimized, hot standby sparing cn be used. % here the spares

operate synchronously with the on-line modules, and are prepared to take over at any tme. Cold standby iprini

3: cs unprwered spares zhat must be powered up and initialized prior to bringing the modulc into -cuve n-ce.

7he advantage of cold sparing is that spares do not consume power until needed to replace a f.uitv module. A kev

I
I

Module 1 Output I

Input mah

i 1cSComparator,

i I I

Module 2 __-

,l I

Figure 2. Duplication and comparison.

advantage of standby saring is that in a systcm containing n identical modules, such as a multiprocessor, fault

tolerarce can be provided with -k < n spare rodules.

H'ibrid hardware redundancy combines the attractive features of both the active and passive approaches.

Fault king is used to prevent the system from producing erroneous results, and fault ,!tee:'-. :'.catio ind

reco - : .rxe used to reconfigure the system in the event of a fault. The most common form of hybrid redundarcy3

is -'ii ' mdular redundancy with stres. in this approach. a basic core of N x!-ic, :odu ,f . ,..

COfli .rihorn. in additzo. spares are provided t replace faulty unts n the NMR core.

6

I

Z.2. Informatio Redundancy

Infomation redundancy is the addition of redundant informanon to data to allow au-lt dejecon, fault mask-

King, and fault tolerance. Examples of inforxaion edundanCy ae error detecting and correcting codes (ECC). A

code's error detection and correction roperties are based on its ability to partition a -r of 2* n-bit words. each

Un-bits wide, into a code space of 2m words and a noncode space of 2x-2" words. Each code Ls constrxctedsa

that a given number of error transforms a code-spam word into a word in a noncode space. Errors are aerteced

by decoding circuits that identify smy word outside the code spae. Eror correctiuo is performed by more exten-

U sive decoding that ,miquely associates a noncode space word with the original cde word transformed by the

3 An example of an error detecting code is the parity code. where given an n-bit word. c anttcres an ext-a

bit to convert it to an even or odd parity word. Any single bit error in the parity coded word will be detected by a

U simple decoding circuit using a set of XOR gates

3 Within a single word the number of errs detectable or conrectabe s relaed to te minimum s -,auon or

Hamming distance berween the words of a Code space, which is the minimum number of bit positions by %huch

3 two words from the code sopce differ. Codes that new to detect d errors need to have a Hammnr distance ot

d -11. and -codes that nee to conect c errors need a Hamming distance of 2--l- Error dezecuon and cor-toVn

S codes vary widely in detection and corretion properhes. encoding and decoding complexity. and code cffic:ency.

3 The most commonly used codes am the pahty check codes that are charactnrized by t.e par;.; eck mah i.

H. For example, consider a length-6 code, n = 6. with thre information bits, k = 3. and ftee check bits. r = 3.

3 Th two !- mawices in Figure 3 provide -e same er,-ror-c-rrecting prooe.rtv Since all the columns arc J-'v=c; -.

code can correct all single bit errors, but the parity check circuit for HI is less complex than H- H1 requires

3the 2-,ut XORs n Zomnute h. pam" ctts. w-ereas H. requires two 2-i XORs. .md n --n -- O R.

hence the encoderldcoder far the H2 code will be slower mand more complex.

in hgh-snee memonres. ungtc-bat err-coarctng -r.i O ,r-c,,"-,-.... .

3 moc common.-- sd. T-his i s bec-ause most s micod-uctor RAM" are ..

a ume. therefore the faiiure of one chip mandfests itself as one-bit error. Parity coik- rxk- uc:! rou:;ncko:I
B

H;1 0

ci
2

J A

~'OF

c.

rieurec1 Di vi~ ccx- -nruces for two sample ale

conpwen wo chokc taus in owsm. memoy a1d eguusm Cyclic e~dtdcy chewk re used to detec erc"r in

co~nu~ain hnni. s addisks -'ro- odsdc ros in cauo stor meu~ rthrne-c

Jct..- in antlnx" Unit IMIE I=klcn and msirxpbrsr-. Fow imor nfoa.m.uon about C=OuIuI-Iug

CMI l$ IIjAswms di :-d mf - 36
Ste' -r g la-t designs use dhe ro derecwug codes and some e-xtra- hardware to & Il.atz!! zi

:rms t.hat 6C 'n- POain t oIftS;las~tm Eahfch cc kin-z !mcirhs ct 1U

A tuuta s'cd as fau-secux m c any sn~ed fault Winn dhe Ccral - Cruinee i K5a

incretntu code word w =-n stimulad by a corc iput code Wourd. A Se"4510 c-'- 'spm nncd

3I

word for at least one code word input for each possible faul. A totally self-checking circuit has properties of both

fault-secure and self-testing circuits [8]. Self-checking circuits have been used widely in the AT&T Electronic

Switching Systems 3A processors.

2.3. Time Redundancy

The basic concept of time redundancy is the repetition of computations two or more times and comparing

the results to determine if a discrepancy exists. If an error is detected, the computations can be perform, again to

see if the disagreement remains or disappears. Such approaches are good for detecting errors due to transient

faults, but cannot protect against errors resulting from permanent faults.

Another form of time reduniancy to handle permanent faults modifies the way the computations are per-

formed the second time. One approach uses alternating logic for self-dual combinational circuits 19], which per-

forms a function on some set of inputs in one time instant, and performs the same function on the complemented

input in a subsequent time step, the output of which should be the complement of the original function value of

the original input. If the second value of the function is not the complement, an error is detected.

The second approach uses recomputing with shifted operands [10], which is applicable to bit-sliced organi-

zations of hardware. In the first time step, the normal computation is performed on the operands and the results

stored in a register. In the next time step, the operands are shifted left by kbits, and the output is shifted right by

k bits and compared with the result of the previous computation. Any error in k-1 consecutive bit slices of an

arithmetic or logical operation will be detected by this method. The additional hardware requirement is the three

shifters, the storage register to hold the results of the first computation, and the comparator..

A variant of this method is called recomputing with swapped operands, where in the first time step, the

operation is performed in the normal form. In the following time step, the upper and lower halves of the operands

are swapped such that a faulty bit slice operates on opposite halves of the operands in two computations. The

additional hardware requirements are in the form of several multiplexers, a storage register and a comparator.

9

2.4. Algorithmic Redundancy

A relatively new approach to fault tolerance is the use of algorithm-based fault tolerance which is useful in

developing low-cost techniques for error detection and fault tolerance in parallel processor systems while perform-

ing specific computation-intensive applications [111. Contrary to conventional data encoding, which is done at the

word level in order to protect against errors which affect bits in a word, in algorithm-based approaches, data is

encoded at a higher level. This encoding can be done by considering the set of input data to the algorithm and

encoding this set. The original algorithm must then be redesigned to operate on this encoded data and to produce

encoded output data. The redundancy in the encoding would enable the correct data to be recovered or, at least, to

reco,,ruz., that the data are erroneous. This technique has been applied to systolic arrays performing a variety of

computations such as matrix operations, Fast Fourier Transform, matrix equation solvers, sorting, QR factoriza-

tion, recursive least squares, filtering, and singular value decomposition [12].

We illustrate the application of an algorithm-based checking technique by an example: the muluplication of

two N x N matrices. In the checksum encoding, an extra row and an extra column are appended to the original

matrix, which are the sums of the elements of the columns and rows, respectively [1 I]. After the matrix-matrix

multiplication is performed, the result matrix also preserves the checksum property. If there is an error in the

result matrix element (i j), it will be identified by verifying the equality of the sum of the row elements with the

checksum for row i, and by verifying the equality of the sum of the column elements with the checksum for

column j. Once the erroneous element is identified, the correct element can be reconstructed by taking the sum of

all elements of that row (column) except the erroneous element and subtracting this sum from the row (column)

checksum. This is illustrated in Figure 4 which shows a 5 x 4 row checksum encoded matrix multiplied by a 4 x

5 column checksum encoded matrix on a 5 x 5 processor array having row and column broadcasting capabilh to

produce a 5 x 5 full checksum matrix.

Recently algorithm-based checking techniques have been applied on more general-purpose multiprocessors

such as hypercubes [13]. Studies on actual measurements of various algorithms on a hypercube have revealed that

it is possible to get very high error coverages (90-95%) for detection at relatively low cost l0-15r; timc .xer3

head).

I0I

I
I

b b32 b3 b3 b5

b b b b bIKey., 31 32 33 34 ' 35

[] =P oc s; r2.. 22 23 24 , 25
Ir c s o rI b b b , b

V .L,, . L4/' 1 1 l 12 13 14 , 15

34 33 32 31

a 54 a 52 a 51 " T"-,

I

I 3

3 Figure 4. Algorithm-based fault tolerance for matrix multiplication.

2.5. Software Redundancy

3 In applications that use programmable computers, many fault-detection techniques can be implemented in

software as several extra lines of code to verify the consistency of a result, such as to check the magnitude of a

3 signal., A consistency check uses a priori knowledge about the characteristics of information to verify the correct-

ness of information. In Randell, [141 such checks are application specific.

Capability checks are often performed to verify that a system possesses the capability expected. For c.aim-

3 pie, if a processor has the privilege of reading or writing to a set of regions in mcmcr, under the presence At an

addressing fault. Another form of capability check is used to verify if a can execute a ,pecificI
I1I

instruction on specific data.

3. Software Fault Tolerance

Software plays a crucial role in a computer system's ability to tolerate design, manufacturing, and wear-out

faults. Faults in software are typically due to problems in design or implementation, while faults in hardware can

be due to design, manufacturing, wear-out, or environmental upsets. This section presents an overview of the

ways in which software design and implementation techniques can be used to detect and tolerate both software

design errors and hardware faults.

The development of highly rnliable software necessitates more than just software fault-tolerance techniques.

The development process must include rigorous application of fault avoidance approaches, which include the

correct use of formal specification languages, structured programming, formal proof of correctness, and extensive

testing at all levels of implementation. Design for fault avoidance is a necessary prerequisite for effecuve software

fault tolerance (2]. Software fault tolerance addresses the issues of detecting and recovering from residual design

and implementation errors in the software and detecting and reco-v:ring from wear-out and environmentally-

induced hardware faults.

3.1. Detection and Recovery from Software Faults

The fundamental approach to detecting software design errors is through exploiting diversity. Diversity in

implementation and design can be in the form of acceptance tests, executable assertions, alternative software

modules, or full diversity through designing and implcmenung multiple versions of the complete soft-,arc b%

different teams of software engineers. Diversity can be captured through encoding knowledge of the expected

behavior at various levels of the software and then comparing what is expected against what is observed. ThS

encoding of knowledge can be at the level of the process outputs, intermediate results, system behaxior. or

expected algorithm behavior. The two primary approaches to software fault toleran,, that pro,,d. . ompicte

framework for capturing diversity in both design and implementation, as well as provtitin' formal mechan,.

12

I

error detection, error containment, and recovery, are: (1) recovery blocks [14]; and (2) N-version software [15].U
3.1.1. Recovery Blocks

3 Recovery blocks, as developed by Randell [141, implement diversity in the form of acceptance tests and

alternative software modules. Software is partitioned hierarchically into self-contained modules called "recovery

blocks." Each recovery block validates its own operation and either returns correct results or notifies the system

I of an error. As illustrated in Figure 5 [16], each recovery block is composed of an acceptance test, the primary

alternative software module, and the secondary software modules. The acceptance test is used to determine the

3 correctness of a software module's results (error detection) and the alternative modules provide recovery from a

detected error. Diversity can be captured in both the acceptance test and the secondary alternative software

* modules.

!
Error Recovery

Block

Erro Conain enter Point

I Primary Secondary Secondary
Alternative [Alternative .. Alternative

Module [cModule Module
#N

Fet

Error Containment]Pass

Boundary1

I Figure 5. The recovery block approach to software fault tolerance.

! 13

An example of the acceptance test and alternative modules employed in recovery blocks can be seen in the

following sorting algorithm described by Randell [14].

ensure sorted (S) A (sum(S)=sum(prior S))

by quickersort(S)

else by quicksortkS)
else by bubblesort(S)

else error

The acceptance test should verify that none of the elements have changed and that the elements are, indeed, sorted.

The primary algorithm can be the most efficient preferred algotithm, while the alternatives may be less efficient

and are invoked only if the primary module results in an error.

Note should be made that the recovery block approach can also be implemented with distributed or parallel

architectures in which the alternatives are initiated in parallel with the primary module. Also, full design diversity

can be implemented if a formal specification forms the basis of each recovery block and diverse programming

teams develop the alternative modules and diverse acceptance tests.

3.1.2. N Version Programming

The N version programming approach to fault tolerant software has been extensively de.,ribed by Avizienis

(151. N version programming differs from recovery blocks in that it employs design diversity at the software sys-

tem level through designing and implementing multiple (N) versions of the software with different teams of pro-

grammers. Instead of employing an acceptance test, N version p'ogramming utilizes voters to reach a consensus

of two or more outputs among the N member versions. This approach ner..ssarily must rely on diversity in the

design to detect programming errors in the N versions of tht. software. If diversity is not enforced in the &,sign

and implementation, there may be an undetected or unrecoverable failure due to a single cause. Both the rco'terv

block and N version programming approaches require a reliable execution environment ior voung or exccuting

assertions -nd for time-efficient execution of the software modules.

tW

I

3.1.3. Error Detection Techniques

I Although recovery blocks and N ver on programming are the best known approaches that provide complete

3 frameworks for software fault tolerance for programming errors, there are also a widt variety of individual tech-

niques that are commonly employed outside of these frameworks. Examples of these techniques in:'lude accep-

tance tests and executable assertions that are commonly used to detect anomalies due to either programming errors

or hardware failures [18-22]. Fail-stop tests, such as timers for detecting time-out conditions, are also co, mmon.U
3 3.2. Software Approaches to Detection and Recovery from Hardware Faults

I 3.2.1. Masking and Voting

The N version programming approach is directly applicable to detection and recovery of hardware faults

when the muluple versions are executed on different hardware units. This is a variant of the classic NMR (TMR,

form of fault tolerance a- described earlier in this article. It is possible that hardware faults can be tolerated even

3without diversity if the hardwa-e ant software are replicated N times and the voter is designed to be fault tolerant.

However, the application of design diversity to both the N software and N hardware units can provide a line of

defense against software programming faults, hardware design faults, environmental upsets. and wear-out fa uits

I 131.

S 3.2.2. Assertions and Alernative Execution

The recovery tioc!: approach is also direcuy applii.° '11- fn del-ction and recovery from nardware failures, as

,as fron. programming faults. As descitbed elewi,,. in this article, recent algo- thim-pecinc .ech.siuo.; ;or

3 encoding inputs and checking expected outputs (a.gorithm and behavior-based fault tolerance) have ',.n

developed for detection and recovery from hardware faults. These algorithm-specnc applc.c!c., ire a ,.ombiiia-

3 tion of hardware and -:ofware fault tolerance in that they employ a,.gorithm modificat-on. f,,r detection dd

ecover, rmm hardware faiurcs.

I
m is

I

3.2.1. Fault-Tolerant Data Structures

Linked data structures nrovide a specific example of specialized techniques for error dtection and recovery,

The initial work concerning detection of -- in links (structural integrity) utilizing redundant links was

developed by Taylor, Morgan and 91,j,". -',.ton and correction algorithms for data ztructureq. when t-zed

concurrently with norn.al data structure d. iJJally degrade performance. If data structure checking opera-

tions are performed in a small locality aroun. urrently accessed node then error detection and correction can

potentially be performed concurrently with :1 data -tructure accesses without severely degrading the system

performance. In addition, an arbitra numbei 3f errors in the data structure may be detected and corrected assum-

ing not too many errors exist within , giver locality.

One example of such a technique for detecting and correcring structural errors in data structures is the vir-

tual backpointer [24]. The virtual backpointer provides the capabilities of structural error detection and correction

as well as the generation of backpointer values used in backward traversals. The Virtual Double-Linked L1,

.VDLL) is a uniform data structure that employs the virtual backpointer f,- local error ,ctectio and correction

ad for backward traversals. The VDLL requires the same storage spac as me standard double-linked list (DLL),

and retains the simplicity o, die DLL, since it is possible to move directly from a node to its parent, using the vir-

wal backpotiner. In addition, the VDILL has enhanced error detection and correction capabilities over the DLL.

An exampke of the VDLL is shown in Figure 6. In addition to the normal forward pointer, a virtual backpointer is

stored in each node. The virtual backpointer is a function of the address of the previous (back', node and :ie

current forward pointer. It can be shown that it is possible to detect any two errors in a VDLL and correct -y

single error for forward moves.

3.2.3. Reexec.::t, Through Checkpointing and Rollback

Checkpointing is an important technique for recovery after error detection by means of rollback reexecuuon

of a process. Checkpointing schemes can be broadly classified as full or incremental .hcckpoin,;n. ,h -,.

.aves the entire active state space of _ process while the latter saves the difference beteer me ic. urrent amd a pre% --

ous state space. A checkpointing scheme can be implemented at the system or appltcaton keci.

lo

I
i

I
P A i'Po:

TKC
;U,*

Aij P1 IPIaEAo

I E
A2 P2 IP2OAII

A3 P3 P3,0A21

IA 4 IfP4 1 4fA3

3As PSI P5SC.-A41r -I --1
3 A-. P.. P.es

Figure 6. Example VDLL robust data smcmre.

Research on classic cl .-pointing and rollback recovery has been extensive [16-20]. Graph-,'k retic

U methods by which the programmer can decide where to insert checkpoints have been d.veloped. The program is

decomposed by the programmer into a sequence of tasks between which the checkpoints can be inserted. It is

assumed that the executicn time, the checkpoint time, and the recovery time of each of these tasks '.-", 1-"vn in

advance. With this information, the algonthms can determine the opumal places to insert checkpoints so that the

maximum checkpoint time, the expected checkpoint time, or the expected run time is minimized.I
I 3.2.3.1- Compiler-Assisted Checkpointing

Compiler-assisted techniques for implemcnu.ng a checkpointing scheme have recntl been developed [25.

3 This approach can achieve, in some instances, both programmer transparency and reduced chcckpoint size without

modification of the hardware or operating system. Compiler-generated .parse potential ,:hckroint oe , . .cd to

3 maintain the desired checkpoint interval. The compiler-assisted approach to chcckpointing uuiizes several meas-

urement and a- ptive learning techniques to exploit periodic reduction in memory requirements to rcduce the size

17I

of checkpoints, when possible [25).

3.23.2. Error Detection and Recovery in Distributed Systems

Fault tolerance in distributed systems has long been the focus of extended research [26-291. Practical appli-

cations of this research include distributed databases and real-time systems. Important elements in fault-tolerant

distributed systems include reliable communication and synchronization protocols, reliable storage media and

storage algorithms (replication), and reliable individual processing nodes [.6].

One of the important cancepts in distributed systems is that of atomih actions and commit protocols. They

are used to ensure the completion or rollback of transa.Aons. Nested transactions have been proposed as a

mechanism for encapsulating the synchronization and failure properties of distributed systems [261. Recovery in

distributed database systems is often implemented through rollback of transactions and use of shadow paging or

undoing a write ahead log. Network partitioning and data replication have also been used to tolerate node failures

[29]. Examples of protocols developed to deal with data partitegning and replication include weighted voting,

majority consensus, and quorum-based commit [26].

3.:.3.3. Recovery through Checkpointing and Rollback in Shared Memory Parallel Multiprocessors

Since different processors in a shared memory multiprocesscr sy.tem can access the same memory space, a

rollback of one process in multiprocessor systems may require a rollback of another, as well. It has recently bcecn

shown that through appropriate modification of cache coherence protocols, periodic checkpointing of the cache

contents can be made into the shared memory in such a way that a consistcnt shared memory state is maintained

30]. The consistent shared memory state ensures that odi; the process encountering the error, resulung from a

processor transient fault, is involved in the rollback recovery at the point of error detection and no rollback propa-

gation is required. Without rollback propagation, rapid rollback recovery is thus achieved simply by invalidating

the cache contents and then restarting the process from the checkpoint after reloading the program counter and

regzisters.

I8I

I

In the multiprocessor cache-based checkpointing approach there are two instances in which a process has to

I be checkpointed. The first instance occurs whenever a cache block modified since the last checkpoint is to be

written back to the shared memory, which happens when a cache block is replaced on a cache miss. The second

instance occurs when another processor is to read a dirty block modified in a processor's cache since its last

checkpoint. Check ,ointing is initiated by the cache controller in hardware and is transparent to system or applica-

tion scftware. Checkpointing a process includes flushing the cache blocks modified since the last checkpointing

U session and saving the processor internal registers.

Once a processor error is detected, all cache blocks, except those that are unwritable in the private cache of

that processor are invalidated. The processor internal registers are reloaded and execution is restarted. Cache

misses occurring when a processor resumes execution are serviced by data from the global checkpoint which is

stored in the shared memory and caches of other processors. The cache coherence protocol enforces delivering the

correct version of data if another cache has a block which matches the miss.

To integrate the multiprocessor cache-based checkpointing scheme into cache coherence protocols, one extra

state for a cache block is introduced. A modified cache block is split into two classes: writable-modified and

unwritable. Figure 7 illustrates the Illinois cache coherence protocol [30], which has been modified by adding one

state to incorporate the cache-based checkpointing scheme.

There have been numerous recent developments in implementing shared memory programming environ-

ments on distributed memory multiprocessors. Typically called distributed shared memoY. such en'ironments

utilize memory coherence protocols to implement the shared memory paradigm in software. Memory coherence-

based check-pointing techniques have been developed for distributed shared memorv. amilar :o those for cache-

based checkpointing [31]. A checkpoint occurs by an individual processor if a page of memory is requested by

I another processor that has been modified nnce the last checkpoint. Rollback is implemented h% ,imPin n a!.dat-

ing all local pages and restonng processor registers.

The advantage of most checkpointng schemes that are embedded in the rnemor mana.-cen rinrtoPd i

that 'thy are transparent to the application orogrammer. They potentially can he implementci No a-, mo mnimi/e

performance Jecradation. However. their disadvantage is that it is not easy to change or :ontro the :rqucncy ol

19

bus

read miss aInvalid MVidate read miss
(from memory) [. (fMom cache)

E xuihe bus read " Sha edUrnodified Uraoiix

en owrit bus ee" rise r t e

(4.Tes cing Iss iia

Tesin gre o che dicoernca e ect s inoormalftion s inahe-b sse m nde tst. ThIet~

ceconitsfexriinnhgsse withsc prahs an geneal of itegerad aahalying a reaonse fo crecktnsg Dsign-

of reiale ompte syteminolvs any lel ofxbsracios. yilvel ofasrcis fo oett

teghest re: ogic laaevet, reiseraltinsstrucnlctionse level s lee adystem eevel T dessgcloey

solo ngs sliof abnde. nTe mi dI

4.** itTestingg esinisiitaa

defnig atet epeieuse tCahe ioenf po ton in rposrva n t tche-adchlevelinn.rexmlesnga

lc eve involveithsubinapraveos. or veeor sequnece Siarcply ighierael of e ti m an

teines tmti mnmes, opextaata msyses,pd and application lee)i pe r o efectvel adrs thetig

Testing is the process of discovering fat defects or malfunctions in the system under test The ist ro- I

I

cess consists of exercising the system with a set of test vectors and analyzing its response for correctess. Design
ofa reliable computer system involves many levels of abstractions. Typical levels of abstractions from lowCe to

the highest are: logic level, register level, instruction set level, processor level and system level. Testing closely

follows these le,,els of abstraction and separate testing procedures apply to each level. The -;tmuli and re.sponses

defining a test experiment use the information being processed relevant to each level. For example, testing ati

logic level involves binary vectors or vector sequences. Similarly, higher levels of testing involve machine

inctructions, arithmetic numbers. textual data, messages, procedure and application progam:,. Fn7us. testing ;s aI

very broad term encompssing many different activities and environments. Testing theo O and pracce. s most

20

I

I
mature at the logic level. Testing at logic level is well-defined and rigorous. Testing becomes less precise with

I increasing levels of abstraction. At the system level testing is largely ad hoc and based on intuition and experi-

I ence.

Testing begins at the semiconductor chip manufacturing level and continues at higher levels of assembly and

I packages, such as printed circuit boards, the hardware system and finally the complete system including the

operating system and application software. The initial purpose of testing at chip level is for diagnosis of chip

I defects. The diagnosis process identifies what is specifically wrong with a bad chip. The information is valuable

in fine-tuning the semiconductor fabrication process. Defects at 1.his level consist of open or shorted wires and

transistors, slow transistors, too high a power consumption, weak drivers and so forth. Once the process is fine-

I tuned and mature, the main purpose of chip level testing becomes that of sorting good chips from bad chips. This

is where the most rigorous testing takes place. The cost of testing a chip is a significant fraction of the overall

cost of manufacturing. However, the cost of testing the same chip at higher levels is even higher. Experience

shows that a defective chip, escaping as a good chip due to an imperfect testing procedure, costs 10 times as much

I to test on a printed circuit board. The cost includes increased difficulty in testing, and locating and replacing :he

bad chip on the board. If the defective chip escapes detection a the board testing, it costs 100 Limes as much to

locate and fix at the processor testing level. The cost of a defective chip increases 10 fold at every level.., rhere-

fore, the goal of chip testing is a near perfect differentiation between a good chip and a defective ch ihu "'.

Testing continues after a system becomes operational and deployed in the field. The purpose of testing in

I the field can be of a preventive nature or can be for repair of an unoperational system. Testing for preventive

maintenance locates defective chits or boards which have not been exposed in the normal operation of the sys-

rcm. Such dnexnoew ,d c' are called 'atent talures. Eventually they will be cxp.seu *n ome --, tca ,pra-

tion. In highly reliable systems, latent failurs reduce the fault tolerance capabilities of -he wvstem time. :f .---h

failures arc allowed ro accumulate. Therefore. highly reliable systems require pencdic :.csung :o u.h u"ent

failures. Testing for diagnosis and repair zonsists of narrowing down the locauon f a tault to a fieid-rcae

v nit FRI) An FRL for a ccmputing vyscm -s t-icaly a v oard or a multi-chip ac'lu.,. ,-atmg ti;.: :ila, .o

"_h ,:hip noundarv is "cr:hlliczjit and expensive and therefore repair of the board is o-itn cnd unl he : 't .'--.n

I

I2

be returned to a repair facility. The testing discipline can be broadly classified into these fields: Fault Modeling.

Fault Simulation, Automatic Test Pattern Generation (ATPG),. Design and Synthesis of Testable Circuits. and

Built-In Self-Test (BIST).

4.1. Fault Modeling

For testing purposes, all physical faults are zctm led to a level aropriate for the coaponent

uWder att. At the chiw level the most -idely accepsed faiut model is that of line stuc-at- or stuck-a-. In pra-

tice, the stuk-at fault model is further restricted to single snick-at fault model. meaning th test --ocedure

assumes that there is, at most, one fauit in the circuit. This assumptkm reduces the test genemion compexity.

Physical defects such as an open connection. or a short to ground or power can be .odeled as constant logc 0 o

I in many situauons. Also. experience shows that even when some physical defects do not behave as s tck-at

fault. t teest taerns that detect all single stuck-at faults also devect a large percage of stwhcp pyscal -iec-s.

Ancther advantage of the stck-at fault model is that it is a logic model and therefore miany of the results fro,

Booiean algeb-a can be used in the test generation and a.alysis of such faults. For h;s reason. -uck-at fu-.: ts a I
widely accepted fault model for most digital circuits. The stuck-at fault model is useful in -'mg srueniral

integrity of a circuit within the constrint of Boolean equivalence- There are also oher ' gc fault models dmat

have become ry important for hieMy Fiable components. A shor between two wire1 %is caL'I a bdndk, ia

which is logically equivalet to a wired A-N1D or OR depending on twNnology and reiative electrcal s enths of

two opposing polarity sigals on the short. Other ptrysical faultE, such as resistive shorts and opens. 1pedI

charge in gat oxide of MOS uanisou and weak numsixim can adversely affect the aridnai timing

-ec::ication of a ctiiui Sch faut*s- moaeied as d -e:vfauhis.

The next hizher evel of abs-taction for fault models is bro dly calledfir cuw .onw- :L'I.,.. A . .

simply an inco,,"ect cxccu of a function. For speCific functioms these inorr-ct h-ichavors zM. a !L . ..A

dow . For exampic. a r e -sicted faut modl or an ad decoder mtght say. - t r npu Cs, : u' I
onco--d ic=-~ aiUfes-s C A SIii-j1ti M.ore. cce' oe zhav. .- "4C - -- .

idects Z.or ;eccts ,and and ae 1 011

ra ..,Ei ultmnd ' m gh --- -%:c

I

I
(including null) of all addresses." Similarly functional fault models have been derived for many other functions

such as, adders, multipliers, arithmetic and logic units of a processor, PLAs, micro-sequencers, instruction set pro-

g cessors and memrries. We give two more examples, one for an n-bit adder and the second for an instruction set

processor.

A restricted functional fault model for an n-bit adder is that tht sum differs by ±2i. Such a model can be

derived from the assumption that, at most, one internal carry or an output sum is faulty. If we extend the physical

I faults to a full adder in a ripple-carry Ader implementation, then it can be shown that the functional fault model

I for the n-bit adder is that the suw differs by (±2t ±2 +t) in the presence of a fault.

For a processor, a widely accepted functional fault model is that when instruction I has to be executed, the

3 processor: (a) does not execute any instruction; or, (b) it executes some other instruction J; or, (c) it executes I

and some other instruction J. Such abstraction allows one to generate a test et for the processor without the struc-

S tural gate level information.

I The higher the level of abstraction of the fault model, the more generally applicable it becomes, independent

of specific implementations. At any level of abstraction the fault model can be very general or very restrictive.

Very general fault models give a higher degree of confidence in the quality of the test set, in the sense that the test

set will cover a large number of physical failures and a broad class of failures (e.g., stuck-at, bridging and delay).

I Restrictive functional fault models correspondingly give a lower quality of test sets. More information can be

found in [33, 34].

I 4.2. Fault Simulation

Fault simulation consists of simulating a circuit in the presence of faults. The most common fault model

I used by fault simulators is the single stuck-at fault. However, in theory any fault model can be used dunng simu-

lation. By comparing the outputs from simulation of fault-free circuits with the faulty circuit one can determine if

the fault is detected by tie applied test. For a given test set, T, a fault simulation produces the list of faults which

3 are detected by T. TN- ,umber of detected faults expressed as a percent of all faults is called fult coveraqe.

Fault coverage is a mfasire of the quality of a test set. The process of finding the fault coverage of T is called

23

fault grading the test set T. \ perfect test set will have 100% fault coverage for the assumed fault model. A

component passing 100% tes, ..t may still have other faults not covered by the assumed fault model. There are

several applications of fault simulation. Fault simulation is used: 1) in fault grading a given test set; 2) in diag-

nosis of a faulty circuit; 3) in automatic test generation, and; 4) in verification of error detection/correction cir-

cuits in highly reliable systems.

Fault grading a test set is the most common use of fault simulators. A test set derived using a higher fault

model may be graded for lower fault models. 'For example, circuit designers use functional verification tests to

check for design errors. The same tests are often used to test the circuits for stuck-at faults. Therefore, the fault

simulation is used to evaluate the effectiveness of a functional test as a stuck-at test. If the fault coverage is not

satisfactory, the designer can add more functional vectors to improve the fault coverage. Thus indirectly, the fault

simulator is used to generate test vectors for a circuit.

In the diagnosis applications, a fault simulator is used to generate fault dictionaries. A fault dictionary is a I
list of faults detected for each test vector. Additionally, a fault dictionary may also store the actual output 3
response for each fault, or a compressea version of the response, called a signature of the fault. The diagnosis pro-

cess (identification and location of the fault) relies ,n matching the response (or signature) from the circuit under '5
test to the simulated response (or signature) stored in tle c,. dic"nry.

Fault injection experiments are an important aspect in the design and verif .-.-ion : ughi, r l'able circuits. I
Hardware experiments are slow and expensive and very limited in the types of faut. ha' I.: JL"te.d. Fault

simulators on the other hand are easy to use and are flexible in terms of fault type, location Lnd method of injec-

tion. Fault simulators can also evaluate the effects of several thousand faults in a single pass. 3
The simplest method of simulating faults is the serial fault simulation. It consists of taking the fault-free

circuit and transforming it into a faulty circuit by injecting one fault and then simulating the circuit with a ,tan-

dard logic simulator. The main advantage of this method is that no special fault simulator code is needed. In

addition, it can simulate just about any type of fault. However, the serial method is very time-consuming. consid-

ering the fact that a 10,000 gate circuit can have close to 50,000 single stuck-at faults. This time can he reduced 3
by appropriately simulating many faults simultaneously. Three well-known methods wre: 1) Parallel Fault Simu-

24

I

I
lation; 2) Concurrent Fault Simulation, and; 3) Deductive Fault Simulation.

Parallel fault simulation exploits the word parallel operations of a computer by using each bit in the word to

3 represent a different fault. Thus, one can simulate 32 to 256 faults in a single pass depending on the machiime

used. Another efficiency added to most practical parallel fault simulators is the use of everft-drivr- siPu elion

techniques. Experience shows that a fault causes only a few logic values to change from fault-free alues. t here-

fore, an event-driven fault simulator will need to execute very few events (gate evaluations). Concurrent fault

Isimulator is also an event-driven fault simulator. It keeps all faulty machine states but only simulales differences

I between a fault-free and faulty machine. Deductive fault simulation is a i-ymboiie simulation method and it

deduces faulty behavior of all faulty machines in one pass (subject to available memory). The operations used in

3 the deductive simulator are the union and intersection of symbolic fault lists. The execution speed of the above

three methods depend to a large degree on the programming techniques and as a result are hard io compare pu'rely

5 ibased on methodology. Parallel is the easiest to implement of the three. Deductive is potentially die fastest for

stuck faults in synchronous sequential circuits, but implementation complexities may make it s'ower thar parallei.

The concurrent is the most general and flexible in terms of extending it to incide detailed circuit timing any type

3of fault behavior, and higher level functional models. For further reading on fault simulation see 1313, MY. 36!.

* 4.3. Test Generation

The simplest method to test a circuit is to subject it to random test patterns. In fact, it is cqu,,e an ,'cceptable

method for many circuits. One can use the fault simulator to calculate the fault coverage and add more random

3 vectors if the coverage is not sufficient and iterate the process until desired coverage is rcached. However, to

achicve a high fault coverage experience shows that many circuits require an tnurdiaa:c urnber of random pat-

£terns. The cost of fault simulating a large number of patterns could be far more than using a ron-ran lom algo-

nthmic method of test generation to achieve the same coverage. There are several ,uch dJ',erntstc test enerj-

I tion methods. Test vector of a stuck-at fault in combinational logic implementng a Boolewi flinction F c:,. he

lerived bv taking the Boolean function F' of the faulty circuit and forming F XOR F'.,r, , cttur that ,rodties

F XOR F'=1 is a test vector for that fault. In pracuce, this procedure of takia-z symool' :L Bolean functions ,i!

25

faulty 9nd fault-fh recius at.6 forming exclusive-or is quite time-consuming and gettinig a vector that makes the

F XOR F' function z I is a k owr hard pr~rolem. Effh. *fl! tiVni itors ure b'tsed on --ne of th~e two known algi>

nthns- 1) R.oth's D Algorithm and 2) Goel's PODRIV algoritlhm. Both of these inethod. use a 5-valued algebra

(0, 1, D), m~d X\. D) is a -ymbol representing a loglo- I in fault-fre afid !ogic 0 in a faulty circuit. Sim'ilariy,

syaibol T) rsernts logic 0 it. fault-fre ari)d logic J in -a fautlty rcut X is sa unknovem value. In both methods,

the objective is to justify logic vraluies on various lines ini the circuit to accomplish a, Fa'tlt Exciaton and b) Fault

Propagation. Fault excitation is wz proess of applying a logic value opposite to the stxk -it fault v'alue. Fault

propadgaon is the process of applying inputs such that a fault effect (i.e., signa D or D) is. opagated to an output

of the zirztun The D -algoridhrn assigns a oro-priate logic values iocaJly to a fault site and then makes as.signrttnts

forward or backward in the circuit tc justify the assign'ed value, .1These assignments are fiurther justified by more5

assgnment3 to other lines. This process is iterated until all internal assignments are justified solely by primary

input assignments. During the Juistification process of an assigned logic value on a line, conflicts of signal values5

may anse on some other lines, in~ -hich case, the assignment must be undone. This is a systematic trial and error

procedare, and it will find a test vector if one exists. In PODEM, assignments are made only to primary inputs.I

POOL:M is a branch-,-nd-bound search method, in which the inputs are assigned one at a time and the effect of

eacn ass:gnment is propagated before another primary input is assigned. If the effect of an assignment causes a

bounding condition then the ass'.--nment is bhicktracked, and rrassigned a Oifferent value. In both PODEM and D-5

algorithm, the procedures will find a te-t vector if one exists or will '!czcmwiin that the fault can not be detected.

In the worst casi , both procedures must try all binary combitrions of the irputs. The worst case rarely happens3

in real circuits, however, the procedure can sometimes rrq- a 7,~ Wzi*j of backtracks. A large number of

backtr. :ks occur mnostly for faults which are not '.itectabie. Undctcctable faults vra *ssociatcd with redundJant

gates or lines in a circuit. For high reliability it is important t~o remove any uninter.'ional redundancy in the cir-.

cult. There are no other algorithms which detect redundii.-cy mon. 'fficiently th in a test gencrauuiin ui~ As

a result, test gcneration algorithms are also used in mt-'!-lcvel circuit minimizatioi procedures trj remove unneces-

sary gates.

Test crrneration for synchronous sequential circuit: are cxtcnsi ns of combinatiomi test erio 0I

n':The ext 'nsion is based on transforming a sequential circuit into an iterative combinatiunal logic array k,ce

26

i
I

*~~~ x) z(t)

Cornbinational

iLogic

WV(t) FMmr
Elemeents

X(o) x(t) X(2) X(p)

I
3 ()- ()CI C(2) Y C(p)

Z(O) Z(1) Z(2) Z(P)

U

i Figure 8. Time frame expansion f sequential circuits. x(t), y(t), z(t), are signal values at time t.

C(O), C(I), C(2) are all identical comes of the combinational portion of the sequential circuit.

i

i2

Sn 1 un

I

Figure 8). Gme cell of the array is called a tim',,rame. In this transformation each flip-flop is modeled as a com-

binational element with input equal to current state and output equal to the next state of the flip-flop. The iterative

array is simply a very deep combinational circuit. The number of cells (time frames) in the array correspond to

the ntumber of vectors in the test sequence. It can be shown that any detectable fault can be detected in 4n vectors

in a sequentil circuit with n flip-flops. Therefoie, the worst case bound on tie number of time frames needed is

4ni, which is generally too large for any practical circuit. Therefore, during the test generation process the number

of time frames are dynamically expanded, as needed. One additional complexity for sequential circuits test gen-

eratiot is t at of initialization of flip-flops. If a reset sequence is gi 'en then it simpl:fies the problem somewhat.

Hcuwever, one has to be careful that the reset sequence can become invalid in the presence of a fault. If the reset

sequence is not givn, the test generator must find scch a sequence. Sequential test generators can be helped by

fag2h level iformauon such as state transition diagrams. In most cases, though, the state transition diagrams are

either too large or not given, therefore the applicability of such a test generator is limited.

in addition to c4.rh'inational test gentrator- there are simulation-based test generators, which is a trial-and-

error approhch. First, a set ot t'4al vectors are applied and fault simulated. Based on the fault simulation results

the "best" vector is rctlined and added to Ce test sei.ernce. The process is repeated until desired fault coverage is

reached. The "best" vector is defined by some cost crt*ria such as, number of new faults detected, nr number of

flip-flops set. The selection of the trial set is somewhat random but can be constrained to meet certain uming

requuements. For example, we can restrict the successive vectors to differ by, at most. one bit to prevent races in I
asynchronous circuits. An important advantage o(this method is that it is more general than combinanonal-based

test generators. Any circuit and any fault type the simulator is able to handle is acceptable for this test generation

method. One disadvantage is that, in some circuits, to achieve very high fault coverage the number ot tnal cct(r

that need to be simulated can be very large, and the resulting test sequence also tends to be very long compared to

the deterministic approach described above.

Finally, there are test techniques specific to certain functions such is, adders, mulupliers, iterative logic

arrays, random access memories (RAM), associative memories and micrcPr(A'essors. ThC C 1C"hniques are tcrrncd

r JI.,onal te.,t'n,. The term functional testing comes from the fact that each [unctiMn peific test prccJure

28

U

I
assumes a very precise functional fault model. For example, for adders and multipliers which are made of 3-bit

U full adders. the fault model assumed is that the fault affects the truth table of full-adder in any way. If one

assumes that at most one-full adder is faulty, one can derive tests analytically which are far more compact than

possible with auto..,atic test gencrators. Ripple carry adders can be tested with 8 test vectors, the number 8 is con-

3stant independent of the length of the adder. Such regular structures with a constant number of tests independent

of tLhe number of cells are called C-testable. Ripple carry adders and two-dimensional combinational multipliers

5 and many other iterative logic structurcs have proven to be C-testable.

5Difficulty in memory testing is not how to generate a test set, but what realistic fault models to use and how

to get a short test for such faults. The complexity of test length is very important in memories because of the

number of bits involved in present RAMs. For example, if a test length grows as the square of the number of bits

in the memory then a 1-Megabit RAM will require the order of 1012 test vectors. Most commonly used functional

I fault models for RAM are: bits stuck-at 0 or 1; faults in address decoder resulting in failure to address a bit;

addressing the wrong bit; addressing more than one bit; coupling faults between two bits resulting in unwanted

read-write operation on a coupled-bit; pattern sensitive faults resulting in failure of read or write of a bit in the

5presence of a specific bit pattern in the neighboring bits; and so on. In memory testing, the single fault assump-

tion is not used. Furthermore, no upper bound on the number of faults is assumed. For all of the above functional

S fault models efficient test algorithms have been derived. Resources for more information on Iest generation

m-thods are (33-381.I
4.4. Desig~n for Testability

In spite of major advances in test generation and fault simulation techniquesc. geing :)f figital systems still

remains a very difficult problem. Testing cost remains a significant fraction of the overall -nst of manufacturing

VLSI chips. The comp!exi y of test generntion and cost of testing can be reduced by the process of design for tes-

tabitity (DFT). Two important factors in a testable circuit are controllability and observabliv of individual nodes

in the circuit. Controllability is the ability to establish a specific signal value at an internal node in a -;rcu.t by

etting values on (directly accessible) inputs. Observability ;* the ability to determine the signal value at any node

29

by setting values op inputs and observing subsequent outputs.

Most DFT techniques either resynthesize an existing design or add extra hardware to the design. Resyn-

thesis systems remove most redundancies in combinational circuits. In sequential circuits, the resynthesis system

encode the states to make them easier to reset. control and observe. All DFT methods affect the orie-nal desin in

terms of chip area, /O pins and speed. The goal of a DFT method is to achieve the desirable testability with

minimal overhead. The cost benefit of the DFT is hard to quantify in real money. Since the DFT benefits are

spread over many factors such as reduction in test generation time, enhanced quality (fault coverage) and hence

reducticn in return -ate of bad parts. It can also affect test length, test application time, tester memory, diagnosis

and field maintenance time. Because of a lack of preciso quantitative cost-benefit analysis, manufacturers,

designers, test engineers and users disagree a great deal in their assessment of cost benefits of DFT.

A great deal of testability techniques are ad hoc. For example, adding reset lines, partitioning large circuits,

removing redundancies, inserting control points and observation points (test points), converting asynchronous to

synchronous logic, breaking long feedback paths, breaking long counters and shift registers into smaller parts, and

so on. Figure 9 shows test point insertion. Addition of test points ;aii result m too many I/0 pins on a chip. The

pin overhead can be reduced by employing a scan register to control and observe the test pins. A scan register is

simply a shift register with parallel load capability. A typical scan register has 4 I/0 pins: shift data-in, shift

data-out, load, and shift clock. Test data is shifted in from outside and applied to the control points. The

responses are captured from observation points into the scan register with a load signal and then shifted out for

later analysis. The scan register trades off test point I/0 pins with increased area and increased test time.

There are several methods to select test points in a circuit. Some methods are ad hoc. some based on

analysis, and test &enerauon and fault simulation, and some based on converting sequential circuits into combina-

tional logic. Good candidates for ad hoc selection of test points are: lines with high IanouLs. lobal feedback

patis. (intentional) redundant lines, flip flops, adircses, zaa and coirol signals of embedded memories. and

internal clocks. Analysis-based methods use quantifiable controllability and observablhty measures, or other

measures such as sequenual depth. ard number of feedback paths passing through a no.ie. Thl. e arc tt.,cd in put-

ting test points at the leat controllable and observable nodes. A global opum:zauon prograin wii vut test .oints

30

U

!

II Test

Point

I -"C1 C C2 -'

II~a -Observe

~Control 1

Fgure 9 'rest point insertion t- example shows Jine cont.rol of value a.-,- oi):,rvaLon

31

such that the overall gain in controllability and observability is maximum. Since all such measures are approxi-

mate, the effect of test points on test generation time and fault coverage can not be accurately predicted. All of

the methods rely on a test generator and fault simulation to find which nodes should be the best candidates for test

points. One can use a limited trial-and-error method to insert the test points, and then generate a test to accurately

see its effect. One can combine the above two methods by first selecting a few test points, based purely on struc-

tural analysis, and then augmenting it by more test points selected by a test generator.

When test points are inserted at all flip-flops and only at flip-flops in conjunction with a scan register, the

methods are generically called scan designs. If the flip-flops are master-slave or edge-triggered then additional

flip-flops for the scan register are not needed. The scan register is implemented directly on the original flip-flops

in the design. Of course, one still needs additional pins, shift-in, shift-out, shift-clock and load. The load signal

may be combined with the system clock, thus saving a pin. A scan design makes all flip-flops completely con-

trollable and observable. This means that the circuit can be placed in any state and its next state completely

observed. Since the inputs to the combinational logic either come from primary inputs or from some flip-flops,

the scan allows one to apply any test vector to the combinational logic portion of the circuit. And since the out-

puts from the combinational logic go to primary outputs or to some flip-flops, the responses are completely

observable. This method essentially reduces the sequetra! .- st problem to a combinational test problem. There

are several slightly different scan-based structures used by different computer manufacturers. The most Aitdcl%

known structure is Level Sensitive Scan Design (LSSD), used by IBM in many of its systems. LSSD uses level

sensitive (not edge triggered), hazard free latches. Two latches form a master-slave flip-flop. It is estimated that

the LSSD scan designs have 10% to 15% area overhead.

Scan has also become a standard for board-level testing. When scan is applied to the periphery ut a chip It

is termed boundary scan. The goal is to make every chip on a board completely controllable and obscrvablc from

the edge connector of the board. In addition, the boundary scan registers are designed in such a way that they can

also be used to test the interconnect between chips. At the board level, predominant failures are in the intercon-

nectus and pim. Therefore, boundary scan is very usefi:l in board tesung. Of course the .:hips, [.cmscivcs. rmut bc

de,:gned [br testabiity. Boundary scan only provides access to the chips. not tesrabili on t!e hips. Biund..

32

I

scan is useful only if all chip manufacturers follow a standard method of communication on board. IEEE has put

I out a standard for boundary scan that many manufacturers have agreed to follow. Further details on a variety of

3designs for testability techniques can be found in [33, 391.

3 4.5. Built-In Self-Test (BIST)

.Built-in self-test is the capability of a circuit (chip, board or system) to test itself. Most circuits are tested

I by external testers, which apply the test vectors and monitor the responses. In BIST circuits, the test vectors are

internally generated and applied, and the responses are also internally monitored. A general organization for BIST

is shown in Figure 10. The test generator and response monitor have to be very simple to keep the overhead of

3 BIST very small. As a result, the test generator is generally a counter, which produces exhaustive test patterns, or

it is a linear feed-back shift register (LFSR) which produces pseudo-random patterns. The response monitor is

I similarly very simple. The monitor compresses the responses into a single word, called signaure. Compression

methods include, counting number of l's and O's in the response stream, counting 0-to-I or i-to-0 transitions,

forming a checksum, taking parities and so on. The circuits that produce the signature are also called signature

3 analyzers. Signature produced by the compression is calculated by simulation of the fault-free machine and stored

on the chip. During the actual test of the circuit, the signature is produced by the compressor on chip and then

3 compared with the stored, good signature. A mismatch between signatures indicates a faulty chip. At times, a

faulty chip produces the same signature as a good signature and the fault goes undetected. This can happen for

I two reasons: 1) the test set failed to detect the. fault; or, 2) the test set detected the fault but the compressor

"lost" the information. The loss of information is always possible in any compressor. For example, a parity

compressor will produce the same parity if the faulty responses have an even number of bits in error. This itua-

I tion is referred to as error masking, and the faulty output which produces the same signature as the good output is

called an alias of the good output. Aliasing probability can be analytically estimated if one can accurately charac-

3 terize all error responses of a faulty circuit. The actual loss of fault coverage due to aliasing is not .o easy to esti-

mate. A fault simulaion of the BIST circuit with the signature analyzer in place, can accuratel% giwe the loss of

coverage.

3

-An Organization for Built-In-Test

PRIMARY INPUTS

CIRCUIT
UNDER

TEST

PRIMARY OUTPUTS

~~ I . ') ~~ ~ ~ ~ ~ s ~ ~ . ~ ~ ~ O 4 ; I I L M f u L S g ' T hi r a L O r u ! m u a l l y i ..5 ~ nt : r d i a o n m u L S R
I;1101i~i. i Lo~lr UbijdIjy iA dfg~. lr itlYzer basud On 11LAFooM USR.R

-'4

I

Of all the compression methods, the checksum methods have proven to be the most effective in practice. A

U checksum is simply an addition of numbers modulo a constant A modulo addition can also be viewed as a divi-

Ision by a constant in which the quotient is discarded and the remainder is retained. Since in the test context, the

numbers themselves have no specific meaning (i.e., they are simply some binary strings) one can use any number

U system and any constants, as long as the compressor has low hardware complexity and low aliasing. Linear feed-

back shift registers (LFSRs) can form the checksums in polynomial algebras over the baiary strings, and they are

I easy to design. Aliasing probabilities of LFSRs have been analyzed for specific error models and all analyses lead

to the conclusion that aliasing probability is 72 for an n-bit LFSR. Experimental studies of some circuits using

fault simulators have shown that the loss in fault coverage due to aliasing is usually much less than 1%. More

I details on pseudo-random techniques for BIST can be found in (40).

S. Evaluation
. The foregoing sections have outlined a wide range of techniques useful for desiging fault-tolerant systems.

In any given situation, the relative efficiency of these techniques must be evaluated so that design trade-offs can be

made. Such analysis is an integral part of the design process. The next two sections introduce the question of

I evaluation and discuss the different methods available to model, analyze and measure the dependability of fault-

tolerant systems. In section 5.1. methods to develop analytical models for computer system reliability, availability

3and performability are outlined. A wide range of automated tools that allow an informed user to conduct evalua-

tions of complex sMIctUM have been developed. The chwactristics of some of these tools are given.

3 Measurement-based methods for evaluation techniques are discussed in section 5.2.

5.1. Analytical Models

In this section -e briefly review computer system dependability modeling issues. We first discusi two

•. :dcy ~ised zombma:onal models '41I1. Then we address m:rkov modeis. including aii;iit, ri:an::i .. :rd

3 performability 'reward) models. Finally. we take a look at six representative software modeimn wok.

I
|3

5.1.1. Simple Models for Fault-Tolerat Systems

IfT is a random variable that denotes the lifetime or time-to-failure of a system component (and t its panic-

ular value) then T has a cumulative distributin function (CDF) given by

The reliability R(t), of the component is the probabilit- that the component survives until e: "

R(t) = P (X >) = 1 - F(0)

Typically. R(t) is assumed to be an exponential distribution dus R(t) = exp(--X)t) , where . is failure rate.

As explained in section 2, the elementary reliability models of fault-tolent. computing systems are often varia-

tions on the so-called XMR Model (N-Modular Redundant). The system is composed of n identical and inreoen-

dent components, m or more of which must be functioning for the system to be operational. Thus. the system -as

(n - m) -hot standby' componens. Under these simplifying assumptions, we can express tE reliability of te

system as:

R-t Z in IR(t) (l R(,)-- - "

Special cases include the serial system (m = n), the parallel system (IM = 1). and Eie triple modular redundant .-o.-

•ng system (n = 3, m = 2).

The second elementary reliability model represents an N-modular Standby Redundant s-stvm (NSR)_ it has

(n- 1) of n identical components maintained in a poweed-off, (cold standby) state. Upon failure of the single

active component, on, of the (n - 1) powered-off components Ls switched into operation- It is assumed that tere 3
is no chance of a failure associated with switching. The sy stm lifetime an dnt vmiabein this case is th sum of

n ;dentical comoonenE :ifetime random variables, so I
R,,SR(t) = l-gtdF r) 3

where dF- denotes n-fold convolution. if tae probability of faiure dunn w.tchmi as -akcn anto .cc.aunt.

above cxr-ession must be appropriately modified 143]. 3

-6

U

5.1.2. Markov Models

Markov models allow us to describe complex inteactions among components and are widely used. A

3 discrete-state Markov process is a collection of states together with the transition rates among these states. When

a Markov process is used to model depndability of a computer system, each state in the model represents a dis-

3 tinct combination of operational and failed states of individual components or modules of the system. The process

of failing and recovering of the components is described by the transition from one state to another in the Markov

I model [421. In a discrete time Markov process transitions can only occur at fixed intervals, whle in a continuous

3 time Markov model transitions can occur at any time. A Markov process has the property that the future state of

the process depends only on its present state and not on the past (i.e., it is memoryless). A continuous time sys-

3 tem is said to have the Markov property if:

P(X(t+s)=jjX(s)=i,X(u)=k,0<u<s) = P{X(t+s)=jIX(s)=i) (1)

where s, t > 0 and i, j, k denote the states of the model.

5 If, in addition,

3 P(X(t + s) = j I X(s) = i} = P(X(t) = j I X(0) = i) = pij. (2)

the Markov process is said to be stationary or homogeneous. In other words, a continuous-ume, homogeneous

Markov model represents a time-evolving process that changes states according to the following rules:

3 (1) The holding time in each state i is exponentially distributed with mean h,.

(2) Given that the system is in state i, it goes to state j with a probability (transition probability) Pij.

I If the exponential distribution (1) above is not satisfied, (i.e., the distribution is of a =eneral Corm) the model

3 ie said to be semi-Markov. Usually, analytical models assume that the holding time in each state is exponentially

distributed. From a practical point of view, this assumption can limit the accuracy of the model results.

3 The details of the theory and applications of Markov models to reliable systems are given in [1131. Figure II

shows a \Markov model for a 3imple system with two components. The system is assumed to ad il' broth w -in

ponents tail (a 1-out-of-2 system). The failures of the two components are assumed to be independent. There are

four sta , in the model: the normal state SN - both components are operational; the single component failure

3 .37

state Si (i = 1, 2) - where component i has failed; the system failure state SF - w'here both components have

failed. The X and g. denote the mean failure rate and recovery rate for component i, respectively.

5.1..1. Availability Evaluation

Given that there are n states (1,2,...,n) in a Markov (or semi-Markov) model, then, at any time t > 0, the

state distribution can be expressed by the probability vector

PC0 = (Pi(t), P2t) P(t) (3)

where pi(t) is the probability that the process is in state i at time t and satisfies the following condition:3

p() = 1 . (4)

Further, assume that the components in the system can be in one of two states: operational or failed. The

system is considered operational, or available, if at least a minimum set of components is operational. The failure

and repair process of these components can be represented by a Markov (or semi-Markov) model with state space

Tg [44, 45]. We can partition the total set of states ('P) into an, - rational set (T,) and a failed set (Pf). The pro- 5
bability, A(t), that the system is operational at a time t, is referred to as the instantaneous availability:

A(t) (5(t)

The interval availabijity, i(t), is the proportion within a given interval of time that the system is operational. ThIs 3
is given by:

Figure 11. Markov Model for a 1-out-of-2 System.

II

A.1 x2

S23

I38!

U

A(oT= 4- A(x)dx (6)

IThe steady-state availability, A, is the limit of the interval availability as t goes to infinity:

3 A = ji A(t) (7)

Equation (7) above is equivalent to the following commonly used definition of availability:

I A=- 8)

1 5.1.2.2. Reliability Evaluation

3 To evaluate reliability based on a Markov model, we make all failure states ('f) be absorbing states so that

once the system enters 'f, it is destined to stay there. That is, we modify the model by setting all transition pro-

I babilities out of a state in 'f to zero. For example, SF in Figure 11 is an absorbing state. If this modified model

is solved, the system reliability can be evaluated as:

R(t = ,py(t) (9)

3 where 'P0 is the operational set of states in the model. It is seen that R(t) is a special case of the instantaneous

availability when failure states are set to absorbing states.

i 5.1.2.3. Performability (Reward Rate) Evaluation

In evaluating availability and reliability, we assume that a system is fully-operational (in an up state)

3 without any degradation. If a system is allowed to operate in a degraded mode, a combined measure of perfor-

mance and availability, called performability [46], is often used. Typically, performability can be evaluated via

reward models by defining a reward rate r, [471 (0 < r, S I) for state i, rather than simply a zero or a one, as in the

I case of availability and reliability model. Performability measures are generalizations of availability measures,

they fall into three basic classes, namely instantaneous reward rate at t,

3 Y(t) = :,rp,(t), (10)

interval reward rate over t,

Yt =1Y(x)dxi

I3

and steady-state reward rate,

Y = irn Y(t). (12)

5.1.3. Modeling Tools

Various software tools have been created to evaluate dependability for computer systems, using both ana-

lytic and simulation techniques. These software tools are sophisticated and require a user with a good degree of

expertise in reliability engineering and computer design. A summary of characteristics of six representative tools

is listed in Table 1 [41, 48]. All of these tools can be used to evaluate dependability measures for both repairable

and nonrepairable systems. Most are based on Markov models.

5.2. Measurement-Based Analysis

Measurement is an essential part of the evaluation process. In the final analysis, evaluation techniques dis-

cussed above must be supported by measurements in the field. A study of production systems is valuable not only

for accurate evaluation but also for gaining insight into reliability bottlenecks in system design. Meisurements are

made through the different stages of design, development and manufacturing and provide the basis for gaining

Table 1. Summary of Characteristics of Six Dependability Evaluation Tools

Tool HARP[49] METASAN(50] SAVE(51] SHARP[52 "SURE_53] SURF[541

Nonhomogeneous Stochastic Fault trees Directed graphs Serm-Markov Markov
Models Markov activity Continuous-state Fault trees

Suo. networks Markov Semi-Markov

Solution Runge Kutta Gaussian elimin. SOR* SOR* Computation Laplace

Techniques Simulation Iterative method j Randomization Laplace of bounds
Simulation Simulation I

Any failure distr. Description of Exp. disir. Multistage Exp. Markov I Transition

Input Fault tree stochastic Fault tree distr.; Multiple chain matrix

Markov chain activity network Markov chain levels of models

Output Reliability Performability Availability Reliability i Reliability Reliability

_Availability Performance Availabiity

Operating UN'K, VMS U UNTX VM UNIX VMS IBM TSO
Systems I MS-DOS MVS VMS

I
SOR: Successive overrelaxauon

40

I

understanding and insight into the system and the manufacturing proces.

In some instances, measurements are. made directly on production systems in the field (i.e., uncontrolled

3 phenomena). In other instances, experiments are devised in the laboratory under controlled conditions. Faults are

deliberately introduced, and their impact on system hardware and software is measured. Both arnmaches have

3 their relative advantages and disadvantages and are used by manufacturers and researchers as a basis for design

and evaluation. The lessons learned are useful for developing improved validation techniques and also to develop

Ifault masking and recovery methods to lessen the impact of defects on the user.

5 More than a dozen years of research effort have measured, analyzed, and modeled over 80 machine-years of

data. Issues ranging from the monitoring of computer reliability to the analysis of the measured data to quantify

3 system dependability (reliability and availability) in the field have been addressed. Laboratory techniques involv-

ing a wide variety of fault injection techniques ranging from physical fault insertion to simulation have been

developed and tested. The measured hardware and software data have been used not only to characterize the sys-

3 tem reliability and fault tolerance in the field, but also to jointly characterize the interdependence between reliabil-

ity and performance. Measurement-based research has revealed the dependence of failure rates on workload, led

3 to the development of improved diagnosis strategies, and has also contributed to the development of accurate

modeling and validation techniques. Finally, such measurements are crucial in evaluating the coverage of different

3 fault tolerance and recovery mechanisms in the system.

I 5.2.1. Field Measurements

3From a research point of view, field measurements have provided much valuable information on actual

failure characteristics and their distributions. They provide estimates for parameters used in analytical models.

3 Some examples are component failure rates, coerages and the relative frequency of dillcrent tvpes 0.f iautts.

Often, the interactions -among hardware, software, and application programs are complex and hence not easily

amenable to analysis. Measurements serve as an exploratory tool to understand he effect of fau!ts on "hese

3 different system components and their interactions.

I

Specifically, research based on field experiments has resulted in several significant findings. First, results

have shown that the commonly used, simple exponential model is representative of only a small fraction of system

failures. Second, the failure distributions are best characterized by the Weibull function [4]. Depending on the

failure type, the hazard function can be decreasing, increasing or constant. Finally, both hardware and software

failures have a tendency to occur in bursts [55]. Even though the cause of the burst is often a single fault, its

effect impacts several components leading to multiple errors or failures. Thus, unless error detection and diagnosis

techniques substantially improve, the single point failure assumption common to many system design strategies

may not be fully justified.

Importantly, the above investigations also showed that the dependability of both hardware and software was

significantly affected by the operational environmznt of the system. Experimental investigations conducted to

quantify tOis phenomenon are discussed in the next section.

5.2.1.1. Workload Impact on Failure Characteristics

Experimental research, based on over a decade of measurements on several generations of IBM, DEC and

other mainframes 156, 57] has established the influence of the level and type of operational workloads on system

reliability. Measured error and workload data from IBM and DEC systems under different operational en iron-

ments have shown that, on the average, the failure rate of a system was four to five times as hign, under heav%

workloads than at low workloads. On a dynamic level, the measurements showed that the risk of a failure at high

workloads was 50 to 100 umes greater than that at low loads. These results are significant because, even though

some (e.g., process control) computers repetitively execute the same program with effectively the same input 3
rcquests, most have ,idcly-' arying workloads as measured by .uch mmncs as proce. .,or utii/ation. -'hus. -iic

results brnught into question the validity of conventional reliability models, which do not take the operatuonal

environment into account and hence added a new dimension to dependability evaluation.

The dependency of reliability on workload is due to several phenomena. The first !, rcferred :o ,as error

latenc% Ai failures occur .,thin a ystcm. they must be detected in order to aff,:ct 11c tLitvaics. \ Man aaimurcs

lie dormant (or latenti until a particular module or subsysten is exercised. The.e lItent Itut!. ire more kcJ 10

42

3

I
manifest during the high workload conditions since an increase in the workload implies an increase in the state

S transitions and path executions in the computer. Thus, even if failures are not caused by increased utilization, they

3 are revealed by this factor. Secondly, as system utilization approaches saturation levels, a statistically higher

software failure rate results due to increased stress on these programs. Timing and synchronization problems are

3 also more likely to be revealed at high workloads and often these conditions are difficult to reproduce in the

laboratory. Also, many load-dependent failures occur in the area of code involved with exception handling. Usu-

I ally, this section of code is not well debugged. Under high workload conditions, as critical resources get saturated

the exception handling code may be executed and reveal software faults and design errors. There is also some evi-

dence to show that higher workloads result m higher operating temperatures and hence in increased failure rates.

3 The results of these studies are significant. They indicate that it is not useful to push a system close to its

performance limits (the generally accepted operational goal). The slight gain in performance improvement is more

3 than offset by the degradation in system reliability. Thus, classical computer reliability models need to be re-

evaluated in order to take system workload explicitly into account. This research has had a strong impact on the

modehng community. Several researchers. [58, 59] have since proposed analytical models that take workload

variations into account. The second impact has been to bring out the importance of validation as an integral part

of the modeling process.

5.2.2. Measurement-Based Models

Given the above results, it is reasonable to ask how workload parameters can be taken into account in gen-

3 erating reliability/availability models. One approach is to model the vorkload as a daily 24 hour c' cle and

assume a linear relationbhip between workload and failures. The enswrg model is cy(lostauonary in nature and

3 has been shown to represent real system behavior [571.

Expenriental research has developed methods for identifying and building Markov models of the resource-

usaie/failure/recovery process directly from measured data. The approach uses sampled ;vstem activ't rararn-

3 ters to identify headers of usage which can then be identified as a state in a performance/rchatility mtxici lt i. At

each interval of time the measured workload is represented by a point .n four-dimensional ,pace 1CPU utih/ation.

I

CPU wut.:u2 for input/output, 110 controller activity, and disk activity). A statistical cluster analysis technique

was used to divide the workload into similar classes. Each cluster was represented as a system state, and a state

transition diagram with intercluster transition probabilities was developed.

5.2.2.1. Software Reliability Evaluation

There has been a great deal of research in the area of software reliability evaluation and a large number of

models have been proposed. By and large, the t=rm software reliability refers to the manufacture of software. The

models are usually empirical in nature and arttmpt to describe the reliability growth of the candidate software dur-

ing the manufacturing, debugging and testing phases. A large number of models have been developed. In general

the models can be divided into two classes. The first class is based on u6,e number of remaining defects in the

software. The simplest such model referred to as the Jelinski-Moranda model [611 assumes that the time to 3
failure is proportional to the number of remaining defects. Also, perfect repair of a software bug is assumed.

There are a number of generalizations of this approach. Imperfect debugging, uncertainty in the projected number 3
of initial defects, have all been modeled [621. The vast majority of these models have been shown to be valid in

their measured environments. The second class of models [63] does not depend on knowledge of the number of I
remaining defects or their distrrbuuoti. Thus, while most models assume that the failure rate is a function of the

number of remaining defects, the Littlewood-Veral model assumes t. failure rate is a random variable with a

gamma distribution. Thus the software reliability becomes a do-biy stochastic process. The concept of the failure 3
rate as a random variable is expected to treat the uncertainty !n the efficiency of the bug-fixing process. A com-

parison of many of the existing models has been made by several rearchers '62. 641 using different data sets. 3
Although most models perform well within their own contexts, their performance varies significantly from one

data set to another. Thus, no single model can be expected to perform well under all circumstances. In other

words, the question of deciding a priori as to what is the best model for a given situation remains open at this

stage. Additionally, few models address the question of operational reliability of s oftware ;ystem.,. Studi s on ihe

impact of the operating environment on software reliability is given in [57. 6.'

44

I

5.23. Controlled Experiments: Fault Injection

Although field data provides a rich source of information, an adequate number of machine years of data are

3 not always available. Fault injection is an important method to mimic the occurrence of errors in a controlled

environment that can be instrumented to make the necessary measurements r66. 671. Several automated tools to

3 allow both physical and simulated faults have been developed both ip academia and in industry. Some of the

measurements of interest are latency (671 and coverage (68, 69].

There are numerous theoretical and practical difficulties associated with making measurements. The ques-

3 tion of what to measure, and how to measure it, is indeed a difficult one. From a statistical point of view, sound

evaluations require a considerable body of data. The usual assumptions regarding uniform populations and sta-

3 uonanty may not fully hold in computing environments. Fault-injection experiments have known input error cs-

tributions but the question remains as to how representative of iaturally-occurring errors are those that are selected

for injection. The success of such experiments depends on the choice of fault models, a realistic workload, and

3 ifinally, valid experimental design.

3 6. Commercial Fault-Tolerant Computing

Fault-tolcrant computing has evolved from specialized military and communications sstems to ,cneral-

purpose, high-availability commercial systems. The evolution of fault-tolerant computers has been well docu-

3 mented [4, 761. The earliest high availability systems were developed in the 1950's by IBM, Univac, and Rem-

ington Rand for military applications. In the 1960's, NASA, IBM, SRI, the C. S. Draper Laboratory and the Jet

Propuision laboratory began to apply fault tolerance to the de-'elopment of 1udance -omputers ;or acropa,

3 applications. The 1960's also saw the development of the first AT&T electronic switching systems.

The first commercial fault-tolerant machines were introduced by Tandem Computers In the 1970's fior ue :n

3 on-line transaction processing applications [711. Several other commercial fault-tolerant sstems w',ere introduced

!m the 1980"s [72! Current commercmi fault-tolerant.iystcms include distrbuted memory, miti-rr1r :C"1r !T.i-

dem NonStop '73L, Tolerant Eermity '741), shared-mcmory transaction-based systems (Scquoi 751 . ";air-and-

3 spar' hardware fault-tolerant systems (Stratus [76], DEC VAXft 3000 (751), and triple-modular-redundant

45

systems (Tandem Integrity S2).

Most applications of commercial faul -tolerant computers fall into the category of on-line transaction pro-

cessing. Financial institutions require high availability for electronic funds transfer, control of automatic teller

machines. and stock market trading systems. Manufacturers use fault tA!raint machines for automated 'ictory con-

trol, inventory management, and on-line document access systems. Other applications of fault tolerant machines

include reservation systems, government databases, wagering systems, and telecommunications systcms.

Vendors of fault tolerant machines attempt to ach-eve both increased system availability and continuous pro-

cessing. Depending on the system architecture, either processes continue to run despite flurez or the processes

are automatically restarted from a recent checkpoint. Some traditional systems have enough r-lundancy to

reconfigure around failed components, but prc;zaess running in the failed modules are losz. vencilors of commer-

cial fault-tolerant systems have extended fault tolerance beyond the processors and thsks. To make large improve-

ments in reliability, all sources of failure must be addressed, including power supplies, fans and inter-module con-

nections.

The Tandem NonStop and Integrity architecture. will be described to illustrate two current approaches to

commercial fault-tolerant computing.

6.1. Tandem NonStop Systems

Tandem NonStop systems are designed to continue operation despite the failure of any single haraware

component. In normal operation, each system uses its major components independently and concurrently, rather

than as "hot standbys." Figure II shows the architecture of the NanStop Cyclone system. A s%,tem consi .. m

up to 16 processors interconnected by dual busses. Each processor has its own memory which contains a copy of

the message-based Guardian operating system. Each processor controls one or more /O buss. Dual-portig ,'!

1/O controllers and devices provides multiple paths to each device. Disks may be mirrored to maintain redundant 3
permanent data storage

'onStop. Guardian, Intcrty S2, NonStop Cyclone and NonStop V- are Erademarks of Tanaem Crnutz.corirr.d

46

Irx
I"M

20I t"10MU
IW FW

CPIP P P
0I 41

MEOYI0MR 0 EOYMMR
Ii

If R = F0 F
I0 1 0 010 1

I Sectin 0 Socion 3

FIGURE 12. NonStop Cyclone system architecture.

Each module has self-checking hardware to provide "fail-fast" operation -- either a module operates

correctly, or it stops to prevent contamination of other modules. Faults are detected by parity checking, duplica-

tion and comparison, and error detection codes. Fault detection is primarily the responsibility of the hardware,

while fault recovery is the responsibility of the software.

Processes under Guardian may run as process-pairs. A primary process runs in one processor and a backup

process runs in a different processor. The backup is usually dormant, but periodically updates its state in response

to checkpoint messages from the primary. A checkpoint can take the form of a complete state update, or as a

delta checkpoint which communicates only the changes from the previous checkpoint. Originally, checkpoints

were manually inserted in application programs, but currently most application code runs under transaction pro-

cessing software which provides recovery Utrough a combination of checkpoints and transaction two-phase commit

protocols.

When a processor fails, the failing processor is identified by the absence of periodic "I'm Alive" messages.

Guardian directs the appropriate backup processes to begin primary execution from the last checkpoint. New

backup processes may be started in another processor, or the process may be run with no backup untii the

hardware has been repaired.

Each 1/0 controller is managed by one of the two processors to which it is attached. Maiiagement of the

controller is periodically switched between the processors. If the managing processor fails, ownership of the con-

troller is automatically switched to the other processor. If the controller fails, access to the data is maintained

through another controller.

In addition to providing hardware fauit tolerance, process pairs provide some measure of software f..ult

tolerance. When a processor fails due to a software bug, the backup processes frequently are able to continue pro-

zessing without encountering the same bug. The software environment in the backup processor typicall? has

different queue lengths. table sizes, and process mixes. Since most of the software bugs escaping the software

quality assurance tests involve infrequent data dependent boundary conditions. the backup processes oftci ,uccccd.

Continuous operation requires the capability for faulty modules to be identiied. sr' ,,.cd. and r-integrated

while the system is on-line. A fault-tolerant diagnostic system monitors system operation. iso!ate, the most likely

64I

U

I
failing module, and optionally dials a remote center to request service. Modules such as processor boards, con-

Itrollers, disks, fans, and power supplies may be replaced on-line.

6.2. Integrity S2

3The Integrity S2 illustrates another approach to fault-tolerant computing. S2, which was introduced in 1990,

was designed to run a standard version of the UNIX operating system. In systems where compatibility is a major

Igoal, hardware fault recovery is the logical choice since few modifications to the software are required.

3A diagram of the Integrity S2 system is shown in Figure 12. The processors and local memories are

configured using triple-modular-redundancy (TMR). All processors run the same code stream, but clocking of

3 each module is independent to tolerate faults in the clocking ,aircuits. Execution of the three streams is asynchro-

nous, and may drift several clock periods apart. The streams are re-synchronized periodically and during access of

global memory. Voters on the TMR Controller boards detect and mask failures in a processor module.

3Memory is partitioned between the local memory on the triplicated processor boards and the global memory

on the duplicated TMRC boards. The duplicated portions of the system use self-checking techniques to detec.

3 failures. Each global memory is dual ported and is interfaced to the processors as well as to the 10 . rc.essors

(IOPs). Each IOP controls a NonStop V+ bus. Standard VME peripheral controllers are interfaced to a pair of

NonStop V+ busses through a Bus Interface Module (BIM). If an IOP fails, the BIM switches control of all con-

raollers to the remaining IOP. Mirrored disks may be attached to two different VME controllers.

In Integrity S2, all hardware failures are masked by the redundant hardware. After repair, components are

ein[Meerated on-line.

3The preceding examples have shown ways in which commercial vendors have incorporated fault tolerance

into data processing systems. Approaches involving software recovery require less redundant rdarc. and offer

3the potenual for some software fault tolerance. Hardware approaches use extra hardware re-uundancy to allnw fui

compatibility v th standard opmcrating systems and to -ransparently run apphcation,. -. ch 1a-sc e; ,'

3 other systems. Commecial fault-tolerant computing will -ro%, in importance ais c,'mpant> grn'e :nc .. oni*.

-IX i adtradrk of AT&T

,I0

I VOE

r. I

I alm
aim

U

U
dependent on the correct operation of their computer systems.

3 7. Acknowledgement

The authors thank Jayne Chase Loseke and Dong Tang for their invaluable assistance in preparing thi-

3 manuscript. This work was supported by NASA grant NAG-1-613 at the Illinois Computer Laboratory for

Aerospace Systems and Sottware (ICLASS), a NASA Center of Excellence, the Semiconductor Research Corpora-

tion under grant 90-DP-109, and the Joint Services Electronics Program (U.S. Army, U.S. Navy, and U.S. Air

3 Force) under contract N00014-90-J-1270.

K
U

U
3

I

I
I

I
I
3 51

References

(i J. von Neumann, "Probabilistic Logics and the Synthesis of Reliable Organisms from Unreliable Com-
ponents," in Automata Studies, Annals of Mathematical Studies, No. 34, (Princeton University Press:
Princeton, NJ) pp. 43-98, 1956.

[2] Algirdas Avizienis and Jean-Claude Laprie, "Dependable Computing: From Concepts to Design Diversity,"
Proceedings of the IEEE, Vol. 74, No. 5, May 1986.

[3] D.A. Rennels, "Fault Tolerant Computing--Concepts and Examples," IEEE Trans. Computers, Vol. C-33,
Nr , pp. 1116-1129, Dec. 1984.

[4] B iohnson, Design and Analysis of Fault Tolerant Digital Systems, (Addison Wesley: Reading, MA)
1.

[5] D.P Siewiorek and R.S. Swarz, Theory and Practice of Reliable System Design, (Digital Press: Bedford,
MA) 1982.

[6] T.R.N. Rao and E. Fujiwara, Error Control Coding for Computer Systems, (Prentice-Hall: Englewood
Cliffs, NJ) 1989.

[7] R. Blahut, Theory and Practice of Error Control Codes, (Addison Wesley:, Reading, MA) 1984.

[8] J. Wakerly, Error Detecting Codes, Self-Checking Circuits and Applications, (Elsevier North Holland, Inc.-
New York, NY) 1978.

[91 D.A. Reynolds and G. Metze, "Fault Detecting Capabilities of Alternating Logic," IEEE Trans. Computers,
Vol. C-27, No. 12, pp. 1093-1098, Dec. 1978.

[101 J.H. Patel and L.Y. Fung, "Concurrent Error Detection in ALUs by Recomputing with Shifted Operands,"
IEEE Trans. Computers, Vol. C-31, No. 7, pp. 589-595, July 1982.

[11] K.H. Huang and J.A. Abraham, "Algorithm-Based Fault Tolerance for Matrix Operations," IEEE Trans
Computers, Vol. C-33, No. 6, pp. 518-528, June 1984.

[12] J.A. Abraham, P. Banerjee, C.-Y. Chen, W.K. Fuchs, S.-Y. Kuo, and A.L.N. Reddy, "Fault Tolerance Tech-
niques for Systolic Arrays," IEEE Computer Mr,azine (Special Issue on Systolic Arrays From Concept to
Implementation), Vol. 20, No. 7, pp. 65-77, July 1987.

[13] P. Banerjee, J.T. Rahmeh, C. Stunkel, V.S.S. Nair, K. Roy and J.A. Abraham, "An Evalution of System-
Level Fault Tolerance on the Intel Hypercube Multiprocessor," Proc. 18th Int. Symp. Fault-Tolerant Com-
puting, pp. 326-367, June 1988.

[14] B. Randell, "System Structure for Software Fault Tolerance," IEEE Trans Sofnvare Eng. Vol SE-I. No 2.
pp. 220-232, June 1975.

[15] A. Avizienis, "Software Fault Tolerance," G.X. Ritter, Ed. Information Processing 89: Proc. IFIP XI
World Computer Congress, (North-Holland: Amsterdam) pp. 491-498, Sept. 1989.

!161 V. P. Nelson, and B. D. Carroll, ed., Tutorial. Fault-Tolerant Computing, (IEEE Conputcr Soc;et%. Lo,,
Anigeles) 1987.

[17] R. J. Abott, "Resourceful Systems for Fault Tolerance, Reliability, and Safety," ACM Computing Surveys,
Vol. 22, no. 1, pp. 35-68, March 1990.

[181 T. Anderson and P A. Lee, Fault Tolerance Principles and Practice. (Prentice Hall: London) 198!1.
[19] H. Hecht and M. Hecht, "Fault-Tolerant Software," in Fault-Tolerant Computing, D. K. Pradhan. cd.. (Pren-

Lice Hall: Englewood Cliffs, NJ) pp. 658-695. 1986.

'201 T. Anderson, el.. Reszlhent Computan Stems. Vol. 1, ('John Wiley and S.)ns: 5.cw "ork) I 9 '.

1211 J. Gray, "Why Do Computers Stop and What Can Be Done About It'?," Pro.. IEEE th S'-np ,'n R,'hibiiuv3
and Distributed Software and Database Systems. pp. 3-12, Jan. 1986.

5
523

I

I
[22] N. G. Leveson, "Software Safety: Why, What and How," ACM Computing Surveys, Vol. 18, no. 2, pp.

125-163, June 1986.

(231 D. J, Taylor, D. E. Morgan, J. P. Black, "Redundancy in Data Structures: Improving Software Fault Toler-
ance," IEEE Trans. on Software Engineering, Vol. SE-6, no. 6, pp. 585-594, Nov. 1980.

I [241 C. C. Li, P. P. Chen, W. K. Fuchs "Local Concurrent Error Detection and Correction in Data Structures
Using Virtual Backpointers," IEEE Trans. on Computers, Vol. 38, no. 11, pp. 1481-1492, Nov. 1989.

(25] C. C. Li, W. K. Fuchs, "CATCH- Compiler Assisted Techniques for Checkpoinung,' Proc. 20th Int. Symp.3 Fault-Tolerant Computing, pp. 74-81, June 1990.

(26] J. A. Stankovic, ed. Reliable Distributed System Software, (IMEE Computer Society: Los Angeles) 1985.

127] L. Svobodova, "Resilient Distributed Computing," IEEE Trans. on Software Engineering, Vol. SE-10, No.

3, pp. 257-268, May 1984.

(28] P. J. Denning, "Fault-Tolerant Operating Systems," ACM Computing Surveys, Vol. 8, no. 4, pp. 359-389,
Dec. 1976.

[291 H. Garcia-Molina, "Reliability Issues for Fully Replicated Distributed Databases," Computer, Vol. 15, No. 9,
pp. 34-42, Sept. 1982.

[301 K. L. Wu, W. K. Fuchs, J. H. Patel, "Error Recovery in Shared Memory Multiprocessors Using Private
Caches," IEEE Trans. on Parallel and Distributed Systems, Vol. 1, no. 2, pp. 231-240, April 1990.

[31] K. L. Wu, W. K. Fuchs, "Recoverable Distributed Shared Virtual Memory, IEEE Trans. on Computer,;,
Vol. 39, no. 4, pp. 460-469, April 1990.

[32] K.P. Parker, Integrating Design and Test: Using CAE Tools for ATE Programming, (Computer Society
Press: Washington, DC) 1987.

[33] M. Abramovici, M. A. Breuer and A. D. Friedman, Digital Systems Testing and Testable Design, (Computer
Science Press: New York, NY) 1990.

[34) D.K. Pradhan, Ed., Fault-Tolerant Computing Theory and Techniques, Vols. I and II, (Prentice-Hall: Engle-
wood Cliffs, NJ) 1986.

[35] R.G. Bennetts, Design of Testable Logic Circuits, (Addison-Wesley: Reading, MA) 1984.

(36] A. Miczo, Digital Logic Testing and Simulation, (Harper & Row: New York) 1986.

I [37 H. Fujiwara, Logic Testing and Design for Testability, (MIT Press: Cambridge, MA) 1935.

[38] F.F. Tsui, LSI-VLSI Testability Design, (McGraw-Hill: New York) 1986.

[39] E. J. McCluskey, Logic Design Principles, With Emphasis on Testable Semicustom Circuits, (Prcntic-Hall.

Englewood Cliffs, NJ) 1986.

(40] P. H. Bardell, W. H. McAnney, and J. Savir, Built-In Test for VLSI: Pseudorandom Techniques, (Wiley:
Somerset, NJ) 1987.

[-1 I R. Geist and K. Trivedi, "Reliability Esumauon of Fault-Tolerant Systems: Tool.k and Tcchniques. IEEE
Computer, Vol. 23, No.7, pp. 52-61, July 1990.

[42] J.C. Laprie, "On Reliability Prediction of Repairable Redundant Digital Structures," IEEE Trans. on Relia-

bility, Vol. R-25,. pp. 256-258, October 1976.

[43] K.S. Tnvedi, Probability and Statistics with Reliability. Queueing, and Computer ScL.nce Applications.
(Prentice-Hall: Englewood Cliffs, NJ) 1982.

[441 J. Arlat and J.C. Laprie, "On the Dependability Evaluation of High Safety Systems." Proc. 15th In(. Svm,.
Fault-Tolerant Computing, pp. 318-323, June 1985.
A. Goyal, S S. Lavenberg, and K.S. Trivedi, "Probabilistic Modeling of Computer S A' -saiabiiht.

Annals of Operations Research, Vol. 8, pp. 285-306, 1987.

f461 J.F. Meyer, 'Closed-Form Solutions of Performability," IEEE Trans. on Computers, Vol. C-31. No. 7, pp.

3 648-657, July 1982.

53

[47] A. Reibman, R. Smith, and K. Trivedi, "Markov and Markov Reward Model Transient Analysis: An Over-

view of Numerical Approaches," European Journal of Operational Research, Vol. 40, pp. 257-267, 1989.

(48] A.M. Johnson, Jr. and M. Malek, "Survey of Software Tools for Evaluating Reliability, Availability, and

Serviceability," ACM Computing Surveys, Vol. 20, No. 4, pp. 228-269, Dec. 1988.

[49] S.J. Bavuso, et. al., "Analysis of Typical Fault-Tolerant Architectures using HARP," IEEE Trans. on Relia-

bility, Vol. R-36, No. 2, pp. 176-185, June 1987.

(50] W.H. Sanders and J.F. Meyer, "METASAN: A Performabdity Evaluation Tool Based on Stochastic Activity

Networks," IEEE Fall Joint Computer Conference, Dallas, Texas, pp. 807-816, Nov. 1986.

[51] A. Goyal, W.C. Carter, E. de Souza e Silva, S.S. Lavenberg and K.S. Trivedi, "The System Availability

Estimator," Proc. 16th ht. Symp. Fault-Tolerant Computing, pp. 84-89, July 1986.

(52] R.A. Sahner and K.S. Trivedi, "Reliability Modeling Using SHARPE," IEEE Trans. on Reliability, Vol. R-

36, No. 2, pp. 186-193, June 1987.

[53] R.W. Butler, "An Abstract Language for Specifying Markov Reliability Models," IEEE Trans. on Reliabil-

irv, Vol. R-35, No. 5, pp. 595-601, Dec. 1986.

[54] A. Costes, J.E. Doucet, C. Landrault, J.-C. Laprie, "SURF: A Program for Dependability Evaluation of

Complex Fault-Tolerant Computing Systems," Proc. 11th Int. Symp. Fault-Tolerant Computing, Portland,

ME, pp. 72-78, June 1981.

[55] R.K. Iyer, DJ. Rossetti, and M.C. Hsueh, "Measurement and Modeling of Computer Reliability as Affected

by System Activity," ACM Trans. on Computer Systems, Vol. 4, No. 3, pp. 214-237, August 1986.

(56] R.K. Iyer, S.E. Butner and EJ. McCluskey, "A Statistical Failure/Load Relationship: Results of a Multi-

computer Study," IEEE Trans. on Computers, Vol. C-31, No. 7, pp. 697-706, July 1982.

[57] X. Castillo and D.P. Siewiorek, "A Workload Dependent Software Reliability Prediction Mode!," in Proc

12th Int. Symp. Fault-Tolerant Computing, pp. 279-286, June 1982.

[58] J.F. Meyer and L. Wei, "Analysis of Workload Influence on Dependability," Proc. 18th Int. Symp. Fault-

Tolerant Computing, pp. 84-89, June 1988.

[591 Jurgen Dunkel, "On the Modeling of Workload Dependent Memory Faults," Proc. 20th Int. Svmt, Fal:-

Tolerant Computing, Newcastle-upon-Tyne, England, pp. 348-355, June 1990.

[601 M.C. Hsueh, R.K. Iyer and K.S. Trivedi, "Performability Modeling Based on Real Data: A Case Study."

IEEE Trans. on Computers, Vol. 37, No. 4, pp. 478-484, April, 1988.

[61] Z. Jelinski and P. Moranda, "Software Reliability Research," Statistical Computer Performance Evaluation,

edited by Freiberger, W., (Academic Press: New York) pp. 465-484, 1972.

[62] J.D. Musa, A. lannino, and K. Okumoto, Software Reliability: Measurement, Prediction, Application,

(McGraw-Hill Book Company) 1987.

[63] B. Littlewood, "Theories of Software Reliability: How Good Are They and How Can They Be Improved?"

[EEE Trans. on Software Engineering, Vol. SE-6, No. 5. pp. 489-500. September 1980.

[641 A.A. Abdel-Ghaly, P.Y. Chan, and B. Littlewood, "Evaluation of Computing Software Reliability Predic-

tions," IEEE Trans. on Software Engineering, Vol. SE-12, No. 9, pp. 950-967, Sept. 1986.

[651 Iyer, R. K. and Rossetti, D. J., "Effect of System Workload on Operating System ReliabitN: A Stud% on

IBM 3081," IEEE Trans. on Software Engineering, Vol. SE-11, No. 12, pp. 1438-1448. Dec. 1985.

'66] G.S. Choi, R.K. Iyer and V.A. Carreno, "Simulated Fault Injection: A Methodology to Evaluate Fault-

Tolerant Microprocessor Architectures," IEEE Trans. Reliability, Special Issue on Experimental Evaluat:n,

October 1990.

"671 E.W. Czech and D.P. Sicworek, 'Effects of Transient Gate-Level Faults on Program Behavior.' Pr,;i 2',t

Int. Symp. Fault-Tolerant Computing, pp. 236-243, June 1990.

!6,! R. Chillarege and R.K. Iver, 'Measurement-Based Analysis of Error Latency," IEEE ira:,', on Cmpuaer.s.

Vol. 36, No. 5, pp. 529-537, May 1987.

54

I

U
[69] K.G. Shin and Y.H. Lee, "Measurement and Application of Fault Latency," IEEE Trans. on Computers, Vol.

C-35, No. 4, pp. 370-375, 1986.

[70] A. Avizienis, H. Kopetz, J. C. Laprie, eds., The Evolution of Fault Tolerant Computing, (Springer-Verlag:
Vienna) 1987.

3 [71] J. Bartlett, "A NonStop Kemal," in Proc. 8th Symp. on Operating System Principles, pp. 22-29, Dec. 1981.

[72] 0. Serlin, "Fault-Tolerant Systems in Commercial Applications," Computer, Vol. 17, No. 8, pp. 19-30,

August 1984.

[73] R. W. Horst, R. Harris, R. Jardine, "Multiple Instruction Issue in the NonStop Cyclone Processor," in Proc.
17th Symp. on Computer Architecture, May 1990.

[74] "How Technology is Cutting Fault-Tolerance Costs," Electronics, January 13 1986.

[75] D. P. Siewiorek, "Fault Tolerance in Commercial Computers," Computer, Vol. 23, no. 7, pp. 26-37, July
1990.

(76] R. Freiburghouse, "Making Processing Fail-Safe," Mini-Micro Systems, pp. 255-264, May 1982.

I
I

I
I
U
I
I

I
I
I

