
Fault-Tolerant
Computing:

Fundamental
Concepts

Victor P. Nelson

Auburn University

D
system failures, and means must be pro-
vided to tolerate faults in the system.

igital systems have been entrusted
with increasingly more critical re-
sponsibilities, requiring high de-

pendability. Often the use of high-quality
components and design techniques does
not sufficiently reduce the likelihood of

This article reviews the basic concepts
of fault-tolerant computing, focusing on
hardware. It examines failures, faults, and
errors in digital systems and defines meas-
ures of dependability, which dictate and
evaluate fault-tolerance strategies for dif-
ferent classes of applications. The various
mechanisms for implementing a fault-tol-
erance strategy are reviewed, including
error detection, fault masking, fault con-
finement, system reconfiguration and re-
pair, and system recovery.

aerospace computing,
and desirable in other

applications. This
review discusses basic

concepts,
mechanisms, and

strategies and
sketches future

Fault tolerance is

directions.

crucial in military and
model and protect against, because their
occurrences and effects are hard to pre-
dict.

and external disturbances, such as harsh
environmental conditions, electromag-
netic interference, ionizing radiation, un-
anticipated inputs, or system misuse.
Faults resulting from design errors and
external factors are especially difficult to

An error is a manifestation of a fault in
a system, in which the logical state of an
element differs from its intended value. A
fault in a system does not necessarily
result in an error. An error occurs only
when a fault is “sensitized”; in other
words, for a particular system state and
input excitation, an incorrect next state
and/or output results. A fault is referred to
as latent if it has not yet been sensitized in
the system. The term soft is often applied
to errors that persist after the originating

Failures, faults,
fault disappears. Once corrected,-soft er-
rors usually leave no damage in the sys-

and errors its environment, which in turn are caused
tern.

by various faults. Hierarchical models of faults and er-
When applied to digital systems, the A fault is an anomalous physical condi- rot-s. Device testing and fault-tolerant

terms failure, fault, and error have differ- tion. Causes include design errors, such as design require fault and error modeling at
ent meanings.‘.* Failure denotes an mistakes in system specification or im- one or more levels of design abstraction,
element’s inability to perform its designed plementation; manufacturing problems; with various trade-offs between accuracy
function because of errors in the element or damage, fatigue, or other deterioration; and ease of modeling and analysis. At the

July 1990 0018.9162/90/0700-Wl9501.000 199OlEEE 19

lowest level, faults are technology depend-
ent. Such physical defects as shorts or
opens in metal or polysilicon signal lines
can alter voltages, switching times, and
other properties.3 External disturbances
also work at this level, affecting signal
lines, charge storage, and other properties.

At the logical level, a digital system is
modeled with gates and memory elements,
with all signals represented as binary val-
ues. Low-level fault-tolerance strategies
are designed to detect or mask faults that
produce erroneous logical values. Because
of its simplicity, the “stuck-at” model is
the most widely used logical fault model,
assuming that a fault manifests itself as a
fixed logical value on a signal line. A more
complex model is the “bridging” fault, in
which coupling between signal lines re-
sults in the logical value of one line affect-
ing the value of another. Other complex
faults alter the basic logical function of a
gate, as often happens in programmable
logic arrays, where the presence or ab-
sence of connections in an AND/OR array
results in implicants being added to or
removed from a function.

At higher levels of abstraction (regis-
ters, arithmetic logic units, processors,
etc.) faults typically appear as changes in
the module’s behavior, as represented by
its truth table or state table. At this level
fault modeling is usually more abstract to
facilitate simulation at the behavioral
level; hence, accuracy is often sacrificed.

Fault properties. A fault can be classi-
fied by its duration, nature, and extent. The
duration of a fault can be transient, inter-
mittent, or permanent. A transient fault,
often the result of external disturbances,
exists for a finite length of time and is
nonrecurring. A system with an intermit-
tent fault oscillates between faulty and
fault-free operation. Usually, an intermit-
tent fault results from marginal or unstable
device operation. Permanent or “hard”
faults are device conditions that do not
correct with time. They result from compo-
nent failures, physical damage, or design
errors. Transient and intermittent faults
typically occur with greater frequency than
permanent faults and are more difficult to
detect, since they may disappear after
producing errors.

The nature of a fault is determined by its
behavior in the system. A logical fault
produces errors that can be represented as
logical values, while errors resulting from
indeterminate faults do not have logical
equivalents. For example, the shorting of a
logic gate input to ground can be modeled

20

A fault-tolerant system
is not necessarily

highly dependable,
nor does high

dependability necessarily
require fault tolerance.

as a stuck-at-0 fault at that input. However,
the behavior of a gate input whose signal
voltage floats between the logic 1 and 0
thresholds cannot be represented as a
simple logical value. Other indeterminate
faults affect propagation times and other
electrical parameters, making them diffi-
cult to model.

The extent of a fault is determined by the
area affected at the level of abstraction
being considered: Local faults affect
single components, and global faults affect
multiple components. Because of cost con-
straints, many fault-tolerance and device-
testing strategies address only single, sta-
tistically independent faults. Multiple
faults require more extensive fault models
and global approaches ‘to fault tolerance.
However, multiple faults become more
likely at increased very large scale integra-
tion levels. In addition, external distur-
bances tend to have global effects, espe-
cially in military and aerospace applica-
tions subject to electromagnetic interfer-
ence and ionized-particle radiation.
Hence, multiple faults are receiving in-
creasing attention.

Evaluating
dependability and
fault tolerance

The goal of fault-tolerant design is to
improve dependability* by enabling a sys-
tem to perform its intended function in the
presence of a given number of faults. Note,
however, that a fault-tolerant system is not
necessarily highly dependable, nor does
high dependability necessarily require
fault tolerance.

Dependability can be quantified by de-
terministic or probabilistic measures. A

deterministic goal for a fault-tolerant sys-
tem might be that no single fault can cause
system failure. Many commercial system
manufacturers advertise their systems’
ability to tolerate some maximum number
of processor, disk drive, and other compo-
nent failures. However, such advertising
does not mention the frequency or likeli-
hood of such failures, or their cost.

Reliability and availability. Dependa-
bility is most often quantified probabilisti-
tally in terms of either reliability or availa-
bility. Reliability, R(t), is the conditional
probability that a system can perform its
designed function at time t, given that it
was operational at time t = 0. Thus R(t) is
a function of the fault processes affecting
the system, and of any mechanisms that
prevent system failure when a fault occurs.
Many real-time systems, such as those
used for aircraft or nuclear power plant
control, require a high R(t) because a single
error could be fatal. For long-life unat-
tended systems, such as those used in deep-
space probes, the probability of multiple
faults increases dramatically with mission
time. Automatic repairs must be made with
spare resources to maintain reliability over
the life of the mission, although some
performance degradation may be accept-
able during these repairs.

Where cost prohibits sufficient fault
tolerance to ensure continuous error-free
operation, some amount of downtime for
repair is inevitable. Availability, A(t), is a
useful measure for systems subject to fail-
ure and repair; it is defined as the probabil-
ity that a system is operational at time t.
Availability is often expressed as a steady-
state value, either as the probability that
the system is operational at any random
time, or as a given amount of downtime
over a specified interval. For example, the
availability goal for the Bell System elec-
tronic switching system was specified as
two minutes of downtime per year.“ Com-
mercial systems, which must be affordable
as well as dependable, are normally de-
signed for high availability. They use fault-
tolerant protocols and other operations to
protect the database from contamination,
while using redundant processors and
other resources for diagnosis and repair.
Some systems can continue operating at a
degraded level during repair.

Statistical mean values of system failure
and repair times are often used in system
evaluation. However, they can be mislead-
ing, since they are computed over infinite
time intervals rather than the relatively
short lifetime of the evaluated system. The

COMPUTER

two most common parameters are “mean
time to failure” (MTTF), which is the
expectation of the time at which the system
will fail, and “mean time to repair”
(MTTR), the expectation of the time to
restore a failed system to correct operation.
These two parameters are most often used
to compute steady-state availability, given
by

A steady.<tdic = MK’-FIMTTF + 1m7-R (1)

If a system is highly reliable-that is, if
MTTF is large relative to MTTR - then
availability is close to I. For smallerMT7’F
values, availability varies significantly
with repair time. Complete derivations of
the above parameters and other reliability
and availability measures are discussed
elsewhere.’ KS. Trivedi discusses system
reliability modeling in this issue of Cotn-
puter.5

Improving reliability with fault toler-
ance. The effects of a fault-tolerant design
strategy on system reliability can be ex-
pressed as follows:

R \y>rem = Pr(no fault] +
Pr(correct operation/fault] * (2)

Pr(fault]

The first term is the probability that no
fault will occur. It is maximized by “fault-
intolerant” design, that is, by high-quality
components, proofs of design correctness,
and other formal design methodologies. If
Pr(no fault] can be made sufficiently high,
a target system reliability can be achieved
without fault-tolerance strategies.

The effects of fault tolerance on reliabil-
ity are represented by the second term in
Equation 2, which is the probability that a
fault will occur but will not result in system
failure, computed over all possible faults.
Pr(correct operation/fault], referred to as
the coverage of the fault-tolerance mecha-
nism, is the conditional probability that a
system will continue to operate correctly
given the occurrence of a particular fault.
Each coverage term is weighted by the
probability that the corresponding fault
will occur, so for a cost-effective system
design, fault-tolerance mechanisms
should be targeted at the most likely faults.
Note that if fault probabilities are high, a
system may be able to tolerate all of a given
set of faults and yet not be sufficiently
reliable for the application. Automatic
fault-detection, diagnosis, repair, and re-
covery mechanisms can reduce or elimi-
nate downtime, improving availability.

Fault tolerance in a
digital system is achieved

through redundancy in
hardware, software,
information, and/or

computations.

A fault-tolerant-system designer must
also consider performance, complexity,
cost, size, and other constraints, all of
which are affected by the redundancy and
fault-tolerance strategies used. These costs
must be weighed against such conse-
quences of system failure as lost produc-
tion or danger to life, which may be diffi-
cult to quantify.

Elements of fault-
tolerance strategies

Fault tolerance in a digital system is
achieved through redundancy in hardware,
software, information, and/or computa-
tions. Such redundancy can be imple-
mented in static, dynamic, or hybrid con-
figurations. A fault-tolerance strategy in-
cludes one or more of the following ele-
ments:

l Masking. Dynamic correction of gen-
erated errors.

l Detection. Detection of an error - a
symptom of a fault.

l Containment. Prevention of error
propagation across defined bounda-
ries.

l Diagnosis. Identification of the faulty
module responsible for a detected er-
ror.

8 Repaidreconfiguration. Elimination
or replacement of a faulty component,
or a mechanism for bypassing it.

l Recovery. Correction of the system to
a state acceptable for continued opera-
tion.

For short-term ultrareliable operation,
where no time is available for off-line fault
diagnosis and repair, a static or passive
configuration
mask a given

Dynamic redundancy, on the other hand,
involves the switching of modules or re-
routing of communications as faults occur.
The faulty components are detected, diag-
nosed, and repaired or replaced.

In a hybrid approach a static base con-
figuration masks a given number of faults,
while faulty modules are detected and
replaced within the configuration. Hybrid
redundancy is desirable for long-term
ultrareliable applications in which the
probability of multiple faults is high.

High-availability applications do not
necessarily require continuous error-free
operation, although databases and other
critical resources must be protected. In
such cases, errors are detected and con-
tained within replaceable modules, rather
than masked. System operation is then
degraded or halted to perform diagnosis,
reconfiguration or repair, and recovery.

Error detection, masking, and correc-
tion. Component complexity affects the
ability to distinguish errors from correct
values. Errors occurring in data-storage
components, such as registers and mem-
ory, or during data transmission via buses
or network links, are more easily detected
than errors originating within modules that
generate or transform data. Masking or
correcting errors is more difficult, requir-
ing multiple copies of an element or other
redundancy so that correct data can be
extracted from the redundant information.
Error detection and correction can be con-
current with normal system operations or
executed off line during specified testing
intervals.

Error detection and correction codes.
Coding theory is the most widely devel-
oped mechanism for error detection and
correction in digital systems, typically
requiring less redundancy than other error
detection and correction schemes. A
code’s error detection and correction prop-
erties are based on its ability to partition a
set of 2” n-bit words into a code space of 2”
words and a noncode space of 2” - 2”
words. For most codes, each word
comprisesm bits of information and k = n -
m check bits. Each code is designed so that
a given number of errors transforms a code-
space word into a word in the noncode
space. Errors are detected by decoding
circuits that identify any word outside the
code space. Error correction is performed
by more extensive decoding that uniquely
associates a noncode-space word with the
original code word transformed by the
errors.

July 1990 21

Data in
I

+ *
Master Checker

Compare
logic

4

1 EGor
indication

Data out

64

Data in

Error
indication

+
Data out

@I

Figure 1. Replicated lockstep operation of modules with redundant outputs
checked in each clock cycle: (a) logic compared externally; (b) logic compared
on chip.

Within a single word, the number of
errors detectable or correctable by a given
code is related to the minimum separation
or Hamming distance between the words
of the code space. The distance is the
minimum number of bit positions by which
any two words from the code space differ.
If two words differ by only one bit posi-
tion, then an error in that bit transforms one
word into the other. If the minimum dis-
tance is 2, a single error can produce only
a noncode word, with at least two errors
required to transform one code word into
another. If the minimum separation is 3,
any noncode word produced by a single
error is distance 1 from the original code
word and at least 2 from any other code
word, allowing the original word to be
uniquely identified.

Larger separations permit detection and/
or correction of greater numbers of errors,
generally by increasing the size of the
noncode space (2m+t) relative to that of the
code space (2”), making it more likely that
errors will result in noncode words. The
cost of this increased coverage is usually a
lower code efficiency (code bits versus
total bits) or a more complex encoding
algorithm.

Error detection and correction codes
vary widely in detection and correction
properties, encoding and decoding com-
plexity, and code efficiency. The most
common codes include simple parity
checks to detect errors in buses, memory,

22

and registers. Parity-based Hamming
codes detect and correct errors in memory;
cyclic redundancy checks and other cyclic
codes detect and correct errors in commu-
nications channels and disk storage; m-
out-of-n codes detect errors in micropro-
gram control stores and other ROMs; and
arithmetic codes detect errors originating
within arithmetic logic units.

Many computer memory subsystems
include single-error correction and
double-error detection using inexpensive
Hamming-code-based support chips that
efficiently encode and decode words dur-
ing memory operations. Other commercial
very large scale integration components
include parity generators for buses and
storage elements, and encoding/decoding
circuits for disk drives, tapes, networks,
and other communications channels. Some
new VLSI components incorporate on-
chip parity generation and checking logic;
for example, the Advanced Micro Devices
Am29300 chip set generates and checks
parity on data paths to and from the device,
and on internal data paths. In addition,
several recent VLSI memories incorporate
on-chip error detection and correction to
mask memory cell faults arising in manu-
facturing or normal operation.

Self-checking logic. Self-checking
logic designs detect faulty logic circuits,6
especially in code checkers and other cir-
cuits that could be single points of failure

in a system.4 (Several experimental VLSI
designs have been implemented entirely
with self-checking circuits.) Each self-
checking circuit has coded inputs and out-
puts, typically in the form of 2-bit “dual-
rail” logic, which has two valid code words
and two noncode words for each logic line.
A circuit is classified as fault secure if, for
any specified fault within the circuit, the
circuit never produces an incorrect output
code word when stimulated by a correct
input code word. A self-testing circuit, on
the other hand, outputs a noncode word for
at least one code word input for each pos-
sible fault. A totally self-checking circuit
has properties of both fault-secure and self-
testing circuits; hence, no internal fault can
convert an erroneous input into a valid
output, and at least one normally occurring
input will detect each possible internal
fault.

Module replication for error detec-
tion and masking. With circuits that gen-
erate or transform information, complete
module replication is often the only cost-
effective approach for error detection and
correction. Figure 1 shows the most
straightforward approach to error detec-
tion: The outputs of identical modules
operating in lockstep are compared. Sev-
eral commercial transaction-processing
systems have been built around pairs of
off-the-shelf microprocessors with com-
parator circuits at their bus interfaces to
detect processor faults (Figure la).

Simple disagreement detection indi-
cates a fault but cannot identify the faulty
unit. The system must be interrupted for
further diagnosis. Continuous operation
can be attained by using additional error-
detection mechanisms to make the dupli-
cated modules self-checking, as in the
AT&T 3A electronic switching system
processor, which uses self-checking logic
circuits4 Figure 2a shows that when one
module signals an error, it can be disabled
while the other module continues to supply
correct information, effectively masking
the fault in the failed unit. Normally the
disagreement detector between modules is
eliminated and all errors are assumed to be
detected within the redundant modules.
Figure 2b shows how self-checking mod-
ules can be built with off-the-shelf compo-
nents: One of the configurations of Figure
I is duplicated, so four units and two
comparators are needed for continuous
fault masking. This approach has been
used in the Stratus computer family and
other systems.

Continuous operation is often provided

COMPUTER

by using the majority vote of the outputs of
three or more identical modules, masking
failures of the minority. Triple modular
redundancy has been used extensively in
ultrareliable systems for aerospace and
industrial applications, with two out of
three votes masking single-module fail-
ures. Additional fault coverage can be at-
tained with N modules by deploying them
in a hybrid modular-redundant configura-
tion, in which failed modules are replaced
within a triple modular-redundant core
configuration. Hybrid modular-redundant
configurations can mask failures of all but
two modules. compared with a simple
minority in M-out-of-N majority-voting
systems.

A significant problem with module rep-
lication is synchronization of the redun-
dant modules. If comparison or voting is
done in hardware, tight coupling of the
redundant modules is needed toensure that
comparison or voting takes place on valid
data samples. Fault-tolerant clocking
schemes and other means of synchroniza-
tion have been studied extensively, and
several recent commercial VLSI chips
include on-chip support for duplex, mas-
ter/checker operation. Figure I b shows
paired master and checker chips operating
in lockstep, with all corresponding pins
connected to the same input/output lines.
Both chips receive all inputs and perform
all operations. The output lines are driven
only by the master. with output also routed
into the corresponding pins of the checker
to on-chip comparators for comparison
with values produced by the checker. The
result is indicated by a match or an error
signal.

An alternative to tight coupling is to
compare only selected outputs from
loosely synchronized units. In the SIFT
system,’ critical-process outputs are ex-
changed by the redundant processors in
each process step and compared in subse-
quent process steps by a software voter. In
the space shuttle, selected data values are
mathematically combined into “compare
words,” which are periodically exchanged
and compared by software in four redun-
dant processors.’

Voters and comparators, although typi-
cally much more reliable than the redun-
dant modules they protect, represent po-
tential single-failure points in replicated
systems. Fault tolerance and reliability can
be increased by replicating the compara-
tors or voters, usually at the module inputs,
as in the triple modular-redundant system
stage of Figure 3. Failure of any single
voter or the module to which its output is

July 1990

I-

Continuous
output

Module Module Module Module
Al A2 61 82

ia) (b)
Continuous

output

Figure 2. Continuous operation with duplex self-checking modules: (a) two self-
checked modules; (b) four simple modules as two self-checked pairs.

connected is masked by the voters at subse-
quent module inputs. Redundancy
schemes have also been extended to many
nondigital devices (motors, actuators,
sensors) used in redundant systems to
minimize the number of single-failure
points.

Protocol and timing checks. The be-
havior of most sequential logic circuits and
systems can be described by state ma-
chines or other protocols. Protocol vari-
ation resulting from a fault can be detected
several ways without massive replication
of modules.’ Selected process states or
module outputs can be compared with

predicted values or other heuristic infor-
mation, generated by alternative algo-
rithms or off-line units. Data values can be
checked for proper structure or consis-
tency with previous or predicted values.
Handshaking sequences between elements
involved in data transfers can be moni-
tored by hardware or software, especially
over buses and network links. Operational
“capabilities,“- the activities allowed by
various processes - can be verified be-
fore allowing an operation on a critical re-
source. Such approaches often reduce
hardware redundancy requirements but
may be more difficult to implement, re-
quiring application-specific information

Input A
Input B
IrQut c

. v Module
A

Output A

-- v ’ Module
B

Output B

- v . Module
C

output c

Inputs from Majority Redundant outputs to
previous stage voters modules next stage

Figure 3. Triplicated voters and modules forming one triple modular-redundant
stage of a system, with voting at module inputs.

23

which might, in turn, depend on unpredict-
able system inputs.

A simple fault-detection mechanism is
the time-out check. An event failing to take
place within some predefined time interval
usually indicates a fault (an event can be a
single data transfer or an entire process
step). Such occurrences can be monitored
by a “watchdog timer” set at the beginning
of each event to time-out after some time
T m,,r, interrupt the system, and signal an er-
ror. If the event completes before T,,,,, has
elapsed, the timer is stopped and reset for
the next event.

Error correction without massive redun-
dancy is difficult. However, for many tran-
sient faults, simple repetition of an opera-
tion after the fault disappears may produce
correct results, provided the system state
can be restored to the beginning of the op-
eration. Many processors support single-
instruction retry, with facilities to detect
errors and save and restore register values.
Several microprocessors also support bus-
cycle retries, which can be performed with
minimal saving of information. In both
cases, hard faults are signaled if errors
persist after some maximum number of
retries.

Fault containment. To protect critical
system resources and minimize recovery
time, errors must be confined to the mod-
ule in which they originate. Typically,
error-containment boundaries are hierar-
chically defined, with errors confined at
the lowest level to single replaceable or
repairable modules, and additional
boundaries set around subsystems contain-
ing these modules. Johnson’s excellent
case study of fault-containment boundary
definition and support describes the estab-
lishment of containment boundaries
around buses, processors, and memory
modules in the former Intel iAPX-432 fam-
ily.”

Containment boundaries can be estab-
lished in two ways: Each module can check
its own outputs, or each can check all
incoming information. The most common
approach is to require each module to sus-
pect all incoming information and correct
or block faulty data at the module inter-
face. Voters in software’ or hardware” are
used in the logical configuration shown in
Figure 3.

If a module is to be responsible for its
own output, it needs an error-containment
boundary. An error detection or correction
circuit, such as a voter, a comparator, or a
code checker, is placed at the interface
between the module and the system bus or

communications channel, along with a
circuit capable of disabling the module’s
output. If error correction is not possible, a
faulty module must be isolated to prevent
error propagation; its process is effectively
halted. A disadvantage in this configura-
tion is that the module interface often
cannot protect the system from failures of
the interface circuits themselves.

Reconfiguration and repair. A system
is repaired either by replacing the failed
module with a spare or by reconfiguring
the system structure or work load distribu-
tion to circumvent the module. Module
replacement restores the system to full
operation but requires redundant modules
not used for normal operations.

Many reconfiguration strategies use all
system components to perform useful
work. When a fault occurs, system per-
formance is degraded by redistributing the
work load among the remaining resources.
Or system redundancy can be reduced,
affecting subsequent fault tolerance. The
space shuttle computer complex is an ex-
ample of the latter strategy. It uses four
processors with majority voting for critical
operations.” Voting continues after one
failure, but a second failure ends voting
and a single processor performs all remain-
ing operations.

A failed module may be physically or
logically removed from a system. Logical
removal is accomplished by switching off
the module’s power, forcing its output into
an inactive state, or instructing all units to
ignore or bypass it.

Replacement units can be either “hot” or
“cold.” A hot spare concurrently performs
the same operations as the module it is to
replace, needing no initialization when it is
switched into the system. A cold spare is
either not powered or used for other tasks,
requiring initialization when switched into
the system. System designers must weigh
the cost of unused spares against that of
initialization time when deciding between
hot or cold spares.

If a failed module is not replaced, sys-
tem operation degrades as work is distrib-
uted among remaining resources. In multi-
processors and other parallel processing
systems, tasks are typically distributed
across the available processors, so that
processor loss only reduces system
throughput. I2 This happens in commercial
transaction-processing multiprocessors
advertised to operate continuously in the
presence of faults. In these systems, all
critical data is replicated or otherwise
protected to facilitate transfer of opera-

tions between processors. Special care is
taken to duplicate global data or provide
other redundant information to allow cor-
rupted data to be repaired. Global data
usually resides in shared memory or in
“mirrored” disk volumes - duplicated
disk drives and controllers accessible by
multiple processors. In massively parallel
machines or cellular arrays with complex
interconnection architectures, algorithms
reassign tasks and reroute communications
to bypass faulty processing cells for grace-
ful degradation of system operation.‘3

System recovery. If an unmasked error
has propagated through a system or if sys-
tem hardware or software has been recon-
figured, a recovery period is needed to
correct the system. The elapsed time be-
tween the occurrence and the detection of
an error determines the amount of damage
and the length of the recovery period.

Most system-recovery schemes restore
system operation to a previous correct state
or recovery point. A processor is rolled
back to a recovery point by restoring regis-
ters and memories to the saved state and
invalidating cache memories, forcing
cached data to be restored from global
memory. Global data is typically protected
through redundant protocols that allow
updates to be completed or undone and
repeated following a failure. In shared-
memory multiprocessor systems,12 global
data and lists of tasks to be performed are
kept in shared memory, allowing proces-
sors to continue automatically with tasks
on the list as failed processors are disabled.
This approach also helps balance loads on
the individual processors.

In loosely coupled systems, spare pro-
cessors are periodically updated at prede-
fined checkpoints, so that when a spare is
given control of a task after failure of a
master processor, processing can continue
from the most recent checkpoint rather
than from the beginning of the task. The
degree of rollback is limited by using
atomic actions - small, indivisible pro-
cessing steps completed and verified be-
fore global updates and the next action. Re-
covery from a failure occurring before
saving the results is usually performed by
repeating the entire action.

C omputer architectures are changing
rapidly, with increased integration
in VLSI devices, new parallel pro-

cessing architectures, and widely distrib-
uted networks presenting new challenges

24 COMPUTER

to fault-tolerant-design engineers. Much
previous work in fault-tolerant-hardware
design focused on gate-level approaches,
but now more work is needed at much
higher levels of abstraction, making com-
plete design validation more difficult.
Consequently, new approaches and tools
must be developed for fault-tolerant de-
sign, simulation, and reliability analysis.

Large systolic arrays, massively parallel
architectures, and other large-scale dis-
tributed systems with complex intercon-
nection networks present challenges in
system control, performance, and fault
tolerance. Engineers working on commu-
nications structures and algorithms for
mapping applications onto systolic arrays
and other cellular parallel systems are also
developing extensions to detect and diag-
nose faulty cells and circumvent them in
real time.

Most of the fundamental concepts dis-
cussed here deal primarily with localized
rather than system-wide fault tolerance.
Localized strategies are easy to understand
and apply. System-level fault tolerance
requires considerable work, especially in
wafer-scale systems and other highly inte-
grated systems. which are subject to mul-
tiple component failures. System-level
fault tolerance is also a challenge in dis-
tributed systems subject to synchroniza-
tion problems and global upset, especially
in aerospace, military, and other applica-
tions where external disturbances are
likely. The challenge in commercial appli-
cations is to provide fault tolerance that is
both dependable and affordable. n

References
I. V.P. Nelson and B.D. Carroll. Turor-iul:

Fault-Tolerant Compurin,q, CS Press. Los
.4lamitos, Calif., Order No. 677. 1986,
Chaps. 1-2.

2. A. Aviriems and J.C. Laprie, “Dependable
Computing: From Concepts to Design
Diversity,” Proc. IEEE, Vol. 74, No. 5,
May 1986, pp. 629-638.

3. J.A. Abraham and W.K. Fuchs, “Fault and
Error Models for VLSI,” Proc. IEEE, Vol.
74, No. 5, May 1986, pp. 639-654.

4. W.N. Toy, “Fault-Tolerant Design of Local
ESS Processors,” Prw. IEEE, Vol. 66, No.
IO, Oct. 1978, pp. l,l26-1,145.

5. K.S. Trivedi and R. Geist, “Reliability Es-
timation of Fault-Tolerant Systems: Tools
and Techniques,” Computer, this issue.

July 1990

6. E.J. McCluskey, “Design Techniques for
Testable Embedded Error Checkers,” Com-
puter, this issue.

7. J.H. Wensley et al., “SIFT: Design and
Analysis of a Fault-Tolerant Computer for
Aircraft Control,” Proc. IEEE. Vol. 66, No.
IO, Oct. 1978, pp. 1,240.1,255.

8. J.R. Sklaroff, “Redundancy Management
Technique for Space Shuttle Computers,”
IBM J. Research undDevelopment. Vol. 20,
No. I, Jan. 1976, pp. 20-28.

9. W.H. Kohler, “A Survey of Techniques for
Synchronization and Recovery in Decen-
tralized Computer Systems.” Compuring
Surl,evs, Vol. 13, No. 2, June 1981, pp. 149.
183.

10. D. Johnson, “The Intel 432: A VLSI Archi-
tecture for Fault-Tolerant Computer
Systems,” Computer-, Vol. 17, No. 8, Aug.
1984, pp. 40-48.

I I. A.L. Hopkins, Jr., et al.. “FTMP-A Highly
Reliable Fault-Tolerant Multiprocessor for
Aircraft,“Proc. IEEE, Vol. 66, No. IO, Oct.
1978, pp. 1,221.1,239.

12. J.G. Kuhl and S.M. Reddy. “Fault-Toler-
ance Considerations in Large, Multiple-
Processor Systems.” Computer, Vol. 19.
No. 3, Mar. 1986, pp. 56-67.

13. R. Negri. M. Sami, and R. Stefanelli. “Fault
Tolerance Techniques for Array Structures
Used in Supercomputing,” Computer, Vol.
19, No. 2, Feb. 1986, pp. 78-87.

Victor P. Nelson is an associate professor in the
Department of Electrical Engineering at Auburn
University. He has been involved in fault-toler-
ant computing since 1976 in research projects
with the US Air Force and the US Army Ballistic
Missile Defense Advanced Technology Center.
With the latter he was responsible for construc-
tion of the Fault Tolerance/Distributed Comput-
ing Laboratory at Auburn. Nelson has also
worked as an industry consultant. His research
interests include microprocessor applications,
computer architecture, and computer-aided
design of VLSI devices.

Nelson received a BSEE from the University
of Kentucky and MS and PhD degrees from
Ohio State University. He is a member of the
IEEE Computer Society, ACM, Sigma Xi, and
the National Society of Professional Engineers.

Readers may write to the author at Auburn
University, Department of Electrical Engineer-
ing, 200 Broun Hall, Auburn, AL 36849.5201.

Receive your
magazines weeks

earlier with
expedited
delivery!

Expedited delivery is available
to all members residing outside
the USA, Canada, and Mexico.

We invite you to take
advantage of this service

providing delivery of your
magazines weeks earlier.

For information on this service
and its cost, contact:

Expedited Delivery
IEEE Computer Society

10662 Los Vaqueros Circle
PO Box 3014

Los Alamitos, CA 90720- 1264 USA
(714) 821-8380

FAX (714) 821-4010

@ 8

Have you heard
about our...

Technical
Committee on

Test
Technology?
For information on this,
or any of our more than

30 technical committees,
circle number 197

on the reader service card.

IEEE COMPUTER SOCIETY
Membership/Circulation Dept.

10662 Los Vaqueros Circle
PO Box 3014

Los Alamitos, CA 90720-l 264
(714) 821-8380

FAX (714) 821-4010

