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Abstract

This paper presents a fault tolerant configuration for a multiple discrete control system. The distributed
control nodes, such as programmable logic controllers, communicate over networks. The design methodology
of an additional redundant controller using Galois field and an error-detecting code is proposed. The proposed
method is implemented and tested on distributed controllers connected on a network. It is shown that the
system is functional even if one of the controllers fails. From a reliability analysis, it is also shown that the
proposed design method drastically improves the mean time to failure of the discrete control system.
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I. Introduction

Discrete controls with programmable logic controllers (PLCs) are widely used for manufacturing
automation and process control. Recently years, the efficiency of production systems has improved.
It is required to reduce stocks on the manufacturing lines as much as possible. Faults of machinery
and stops of lines in the production systems will bring heavy losses. In this paper, a novel method
of fault tolerant configuration of discrete controllers is presented. The proposed system can continue
operations even if one of any controllers fails. Unlike fully redundant control systems, the proposed
system requires minimal additional cost and increases their reliability.
In the field of feedback control engineering, there are two types of strategies for fault tolerant

control. One is based on a design of a controller that simultaneously stabilizes both the non-faulty
and faulty plants[2][9]. Another is based on fault detection and controller reconfiguration[6][7]. These
conventional control systems are robust against a pre-defined set of faults. On the other hand, the
major concern in this paper is a fault of one of a set of distributed discrete controllers.
Section II gives a basic model of the controllers using Galois field. Next, a self-identifying failure

recovery approach using parity code is derived in Section III. Section IV analyzes the reliability of the
proposed system. Finally, in Section V, fault tolerance is demonstrated using experimental results for
an illustrative example of a material handling system.

II. Modeling of Controllers

Consider N non-homogeneous controllers shown in Fig. 1 which are independently designed to realize
each specified function. Each controller has its own remote input/output interface. Assume that all of
the controllers and the remote I/Os are connected over a communication network. Suppose that the
ith controller is represented by a Ladder Diagram. The Ladder Diagram can be transformed into the
form[8]

xi(t + 1) = fBi(xi(t), ui(t)) (1)

yi(t) = hBi(xi(t), ui(t)) (2)

where xi is a ni-dimensional state vector whose elements are in {0, 1}, ui is a mi-dimensional input
vector with elements in {0, 1}, and yi is a pi-dimensional output vector with elements in {0, 1}. The
functions fBi, hBi consist of Boolean operation i. e., logical sums ∨, logical products ∧, and negation .̄
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The function fBi in Boolean algebra is transformed into a function fi in Galois field as follows.
GF(2) represents the Galois field with two elements in {0, 1}. Four arithmetic operations are defined
in the Galois field[3][4]. For any two variables {a, b} in the Boolean function fBi(·), consider the
transformations

a ∨ b → a+ b+ ab, a ∧ b → ab, ā → 1 + a. (3)

These are also applied to the function hBi(·).
These transformations yield an equivalent representation of the discrete systems on Galois field

xi(t+ 1) = fi(xi(t), ui(t)) (4)

yi(t) = hi(xi(t), ui(t)) (5)

where fi and hi are polynomial functions such that fi : GF(2)ni × GF(2)mi �→ GF(2)ni and hi :
GF(2)ni × GF(2)mi �→ GF(2)pi. Now we can write xi(t) ∈ GF(2)ni, ui(t) ∈ GF(2)mi , and yi(t) ∈
GF(2)pi. The arithmetic in Galois field is wider than that in Boolean algebra. Table I shows the
arithmetic in Galois field and in Boolean algebra.
Also the representations (4)(5) over Galois field can be inversely transformed into Boolean systems

(1)(2) by
a+ b → (a ∧ b̄) ∨ (ā ∧ b), ab → a ∧ b. (6)

Generally, the state space becomes a metric space if a Galois field is introduced. The metric space
is needed to express a dynamic transition of a discrete state because a fluctuation of a transition is
based on a concept of a distance.
Conventionally, a concept of a distance was not considered in an analysis of discrete systems because

it uses a Boolean algebra. Boolean algebra is applicable not to a dynamic transition analysis but to a
kinematic structure analysis.

III. Self-identifying Failure Recovery

A. Design of A Redundant Controller

In this section, a recovery method from a self-identifying failure based on a simple parity code is
proposed. One redundant controller PLCN+1 is added as shown in Fig. 2 to improve reliability of the
whole control system against a fault of controllers. The basic idea is based on a parity code. One
redundant controller that dynamically generates parity output at any moment ∀t ≥ 0 can be designed
as follows:

xN+1(t + 1) = fN+1(xN+1(t), uN+1(t)) (7)

yN+1(t) = hN+1(xN+1(t), uN+1(t)) (8)

where xN+1(t) = [x1(t), x2(t), . . . , xn(t)]
T ∈ GF(2)nN+1 is an extended state variable which has copies

of states of all sub-modules, where nN+1 = n1+n2+· · ·+nN . Also uN+1(t) = [u1(t), u2(t), . . . , un(t)]
T ∈

GF(2)mN+1 is an extended input variable which includes inputs of all sub modules, where mN+1 =
m1+m2+ · · ·+mN . The signals ui(t) are available if we use a communication network with broadcast
type protocols such as UDP/IP.
The function fN+1 consists of copies of the dynamics of all sub-modules, i. e. fN+1 = [f1, f2, . . . , fn]

T .
The output is yN+1(t) ∈ GF(2)pN+1 where pN+1 = max(p1, p2, . . . , pN). The function hN+1 is given by

hN+1 = h1 + h2 + · · ·+ hN . (9)

Theorem 1: When there is no failure, the output yN+1 of the controller (7)(8) satisfies the parity
condition for ∀t ≥ 0

y1(t) + y2(t) + · · ·+ yN(t) + yN+1(t) = 0 (10)
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Proof: From equations (5) and (9), we compute

y1(t) + y2(t) + · · ·+ yN(t) + yN+1(t)

= h1(x1(t), u1(t)) + h2(x2(t), u2(t)) + · · ·+ hN (xN(t), uN(t)) + hN+1(xN+1(t), uN+1(t))

= h1(x1(t), u1(t)) + h2(x2(t), u2(t)) + · · ·+ hN (xN(t), uN(t))

+ h1(x1(t), u1(t)) + h2(x2(t), u2(t)) + · · ·+ hN (xN(t), uN(t))

= 0 (11)

Note that the Galois field operation + is equivalent to Exclusive OR. Hence the sum of two equal
functions is zero.

B. Failure Recovery

If ith controller fails at time t ≥ t1, the possible outputs yi(t) is yi(t) = ξ(t) for t ≥ t1 where
ξ(t) ∈ GF(2)pi is noise. Assume that the failure is detectable for all other non-faulty controllers and
the remote I/Os. Let the failure flag for the ith controller be θi(t). We define θi(t) = 1 if the ith
controller fails.
Theorem 2: The estimated output of the ith controller ŷi(t) including both the failure case θi(t) = 1

and the non-failure case θi(t) = 0 is given by

ŷi(t) = (1− θi(t))yi(t) + θi(t)
N+1

Σ
j �=i

yj(t) (12)

Proof: If there is no failure of the ith controller, the estimated output ŷi(t) = yi(t) because
θi(t) = 0. In a failure case θi(t) = 1, from (8)

ŷi(t) =
N+1

Σ
j �=i

yj(t)

=
N

Σ
j �=i

hj(xj(t), uj(t)) + hN+1(xN+1, uN+1)

=
N

Σ
j �=i

hj(xj(t), uj(t)) +
N

Σ
j=1

hj(xj(t), uj(t))

= hi(xi(t), ui(t))

= ȳi(t) (13)

where ȳi(t) is the desired output of the ith controller.
The O(N) of calculation (12) must be implemented in intelligent remote I/O interfaces.

IV. Reliability Analysis

Assume that failure rate of each controller is constant and all controllers have same failure rate.
Then the failure probability density function is p(t) = λe−λt where λ is failure rate. The probability
distribution function F (t) =

∫ t
0 p(τ)dτ = 1− e−λt represents the proportion that fail until time t. The

Reliability R(t) is defined by R(t) = 1 − F (t) = e−λt which represents the proportion that survive to
time t.
The reliability analysis described in this section is based on a three-state Markov process model[1][5]

as shown in Fig. 3. In this figure, S0 represents a state that all controllers are functional. S1 is a state
that one controller is down and others are functional. Due to the redundancy, the whole system is
still functional even if only one controller fails. S2 is a state that more than two controllers are down,
which means the whole system fails.
The diagram is derived from the fact that the transition probability from S0 to S1 is (N + 1)λδt for

short period δt. The failure rate for one controller out of N + 1 controllers is N + 1 times larger than
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that for one controller. The transition probability from S1 to S2 is also Nλδt. Then the transition
probability from S1 to S0 is µδt where µ is repair rate for one controller.
Let the probability of each state Si be Pi(t) for 0 ≤ i ≤ 2. Then δt → 0 yields a differential equation:

d

dt

⎡

⎢

⎣

P0(t)
P1(t)
P2(t)

⎤

⎥

⎦ =

⎡

⎢

⎣

−(N + 1)λ µ 0
(N + 1)λ −(Nλ + µ) 0

0 Nλ 0

⎤

⎥

⎦

⎡

⎢

⎣

P0(t)
P1(t)
P2(t)

⎤

⎥

⎦ . (14)

From the fact that the solution of the linear differential equation
d

dt
P (t) = AP (t) is P (t) = eAtP (0),

the solution of (14) with the initial condition P (0) = [1, 0, 0]T is given by

P0(t) =
(1 + eθt)θ + (eθt − 1)(µ− λ)

2θe((2N+1)λ+µ+θ)t/2
(15)

P1(t) =
(eθt − 1)(N + 1)λ

θe((2N+1)λ+µ+θ)t/2
(16)

P2(t) =
(1− eθt)((2N + 1)λ+ µ)− (1 + eθt)θ

2θe((2N+1)λ+µ+θ)t/2
+ 1 (17)

where θ =
√

λ2 + 2(2N + 1)λµ+ µ2.
Because both S0 and S1 are functional states and only the state S2 indicates a failure, the reliability

function Rall(t) for whole system is obtained as

Rall(t) = P0(t) + P1(t) = 1− P2(t) =
(eθt − 1)((2N + 1)λ+ µ) + (1 + eθt)θ

2θe((2N+1)λ+µ+θ)t/2
(18)

Also probability density function for system fault is obtained pall(t) = dP2(t)/dt.
The Mean Time To Failure (MTTFall) for whole system is calculated by

MTTFall =
∫ ∞

0
tpall(t)dt =

∫ ∞

0
Rall(t)dt

=
(2N + 1)λ+ µ

N(N + 1)λ2
(19)

=
((2N + 1)MTTR+MTBF)MTBF

N(N + 1)MTTR
(20)

where MTBF represents the Mean Time Between Failure of each controller which corresponds to
MTBF = 1/λ. And MTTR represents the Mean Time To Repair of each controller which corresponds
to MTTR = 1/µ. The reliability of the control system will be drastically improved because usually
the failure time is extremely longer than the repair time, i. e., MTBF ≫ MTTR.

Comparison to Conventional Configurations

In the case of a conventional configuration without redundancy, the MTTF of the whole system
becomes MTTFno = MTBF/N which is obviously shorter than that for the proposed configuration.
On the other hand, the reliability function of the conventional full duplex system as shown in Fig. 4
is given by

Rdup(t) =

(

(eθt − 1)(3λ+ µ) + (1 + eθt)θ

2θe(3λ+µ+θ)t/2

)N

(21)

The mean time to failure of the full duplex system is obtained by MTTFdup =
∫∞
0 Rdup(t)dt.



IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 50, NO. 1, PP. 86–93, 2003 5

Fig. 5 shows the numerical comparison of these configurations at the condition MTBF = 10, 000
hours and MTTR = 24 hours. The numbers of total controllers are N + 1 for the proposed system,
2N for the full duplex system, and N for the non-redundant system. Although MTTF of the proposed
system is shorter than that of full duplex system, the proposed system requires only one redundant
controller. With minimal additional cost, the proposed method still improves the reliability drastically
in comparison with the conventional non-redundant system. The proposed system is most efficient
from the viewpoint of gain in reliability per additional unit as shown in Fig. 6.

V. An Illustrative Example

A. Controller Design

Fig. 7 shows a simplified illustrative example of a material handling robot and a press machine. When
independently designed controllers are given, we can design parity controller as follows to improve the
reliability against a fault of any controllers.
Assume that two controllers for the material handling robot and the press machine are given by Fig.

8 and Fig. 9, respectively. By these controllers, the robot carries an object to the workspace of the
press machine, then the machine presses it.
The control logic for the robot is designed as

x1(t+ 1) = fB1(x1(t), u1(t)) (22)

y1(t) = hB1(x1(t), u1(t)) (23)

where x1 = [x11, x12, x13, x14, x15, x16, x17]
T , u1 = [u10, u11, u12, u13, u14, u15]

T , y1 = [y11, y12, y13, y14, y15]
T ,

and

fB1(x11, x12, x13, x14, x15, x16, x17, u10, u11, u12, u13, u14, u15)

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

(u13 ∧ u11 ∧ u15 ∨ x11 ∧ ū12) ∧ u13 ∧ ū15

(u13 ∧ u12 ∧ ū15 ∨ x12 ∧ ū11) ∧ u13 ∧ ū15

(u10 ∧ u11 ∧ u13 ∧ ū15 ∨ x13 ∧ ū14) ∧ u11 ∧ ū15

(u14 ∧ u11 ∧ u15 ∨ x14 ∧ ū13) ∧ u11 ∧ ū15

(u12 ∧ u13 ∧ u15 ∨ x15 ∧ ū14) ∧ u12 ∧ ū15

(u14 ∧ u12 ∧ ū15 ∨ x16 ∧ ū13) ∧ u12 ∧ ū15

(u11 ∧ u14 ∨ x17 ∧ (ū12 ∨ ū14)) ∧ ū15

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(24)

hB1(x11, x12, x13, x14, x15, x16, x17, u10, u11, u12, u13, u14, u15)

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

x11 ∧ u13 ∧ ū15

x12 ∧ u13 ∧ ū15

(x13 ∨ x15) ∧ ū15

(x14 ∨ x16) ∧ ū15

x17 ∧ ū15

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(25)

Then, the control logic for the press machine is

x2(t+ 1) = fB2(x2(t), u2(t)) (26)

y2(t) = hB2(x2(t), u2(t)) (27)

where x2 = [x21, x22]
T , u2 = [u20, u21, u22, u23]

T , y2 = [y21, y22]
T , and

fB2(x21, x22, u20, u21, u22, u23) =

[

(u20 ∧ u21 ∨ x21 ∧ ū22) ∧ ū23

(u22 ∨ x22 ∧ ū21) ∧ ū23

]

(28)

hB2(x21, x22, u20, u21, u22, u23) =

[

x21 ∧ ū23

x22 ∧ ū23

]

(29)
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(24)–(29) can be transformed into Galois field representation by (3).

f1(x11, x12, x13, x14, x15, x16, x17, u10, u11, u12, u13, u14, u15)

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

u13(1 + u15)((1 + u12)x11 + u11u15(1 + x11 + u12x11))
u13(1 + u15)((1 + u11)x12 + u12(1 + u15)(1 + x12 + u11x12))

u11(1 + u15)((1 + u14)x13 + u10u13(1 + u15)(1 + x13 + u14x13))
u11(1 + u15)((1 + u13)x14 + u14u15(1 + x14 + u13x14))
u12(1 + u15)((1 + u14)x15 + u13u15(1 + x15 + u14x15))

u12(1 + u15)((1 + u13)x16 + u14(1 + u15)(1 + x16 + u13x16))
(1 + u15)(x17 + u12u14x17 + u11u14(1 + x17 + u12x17))

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(30)

h1(x11, x12, x13, x14, x15, x16, x17, u10, u11, u12, u13, u14, u15)

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

u13(1 + u15)x11

u13(1 + u15)x12

(1 + u15)(x13 + x15 + x13x15)
(1 + u15)(x14 + x16 + x14x16)

(1 + u15)x17

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(31)

f2(x21, x22, u20, u21, u22, u23)

=

[

(1 + u23)((1 + u22)x21 + u20u21(1 + x21 + u22x21))
(1 + u23)(u22 + x22 + u21x22 + u22x22 + u21u22x22)

]

(32)

h2(x21, x22, u20, u21, u22, u23)

=

[

(1 + u23)x21

(1 + u23)x22

]

(33)

Using (7)–(9), the additional controller is designed as follows.

x3(t + 1) = f3(x3(t), u3(t))

y3(t) = h3(x3(t), u3(t))

where x3 = [x31, x32, x33, x34, x35, x36, x37, x38, x39]
T , u3 = [u10, u11, u12, u13, u14, u15, u20, u21, u22, u23]

T ,
y3 = [y31, y32, y33, y34, y35]

T , and

f3(x31, x32, x33, x34, x35, x36, x37, x38, x39, u10, u11, u12, u13, u14, u15, u20, u21, u22, u23)

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

u13(1 + u15)((1 + u12)x31 + u11u15(1 + x31 + u12x31))
u13(1 + u15)((1 + u11)x32 + u12(1 + u15)(1 + x32 + u11x32))

u11(1 + u15)((1 + u14)x33 + u10u13(1 + u15)(1 + x33 + u14x33))
u11(1 + u15)((1 + u13)x34 + u14u15(1 + x34 + u13x34))
u12(1 + u15)((1 + u14)x35 + u13u15(1 + x35 + u14x35))

u12(1 + u15)((1 + u13)x36 + u14(1 + u15)(1 + x36 + u13x36))
(1 + u15)(x37 + u12u14x37 + u11u14(1 + x37 + u12x37))
(1 + u23)((1 + u22)x38 + u20u21(1 + x38 + u22x38))
(1 + u23)(u22 + x39 + u21x39 + u22x39 + u21u22x39)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(34)

h3(x31, x32, x33, x34, x35, x36, x37, x38, x39, u10, u11, u12, u13, u14, u15, u20, u21, u22, u23)

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

u13(1 + u15)x31 + (1 + u23)x38

u13(1 + u15)x32 + (1 + u23)x39

(1 + u15)(x33 + x35 + x33x35)
(1 + u15)(x34 + x36 + x34x36)

(1 + u15)x37

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(35)

(36)
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Finally we have control logic by inverse transformation (6)

x3(t+ 1) = fB3(x3(t), u3(t)) (37)

y3(t) = hB3(x3(t), u3(t)) (38)

where

fB3(x31, x32, x33, x34, x35, x36, x37, x38, x39, u10, u11, u12, u13, u14, u15, u20, u21, u22, u23)

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

(u13 ∧ u11 ∧ u15 ∨ x31 ∧ ū12) ∧ u13 ∧ ū15

(u13 ∧ u12 ∧ ū15 ∨ x32 ∧ ū11) ∧ u13 ∧ ū15

(u10 ∧ u11 ∧ u13 ∧ ū15 ∨ x33 ∧ ū14) ∧ u11 ∧ ū15

(u14 ∧ u11 ∧ u15 ∨ x34 ∧ ū13) ∧ u11 ∧ ū15

(u12 ∧ u13 ∧ u15 ∨ x35 ∧ ū14) ∧ u12 ∧ ū15

(u14 ∧ u12 ∧ ū15 ∨ x36 ∧ ū13) ∧ u12 ∧ ū15

(u11 ∧ u14 ∨ x37 ∧ (ū12 ∨ ū14)) ∧ ū15

(u20 ∧ u21 ∨ x38 ∧ ū22) ∧ ū23

(u22 ∨ x39 ∧ ū21) ∧ ū23

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(39)

hB3(x31, x32, x33, x34, x35, x36, x37, x38, x39, u10, u11, u12, u13, u14, u15, u20, u21, u22, u23)

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

(u15 ∨ ū13 ∨ x̄31) ∧ x38 ∧ ū23 ∨ (u23 ∨ x̄38) ∧ u13 ∧ x31 ∧ ū15

(u15 ∨ ū13 ∨ x̄32) ∧ x39 ∧ ū23 ∨ (u23 ∨ x̄39) ∧ u13 ∧ x32 ∧ ū15

(x33 ∨ x35) ∧ ū15

(x34 ∨ x36) ∧ ū15

x37 ∧ ū15

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(40)

B. Experiments

Five personal computers connected by Fast Ethernet are used to emulate three PLCs and two plants.
A time critical token passing mechanism is introduced to identify a faulty controller and it is imple-
mented over UDP/IP.
Fig. 10 shows the experimental results of the proposed system. Fig. 10 (a) and Fig. 10 (b) are

outputs of controlled plants. Fig. 10 (c) and Fig. 10 (d) are outputs of controllers (22)–(25) and
(26)–(29) which are independently designed for the material handling robot and for the press machine,
respectively. Fig. 10 (e) shows an output of the additional controller (37)–(40). This controller behaves
as a dynamic parity controller, i. e., the output of the controller always satisfies the parity condition
(10) if there is no failure.
In this experiment, the controller #1 failed at t = 200 [cycle] then repaired at t = 327 [cycle]. As

shown in Fig. 10 (a) and (b), the plants continued normal operation even if the controller #1 was
down from t = 200 [cycle] to t = 327 [cycle]. The system was also functional when the controller #2
was down from t = 400 [cycle] to t = 527 [cycle] and the controller #3 was down from t = 600 [cycle]
to t = 727 [cycle]. Table II shows the states of the controllers and plants.
In the repair process of the controller, the internal state values of other controllers were communicated

and the state of the controller was reconstructed.

VI. Conclusions

In this paper, an improvement of reliability of PLC based discrete systems is discussed. A fault
tolerant configuration for distributed discrete controllers with one redundant controller is proposed.
In combination with independently designed controllers, the additional controller is designed so as to
satisfy an output parity condition. From the experiments, it is shown that the system is functional
even if one of any controllers is down. According to the redundancy, the mean time to failure of the
whole system is drastically improved with least additional cost.
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TABLE I

Galois field and Boolean algebra.

(a) Arithmetic in Boolean algebra

a ∨ b a ∧ b
a\b 0 1
0 0 1
1 1 1

a\b 0 1
0 0 0
1 0 1

(b) Arithmetic in Galois field

a+ b a× b a− b a÷ b
a\b 0 1
0 0 1
1 1 0

a\b 0 1
0 0 0
1 0 1

a\b 0 1
0 0 1
1 1 0

a\b 0 1
0 - 0
1 - 1

TABLE II

States of the controllers and the plants.

Time [cycle]
0–199 200–326 327–399 400–526 527–599 600–726 727–999

Controller #1 ON OFF ON
Controller #2 ON OFF ON
Controller #3 ON OFF ON
M. H. Robot Functional
Press Machine Functional

I/OI/OI/O

PLCNPLC2PLC1

PlantNPlant2Plant1

Fig. 1. Configuration of programmable logic controllers.
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I/OI/OI/O

PLCN+1PLCNPLC2PLC1

PlantNPlant2Plant1

Fig. 2. Fault tolerant configuration of programmable logic controllers.

1−(Ν+1)λδ

(Ν+1)λδ

µδ
1−(Νλ+µ)δ

Νλδ

tt
t

t t

1

S0 S1 S2

Fig. 3. Diagram of the transition probabilities in (t, t+ δt].

I/OI/OI/O

PLCNPLC2PLC1

PlantNPlant2Plant1

PLCN’PLC2’PLC1’

Fig. 4. Configuration of a full duplex system.
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Fig. 6. Mean time to failure per additional unit.



IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 50, NO. 1, PP. 86–93, 2003 12

LS3

LS1 LS2

LS4

LS6

LS5

Fig. 7. An illustrative example of a carrying robot and a press machine.
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U10: Start Button
U11-U14: Limit Switch LS1-LS4
U15: Limit Switch on Grip Hand
U16: Emergency Stop Button

Y11: Move Arm Forward
Y12: Move Arm Backward
Y13: Move Arm Downward
Y14: Move Arm Upward
Y15: Grip Hand

X11: Move Arm Forward
X12: Move Arm Backward
X13: Move Arm Downward on Buffer
X14: Move Arm Upward on Buffer
X15: Move Arm Downward on Workspace
X16: Move Arm Upward on Workspace
X17: Grip Hand

Y11

X11 U13 U16

Y12

X12 U13 U116

Y13

X13 U16

Y14

X14 U16

Y15

X17 U16

X16

X15

Fig. 8. A ladder diagram of a controller for a carrying robot.
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X21

X21 U22

U20 U21 U23

X22

X22 U21

U22 U23

U20: Start Button
U21,U22: Limit Switch LS1-LS4
U23: Emergency Stop Button

Y21: Press
Y22: Release

X21: Press
X22: Release

Y21

X21 U23

Y22

X22 U23

Fig. 9. A ladder diagram of a controller for a press machine.
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Fig. 10. Experimental results.


