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This paper deals with a Fault Tolerant Control (FTC) strategy for polytopic Linear Parameter Varying (LPV) systems. The
main contribution consists in the design of a Static Output Feedback (SOF) dedicated to such systems in the presence of
multiple actuator faults/failures. The controllers are synthesized through Linear Matrix Inequalities (LMIs) in both fault-
free and faulty cases in order to preserve the system closed-loop stability. Hence, this paper provides a new sufficient (but
not necessary) condition for the solvability of the stabilizing output feedback control problem. An example illustrates the
effectiveness and performances of the proposed FTC method.

Keywords: fault tolerant control, multiple actuator failures, polytopic LPV systems, LMI, static output feedback, stability

1. Introduction

As performance requirements increase in advanced tech-
nological systems, their associated control systems be-
come more and more complex. At the same time, com-
plicated systems could have various consequences in the
event of component failures. Therefore, it is very impor-
tant to consider the safety and fault tolerance of such sys-
tems at the design stage. For these safety-critical systems,
Fault Tolerant Control Systems (FTCSs) have been devel-
oped to meet these essential objectives. FTCSs have been
of great practical importance and attracted a lot of interest
for the last three decades. Bibliographical reviews on re-
configurable FTCSs can be found in (Patton, 1997; Zhang
and Jiang, 2003).

The objective of an FTCS is to maintain current per-
formances close to desirable ones and preserve stability
conditions in the presence of component and/or instru-
ment faults; in some circumstances reduced performances
could be accepted as a trade-off. In fact, many FTC
methods against actuator failures were recently developed
in (Blanke et al., 2003; Noura et al., 2000). Almost

all methods can be categorized into two groups (Zhang
and Jiang, 2003) i.e., passive (Eterno et al., 1985; Veil-
lette, 2002) and active (Theilliol et al., 2002; Wu et
al., 2000; Zhang and Jiang, 2001) approaches.

First of all, passive FTC deals with a presumed set
of system component failures based on actuator redundan-
cies at the controller design stage. The resulting controller
usually has a fixed structure and parameters. However,
the main drawback of passive FTC approaches is that, as
the number of potential failures and the degree of system
redundancy increase, the controller design could become
very complex and the performance of the resulting con-
troller (if it exists) could become significantly conserva-
tive. Moreover, if an unanticipated failure occurs, pas-
sive FTC cannot ensure system stability and cannot reach
again nominal performances. Controller switching under-
lines the fact that many faulty system representations have
to be identified so as to synthesize off-line pre-computed
and stabilizing controllers. Furthermore, such identifica-
tion is sometimes difficult to obtain and it is restrictive to
consider only pre-determined actuator faults and not all
actuator faults.
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Active FTC strategies make it possible to consider
more faults than passive ones do: some research works
deal with it and underline the problem of closed-loop
system stability in the presence of multiple actuator fail-
ures (Kanev, 2004; Maki et al., 2001; Rodrigues et al.,
2005a; Theilliol et al., 2003; Wu et al., 2000; Zhang et
al., 2005). AFTC is characterized by an on-line Fault De-
tection and Isolation (FDI) scheme (Rodrigues, 2006) and
an automatic control reconfiguration mechanism. More-
over, AFTC is often dedicated to linear systems or the lin-
earization of nonlinear systems, but rarely to Linear Para-
meter Varying (LPV) systems.

Various system modelling techniques in the fault-
free case are presented in (Glover, 2003; Reberga et
al., 2005; Wan and Kothare, 2004). They deal with Lin-
ear Parameter Varying (LPV) and/or polytopic represen-
tations. The main motivation for polytopic LPV or just
LPV systems comes from the analysis and control of non-
linear systems. Moreover, to the best of our knowledge,
there are few works published on handling multiple actu-
ator failures based on polytopic LPV system representa-
tions.

Starting research on FTC and polytopic systems, we
can note that multi-models often use polytopic represen-
tations. Chadli et al. (2002) developed an output feedback
through LMIs in a multi-model context but only in a fault-
free case. In (Rodrigues et al., 2005b), a solution was pro-
posed in the same multi-model context with the aim to de-
sign a static state feedback which takes into account multi-
ple actuator failures. From a practical point of view, a state
feedback needs to use an estimator if not all the states are
measurable. It can be difficult to design such state estima-
tors while the system is reconfigured. Therefore, we pro-
pose to develop a solution to handle FTC and polytopic
LPV systems with an SOF design. An output feedback
design is less restrictive than a state feedback design and
it can produce solutions to practical FTC problems where
only system outputs are available. Output feedback design
is also developed in (Geromel et al., 1998) with a suffi-
cient condition for the solvability of the stabilizing SOF
control problem and, in (Jabbari, 1997), with structured
uncertainty. Also, Rosinova and Vesely (2004) develop a
robust SOF for linear discrete-time systems with polytopic
uncertainties through an LMI synthesis. However, none of
these studies take into account any actuator failures, deal-
ing with linear systems and not with LPV systems.

In this paper, an active FTC strategy is developed
to avoid actuator fault/failure effects on polytopic LPV
systems. In many research works, feedback design is
only used for polytopic LPV systems in the fault-free case
(Angelis, 2001; Bouazizi et al., 2001), but does not con-
sider actuator failures. This paper deals with an SOF syn-
thesis in the presence of multiple actuator failures. Under
the assumption that a fault is detected, isolated and esti-
mated, the developed method preserves the system perfor-

mances through an appropriate controller re-design in the
faulty case. Multiple controllers are designed such that
any controller can maintain closed-loop stability for any
combination of multiple actuator failures.

The paper is organized as follows: Section 2 defines a
polytopic LPV system representation under multiple actu-
ator failures. In Section 3, we develop a controller syn-
thesis method for each actuator and generate an output
feedback control law for polytopic LPV systems in both
the fault-free and faulty cases. The FTC philosophy rests
on accurate FDI information. An illustrative example is
given in Section 4 to underline the synthesis. Finally, con-
cluding remarks are given in the last section.

2. Polytopic LPV Systems with Multiple
Actuator Failures

Consider the following discrete LPV representation in the
fault-free case:

xk+1 = ˜A(θ)xk + ˜B(θ)uk,

yk = ˜C(θ)xk + ˜D(θ)uk, (1)

where x ∈ R
n represents the state vector, u ∈ R

p is
the input vector, y ∈ R

m is the output vector. The sys-
tem (1) assumes an affine parameter dependence such that
˜M(θ) = ˜M0 +

∑υ
j=1 θj

˜Mj , with the following notation:

˜M =

[

˜A ˜B
˜C ˜D

]

. (2)

The affine LPV system (1) with bounded parame-
ters θj ≤ θj(k) ≤ θj (here θj and θj represent
the maximum and minimum values of θj , respectively)
can be represented by a polytopic form (Bouazizi et
al., 2001; Rodrigues, 2005) when the varying parame-
ter θ(k) evolves in a polytopic domain Θ of vertices
[θ1, θ2, . . . , θυ] (where the vertices are the extreme val-
ues of the parameter θ). In the following, we consider
only strictly proper systems such that D = 0. The sys-
tem can be defined via a matrix polytope with summits
Sj := [Aj , Bj , Cj ], ∀ j ∈ [1, . . . , N ] and a barycentric
combination, where N = 2υ. Consequently, under a
multiplicative actuator fault representation (Rodrigues et
al., 2005a), the system (1) can be rewritten as the follow-
ing polytopic representation:

xk+1 =
N
∑

j=1

αj
k(θ)[Ajxk + Bj(Ip − γ)uk],

yk =
N
∑

j=1

αj
k(θ)[Cjxk], (3)

where αj
k(θ) = α(θj , θj , θj(k), k) and θj(k) is the value

of θj at the sample k, see (Rodrigues, 2005; Da Silva et
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al., 2004) for more details about the LPV polytopic repre-
sentation. Here Aj ∈ R

n×n, Bj ∈ R
n×p, Cj ∈ R

m×n are
time-invariant matrices defined for the j-th model. The
polytopic system is scheduled through functions designed
as follows: αj

k(θ), ∀j ∈ [1, . . . , N ] lie in a convex set

Ω =
{

αj
k(θ) ∈ R

N , αk(θ) = [α1
k(θ), . . . , αN

k (θ)]T ,

αj
k(θ) ≥ 0, ∀j,

N
∑

j=1

αj
k(θ) = 1

}

.

These functions are assumed to be available in real
time depending on fault-free parameter measurements
(Casavola et al., 2003). The matrix γ is defined as fol-
lows:

γ � diag[γ1, γ2, . . . , γp], 0 ≤ γi ≤ 1, (4)

such that for extreme values

⎧

⎪

⎨

⎪

⎩

γi = 1 → represents a total failure of

the i-th actuator, i ∈ [1, . . . , p],
γi = 0 → denotes the healthy i-th actuator.

Remark 1. γi can take any value between 0 and 1. It
represents a loss in the effectiveness of the i-th actuator,
for example, a 70% loss in the effectiveness of the first
actuator will be represented by γ1 = 0.7. When an actu-
ator fault appears in the system and the controller is not
designed to take account of such a problem, the closed-
loop system stability cannot be obviously ensured. Con-
sequently, we propose to develop an SOF for polytopic
systems with multiple actuator failures.

3. Fault Tolerant Control Design for
Polytopic LPV Systems

3.1. Nominal Control Law Synthesis. Recall the mul-
tiplicative actuator fault representation on a polytopic sys-
tem as follows:

xk+1 =
N
∑

j=1

αj
k

[

Ajxk +
p
∑

i=1

Bi
j(Ip − γ)uk

]

,

yk = Cxk, (5)

where αj
k represents αj

k(θ) for notational simplicity and
the matrices Bi

j represent a total failure in all actuators
except the i-th one such that

Bi
j = [0, . . . , 0, bi

j, 0, . . . , 0] (6)

and Bj = [b1
j , b

2
j , . . . , b

p
j , ] with bi

j ∈ R
n×1. Each column

of Bj is assumed to have full column rank. The following
assumptions are made:

Assumption 1. The pairs (Aj , b
i
j), ∀i = [1, . . . , p] are

assumed to be controllable ∀j ∈ [1, . . . , N ].

Assumption 2. The matrix C = Cj , ∀j ∈ [1, . . . , N ].

Assumption 3. The matrix C has full row rank.

Assumption 4. At every time instant there is at least one
fault-free actuator, which means that the situation γ1 =
· · · = γp = 1 is excluded.

In the nominal case, the SOF can be expressed as

uk = −Fyk, (7)

where yk = Cxk and F ∈ R
p×m is the output feedback

controller gain. In the fault-free case (γ = 0), the system
(5) with a nominal control law uk = −Fyk is equivalent
to

xk+1 =
N
∑

j=1

αj
k

[

Ajxk + Bj(I − γ)(−Fyk)
]

=
N
∑

j=1

αj
k(Aj − BjFC)xk.

(8)

The stability of the closed-loop system is established us-
ing an LMI pole placement technique. For many prob-
lems, an exact pole assignment may not be necessary and
it suffices to locate the poles of the closed-loop system
in a subregion of the complex left half-plane (Chilali and
Gahinet, 1996; Rodrigues et al., 2005a).

Consequently, define a disk region LMI D included
in the unit circle with an affix (−q, 0) and a radius r such
that (q + r) < 1. These two scalars q and r are used
to determine a specific region included in the unit circle
so as to place closed-loop system eigenvalues. The pole
placement of the closed-loop system (8) for all the models
j ∈ [1, . . . , N ] in the LMI region can be expressed as
follows:
(

−rX qX + (AjX − BjFCX)T

qX + (AjX − BjFCX) −rX

)

< 0.

(9)
However, these inequalities are no longer linear with

respect to the unknown matrices X = XT > 0 and
F, ∀j ∈ [1, . . . , N ]. Therefore, the solution is not guaran-
teed to belong to a convex domain and the classical tools
for solving sets of matrix inequalities cannot be used. This
constitutes the major difficulty in output feedback design.

We propose to transform the BMI conditions (9) in
X and F, ∀j ∈ [1, . . . , N ], to LMI conditions which will
be used to synthesize directly a stabilizing SOF. We will
synthesize the controllers Fi for each actuator in order to
define an SOF control law.

Theorem 1. Consider the system (5) in the fault-free case
(γ = 0), defined as ∀j ∈ [1, . . . , N ]. Assume that it is pos-
sible to find the matrices Xi = XT

i > 0, M and Vi ∀i =
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[1, . . . , p] such that ∀i = [1, . . . , p], ∀j = [1, . . . , N ]:
(

−rXi qXi + (AjXi − Bi
jViC)T

qXi + AjXi − Bi
jViC −rXi

)

< 0

(10)
with

CXi = MiC. (11)

The control law with the SOF uk = −Fyk makes it possi-
ble to place the eigenvalues of the closed-loop system (5)
in a predetermined LMI-region with FM = V ,

F =
p
∑

i=1

GiVi(CCT (C
p
∑

i=1

XiC
T )−1)

or F = V CCT (CXCT )−1, where Gi ∈ R
p×p is a ma-

trix whose elements are zero except for the diagonal entry
gii = 1, i.e.,

Gi =

⎡

⎢

⎢

⎣

0 · · · 0
... 1

...

0 · · · 0

⎤

⎥

⎥

⎦

.

Proof. As was proposed in (Rodrigues et al., 2005a),
the summation of (10) over the set of actuator indices i ∈
[1, . . . , p] of the system (5) for the model j gives

p
∑

i=1

(

−rXi qXi + (AjXi − Bi
jViC)T

qXi + AjXi − Bi
jViC −rXi

)

< 0.

(12)
Write X =

∑p
i=1 Xi (with X = XT > 0) to obtain

⎛

⎜

⎜

⎜

⎜

⎝

−rX qX + (AjX −
p
∑

i=1

Bi
jViC)T

qX + (AjX −
p
∑

i=1

Bi
jViC) −rX

⎞

⎟

⎟

⎟

⎟

⎠

< 0 (13)

∀i = [1, . . . , p], ∀j = [1, . . . , N ]. Now, denote by V l
i the

l-th row of the matrix Vi, i = [1, . . . , p], and l = 1, . . . , p,
which can be calculated from

V l
i = GlVi. (14)

Therefore,

p
∑

i=1

Bi
jViC =

p
∑

i=1

[0, . . . , 0, bi
j, 0, . . . , 0]V i

i C

= Bj

p
∑

i=1

V i
i C = Bj

p
∑

i=1

GiViC

= BjV C (15)

with V =
p
∑

i=1

GiVi.

Moreover, ∀i = [1, . . . , p], ∀j = [1, . . . , N ] we get
(

−rX qX + (AjX − BjV C)T

qX + (AjX − BjV C) −rX

)

< 0.

(16)
The substitution of V = FM and CX = MC in the

LMI (16) leads to
(

−rX qX + (AjX − BjFCX)T

qX + (AjX − BjFCX) −rX

)

< 0,

(17)
∀i = [1, . . . , p], ∀j = [1, . . . , N ]. We should note that the
inequalities (17) are BMIs which cannot be solved with
classical tools, but recall the definition of the LMI disk
region for the unit circle (9). Multiplying each LMI (16)
by αj

k and summing the results, we obtain
⎛

⎜

⎜

⎜

⎜

⎝

−rX qX +
N
∑

j=1

αj
k(AjX − BjV C)T

qX +
N
∑

j=1

αj
k(AjX − BjV C) −rX

⎞

⎟

⎟

⎟

⎟

⎠

< 0, (18)

which is equivalent to

(

−rX qX + (A(α)X − B(α)V C)T

qX + (A(α)X − B(α)V C) −rX

)

< 0 (19)

with A(α) =
∑N

j=1 αj
kAj and B(α) =

∑N
j=1 αj

kBj .
Since the matrix C is supposed to have full row rank,
from (11) we deduce that there exists a non-singular ma-
trix M = CXCT (CCT )−1 and then

F = V M−1 =
p
∑

i=1

GiVi(CCT (C
p
∑

i=1

XiC
T )−1).

Accordingly, the quadratic D-stability is ensured by
solving (18) with the SOF uk = −Fyk. �

In the nominal case, we do not really need Assump-
tion 1 in the sense that the proposed SOF is sufficient by
solving the LMI (10) with (11). However, in the faulty
case, as the proposed FTC method considers actuators
which are out of order, we have to assume that each pair
(Aj , b

i
j) is controllable because the loss of one actuator

can make the system unstable if Assumption 1 is not con-
sidered. Moreover, if Assumption 1 is not satisfied, at-
tempts to find a solution to (10) and (11) will be pointless
since the pole placement is obviously impossible for each
separate controller.
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3.2. Principles of the Fault Tolerant Control Strategy.
The AFTC strategy presented in this paper is able to de-
sign a reconfigured controller from the nominal one with
an exact fault estimation coming from the FDI scheme,
i.e., γ̂ = γ. With no loss of generality, the matrix γ in (5)
is assumed to be decomposed as follows:

γ =

[

γp−h 0
0 Ih

]

. (20)

Thus, γ is a diagonal matrix such that γp−h constitutes a
diagonal matrix whose elements γi

p−h, i ∈ [1, . . . , p] are
different from 1, which represents the number of actuators
which are not out of order (γi �= 1), and Ih represents the
number h of totally failed actuators. By recalling γ in
(20), define Γ such that

Γ �
[

Ip−h − γp−h 0
0 0h

][

(Ip−h − γp−h)−1 0
0 0h

]

=

[

Ip−h 0
0 Oh

]

, (21)

where 0h represents actuators which are out of order and
Ip−h represents governable ones. The corresponding ma-
trix decomposition of B is

B = [Bp−h Bh], (22)

where Bp−h ∈ R
n×(p−h) and Bh ∈ R

n×h. We will
present a control law able to suppress actuator faults in
the state space representation (3) and to ensure closed-
loop stability despite multiple actuator failures. Based on
a multiplicative fault representation (5), we propose to use
the following control law uFTC that must suppress all ac-
tuator faults in the system (5):

uFTC =

[

(Ip−h − γp−h)−1 0
0 0h

]

unom

=

[

Ip−h

0h×(p−h)

]

[Ip−h − γp−h]−1

×
[

Ip−h 0(p−h)×h

]

unom. (23)

Introduce the set of indices of all actuators that are
not out of order (Rodrigues, 2005), i.e.,

Φ � {i : i ∈ (1, . . . , p), γi �= 1} (24)

and note that

uFTC =

[

(Ip−h − γp−h)−1 0
0 0h

]

unom

= −
[

(Ip−h − γp−h)−1 0
0 0h

]

Fnomyk

= −FFTCyk,

where Fnom is a nominal controller and FFTC stands for
the new controller gain. Consequently, this specific con-
trol law in the state space representation (5) leads to

Bj(I − γ)uFTC = Bj

[

Ip−h − γp−h 0
0 0h

]

×
[

(Ip−h − γp−h)−1 0
0 0h

]

unom

= BjΓunom =
∑

i∈Φ

Bi
ju

i
nom, (25)

which avoids the actuator fault effect and where
∑

i∈Φ

Bi
j

represents the actuators that are not out of order, i.e.,
∑

i∈Φ

Bi
j = Bp−h, and ui

nom signifies the i-th element of

unom. From Assumption 1, due to the fact that each pair
(Aj , b

i
j), ∀i = [1, . . . , p] is assumed to be controllable

∀j = [1, . . . , N ], the system still remains controllable in
spite of actuator failures.

Remark 2. For simplicity, we have assumed that the ma-
trix γ can be decomposed as in (20) in order to consider
two different cases, which are γi = 1 for actuators that are
out of order and γi �= 1 for actuators that are still in the
normal state: it is directly indicated by the FDI scheme.
Of course, it is not the only case that the former actua-
tors are always valid and the latter ones are not: Assump-
tion 4 indicates that any actuator can fail but at least one
is still governable. Generalizing, recall that each element
γi, i ∈ [1, . . . , p] (of the diagonal matrix γ) can take any
value in [0, . . . , 1] and write

uFTC =

⎡

⎢

⎢

⎣

u1
FTC
...

up
FTC

⎤

⎥

⎥

⎦

. (26)

Then each element ui
FTC of uFTC can be calculated as

follows:

If γi �= 1 then ui
FTC = (1 − γi)−1ui

nom, (27)

If γi = 1 then ui
FTC = 0.

Consequently, for (26) and (27), irrespective of the
values of γi, i ∈ [1, . . . , p], the expression Bj(I −
γ)uFTC =

∑

i∈Φ

Bi
ju

i
nom remains unchanged (as (25)) and

the system still remains controllable under Assumption 1.
With no loss of generality, in what follows we will con-
sider the case with γ defined in (20).

3.3. Synthesis of a Faulty Control Law. Based on
the control law of Section 3.1, an FTC method will be
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developed for the system (5) under the assumption that an
actuator fault estimate γ̂ is exactly known, i.e., γ̂ = γ.

Theorem 2. Consider the system (5) with multiple ac-
tuator failures (γi �= 0) under Assumption 4 ∀j, j =
[1, . . . , N ] and the set of indices of the actuators which
are not out of order (24). Let the matrices M, Xi and Vi

be determined as in Theorem 1. Then the control law

uFTC = −
[

(Ip−h − γp−h)−1 0
0 0h

]

×(
∑

i∈Φ

GiVi(CCT (C
∑

i∈Φ

XiC
T )−1)

)

yk

= −
[

(Ip−h − γp−h)−1 0
0 0h

]

Frecyk

= −FFTCyk (28)

with Gi ∈ R
p×p (a matrix whose elements are zero except

for the diagonal entry gii = 1) stabilizes the closed-loop
system and places the closed-loop poles in the following
LMI stability region:
(

−rX qX + (AjX − BjFrecCX)T

qX + (AjX − BjFrecCX) −rX

)

< 0. (29)

The SOF control law uk = −FFTCyk is computed with
FrecM = V , where

Frec =
∑

i∈Φ

GiVi(CCT (C
∑

i∈Φ

XiC
T )−1

= V CCT (CXCT )−1.

Proof. Applying the new control law (28) to the faulty
system (5) leads to the following equation:

Bj(I − γ)uFTC

= −BjΓ
(

∑

i∈Φ

GiVi(CCT (C
∑

i∈Φ

XiC
T )−1)

)

yk (30)

with Γ calculated in (21) and defined as

Γ =

[

Ip−h 0
0 Oh

]

. (31)

Here Γ is a diagonal matrix that contains only en-
tries which are zero (they represent total faults) or
one (no fault), cf. Section 3.2. Since BjΓ =
∑

i∈ΦBj
i characterizes only the actuators which are

not out of order, performing the summations in the
proof of Theorem 1 over the elements of Φ shows that
∑

i∈ΦGiVi(CCT (C
∑

i∈ΦXiC
T )−1) is the output feed-

back gain matrix for the faulty system (Aj ,
∑

i∈ΦBj
i , C).

The pairs (Aj , b
i
j), ∀i = [1, . . . , p] are assumed to

be controllable ∀j = [1, . . . , N ] because we consider the
case of actuators which are out of order: the system has
to be controllable with at least one actuator. Moreover,
if there is a solution for each LMI in (10) and (11), this
means that each pair (Aj , b

i
j) is controllable. However,

Assumption 1 does not guarantee the feasibility of (10)
and (11), i.e., the proposed SOF solution is only sufficient
and not necessary for computing the controller.

4. Illustrative Example

The feature of the proposed scheme and the effectiveness
of the fault-tolerant control system are developed using
an illustrative example with an SOF for a polytopic LPV
system. We present the case of two actuator faults which
make the closed-loop system unstable. Consider a system
described by N = 4 unstable models. These four mod-
els can be adapted from an LPV model, where each of
them represents a vertex, as is done in (Glover, 2003) or
in (Da Silva et al., 2004), where an aluminum cantilever
beam is considered under parametric uncertainties. The
discrete state space representation (5) consists of the fol-
lowing matrices:

A1 =

⎡

⎢

⎢

⎢

⎣

0.75 0 0 0
0 0.85 0 0
0 0 1.25 0
0 0 0 1.5

⎤

⎥

⎥

⎥

⎦

,

A4 =

⎡

⎢

⎢

⎢

⎣

0.6375 0 0 0
0 0.7225 0 0
0 0 1.0625 0
0 0 0 1.275

⎤

⎥

⎥

⎥

⎦

,

A3 =

⎡

⎢

⎢

⎢

⎣

0.525 0 0 0
0 0.595 0 0
0 0 0.875 0
0 0 0 1.05

⎤

⎥

⎥

⎥

⎦

,

A2 =

⎡

⎢

⎢

⎢

⎣

0.6 0 0 0
0 0.68 0 0
0 0 1 0
0 0 0 1.2

⎤

⎥

⎥

⎥

⎦

,

C =

⎡

⎢

⎣

0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥

⎦
, B1 =

⎡

⎢

⎢

⎢

⎣

1 1
1 1
1 1
1 1

⎤

⎥

⎥

⎥

⎦

.

The other matrices are B2 = 0.8B1, B3 = 0.7B1 and
B4 = 0.85B1. The system is in closed loop with the SOF

uk = −
[

(Ip−h − γp−h)−1 0
0 0h

]

Fyk
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(with yk = Cxk), which is synthesized using Theo-
rems 1 and 2. The following matrices are produced di-
rectly from Theorem 1 (with Tklmitool version 2.2, which
is a Matlab-based graphical user interface to semidefinite
programming (SeDuMi) developed by R. Nikoukhah, F.
Delebecque, J.-L. Commeau and L. El Ghaoui, and later
upgraded by L. Paolopoli, see http://www.eecs.
berkeley.edu/~elghaoui/links.htm) with the
parameters q = −0.05, r = 0.93 arbitrarily chosen for
stabilizing the closed-loop system:

V1 =

[

−0.157 −0.153 −0.132
0 0 0

]

,

V2 =

[

0 0 0
−0.157 −0.153 −0.132

]

,

X1 =

⎡

⎢

⎢

⎢

⎣

1 0 0 0
0 0.9680 0.1074 0.1079
0 0.1074 0.1738 0.1341
0 0.1079 0.1341 0.1071

⎤

⎥

⎥

⎥

⎦

,

M1 =

⎡

⎢

⎣

0.9680 0.1074 0.1079
0.1074 0.1738 0.1341
0.1079 0.1341 0.1071

⎤

⎥

⎦
,

with X1 = X2, M1 = M2 and

F = V M−1 =
p
∑

i=1

GiVi(CCT (C
p
∑

i=1

XiC
T )−1)

=

[

−0.0253 −1.2221 2.1734
−0.0253 −1.2221 2.1734

]

,

G1 =

[

1 0
0 0

]

, G2 =

[

0 0
0 1

]

.

The parameters q and r were chosen taking account
the system eigenvalues in the complex plane without the
FTC strategy. An LMI-region is defined as the unit circle
(see Section 3.1) with an affix (−q, 0) and a radius r. For
the same example we can define different combinations of
parameters, i.e., different LMI-regions. This LMI-region
allows us to place the system eigenvalues in a stable region
in spite of actuator failures: it is represented in Fig. 5 with
a dashed circle.

Figure 1 represents the parameter evolution in the
nominal case: the system outputs (a), the second actuator
(b), the first actuator (c) and the parameter evolution αj

k

(d). The closed-loop system is stable without any fault.
At the sample k = 2, the first actuator is out of order and
also an actuator fault with a 60% loss in effectiveness ap-
pears on the second actuator. The matrix γ is equal to

γ =

[

1 0
0 0.6

]

, k ≥ 2.

Figure 2 represents the outputs in different situations:
(a) the nominal case, (b) the faulty case with a failure of
the first actuator and a fault in the second actuator at the
sample k = 2 and, finally, (c) the reconfiguration case at
the time instant k = 15 s. Figure 2(b) illustrates the insta-
bility of the closed-loop system in the faulty case and Fig-
ure 2(c) illustrates the contribution of the proposed fault
tolerant control: the outputs converge toward their nomi-
nal values.

Moreover, the corresponding actuator signals are de-
picted in Figs. 3 and 4. Figures 3(a) and 4(a) correspond
to the actuators in the nominal case and Fig. 3(b) illus-
trates the loss of the first actuator. Figure 4(b) illustrates
the instability of the second actuator in the faulty case and
Fig. 4 (c) the reconfigured control law with the second ac-
tuator.

In order to simulate a time delay of the FDI block,
the new control law is only applied at the sample k = 15,
see Figs. 2(c) and 4(c). Shin (2003) discusses issues with
a time delay in an FTC reconfiguration. The reader could
refer to this report for more information on time delay in
reconfiguration. We do not deal more with this issue be-
cause we assume that a perfect FDI scheme is available.
We observe that the outputs and the control laws converge
to zero.

The system is stabilized with the fault tolerant con-
trol law in spite of these actuator faults and failures.
Figure 5 represents the evolution of closed-loop system
eigenvalues which still remain in the unit circle both in the
fault-free case (marked with open circles) and the faulty
case (marked with asterisks) with the FTC strategy. The
LMI-region is represented by a dashed line. Figure 6 rep-
resents the evolution of closed-loop system eigenvalues in
the faulty case without FTC: we can see that the closed-
loop system is unstable. Accordingly, the developed FTC
strategy allows the system to continue to operate safely in
spite of actuator failures.

5. Conclusion

The FTC method presented in this paper illustrates the im-
portance of fault tolerant control for polytopic LPV sys-
tems. Controllers are designed for each separate actuator
through an LMI pole placement in fault-free and faulty
cases. The system continues to operate safely and ensures
closed-loop stability in spite of the presence of actuator
failures. The main contribution is the design of a static
output feedback that takes into account the information
provided by an FDI scheme. The proposed SOF solution
is sufficient and places the eigenvalues of the closed-loop
system in a predetermined LMI region inside the unit cir-
cle. From the point of view of investigating a new al-
gorithm in FTC, it can constitute a first step to develop
a more practical active FTC for nonlinear systems based
on a polytopic LPV representation. An example of a poly-
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Fig. 1. Nominal case: (a) system outputs, (b) second actuator, (c) first actuator and (d) evolution of the parameter αj
k .
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Fig. 2. Outputs: (a) nominal case, (b) faulty case, (c) reconfiguration case.
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Fig. 3. First actuator: (a) nominal case, (b) faulty and reconfiguration cases.
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Fig. 4. Second actuator: (a) nominal case, (b) faulty case, (c) reconfiguration case.
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Fig. 5. Domain of the closed-loop system eigenval-
ues in the fault-free case (marked with open
circles) and with the FTC strategy (marked
with asterisks).
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Fig. 6. Domain of the closed-loop system eigenvalues
in the faulty case without FTC.

topic LPV system was presented to illustrate the effective-
ness of the scheme.
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