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SUMMARY

In this paper passive and active approaches for the design of fault-tolerant controllers (FTCs) are presented.
The FTCs are used to improve the damping of inter-area oscillations in a power grid. The effectiveness of
using a combination of local and remote (wide-area) feedback signals is first demonstrated. The challenge
is then to guarantee a minimum level of dynamic performance following a loss of remote signals. The
designs are based on regional pole-placement using Linear Matrix Inequalities (LMIs). First, a passive FTC
is proposed. It is shown that the computation of the controller reduces to the solution of bilinear matrix
inequalities. An iterative procedure is then used to design the controller. Next, as an alternative to active,
time varying controllers, one for each fault scenario, we propose an approach for the design of a ‘minimal
switching’ FTC in which only one controller is designed, but where a simple switch is incorporated into the
controller structure. A case study in a linear and nonlinear Nordic equivalent system is presented to show
that the closed-loop response using a conventional control (CC) design could deteriorate the performance or
even destabilize the system if the remote signals are lost and to demonstrate the effectiveness of the proposed
FTC designs.

KEY WORDS: Fault-tolerant control, regional pole-placement, simultaneous design, power oscillation
damping, local and remote feedback.

1. INTRODUCTION

With the increase in the requirements of regulation and operation of control systems, the topic
of fault-tolerant control (FTC) has attracted the interest of research works in different areas (e.g.,
[1, 2, 3, 4]). In general, repair and maintenance services cannot be provided quickly, making
FTC an important design strategy. The objective of FTC is to design an appropriate controller
such that the resulting closed-loop system can tolerate abnormal operations of specific control
components and retain overall system stability with acceptable system performance [5]. Within FTC
theory, several approaches have been reported: the algebraic Riccati equation-based approach [6],
the coprime factorization approach [7], the HamiltonJacobi-based approach [8], the sliding-mode
control approach [9] and the LMI approach [10]. Among the mentioned studies, the LMI approach
is relatively simpler to be implemented, making this approach one of the most popular in the field;
see [11, 12] and the references therein.

In FTC theory, two different approaches exist in the literature: active and passive FTCs. In active
schemes, the controller is reconfigured whenever a fault is detected. In passive FTC schemes, the
controller is fixed; the fault tolerance is obtained by an a priori design based on the fault models,
such that the controller is able to handle all possible faults [13]. Niemann and Stoustrup [14, 15, 13]
have demonstrated the effectiveness of passive schemes and have also pointed out the benefits and
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drawbacks of using both schemes. Since the power industry is used to passive control structures,
in this work we concentrate on this particular scheme, although we also propose an active scheme
which does not require a full reconfiguration of the controller.

In the field of power grids, cascading failures in several power systems worldwide have attracted
the interest of many researchers. These events normally occur due to the loss of generating units,
breaking failures, circuit outages or a combination of system conditions and events (requiring
robust control design and, by consequence, providing the opportunity for using FTC schemes) [16].
With the state-of-the-art wide-area measurement systems (WAMS) infrastructure, power oscillation
damping using remote (or wide-area) signals is certainly feasible. This could potentially improve the
stability limits and allow operation of the transmission lines closer to their thermal capacity, without
compromising security. Utilities however, are concerned about the consequences of unacceptable
delay or complete loss of one or more of the remote feedback signals which could jeopardize the
dynamic performance of their system.

With the introduction of phasor measurement units (PMUs), the monitoring and analysis of power
systems dynamics have been significantly improved [17, 18, 19]. PMUs provide measurements of
important quantities such as voltages, currents and active and reactive powers from different remote
locations in the power system. Although the measurements from the PMUs are not likely to fail, the
effects of a failure could be severe; this implies open research opportunities such as the fault-tolerant
control area. Conventional control (CC) schemes may be unable to work in critical scenarios. FTCs
increase the reliability and maintain the stability of the system even if a remote signal is lost.

Several techniques have been reported in the literature to tackle the adverse impact of latency
or delay involved in communicating the remote signals [20, 21, 22]. Another potential problem
could be low data rate/bandwidth availability which is likely to be encountered for networked
communication if WAMS infrastructure were to be shared between multiple data intensive services
in the future. A solution to this problem was presented in [23]. Despite a number of papers on
latency and less so on the bandwidth problem, very little has been reported on tackling the situation
where one or more remote signals are completely lost. The impact of loss of signals on the stability
of inter-connected power systems is shown in [24] but no technique is presented to resolve the
problem.

In this work, a case study on the Nordic equivalent system [25] with two poorly damped inter-
area modes is presented. Supplementary power oscillation damping (POD) control of a static var
compensator (SVC) [26] installed near Oslo is considered for improving the damping of the two
inter-area modes. It is shown that using only local signals, it is not possible to achieve the specified
target of 10% damping ratio which justifies the use of remote signals. Using a combination of a local
and a remote signal, a conventional controller is shown to produce the desired performance under
normal condition (i.e. when the remote signal is present). However, in case of loss of the remote
signal, the system response deteriorates as in the open-loop response (no POD on SVC) which is
not acceptable. Also, a linear simulation is presented to show how the CC design can affect the
stability of the closed-loop system if remote signals are used and one of them is lost.

A passive fault-tolerant control design methodology is then proposed to ensure an acceptable
performance level even in case of loss of remote signals. The FTC design methodology is based on
simultaneous regional pole-placement for multiple operating conditions, i.e. normal (remote signals
present) and loss of (remote) signals, and the algorithm to calculate the controller is described.
A special architecture for an active FTC design is next proposed. This ‘minimal switching’
architecture combines the attractiveness of the passive approach (simple implementation) and the
active approach (incorporating fault information). The effectiveness of both types of FTC designs
against the CC is then demonstrated using the Nordic equivalent system.

2. CONTROL DESIGN FORMULATION

Consider the following state space representation of a linear time-invariant (LTI) system

ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t), G(s)
s
=

[
A B
C 0

]
(1)

()
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Figure 1. General control formulation: Wide-area signals subject to faults

where x ∈ ℜn, u ∈ ℜq and y ∈ ℜp are the state, input and output vectors, respectively. A ∈ ℜn×n,
B ∈ ℜn×q and C ∈ ℜp×n are the state, input and output distribution matrices of the system,
respectively. The output matrix C is described as

C =
[
cT1 cT2 . . . cTp−1 cTp

]T
where cj ∈ ℜ1×p represents the jth output of the system. In this work p ≥ 2, one local and at least
one remote signal are used. The general concept is described in Figure 1. The sensor faults (or loss
of signals) can be represented by a family of plants

ẋ(t) = Ax(t) +Bu(t), yi(t) = Cix(t), Gi(s)
s
=

[
A B
Ci 0

]
(2)

where, for i = 0, 1, . . . , p− 1 and j = 1, 2, . . . , p− 1,

Ci = [ ciT1 ciT2 . . . ciTp−1 cTp ]T , cij =

{
0 if i = j
cj if i ̸= j

Note that cp denotes a local signal and we will assume throughout that it is always available. In
nominal conditions where all signals are available, i = 0 and C0 = [cT1 cT2 · · · cTp−1 cTp ]T = C.
Each of the measurements is the output of a sensor that can potentially fail, i.e. loss of the second
sensor is represented as i = 2 with C2 = [cT1 0 · · · cTp−1 cTp ]T . One remote signal loss at a time is
considered for simplicity here but can be generalized for more than one.

2.1. Conventional Control

A conventional controller (CC) is designed to satisfy a desired level of dynamic performance when
both the local and the remote signals are available. The performance of this controller, however,
can deteriorate significantly following sudden loss of the remote signals. A regional pole-placement
approach using LMIs is adopted for the design of CC. Unlike classical pole-placement approaches,
such as tuning of lead-lag blocks or state feedback, the LMI approach allows the imposition of
additional constraints.

The same methodology is subsequently used for the FTC design to ensure a fair comparison
between FTC and CC. For the CC, the design formulation is linear and simpler as described next.

The controller is represented in state space form as

ẋc(t) = Acxc(t) +Bcy(t), u(t) = Ccxc(t), Kc(s)
s
=

[
Ac Bc

Cc 0

]
(3)

with Ac ∈ ℜn×n, Bc ∈ ℜn×p and Cc ∈ ℜq×n. The closed-loop state dynamics of this controller is
described as ˙̃x = Ãix̃ where

Ãi =

[
A BCc

BcCi Ac

]
· (4)

()
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In this section we will design a controller for the nominal, fault free condition (i = 0). The control
objective for the CC is to place the eigenvalues of (4) within a desired region of the complex plane.
The following theorem [27] describes the solution approach.

Theorem 1
Let i = 0. Then Ãi is stable and all its eigenvalues lie within the conic sector of the complex plane,
shown in Fig. 2, if and only if there exists P̃ = P̃T such that

P̃ > 0,

[
sin θi(Ã

T
i P̃ + P̃ Ãi) cos θi(Ã

T
i P̃ − P̃ Ãi)

cos θi(P̃ Ãi − ÃT
i P̃ ) sin θi(Ã

T
i P̃ + P̃ Ãi)

]
< 0, (5)

where θi is the inner angle of the cone shown in Fig. 2. �
The formulation of this problem is bilinear but the nonlinearities can be eliminated by some

appropriate change of controller variables [27]. These changes are implicitly defined in terms of the
partition of the Lyapunov matrix P̃ and its inverse

P̃ =

[
X U
UT Xc

]
, P̃−1 =

[
Y V
V T Yc

]
,

with X,Y, U and V ∈ ℜn×n. Since P̃ P̃−1 = I ,

UV T = I −XY. (6)

It can been verified that P̃ satisfies the identity P̃Π2 = Π1 where

Π1 =

[
X I
UT 0

]
, Π2 =

[
I Y
0 V T

]
·

Post- and pre-multiplying the first and second inequalities in (5) by the matrices

Π2,

[
Π2 0
0 Π2

]
, (7)

and their transposes, respectively, and introducing the following change of variables [27]

Ĉc = CcV
T , B̂c = UBc, (8)

Âc = XAY +XBĈc + UAcV
T + B̂cCY, (9)

the inequalities in (5) reduce to the following LMIs[
X I
⋆ Y

]
> 0, (10)

[
sin θ0L11 cos θ0L12

⋆ sin θ0L11

]
< 0,

where ⋆ denotes a symmetric element in a symmetric matrix and where

L11 =

[
XA+ATX + B̂cC + CT B̂T

c AT + Âc

⋆ AY + Y AT +BĈc + ĈT
c B

T

]
,

L12 =

[
ATX −XA+ CT B̂T

c − B̂cC AT − Âc

⋆ Y AT −AY + ĈT
c B

T −BĈc

]
·

The solution to these LMIs, together with (6), (8) and (9), can be used to calculate the controller
realisation in (3). Note that one of U and V in (6) can be arbitrarily assigned, provided it is
nonsingular.

()
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Figure 2. Conic sector with inner angle θ where all poles should be placed

3. FAULT-TOLERANT CONTROL

An FTC is required to not only achieve a desired level of dynamic performance when both local and
remote signals are available but also guarantee a minimum level of performance following sudden
loss of remote signals. In this section we present two approaches for FTC design: a passive FTC
presented in Section 3.1 and a special type of active FTC presented in Section 3.2.

3.1. Iterative procedure for passive FTC

The problem of passive FTC (FTCp) design consists of synthesizing a single controller, if such a
controller exists, that satisfies the design specifications for the family of plants as described in (2).
The state space representation of the FTCp and its closed-loop state dynamics matrix are given as in
(3) and (4) for i = 0, 1, . . . , p. This controller is designed for the family of plants (2) such that:

u(s) = Kc(s)y0(s), · · · , u(s) = Kc(s)yp(s).

The requirement is that the eigenvalues of Ãi for i = 0, 1, . . . , p lie in the conic region described in
Fig. 2. The constraints are the same as in (5), where in this case, θi is the required inner angle for
the ith system.

A linear non-iterative algorithm to design decentralized controllers for polytopic systems was
presented in [28] and implemented in [29] for FTC design. The algorithms presented have the
advantage of being linear and easy to implement, although they have a potential drawback: the value
of the matrix Cc in the controller is calculated and fixed to the value of ĈcY

−1 before calculating
the other control matrices. Consequently, the values of Ac and Bc depend on Cc. As a result, it may
be possible that there is no solution for a specific value of Cc but one may exist for other values. An
iterative procedure can avoid this problem and can potentially improve the damping of the system.

Applying the same transformations to (5) as in CC, it turns out that it is not possible to perform
the same change of variables as in (9) to linearize the inequalities. This is due to the problem of
having multiple systems corresponding to the different possible fault scenarios. In order to linearize
the bilinearities, applying the transformations (7) to (5) as before, we introduce again the following
change of variables

Ĉc = CcV
T , B̂c = UBc, (11)

and in contrast to [27], we define Âc as

Âc = XAY +XBĈc + UAcV
T . (12)

()
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At this point, the inequalities in (5) reduce to the LMI in (10) and the inequality[
sin θiL

i
11 cos θiL

i
12

⋆ sin θiL
i
11

]
< 0 (13)

for all i, where

Li
11 =

[
XA+ATX + B̂cCi + CT

i B̂
T
c AT + Âc + B̂cCiY

⋆ AY + Y AT +BĈc + ĈT
c B

T

]
, (14)

Li
12 =

[
ATX −XA+ CT

i B̂
T
c − B̂cCi AT − Âc − B̂cCiY

⋆ Y AT −AY + ĈT
c B

T −BĈc

]
(15)

Note that the inequality in (13) is nonlinear due to the term B̂cCiY in the off-diagonal blocks of (14)
and (15). However, since this term is bilinear, there are many excellent methods for dealing with
this case [30]. Since the open-loop is stable, it is possible to alternately fix the value of one of the
two variables B̂c or Y to improve the damping in an iterative algorithm. Let k denote the iteration
number and note that, for a variable Z, we use the notation Z(k) to denote its value at iteration k.

Iterative Algorithm

(i) Set k = 1 and B̂c(k) = 0, so that (13) is linear and feasible since the open-loop is stable.
(ii) Find the minimum value of θi(k) (reduce the angle of the conic sector to shift the modes to

the left hand side of the complex plain) for which there exist a feasible solution to (10) and
(13). Calculate Y (k), X(k), Ĉc(k), Âc(k) and set Y (k + 1) = Y (k).

(iii) Set k = k + 1
(iv) Find the minimum value of θi(k) (reduce the angle of the conic sector to shift the modes to

the left hand side of the complex plain) for which there exist a feasible solution to (10) and
(13). Calculate B̂c(k), X(k), Ĉc(k), Âc(k) and set B̂c(k + 1) = B̂c(k).

(v) Set k = k + 1 and go to (ii).

Note that θi(k + 1) ≤ θi(k). The iterative procedure terminates when

θi(k)− θi(k + 1) ≤ ϵ (16)

where ϵ can be adjusted to a small value i.e. 10−3. When the iterative algorithm has converged,
(16) is satisfied; to retrieve the elements of the FTCp (Ac, Bc and Cc) use (11) and (12). Since we
have used a linear approximation for the bilinear inequalities, there is no guarantee that the solution
will converge to the optimal solution. However, in our experience, it does give improvement to the
damping ratio as illustrated in the examples in Sections 6 and 7.

3.2. Minimal switching FTC

The conventional controller developed in Section 2.1 has the advantage that it is optimal for the fault
free situation, although it lacks any guaranteed fault tolerance. On the other hand, the controller
developed in Section 3.1 has the advantage that it is passive (resulting in ease of implementation)
and fault-tolerant, although, since it requires the solution of bilinear matrix inequalities, evaluating
the optimal solution is difficult and we will generally have to settle for suboptimal approximations.

In the case that we have full information about the faults, it is possible to design several
controllers, one for each fault scenario, and then use the fault information to switch between
these controllers. This has the advantage that the controller will combine fault tolerance with good
performance, however, this drastically complicates the control implementation. As an alternative to
both passive and full switching control, in this section we propose what we call a minimal switching
FTC procedure in which one controller is designed, but where a simple switch is incorporated into
the controller, thus combining the advantages of both passive and active FTC schemes.

We consider switching control of the form

Ki
c(s)

s
=

[
Ai

c Bc

Cc 0

]
·

()
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Figure 3. Minimal switching scheme.

Applying the transformations (7) to (5) as before, and introducing the following change of
variables

Ĉc = CcV
T , B̂c = UBc, Âc = XAY +XBĈc + UAi

cV
T + B̂cCiY, (17)

the problem can be expressed as the solution of the LMIs (10) and (13) for all i, where

Li
11 =

[
XA+ATX + B̂cCi + CT

i B̂
T
c AT + Âc

⋆ AY + Y AT +BĈc + ĈT
c B

T

]
,

Li
12 =

[
ATX −XA+ CT

i B̂
T
c − B̂cCi AT − Âc

⋆ Y AT −AY + ĈT
c B

T −BĈc

]
Note that this formulation is now linear. Next, we give an interpretation of the definition for Âc in
(17). Let V = Y (recall that one of V and U are free). Solving (17) for Ai

c gives

Ai
c = U−1ÂcY

−1 − U−1XA− U−1XBCc −BcCi

Defining A0 = U−1ÂcY
−1 − U−1XA− U−1XBCc and letting Ci = ∆iC, where the diagonal

matrix ∆i represents a switching matrix with a zero in the ith diagonal entry representing a fault
and a 1 representing no fault in the ith sensor, we can write

Ai
c = A0 −Bc∆iC

The implementation of the proposed FTC architecture is shown in Figure 3. Notice that the
parameters of the controller A0, Bc and Cc are time-invariant. The time variation is restricted to
the switching in ∆i, hence our term minimal switching controller, which we refer to as FTCms.

4. TEST SYSTEM

A nonlinear equivalent of the Nordic system is used for the case study. The detailed model with
approximately 3000 buses, 4000 branches and 1100 generators [31, 25] was reduced down to a 20
generator, 36 bus equivalent system shown in Fig. 4. The aim was to retain the modal behavior of
the two most critical poorly damped inter-area modes. A static VAr compensator (SVC) is included
in the model at Hasle substation (5101) in south-east Norway in the same way it exists in practice.
The nonlinear reduced equivalent is then linearized around an operating point; the total number of
state variables for the linearized version of the equivalent system is 296.

There are two critical inter-area modes, 0.29 and 0.55 Hz with 4.8% and 5.4% damping,
respectively, under nominal condition; see Table I. The first mode (0.29 Hz) comprises the Finnish
generators swinging against the rest whereas the second mode (0.55 Hz) involves the generators
in the north of Finland, Sweden and Norway swinging against those in the southern parts of these
countries.

()
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Figure 4. Nordic equivalent system where the location of the PMUs and key tie-lines are marked.

Following critical contingencies such as outage of one of the parallel lines connecting (i)
6500-6700 (Norwegian coast line), (ii) 7100-7000 (Finnish line) or (iii) 3359-5101 (Hasle line),
the damping of the inter-area modes could be as low as 2-3% requiring improvement through
supplementary control. The challenge is to ensure satisfactory damping of both modes by designing
a POD for the SVC at Hasle.

With a number of phasor measurement units (PMUs) (only four in Norway and two in Finland
are considered for this study) installed throughout the Nordic system, remote feedback signals were
also considered in addition to the local signals. The difference between voltage angles available
from the PMUs were chosen as potential candidates [31] for remote signals.

The voltage angle difference between the PMUs at 6100 (at Nedre Rossaga) and 7000 (in southern
Finland) has high residue magnitude for both modes and the phase angles are also in the same
direction (see the Appendix for details of the procedure used for signal selection). Thus, based
on both the magnitude and phase angle of the residues [32], 6100-7000 was selected as the most
appropriate signal for the POD, highlighted in Table II.

Out of the available local signals, the magnitude and phase angle of the line currents were found
to be the most effective candidates. The phase angle of the current in line 5101-5501 was selected
as the most appropriate local signal based on both the magnitude and phase angle of the residue.

5. CONTROL DESIGN

The control design formulations presented in Sections 2.1, 3.1 and 3.2 result in controllers that have
the same order as the plant, which is too high for feasible control synthesis. To get around this
problem, the linearized model of the test system (described in Section 4) with 296 states was first
reduced to a 12th order equivalent using balanced stochastic model truncation through the Schur
model reduction method [33]. The similarity between the frequency responses of the original and
reduced systems were used to validate the accuracy of the reduced order model.

One case study, using the nonlinear equivalent system, comparing the performance of three
different controllers (each of order 12) using local and remote signals: conventional (CC), passive
(FTCp) and minimal switching (FTCms), is presented in Section 7 below. The controllers were
designed using the approaches described in Sections 2.1, 3.1 and 3.2 respectively. Similar to CC,
the FTCs improve the damping of the two critical modes up to 10% under normal conditions. In
addition, the FTCs maintain the damping above 8% even with the loss of the remote signal. However,
with CC the damping of mode 1 reduces to 4.9% in absence of the remote signal.

()
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Figure 5. Comparison of dynamic performance of the controllers under normal and loss of one remote signal
condition against the open-loop (OL) response

But first, one case study using the reduced linear model (of order 12) is presented to illustrate
how the stability of the closed-loop system could be affected following the loss of one of the remote
signals when this problem is not considered a priori.

6. CONTROL PERFORMANCE: LINEAR SIMULATIONS

In this section, the dynamic performance of the conventional controller (CC), the passive FTC
(FTCp) and the minimal switching FTC (FTCms) are compared both in normal and ‘fault’ (when
one remote signal is lost) conditions. The simulations and the control design are based on the linear
12 state model. All controllers were designed using the same local (phase angle of current in line
5101-5501) and two remote feedback signals (voltage angle differences 6100-7000 and 5101-7000)
based on resides magnitudes as described in Tables II and III, respectively. The objective is to
illustrate that stability of the closed-loop system can be affected when using the CC if more than
one remote signals are used and one of them is lost.

Figure 5 shows the dynamic performance of the closed-loop between the single-input, three-
outputs, 12 state Nordic power grid and the three-input, single-output, 12-state controllers CC,
FTCp and FTCms in the linear simulation. Here, it can be seen that in nominal conditions all
controllers provide satisfactory performance and fast settling times (Fig. 5 (a) and (b)) to eliminate
the oscillations (dotted trace) caused by a small disturbance at the input of the system. However, after
the loss of one of the remote signals (voltage angle differences 6100-7000), the dynamic response
using the CC is unstable (green\solid-light trace in Fig. 5 (c) and (d)) while the dynamic responses
of FTCp and FTCms maintain performance levels which are comparable to the case of nominal
conditions (blue\solid-medium and black\solid-thick trace in Fig. 5 (c) and (d)). Note that the plots
in Fig. 5 (c) and (d) have been ”chopped off” to enable the comparison between the controllers in
this particular faulty situation.
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Figure 6. Comparison of dynamic performance with CC, FTCp and FTCms under normal (remote signal
present) condition

7. CONTROL PERFORMANCE: NONLINEAR SIMULATIONS

Since our controllers were designed based on a reduced-order linearized plant model, it is therefore
essential that the performance of the controller should be validated using the actual nonlinear model
of the system. In this section the dynamic performance of the fault-tolerant controllers (FTCp and
FTCms) is compared against a conventional controller (CC) under both normal and fault conditions.
All controllers were designed using the same local and remote feedback signals mentioned in
Section 4. The design specification in all cases was to achieve at least 10% damping. However, for
FTCp and FTCms, the target damping was reduced to 8% for the fault condition to obtain a feasible
solution. A short circuit followed by outage of tie-line 6500-6700 was simulated to compare the
dynamic performance.

7.1. Normal Condition

Under normal condition, the dynamic performance of CC as seen from the power flow through the
lines 3359-5101 (Fig. 6 (a)) and 7000-7100 (Fig. 6 (b)) is acceptable, while the dynamic response
of both fault-tolerant controllers as seen from the power flow through lines 3359-5101 (Fig. 6 (a))
is slightly less oscillatory. Note that similar control effort is required by both FTCs as indicated in
BSV C (Fig. 6 (c)) and also the bus voltage V 5101 (Fig. 6 (d)).

7.2. Loss of Remote Signals

The performance of the controllers is compared in Fig. 7 in the face of loss of the remote signal.
The variation of the power flow through line 3359-5101 (Fig. 7 (a)) is not affected much by the
loss of the remote signal for any controller. As mentioned before, this power flow predominantly
reflects mode 2 which has adequate observability (residue) in the local signal which explains the
above trend. On the other hand, power flow through 7000-7100 has prominent presence of mode 1
which is not adequately observable in the local signal. Hence, with CC, loss of the remote signal
results in significant deterioration in the oscillatory behavior of this signal (Fig. 7 (b)). However,
with both FTCs, satisfactory performance is maintained for both power flows with only the local
signal, with FTCms exhibiting a slightly less oscillatory response than FTCp. Similar to the normal
condition, the control effort required by the FTCs is slightly higher than and CC as evident through
the larger excursions on BSV C (Fig. 7 (c)).
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Figure 7. Comparison of dynamic performance with CC, FTCp and FTCms following loss of remote signal

Although both FTCs require larger control effort than CC to achieve a desired damping under
normal condition, the former can guarantee an acceptable performance level when the remote signal
is lost unlike the CC which leads to significant deterioration in dynamic behavior.

8. CONCLUSION

In this paper passive and minimal switching fault-tolerant control design methodologies are
proposed to enhance the damping of inter-area oscillations in power grids. Two case studies, one
in a linear simulation and the second in a nonlinear simulation, in the Nordic equivalent system
show that the closed-loop response could deteriorate or even become unstable if the remote signals
are lost. Under normal condition (when both local and remote signals are present) the fault-tolerant
controllers require more control effort as compared to a conventional controller in order to achieve
similar performance. However, our case studies confirm that the proposed fault-tolerant controllers
are able to guarantee stability and produce acceptable performance in case of loss of the remote
signals, while the response using the conventional controller is unacceptable if a fault occurs.

APPENDIX

This section presents the procedure applied for the selection of the feedback signals.

Residues and Signal Selection

Consider the linear system in (1), where the eigenvalues are defined as λi = αi ± jωi. The modal
controllability index

MCij = viBj

indicates the controllability of the ith mode using the jth input where vi is the left eigenvector of
the system (1) for the corresponding mode λi. The modal observability index

MOik = Ckwi

indicates the observability of the ith mode of the kth output, where wi is the right eigenvector of
the system (1) for the corresponding mode λi. Thus, the signal having highest observability index is
chosen as the feedback signal. The higher the value of these indices, the better the effectiveness of
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the controller. These measures are normally expressed in the form of residues Ri = (MCij)(MOik)
and can be written as

Ri = |Ri|∠δi,

where |Ri| and δi are the absolute value and the angle of the residue, respectively, for a particular
ith mode. A high value |Ri| is essential for an effective controller. The angle δi is normally used to
calculate phase compensation; more details can be found in [34].
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Table I. Damping and Frequencies of the Inter-Area Modes under normal conditions

Open-loop Nominal Conditions
Mode No. Frequency Damping Ratio ζ

(Hz) (%)
Mode 1 0.29 4.9
Mode 2 0.55 5.4

Table II. Remote signal selection: Magnitude and phase angle of residues for difference between relevant
voltage angles

Mode 1 Mode 2
Signal

5101 − 5603
5101 − 7000
5101 − 7100
5603 − 6700
5603 − 7100
6100 − 7000
6700 − 7000
7000 − 7100

Mag Angle (deg)
0.03 −64
2.28 110
1.26 107
0.34 109
1.29 107
2.32 110
1.97 111
1.02 −66

Mag Angle (deg)
0.68 −80
1.55 83
1.97 94
3.41 97
2.65 96
2.44 88
1.26 −67
0.53 127

Table III. Local Signals: Magnitude and phase angle of residues for Currents

Mode 1 Mode 2
Signal

|I| 3359 − 5101
Iθ 3359 − 5101
|I| 5101 − 5501
Iθ 5101 − 5501
|I| 5100 − 5100
Iθ 5100 − 5100

Mag Angle (deg)
0.28 −62.09
0.35 100.43
0.21 −64.84
0.73 113
0.38 −56.46
0.48 104.51

Mag Angle (deg)
4.84 −81.44
0.35 44.44
3.76 −82.20
6.31 97.52
5.52 −80.70
2.27 89.24
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