

Aalborg Universitet

Fault Tolerant Control Systems

a Development Method and Real-Life Case Study

Bøgh, S.A.

Publication date:
1997

Document Version
Også kaldet Forlagets PDF

Link to publication from Aalborg University

Citation for published version (APA):
Bøgh, S. A. (1997). Fault Tolerant Control Systems: a Development Method and Real-Life Case Study. Aalborg
Universitetsforlag.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: August 26, 2022

https://vbn.aau.dk/da/publications/bcd21e70-0033-11da-b4d5-000ea68e967b

Fault Tolerant Control Systems -

a Development Method and

Real-Life Case Study

Ph.D. Thesis

Søren Abildsten Bøgh

Department of Control Engineering
Aalborg University

Fredrik Bajers Vej 7, DK-9220 Aalborg Ø, Denmark.

ii

ISBN 87-90664-01-9
Doc. no. D-97-4198
December 1997

Copyright 1997 c
�

Søren Abildsten Bøgh

This thesis was typeset using LATEX2 ✁ in report document class.

Drawings were made in CORELDRAWTM from Corel Corporation.
Graphs were generated in MATLABTM from The MathWorks Inc.
The Array Inference Toolbox AITTM and VISUALSTATETM from Beologic A/S were
used to analyse rule bases and state-event machines.

Preface and Acknowledgements

This thesis is submitted in partial fulfillment of the requirements for the Doctor of Phi-
losophy at the Department of Control Engineering, Aalborg University, Denmark. The
work has been carried out in the period from July 1991 to December 1997 under the
supervision of Professor Mogens Blanke.

The thesis considers the design of fault tolerant control systems for ordinary indus-
trial processes that are not categorized as high risk applications, but where high avail-
ability is desirable. The results presented in the thesis are based on experience from two
involvements. A three year project under the Danish Research Council (STVF) with the
title "Reliable Control Systems - Systematic Methods for Fault Handling Design", and
three and a half years in the development of the attitude control system for the Dan-
ish Ørsted satellite. The STVF project contributed with basic and applied research and
the satellite involvement gave invaluable experience from a genuine application where
mission critical elements were involved.

I am gratefully indebted to my supervisor Professor Mogens Blanke for his guidance
throughout the project and also for giving me the opportunity to participate in the Ørsted
project.

I also want to thank Rikke Bille Jørgensen who joined me in the STVF project and
was a great support throughout these three years.

A sincere thank goes to Professor Ron Patton from Hull University, England, for
interesting discussions during my half year stay at York University in 1993.

Furthermore, I greatly acknowledge the assistance from my colleagues within the re-
search group for fault tolerant control and the Ørsted group: Roozbeh Izadi Zamanabadi,
Claus Thybo, Rafał Wiśniewski, and Thomas Bak.

Finally, I want to acknowledge the financial support from STVF under grants no.
16-4979 and no. 9500765 and from the Ørsted satellite project.

December 1997, Aalborg, Denmark
Søren Abildsten Bøgh

iii

Summary

This thesis considered the development of fault tolerant control systems. The focus was
on the category of automated processes that do not necessarily comprise a high number
of identical sensors and actuators to maintain safe operation, but still have a potential for
improving immunity to component failures. It is often feasible to increase availability
for these control loops by designing the control system to perform on-line detection and
reconfiguration in case of faults before the safety system makes a close-down of the
process.

A general development methodology is given in the thesis that carried the control
system designer through the steps necessary to consider fault handling in an early design
phase. It was shown how an existing control loop with interface to the plant wide control
system could be extended with three additional modules to obtain fault tolerance: Fault
detection and isolation, remedial action decision, and reconfiguration. The integration
of these modules in software were considered.

The general methodology covered the analysis, design, and implementation of fault
tolerant control systems on an overall level. Two detailed studies were presented, one
on fault detection and isolation design and one on design of the decision logic. Two
application case studies were used to emphasize practical aspects of both the develop-
ment methodology and the detailed studies. One was an electro-mechanical actuator
in a position control loop for a diesel engine speed governor where the purpose was to
avoid a total close-down in case of the most likely faults. The second was a fault tolerant
attitude control system for a micro satellite where the operation of the system is mission
critical. The purpose was to avoid hazardous effects from faults and maintain operation
if possible.

A method was introduced that, after a systematic examination of possible component
failures, enables analysis of the relationship between failures and their consequences for
the system’s operation. This fault propagation analysis is based on coarse models of the
subsystems describing the reaction to faults, as for example a variable being zero, low or
high. Examples were given that illustrate how such models can be established by simple
means, and yet provide important information when combined into a complete system.
A special achievement was a method to determine how control loops behave in case of
faults. This is not straight forward as the system behaviour depends on the character of

v

vi Summary

the feedback.
One of the detailed studies were the design of the decision logic in fault handling,

realized as state-event machines. Guidelines for the design were provided, based on
experience from the two case studies. Methods for verifying correct operation of the
decision logic were described, where a completeness check against the fault propagation
analysis is able to guarantee coverage of all considered faults.

The usage of software tools to support the development process was illustrated with
an off-the-shelf product for constraint logic solving and state-event machine analysis.
The coarse system models and the decision logic were analyzed with the tool-box and it
was shown how an easy analysis could be performed to verify correctness and complete-
ness of the fault handling design. Experience from this study highlights requirements
for a dedicated software environment for fault tolerant control systems design.

The second detailed study addressed the detection of a fault event and determination
of the failed component. A variety of algorithms were compared, based on two fault
scenarios in the speed governor actuator setup. One was a position sensor fault and the
second was an actuator current fault. The sensor fault detection was trivial, whereas
the actuator fault was more challenging. The study demonstrated that many existing
methods have a potential to detect and isolate the two faults, but also that the research
field still misses a systematic approach to handle realistic problems such as low sampling
rate and nonlinear characteristics of the system. The thesis contributed with methods to
detect both faults and specifically with a novel algorithm for the actuator fault detection
that is superior in terms of performance and complexity to the other algorithms in the
comparative study.

Synopsis

Denne Ph.D.-afhandling omhandlede udviklingen af fejl-tolerante kontrolsystemer. Der
blev fokuseret på den type af automatiserede processer, der ikke har en stor mændge
identiske sensorer og aktuatorer til at opretholde sikker operation, men hvor det alligevel
er ønskeligt og muligt at opretholde driften i tilfælde af simple fejl. Afhandlingen illu-
strerede muligheden for at integrere fejldetektion og aktiv omkonfigurering i designet af
kontrolsystemet, så automatisk nedlukning fra sikkerhedssystemet undgås.

En generel udviklingsmetode er beskrevet i afhandlingen, som vejledning til
kontrolsystem-designeren i de forskellige discipliner indenfor fejltolerant kontrol. For-
målet var at stille et værktøj til rådighed, som gør det muligt at overveje fejlhånd-
tering på et tidligere stadie i udviklingsprocessen end hvad er praksis i dag. Det
blev vist, hvorledes et eksisterende kontrolsystem, med grænseflade til et overordnet
proces-kontrolsystem, kunne gøres fejltolerant ved at inkludere følgende tre moduler:
Fejldetektion og -isolering, handlings-beslutning samt omkonfigurering. Aspekter i
forbindelse med implementering i software blev også behandlet.

De generelle overvejelser i udviklingsmetoden om analyse, design og implementer-
ing blev suppleret med to detail-studier. Det ene omhandlede algoritmer til fejlde-
tektion og -isolering, det andet design af beslutnings-logikken for fejlhåndtering. To
eksempel-studier blev anvendt til at illustrere praktiske aspekter i forbindelse med både
den generelle udviklingsmetode og detail-studierne. Det ene var en elektrisk-mekanisk
positionsregulering, anvendt til hastighedsstyring på store dieselmotorer, som blev ana-
lyseret og designet til at modstå nedlukning som følge af de mest sandsynlige fejl. Det
andet var fejltolerant retningsstyring til en mikrosatellit, hvor missionens success er
afhængig af korrekt funktion af kontrolsystemet. Formålet var at undgå uheldige føl-
gevirkninger fra fejl, og opretholde aktiv kontrol så vidt det er muligt.

En metode blev introduceret som, efter en systematisk undersøgelse af potentielle
fejlmuligheder, kan bruges til at analysere sammenhængen mellem fejlene og deres
konsekvens for driften. Denne undersøgelse af fejlenes udbredelse igennem systemet
baserer sig på delsystem-modeller med grov kvantisering, hvor udfaldsrummet for en
variabel for eksempel bliver beskrevet med nul, lav eller høj. Der blev givet eksempler
på, hvordan sådanne delsystem-modeller relativt simpelt kan udvikles og kombineres til
en komplet systembeskrivelse, som kan anvendes til en værdifuld undersøgelse af syste-

vii

viii Synopsis

met. Et specielt bidrag i afhandlingen er en metode til at undersøge udbredelsen af fejl
i tilbagekoblede systemer. Systemets opførsel er ikke altid umiddelbar gennemskuelig,
da reaktionen afhænger af tilbagekoblingens struktur.

Et af detail-studierne omhandlede design af beslutningsdelen for fejlhåndtering. En
realisation med tilstandsmaskiner blev præsenteret og en række retningslinier for de-
signet blev givet udfra praktiske aspekter i forbindelse med de to eksempelstudier. Der
blev anvist metoder til at verificere korrekt funktion af beslutningsdelen, idet det er
muligt at sikre fuldstændig dækning af de fejl, som analysen omfatter.

Anvendelsen af EDB-værktøjer til understøttelse af udviklingsprocessen blev illu-
streret med et kommercielt produkt til analyse af logiske kredsløb og tilstandsmaskiner.
Det blev vist, hvordan ovenstående komplethedsanalyse nemt og elegant kan gennem-
føres, når værktøjet benyttes til at analysere de groft kvantiserede modeller sammen
med beslutnings-logikken. Erfaringerne fra dette studie viste, hvilke krav der stilles til
programmel-omgivelser for fejltolerant kontrol-design.

Det andet detail-studie omhandlede detektion af fejl-hændelser og lokalisering af
den fejlbehæftede komponent. En række forskellige algoritmer blev sammenlignet
baseret på deres evne til at opfange to specifikke fejlsituationer i positionsreguleringen
for dieselmotoren. Det ene tilfælde var en positionsmåler-fejl og det andet var en strøm-
fejl i aktuatoren. Sensorfejlen var triviel, mens aktuator-fejlen var en større udfordring.
Sammenlignings-studiet viste, at mange metoder har et godt potentiale for detektion
og isolation af de omtalte fejltyper, men også at forskningsfeltet savner en systematisk
angrebsvinkel til at håndtere realistiske problemer, såsom lav samplingshastighed og uli-
neariteter i systemet. Afhandling bidrog med metoder til detektion af begge fejltyper og
specielt med en elegant algoritme til detektion af aktuator-fejlen, som overgår de andre
metoder i sammenlignings-studiet i form af præstationer og kompleksitet.

Contents

List of Figures xiii

List of Tables xvii

Nomenclature xxi

1 Introduction 1

1.1 Background and Motivation . 1
1.2 Overview of the Field . 3
1.3 Objectives and Contributions . 4
1.4 Thesis Outline . 5

2 Fault Tolerant Control Systems in Perspective 7

2.1 Disciplines Related to Fault Tolerant Control 7
2.2 Thesis Approach . 10
2.3 State-of-the-Art in Fault Tolerant Control Systems Design 11

2.3.1 General Development Methods . 11
2.3.2 Fault Detection and Isolation Algorithms 13
2.3.3 Reconfiguration Methods . 15
2.3.4 Supervisor Decision Logic Design Methods 17

2.4 Summary . 19

3 Development Method for Fault Tolerant Control 21

3.1 General Supervisor Architecture . 21
3.1.1 Control Level . 22
3.1.2 Detector-Effector Level . 23
3.1.3 Decision Logic Level . 23

3.2 Fault Tolerant Control System Development Process 24
3.2.1 System Modelling. 27
3.2.2 Fault Propagation Analysis . 29
3.2.3 Severity Assessment . 33
3.2.4 Analysis for Reconfiguration . 33
3.2.5 Remedial Actions Selection . 34
3.2.6 Fault Detection and Isolation Design 35

ix

x Contents

3.2.7 Fault Accommodation Design . 36
3.2.8 Supervisor Decision Logic Design . 37
3.2.9 Summary . 40

3.3 Fault Tolerant Control System Design for the Benchmark 41
3.3.1 Introduction to the Benchmark Equipment 41
3.3.2 System Modelling . 43
3.3.3 Fault Propagation Analysis . 43
3.3.4 Severity Assessment . 50
3.3.5 Analysis for Reconfiguration . 50
3.3.6 Remedial Action Selection . 51
3.3.7 Fault Detection and Isolation Design 53
3.3.8 Fault Accommodation Design . 55
3.3.9 Supervisor Decision Logic Design . 55
3.3.10 Summary of FTCS design for the Benchmark 58

3.4 Supervisor Architecture for the Benchmark . 58
3.4.1 Control Level . 58
3.4.2 Detector-Effector Level . 58
3.4.3 Decision Logic Level . 60
3.4.4 Experiments in the Laboratory . 62

3.5 Summary . 63

4 Fault Detection and Isolation on the Benchmark 65

4.1 The Benchmark Proposal . 65
4.2 Benchmark Actuator Description . 71
4.3 Approaches to Fault Detection and Isolation on the Benchmark 74

4.3.1 Observer and Signal Processing Approach 75
4.3.2 Frequency Domain Approach . 78
4.3.3 Eigenstructure Assignment Approach 79
4.3.4 Parametric Statistical Approach . 81
4.3.5 Multiple Models Hypothesis Testing Approach 84
4.3.6 Parameter Estimation Approach with Extended Kalman Filter 86
4.3.7 Interacting Multiple Model Approach 88
4.3.8 Parity Equations Approach . 92
4.3.9 Approach using Neural Networks . 94

4.4 Discussion . 95
4.4.1 Residual Generation . 96
4.4.2 Residual Evaluation . 97
4.4.3 Standard Versus Dedicated Techniques 98
4.4.4 Black-Box Neural Net Approach . 98

4.5 Conclusion . 99
4.6 Summary . 100

5 Fault Tolerant Control for the Ørsted Satellite 103

5.1 Motivation and Related Work . 103
5.2 Introduction to the Ørsted Satellite . 105

5.2.1 Requirements for Autonomy . 108
5.3 Attitude Control System Analysis . 110

Contents xi

5.3.1 Failure Modes . 110
5.3.2 Fault Propagation . 113
5.3.3 Severity Assessment . 117
5.3.4 Remedial Actions . 118

5.4 Fault Detection and Isolation Design . 120
5.4.1 Overview of Fault Detectors for ACS 120
5.4.2 Assessment on Potential False Alarms 122

5.5 Supervisor Decision Logic Design . 123
5.5.1 Overview of the Decision Logic State-Event Machines 123
5.5.2 Controller Mode - Example with Internal Memory 127
5.5.3 Attitude Determination Mode - Example with External Timer 127
5.5.4 Controller Enabled Switch - Example on Internal Dependencies 128
5.5.5 How to avoid Combinatorial Explosions 128

5.6 Decision Logic Verification . 130
5.6.1 Stand-alone Check of the SEM Rules 130
5.6.2 Combined Check with SEM Model of the Control Level 131
5.6.3 Combined Check with Fault Propagation and Reconfiguration Analysis . 133

5.7 Supervisor Implementation in Software . 135
5.7.1 The Supervisor Task . 136
5.7.2 Synchronization between the Control Level and the Supervisor Tasks . . 137
5.7.3 Sequential versus Parallel SEM Inference 138

5.8 Test of the Fault Tolerant Control System . 138
5.8.1 Fault Detector Tests . 139
5.8.2 Supervisor Tests . 139
5.8.3 ACS Performance Tests . 140
5.8.4 Test Results . 140

5.9 Summary . 142

6 Conclusion and Recommendations 143

6.1 Conclusion . 143
6.2 Recommendations . 145

A Benchmark BeologicTM Rules 147

A.1 Fault Propagation Graph - without “Oscillation”-Discrepancy 147
A.2 Fault Propagation Graph Rules - with “Oscillation”-Discrepancy 148
A.3 Fault Detection and Isolation Rules . 150
A.4 Complete Rule Base with FPG, FDI, Decision Logic, and Reconfiguration 150

B BeologicTM Rules for the Ørsted Satellite Case Study 154

B.1 Coil Driver Fault Propagation Graph . 154
B.2 Complete Ørsted Fault Propagation Graph . 155
B.3 Complete Rule base with FPG, FDI, Decision Logic, and Reconfiguration 157

Bibliography 161

List of Figures

2.1 The water-fall model for development of technical processes 11

3.1 A general three level architecture for fault tolerant control systems. The three
levels are feedback control, fault detection and reconfiguration, and supervision
decision logic. The latter also has communication to the plant-wide control system 22

3.2 The process of determining fault events requires the three steps of residual gen-
eration, fault detection, and fault isolation . 23

3.3 The supervisor decision logic realized as state-event machines. The decision
logic uses a state transition matrix to deduce an appropriate remedial action based
on fault events, command inputs from higher levels, and knowledge about the
present and past state of operation . 24

3.4 Systematic fault tolerant control system development approach. These eight
steps conducts the designer from an analysis of failures to the design of fault
detectors, supervisor decision logic, and fault accommodation 25

3.5 The specific actions for FTCS design, shown in figure 3.4, shall be included in
the general water-fall development procedure as shown in this figure 26

3.6 An example on fault propagation in a system with negative feedback 31
3.7 A fault tree of the fault propagation for the position measurement and control

from table 3.1 and table 3.3 . 34
3.8 A complete logic model of fault propagation, fault detection, decision, and re-

configuration. This model is used to facilitate a completeness check of the su-
pervisor’s decision rules . 39

3.9 Electro-mechanical actuator for diesel engine speed control 41
3.10 Electrical-mechanical diagram of the benchmark equipment 42
3.11 Illustration of two ways to make a hierarchical breakdown of the structure of the

benchmark equipment: Functional structure model and Physical structure model 44
3.12 The structure of the fault propagation analysis of the benchmark equipment. A

logic description of each block determines the relation between the qualitative
inputs and outputs . 45

3.13 The fault TachoWireDisc causes oscillation of the output arm in the physical
benchmark system caused by the sign change in the negative feedback position
controller. This property is evident in the corresponding fault tree, shown in
this figure, because the path of the fault has a “cross-over” between the “Low”-
discrepancies and the “High”-discrepancies 48

xiii

xiv List of Figures

3.14 The end-effect of a disconnected tachometer wire is an oscillation of the arm
position around the position reference set-point. The fault happens at 3.65 sec . 49

3.15 The benchmark fault tree showing the possible faults that cause the four end-
effects on the arm position: constant, oscillating, low, and high 51

3.16 Reconfigurable controller for the benchmark actuator. All the inputs in the top
of the figure are settings coming from the effectors and the supervisor decision
logic. Boldface variables indicate remedial actions and solid lines are data signals 59

3.17 Detector-effector level for the benchmark supervisor. Two fault detectors and
isolation logic produce fault events based on input from the control level. The
effector box consists of the position reference perturbation generators 59

3.18 The benchmark supervisor decision logic suite of state-event machines. Default
states are in boldface. Outputs are in square brackets. Dashed lines show internal
dependencies between SEMs . 61

3.19 An experiment with the actuator benchmark illustrating the reaction to a position
measurement fault with and without fault detection and reconfiguration 63

4.1 Benchmark test data sequence DS1: Small excitation of linear design model. . 67
4.2 Benchmark test data sequence DS3: Small excitation of full scale nonlinear

model. 68
4.3 Benchmark test data sequence DS4: High excitation of full scale nonlinear

model. 69
4.4 Benchmark test data sequence DS5: Medium excitation of full scale nonlinear

model with long current fault period. 70
4.5 Block diagram of the actuator servo-motor with velocity control loop of the

power drive. The speed reference is generated by a digital position controller.
The points of additive faults and disturbances are included 72

4.6 Residuals for position measurement fault detection generated by the base-line
observer. Dotted lines indicate the period where the position fault is enabled . . 75

4.7 Residuals (solid) with adaptive thresholds (dashed) and fixed thresholds (dash-
dotted) for the position fault detection algorithm designed by Höfling et al.

(1995). Position fault period is indicated with dotted lines 77
4.8 Residuals for data-set DS3 with adaptive thresholds for the current fault detection

algorithm designed by Höfling et al. (1995) 77
4.9 (a) Current fault detection residuals (✂☎✄) and (b) position fault detection residuals

(✂✝✆) for the FDI algorithm designed by García et al. (1995). Dashed lines indicate
fault periods . 79

4.10 Residuals for the current fault detection algorithm designed by Jørgensen et al.

(1995) . 81
4.11 Decision functions for current and position measurement faults for data-set DS1,

DS3, and DS4, as presented by Grainger et al. (1995). Test threshold are hori-
zontal dotted lines. Estimated load signal is dash-dotted line. The alarm times
are indicated with vertical dotted lines . 83

4.12 Statistical test scheme for detection of the current fault and isolation to unknown
load inputs. The decision is based on sequential probability ratio tests (SPRTs)
of the residuals from two observers, one for the nominal non-faulty system, and
one for the system with current fault . 85

List of Figures xv

4.13 Test results of the current fault detection scheme proposed in Bøgh (1995) for
data-set DS5. Above are the residuals for the two observers: The linear observer
for the non-faulty system ✂✟✞ and the nonlinear observer for the current fault ✂✡✠ .
These residuals are used to generate the decision variables ☛☞✞✌✞ , ☛✍✞✎✠ , ☛✏✠✑✞ , and☛ ✠✌✠ that underlie the decisions shown in the bottom graph. The decisions are
shown together with the periods of load and current fault presence. The current
fault is only present when the desired current is negative 87

4.14 Fault detection signals for the FDI scheme proposed by Walker and Huang
(1995) applied to DS3 and DS4. The graphs show the current bias ✒ ✄ and the
sensor bias ✒☎✆ for a linear Kalman filter (EKF-L) and a nonlinear Kalman filter
(EKF-NL). Dotted lines are decay terms, solid lines are estimated biases, and
dashed lines are actual biases . 89

4.15 The interacting multiple model (IMM) algorithm used for FDI (reproduced from
Efe and Atherton (1997)) . 90

4.16 Probability time histories for the interacting multiple model FDI approach pre-
sented by Efe and Atherton (1997). Current fault detection signals are shown
in (a), (b), and (c), whereas (d) shows the signals for position fault detection.
Vertical dashed lines are decision thresholds 91

4.17 Residuals for the current fault detection algorithm proposed by Mediavilla et al.

(1997). Graph (a) shows the cumulative sum of the primary parity space residuals
from the state-space approach (solid). Graph (b) shows the primary residuals
from the input-output approach (solid). Indicators are shown for periods with
load disturbance (dotted), active current faults (dashed), and significant changes
in reference (dash-dotted). Horizontal dashed lines are thresholds. 93

4.18 Comparison of the performance of the fault detection algorithms presented in
this chapter. The figure shows the detection delays for each data-set, the execu-
tional complexity of the algorithms, and the abilities to isolate the two faults and
avoid false alarms from other exogenous inputs as load disturbances and large
reference changes . 100

5.1 The Ørsted satellite with the boom deployed 106
5.2 The attitude control system configuration. The main components are sensors,

attitude determination, attitude control, and actuators 107
5.3 Example on a hardware fault occurring during detumbling of the satellite. The

control error increases significantly and the average power consumption becomes
very large . 108

5.4 Electrical diagram of a coil driver and magnetorquer in the Ørsted satellite. The
magnetorquer is driven by a bridge coupling of four power transistors. The
bridge is controlled to provide the desired direction of current flow by the sign
control block. The desired current amplitude is controlled by a regulator with
feedback from a shunt measurement. Power to the bridge is provided by a switch
mode supply. The absolute current measurement is also made available for the
control computer. 112

5.5 The structure between the logic models of the Ørsted coil driver and magnetor-
quer circuit in figure 5.4. The figure shows the involved variables and their logic
values . 114

xvi List of Figures

5.6 Possibilities of reconfiguration of the attitude control system. Switches indicate
the usage of instruments and selection between operational modes. Dashed boxes
indicate execution control over groups of functionalities 119

5.7 The internal structure of the Ørsted ACS decision logic’s state-event machines.
Inputs to the state-event machines are commands, events from detectors, time-
out signals from external timers, and internal dependencies from other state-
event machines. The input "Propagate" is used to trigger transition of the state-
event machines that have internal dependencies. The CmdReset command is not
shown as well as all the dependencies from the CmdDetumble and CmdStabilize
commands . 124

5.8 A state-event machine for handling of the attitude controller mode. The con-
troller can be in either low power (LP), high power (HP), or boom down (BD)
mode. The fourth state (BDRequested) memorizes when a BDControlRequest
has been sent and the SEM is waiting for a CmdActivateBD command. Square
brackets indicate outputs . 127

5.9 A state-event machine for the attitude determination mode handling. The attitude
determination can be in either primary (PrimTimerStopped) or secondary (Sec)
mode. The extra state PrimTimerRunning is used to memorize that the external
SIMTimer has been activated and the SEM is waiting for a timeout signal . . . 128

5.10 A state-event machine to control the execution of the attitude controller algo-
rithm. The controller is disabled in a number of different situations that is repre-
sented by a combination of other states . 129

5.11 Illustration of an inappropriate SEM design. The ControlMode SEM from figure
5.8 has been combined with the Pause and the Phase SEMs and the result is an
unnecessary complicated design . 129

5.12 Example on a method to check for possible dead-ends between the supervisor’s
decision logic and the control level. A SEM description of the control system and
FDI (BModel and CSCDetector) is combined with the SEMs of the supervisor’s
decision logic (ADACEnabled and CSCStatus). The dependencies between the
SEMs are shown with dashed lines. In this example, a CSC fault will lead to a
dead-end in the system . 132

5.13 Control and data flow diagram between the supervisor task and the control level
task. Dashed lines indicate data flow and solid lines indicate control flow 137

5.14 Example on fault handling on the Ørsted satellite in the detumbling phase. The
top graph shows the angle between the satellite and the local geomagnetic field
vector, which is supposed to approach 180 deg. The bottom graph shows the
amplitude of the angular velocity. When the fault is not accommodated, the
satellite will continue tumbling and thereby prevent boom deployment 141

List of Tables

3.1 Logic model for a position potentiometer. 30
3.2 BeologicTM rules for the potentiometer truth table in table 3.1. 30
3.3 Logic model for a negative feedback position controller. 32
3.4 Main characteristics of the benchmark actuator. 42
3.5 Extract of the failure mode and effects analysis for the benchmark equipment. . . 43
3.6 Relationship between component fault effects and functional discrepancies. . . . 45
3.7 Logic model for the position measurement (potentiometer). 45
3.8 Logic model for the velocity reference calculation unit (position controller). . . . 46
3.9 Logic model for the velocity reference input (velocity reference wire). 46
3.10 Logic model for the velocity measurement (tachometer). 46
3.11 Logic model for the current reference calculation unit (velocity controller). . . . 46
3.12 Logic model for the current control unit (power drive). 47
3.13 Logic model for the mechanical actuation (motor). 47
3.14 Logic model for the mechanical positioning (gear and arm). 47
3.15 Modified logic model for the velocity measurement (tachometer), where the ef-

fect of the fault TachoWireDisc is changed from zero to a dedicated “oscillation”
discrepancy. 49

3.16 The relation between faults and end-effects of the benchmark example. 49
3.17 Severity assessment of end-effects caused by the considered faults in the Bench-

mark problem. 50
3.18 Possible remedial actions for the benchmark equipment. 52
3.19 Logic model of a fault detector that uses the position and velocity measurements

for detection of faults in these sensors. 54
3.20 A matrix showing the relationship between faults and suggested fault detectors

for the benchmark example. A “True” means that the fault can be detected by the
corresponding detector. The fault detectors detect inconsistencies between two
measurable signals. 54

3.21 The benchmark fault isolation BeologicTM rules. 54
3.22 Requirements to the benchmark supervisor’s decision logic design. 56
3.23 The benchmark supervisor’s BeologicTM rules for fault handling decision logic. . 56
3.24 Modified model for the position measurement (potentiometer) where reconfigu-

ration is included. The potentiometer faults will only propagate when the poten-
tiometer is in use (PosEstim=Off). 57

xvii

xviii List of Tables

3.25 Modified model for the velocity reference (velocity reference wire) where recon-
figuration is included. If the velocity controller is bypassed (VelCtrlBypass=On)
then the output of this unit becomes the current reference instead of the velocity
reference and the disconnected velocity reference wire will have no effect. 57

4.1 Overview of the data-sets used in the benchmark test. The table describes for each
data-set which model was used for generation, the excitation level on the reference
input, and the periods were the faults and load inputs are enabled. 71

4.2 This table lists the time of the first sample, where the benchmark faults manifest
themselves in the data signals for the 5 test data-sets. 71

4.3 Benchmark actuator linear design model parameters. 73
4.4 Benchmark actuator variables. 73
4.5 Fault detection delays for the position fault detection algorithm designed by

Höfling et al. (1995). 78
4.6 Fault detection delays for the position fault detection algorithm designed by Jør-

gensen et al. (1995). 80
4.7 Fault detection delays for the current fault detection algorithm designed by Jør-

gensen et al. (1995). 80
4.8 An overview of the algorithms used by Grainger et al. (1995) to detect position

and current faults. 84
4.9 Fault detection delays for the position and current fault detection algorithms de-

signed by Grainger et al. (1995). 84
4.10 Hypothesis tests for the detection of current faults and isolation to unknown load

disturbances for the two SPRT algorithms shown in figure 4.12. 86
4.11 Fault detection delays for the fault detection algorithm designed by Bøgh (1995). 86
4.12 Fault detection delays for the position and current fault detection algorithms de-

signed by Walker and Huang (1995). The table shows the detection delays and
false alarm rates for the different design approaches and also the different choices
of the decision threshold. 89

4.13 Fault detection delays for the position and current fault detection algorithms de-
signed by Efe and Atherton (1997). 92

4.14 Fault detection delays for the current fault detection algorithm designed by Medi-
avilla et al. (1997). 94

5.1 The Ørsted satellite instruments. 106
5.2 Logic model for the sign control and shunt resistor. 113
5.3 Logic model for the current regulator. 114
5.4 Logic model for the switch mode supply. 114
5.5 Logic model for the bridge coupling. The bridge transistor faults are represented

here by T1 and T2 only. The other transistors, T3 and T4, have equivalent effects. 115
5.6 Logic model for the magnetorquer. 115
5.7 A table showing the relations between faults and end-effects of the Ørsted coil

driver and magnetorquer subsystems. The current reference input is forced to the
non-faulty value CurRef=OK in this analysis to indicate that only CD and MTQ
faults are analysed. 117

List of Tables xix

5.8 A table showing the relation between faults and end-effects of the Ørsted attitude
control system in the two operational phases; detumbling and stabilization. . . . 118

5.9 Inputs to the Ørsted decision logic’s state-event machines. 125
5.10 Outputs from the Ørsted decision logic’s state-event machines. 125
5.11 States in the Ørsted decision logic’s state-event machines. 126
5.12 An example on BeologicTM rules used to verify completeness of the supervisor

decision logic. 133
5.13 Analysis of the completeness of the Ørsted ACS decision logic. The table shows

the component faults that will be handled (OK) and those that will not be handled
(Not OK). 134

5.14 Analysis of the completeness of the Ørsted ACS decision logic. The table shows
which end-effects are prevented from occurring with the implemented decision
logic and which can still happen. 134

5.15 Analysis of the faults that can cause the possible end-effects during the stabiliza-
tion phase shown in table 5.14. 135

Nomenclature

Symbols✓ State-space description’s state-vector ✔ ✕✖✠✘✗✚✙✜✛✣✢✥✤✧✦★ Input ✗✚✩✫✪✭✬✮ Output vector ✔ ✗✰✯✙✘✱ ✛✲✯✢✑✱ ✤ ✦✳
Disturbance ✴✶✵✒✝✄ Actuator fault ✷✸✕ ✙✒☎✆ Sensor fault ✷✹✛✣✢✺ Sensor noise vector ✔ ✺✡✻ ✙ ✺ ✆✖✢ ✤ ✦✼✾✽✏✿✸✽✏❀☞✽❂❁ ✄ ✽ Continuous-time state-space state equation matrices✼❃✿❄❀❅❁ ✄ Discrete-time state-space state equation matrices❆❇❁ ✆ State-space output equation matrices❈
System’s output transfer function matrix❉
System’s input transfer function matrix❊
Transformation matrix for parity space FDI-design❋❍●
Benchmark actuator velocity controller gain■ ●
Benchmark actuator velocity controller integral time❏✑❑ ✪ ✄✝▲ Benchmark actuator power drive peak current limit❏ ✩▼✙❂✆ Benchmark actuator power drive mean current limit✒☎◆✧✢✑◆ Benchmark actuator total friction referred to servo motor❏ ◆❖✢✫◆ Benchmark actuator total inertia referred to servo motor❏ ✵ Benchmark load inertia of spring-mass model of load, referred to gear out-
put❋✹P
Benchmark actuator torque constant for servo motor◗
Benchmark actuator gear ratio❘ ✆ Benchmark actuator measurement scaling factor❙ Benchmark actuator gear efficiency❋ ✻ ✙ Benchmark actuator noise gain on velocity measurement❋ ✆✖✢ Benchmark actuator noise gain on position measurement✕❚✯✙ Benchmark actuator final current in motor including current limits and cur-
rent faults✕ ✙ Benchmark actuator motor current if no faults in power drive. After current
limits

xxi

xxii Nomenclature

✕ ✙❂❯ Benchmark actuator requested current from velocity controller without cur-
rent limits✕✎✠ Benchmark actuator velocity controller integral variable✗✚✙ Benchmark actuator shaft speed of servo motor✗ ✙✘✱ Benchmark actuator measurement of servo motor shaft speed including
noise✗ ✩✫✪✭✬ Benchmark actuator shaft speed reference✴❱✵ ✙ Benchmark actuator load torque referred to servo motor✴ ✙ Benchmark actuator torque from servo motor✴ ✬✝✙ Benchmark actuator friction torque when load is separated in a spring-mass
model✴ ✬ ✵ Benchmark load friction torque when load is separated in a spring-mass
model✴❱✆ Benchmark load torque when load is separated in a spring-mass model✛✣✢ Benchmark actuator output arm position✛ ✯✢✥✱ Benchmark actuator measurement of output arm position including noise
and faults✷✸✕❲✙ Benchmark actuator current fault as additive input✷✹✛✣✢ Benchmark actuator position measurement fault as additive input✂ ✆ Benchmark residual for sensor (position) fault detection✂✲✄ Benchmark residual for actuator (current) fault detection☛ Benchmark gain in position measurement fault FDI observer

Abbreviations

ACS Attitude control system
ADC Analog-digital converter
AI Artificial intelligence
AIT Array inference tool-box from BeologicTM

CASE Computer aided software engineering
CCM Coil current measurement
CD Coil driver
CDC Control distribution concept
CDH Command and data handler
CPD Charged particle detector
CSC Compact spherical coil (vector magnetometer)
CUSUM Cumulative sum
DC Direct current
DES Discrete event system
DoD Department of Defense, US
EKF Extended Kalman filter
EMC Electro-magnetic compatibility
ESA European Space Agency
FDI Fault detection and isolation
FDIR Fault detection, isolation, and reconfiguration

Nomenclature xxiii

FMEA Failure mode and effects analysis
FMECA Failure mode, effects, and criticality analysis
FPA Fault propagation analysis
FPG Fault propagation graph
FSM Finite state machine
FTC Fault tolerant control
FTCS Fault tolerant control system
GLR Generalized likelihood ratio
GPS Global positioning system
HazOp Hazard and operability analysis
IFAC International Federation of Automatic Control
IRU Inertial reference unit
IMM Interacting multiple model
LMI Linear matrix inequality
MIMO Multiple input multiple output
MTQ Magnetorquer
NASA National Aeronautics and Space Administration
NEAR Near earth asteroid rendezvous
NMP New millennium project
NN Neural network
OSD One-step diagnosis (neural network)
OVH Overhauser scalar magnetometer
PCT Procedural control theory
PHA Preliminary hazard analysis
PI Proportional integral
PIM Pseudo-inverse method
PRBS Pseudo random binary sequence
RCE Restricted coulomb energy (neural network)
SCT Supervisor control theory
SEM State-event machine
SIM Star imager
SISO Single input single output
SPRT Sequential probability ratio test
SS Sun sensor
SST Sun sensor thermistor
STVF Statens Teknisk Videnskabelige Forskningsråd (Danish Research Council)

xxiv Nomenclature

Terminology

The terminology used in FTCS has only during the recent years approached an agreement in
the published material. The Safeprocess Technical Committee of IFAC has compiled a list of
suggested definitions (Isermann and Ballé (1997)) which is generally in coherence with the ter-
minology used throughout this thesis. Additional publications with explanations on terminology
used below are Bell (1989), ESA-ECSS (1997), NASA (1993), and DoD (1980).

Active fault tolerant system A fault tolerant system where faults are explicitly detected
and accommodated. Contrary to a passive fault tolerant sys-
tem.

Analytical redundancy Use of more than one not necessarily identical ways to deter-
mine a variable, where one way uses a mathematical process
model in analytical form.

Availability Probability that a system or equipment will operate satisfac-
torily and effectively at any point of time.

Criticality A combined measure of the severity of the consequences of
an event and the frequency of the event.

Dead-end A state or combination of states in state event machines that
can only be left with a complete reset of the state event ma-
chines.

Decision logic The functionality that determines which remedial action(s)
to execute in case of a reported fault and which alarm(s) shall
be generated.

Detector An algorithm that performs fault detection and isolation.
Effector An algorithm that executes a remedial action.
End-effect The consequence of a failure mode on the operation, func-

tion, or status of a system on top level.
Fail-safe The ability to sustain any single point failure and retain full

operational capability.
Failure effect The consequence of a failure mode on the operation, func-

tion, or status of an item.
Failure mode Particular way in which a failure can occur.
Fault detection Determination of faults present in a system and time of de-

tection.
Fault diagnosis Determination of kind, size, location and time of detection

of a fault. Follows fault detection. Includes fault isolation
and identification.

Fault isolation Determination of kind, location and time of detection of a
fault. Follows fault detection.

Fault tolerant system A system where a fault is accommodated with or without
performance degradation, but a single fault does not develop
into a failure on subsystem or system level.

Functional structure model model, where the system is broken down into units that per-
form sub-tasks.

Hardware redundancy Use of more than one independent instrument to accomplish
a given function.

Nomenclature xxv

Hazard class A categorization of fault effects’ severity that classifies how
dangerous the consequences are to the system’s operation,
damage to equipment, and damage to the environment.

Logic model A model of a system where input and output values are de-
scribed in terms of intervals (e.g. negative, zero, positive).

Magnetorquer Electro-magnetic coil in a satellite that generates a magnetic
moment used for attitude control.

Passive fault tolerant system A fault tolerant system where faults are not explicitly de-
tected and accommodated, but the controller is designed to
be insensitive to a certain restricted set of faults. Contrary to
an active fault tolerant system.

Physical structure model A model, where the physical components are grouped by
location and described by their interconnections.

Qualitative model A system model describing the behaviour with relations
among system variables and parameters in heuristic terms
such as causalities or if-then rules.

Quantitative model A system model describing the behaviour with relations
among system variables and parameters in analytical terms
such as differential or difference equations.

Reconfiguration condition The worst-case fault effect that is tolerated before a remedial
action is executed that accommodates the fault.

Reliability Probability of a system to perform a required function under
normal conditions and during a given period of time.

Remedial action A corrective action (reconfiguration or a change in the oper-
ation of a system) that prevents a certain fault to propagate
into an undesired end-effect.

Safety system Electronic system that protects local subsystems from per-
manent damage or damage to environment when potential
dangerous events occur.

Severity A measure on the seriousness of fault effects using verbal
characterisation. Severity considers the worst-case damage
to equipment, damage to environment, or degradation of a
system’s operation.

Supervision Monitoring a physical system and taking appropriate actions
to maintain the operation in the case of faults.

Supervisor A system that performs supervision by means of fault de-
tection and isolation, determination of remedial actions, and
execution a corrective actions.

Chapter 1

Introduction

This thesis considers the design of fault tolerant control systems (FTCSs) for the cate-
gory of processes running daily that are not considered high risk, but where increased
availability is desired to improve profitability. Methods exist today for design of fail-safe
systems, but these are generally inappropriate for ordinary processes due to development
expense and high cost of additional hardware. It is usually feasible to extend the abilities
of the control system to monitor the consistency of the available information and, in case
of anomalies, reconfigure the process to continue operation or make a safe close-down.
It is the aim of this thesis to provide a general methodology for the development of
FTCSs with guidelines on the individual steps in the development process. The method-
ology is approached from an engineering point of view, where practical experience from
two case studies forms the basis of the investigation. The techniques presented within
the thesis are believed to be applicable for industrial use and implementable with the
skills of a regular control engineer.

1.1 Background and Motivation

Todays requirements to performance of processes combined with increased complex-
ity of the equipment necessitate a high level of automation, where some of the typical
operator tasks are taken over by computers and where monitoring systems provide im-
proved diagnostic information. It is technically feasible to augment a standard control
system with fault handling capabilities, but a general methodology to do this is missed.
Traditionally, the possibility of failures is taken into consideration at a very late point
in the development of process control systems, and the solutions may therefore be very
expensive when they necessitate modifications in the design. It is more sensible to pay
attention to faults in the early analysis phase. A systematic approach is then needed
that gives a consistent design and assures reliability of the augmented control system. It
is crucial that the fault handling system is extremely trustworthy, so particular reliable

1

2 Introduction

techniques must be applied during development and implementation.
The motivation for including fault handling in ordinary control systems comes from

industrial experience. Many examples exist where simple faults have caused a close-
down or even damage to equipment and thereby an expensive production stop. There is
a growing demand for on-line fault accommodation in order to prevent such production
stops. It is particularly important in feedback control systems that faults are handled
rapidly, because the controller may amplify the effect of a fault. If, for example, a
position sensor fails zero, this may accelerate the controlled device and lead to dangerous
situations or permanent damage further on in a controlled process. The risk of failures
is inevitable; it is not a question of if it happens, but merely when it happens. Failures
are likely to occur due to aging and wear, but also as human errors in connection with
establishment and maintenance. It is therefore desired that fault handling is included as
a standard practice in the development of control systems.

Among the numerous examples on serious failure situations, two cases are drawn as
appetizers:

1. The velocity measurement of the conveyer belt in a beer pasteurizer failed zero.
The temperature of the water that brings the beers to the pasteurizing temperature
is adjusted by the number of beers passing by, so the zero fault caused the tem-
perature to drop. As a result 65000 beers were maltreated before the failure was
discovered. (Frydkjær (1997))

2. The Ariane 5 rocket exploded on June 4th 1996 thirty-seven seconds after lift-off.
The reason was a software exception in the inertial reference unit (IRU) that pro-
vides attitude and trajectory information for the control system. The exception
caused the normal attitude information to be replaced by some diagnostic infor-
mation that the control system was not designed to understand. As the control
system interpreted the data as normal attitude information it reacted by turning
the thrusters to their limit with the consequence that the rocket turned over and the
self-destruction system made an end to the $8.5 billion program (see report from
the inquiry board (Lions (1996)) and a press release in Space News (de Selding
(1996))).

The severe consequences of these failure cases could have been avoided or at least mit-
igated. In the first case a simple consistency check on the velocity measurement could
have been used to detect the fault and give an alarm and possibly continue operation with
an estimated velocity. In the seconds case, the malfunction of the IRU can be considered
as a sensor fault as seen from the control system point of view, although it is actually a
software design error that should have been found during testing. A consistency check
of the attitude information against the expected attitude could have been used to make a
deliberate reaction to the malfunction and possibly saved the mission.

1.2 Overview of the Field 3

1.2 Overview of the Field

In a broad perspective many of the elements for FTCS design exist today and some
of them have matured in real-life systems. What is generally missing is a unified and
systematic approach which combines the individual steps and gives a coherent design
that is applicable in practice.

Methods for detecting faults and determining their location and characteristics have
been studied intensively during the last two decades. A large variety of techniques today
are able to extract explicit information about faults by processing measurable signals
with dynamic and static models of the known relation between the signals. Quantitative
methods are used when analytical models of the processes exist, and qualitative meth-
ods are used when only heuristic information is available. The discipline is still on an
academic level, although more and more application studies appear. Research in the
field has followed different theoretical directions, but the final results show that several
techniques are basically equivalent. It is therefore necessary to perform comparative
studies that identifies overlap between the techniques and uncover the application areas
that the individual methods can be used within. The combined design of fault detectors
and controllers has, furthermore, been sparsely considered in the recent years. In this
two-sided design problem, robustness to faults are given higher priority with a penalty
on controller performance.

The next step in fault handling is to determine what to do when a fault is detected.
Methods for alarm generation and presentation of diagnostic information are well es-
tablished in monitoring systems and widely applied in industry today. It is more prob-
lematic with techniques for automatic intervention in the process that seek to decouple
the failed component and continue operation. This is very application dependent due
to limited sensor and actuator redundancy. For specific processes it may be possible
to substitute a failed measurement by an estimate based on related measurements or
decouple a failed subsystem entirely, possibly with graceful degradation of the perfor-
mance. General design techniques are missing today that supports the design engineer
to include such facilities during the construction of a process. It is normally feasible to
add a few extra input-output channels on a computer or install some extra relays in the
wiring, if this is done early in the development process. A systematic approach to this is
possible if faults are considered as early as in the analysis phase of the process automa-
tion. More advanced techniques with on-line and off-line redesign of control algorithms
have been developed within the aviation industry, but these are applicable only for ordi-
nary processes that posses a high level of hardware redundancy which is not typical nor
economically favourable.

A survey of state-of-the-art in the elements of FTCS is provided in section 2.3.

4 Introduction

1.3 Objectives and Contributions

The aim of this thesis is to provide a coherent development methodology for the design
of FTCSs. Guidelines for the individual steps from analysis through design to imple-
mentation and test are given and illustrated with examples. It is a particular intention
with this work that design engineers are encouraged to incorporate the design for fault
tolerance at an early stage in the development process.

Within this framework, the main contributions of the thesis are the following:❳ A method for modelling component faults and their propagation based on a logic

description is presented in section 3.2.1 and section 3.2.2. A matrix technique was
presented by Blanke (1996) based on a boolean algebra using AND and OR oper-
ators. This technique is further developed in the thesis to cover any combination
of logic operations and also work with multi-valued logic variables. A method for
analyzing the logic models with a software tool is presented, which makes it fea-
sible for the design engineer to include fault considerations early in the analysis
phase and thereby draw the attention to details that need concern. Earlier results
on fault modelling and propagation analysis in FTCS design are given in Blanke
et al. (1993) for the general case and in Bøgh et al. (1995) with examples from a
satellite case study.❳ The problem of feedback loops in logic fault propagation models is treated in sec-
tion 3.2.2. Related studies on this problem can for example be found in Shafaghi
et al. (1984) and Yang et al. (1997) in connection with automatic fault tree gener-
ation for reliability assessment. These methods are developed to calculate prob-
abilities for success or failure of a system, but in the scope of this thesis, it is
only necessary to consider two issues; first, determination of the effects on sys-
tem operation from component failures, and secondly, identification of possible
oscillation of the real system caused by the feedback loop. The thesis presents
a simple and practical solution to these problems that has a potential to be auto-
mated in software. The issue of logical feedback was also studied in Jensen et al.

(1994) and Blanke (1996).❳ Implementation of the decision logic for fault handling as state-event machines is
illustrated in section 3.4.3 and section 5.5 based on earlier work in Blanke et al.

(1997) and Zamanabadi et al. (1996). It is of particular interest that such logic
is verified for correctness and completeness. A novel method for checking com-
pleteness of the supervisor’s decision logic functionality against the above fault
propagation model is presented in section 3.2.8. Additional checks for correct-
ness and consistency of the state-event machines are illustrated in section 5.6. All
the verification techniques are developed for practical use and do not make use
of theoretical approaches from computer science. Earlier results on completeness
check with application to a satellite are available in Bøgh et al. (1997).

1.4 Thesis Outline 5

❳ Section 3.2 presents a general development methodology for fault analysis of a
system, that provides consistent specifications for the design of the FTCS ele-
ments. This development methodology has previously been considered with key
results available in Bøgh et al. (1995), Blanke (1996), Blanke et al. (1997), and
Bøgh et al. (1997).❳ A three-level architecture for the implementation of an FTCS is considered in
section 3.1. The organization into three levels were originally proposed by the
department and recently considered in Blanke et al. (1997) for the general case
and in Bøgh et al. (1997) for application to a satellite. This thesis contributes
with detailed application studies of the implementation of FTCS for an electro-
mechanical actuator (section 3.4) and a satellite (section 5.7), where problems
with implementation in multi-tasking environments are in focus.❳ Analytical methods for detection and isolation of faults are considered in chapter
4. A comparative study between a variety of approaches is presented with the pur-
pose to highlight strong and weak sides of advanced methods available in 1997.
The study is based on publications from nine research groups that applied their
techniques to two specific failure scenarios in a real-life electro-mechanical sys-
tem. This thesis contributes specifically with simple and efficient algorithms for
detection of the two fault types.

A significant contribution of this thesis is the complete design, implementation, and
test of an FTCS for a micro satellite described in chapter 5 and previously published in
Bøgh et al. (1995). The experience from this development project has given invaluable
contributions to the typical practical problems encountered in FTCS design.

1.4 Thesis Outline

The thesis is organized as follows:

Chapter 2 places the field of FTCSs in a wider perspective by introducing the related
scientific disciplines that must be considered to create a running fault tolerant system.
This leads to a formulation of the roles of FTCSs and an outline on how these roles are
approached in the thesis. A presentation of state-of-the-art in the topics of FTCS is then
given.

Chapter 3 outlines a general development methodology for design of FTCSs. It is first
identified that three additional modules must be added to an existing control system for
implementation of fault tolerance. A general eight-step recipe is then presented for the
analysis of a system leading to design of the three additional modules . The applicability
of this recipe is illustrated with the design of an FTCS for an electro-mechanical actuator.

6 Introduction

The chapter finally discusses the implementation of this FTCS in combination with an
existing controller.

Chapter 4 is devoted to the details of fault detection and isolation algorithms that
are the substance of one of the three FTCS modules. Nine different techniques are
introduced and results from application to two fault scenarios in the electro-mechanical
actuator are presented.

Chapter 5 presents a complete design of the FTCS for the micro satellite application.
The design follows the eight-step procedure described in chapter 3 but with emphasis on
the design of the fault handling decision logic. The chapter illustrates how the decision
logic of a complex supervisor can be realized as a set of state-event machines, how it
can be implemented in multitasking software, and how the entire FTCS can be verified
and tested.

Chapter 6 finally gives concluding remarks and recommendations for future work.

Chapter 2

Fault Tolerant Control Systems

in Perspective

Fault tolerant control systems are considered with the purpose to increase system reli-
ability. A system is reliable if it is able to perform its required function within stated
conditions. Increased reliability can be achieved either by ensuring that faults cannot
occur (simple but expensive), or by accepting the inevitable risk of faults and design the
system to be fault tolerant (cheap but complex). With the purpose to define the role of
FTCSs this chapter first discusses the related areas within reliable systems design. This
leads to a presentation of the approach taken in this thesis and an outline of the topics
considered. State-of-the-Art in these topics is then presented.

2.1 Disciplines Related to Fault Tolerant Control

The design of reliable systems is an interdisciplinary field that covers a wide range of re-
search areas ranging from process instrumentation manufacturing, over software design,
to implementation in computers. A system is only reliable if the risk of failures has been
considered in each area and subsequently designed anticipating this risk. Reliability
and fault tolerance in connection with control systems are considered in the following
domains:

Safety systems. Safety systems are systems of logic that detects the occurrence of
potential hazardous events and performs a close-down of the process to protect equip-
ment and people. Safety functions are applied on a subsystem level and are independent
of process monitoring and control systems. Safety systems may perform unnecessary
close-down in some situations where the FTCS would be able to continue safely despite
the failure event, because it applies information on a higher level to derive decisions.

7

8 Fault Tolerant Control Systems in Perspective

In the development of FTCSs this means that some safety functions must be substituted
by FTCS actions, which demands the FTCS design to be extremely reliable (Hignett
(1996); Balls et al. (1988))

Reliability of electrical and mechanical equipment. The ultimate goal is that instru-
ments used for control never fail. This is unrealistic and often unattainable due to factors
like cost and weight, so the risk of failure must be accepted. Risk analysts apply relia-

bility theory to calculate the likelihood of successful operation given a specified failure
rate of each component. This field of research emerged with the increasing requirements
to safety of high risk systems as nuclear plants and aircrafts, but some of the principles
can be used to enhance availability and profitability of the million of processes running
daily that are not considered as high risk. A formal method for the assessment of faults,
developed within reliability theory, is failure mode and effects analysis (FMEA). Basic
principles from this method are used within this thesis. Data banks with failure proba-
bilities of industrial used components have matured over the years, and this information
(if accessible) should be used in the assessment of which faults to consider in the FTCS
design. A practical guide to reliability assessment is provided in Hignett (1996) and an
elaborate introduction to reliability theory is given in Kapur (1977).

Reliability of computers. Error-free performance of computer hardware is a prereq-
uisite for the FTC methods considered in this thesis. Fault tolerant computers have been
developed using hardware and software techniques like parallel processors, watchdogs,
parity checking, built-in error recovery, and dedicated test programs (see e.g. Nelson
(1990) and Avizienis (1997)). These protective functions work on a local hardware level
and are therefore inherently different from the objective of FTC on a high level, but
diagnostic information shall be made available for the FTCS.

Reliability of software. Correct performance of software is the topic in fault tolerant

computing, where software design and implementational architectures are of interest
(see for example Holding (1991)). An introduction to the basic concepts of computing
systems dependability is provided in Laprie (1987).

Distributed control systems. Control systems implemented in distributed architec-
tures are vulnerable to transmission faults, execution errors of application tasks, and
timing errors on the distributed information. It also opens a prospect for dedicated su-
pervision systems that monitors parallel applications and reconfigures the operation of
the network. Design of fault tolerant real-time protocols is a key subject in the field
of dependable real-time systems. On-line monitoring for error detection in distributed
process control systems is treated in Drejer (1994).

Intelligent control. There has been a wide research interest in extending traditional
simple feedback loops (e.g. PID) to include additional autonomous functions that sup-

2.1 Disciplines Related to Fault Tolerant Control 9

port the installation process and improve the on-line control performance. The control
group in Lund, Sweden, uses the term intelligent control to cover functions like auto-
matic tuning (Åström and Hägglund (1995)), adaptive control (Hägglund and Åström
(1997)), gain scheduling, fault diagnosis, automatic process analysis for controller
assessment and design (Åström (1991a)), and on-line process monitoring (Hägglund
(1995)). A survey of techniques for intelligent control is provided in Åström (1991b).
Fault tolerant control can be considered as a sub-task within this definition, and many
of the techniques developed for FTC can also be applied to the other tasks. Åström
(1991b) suggests a separation of control algorithms and decision logic in different mod-
ules, which is comparable to the approach taken in this thesis. An interesting aspect with
this is the interaction between the decision logic and the dynamics of the controlled pro-
cess. A formal approach to analyzing this problem is taken by Morse (1996) that uses
theory from discrete event systems (DES) to develop a supervisory scheme for SISO
systems to switch between a set of linear set-point controllers when large changes in the
operating conditions are explicitly detected.

Passive fault tolerance. Control algorithms are designed to compensate for deviations
in the control variable whether it comes from external disturbances, aging sensors and
actuators, or failing equipment. In some fault cases a feedback control law attenuates
the effect, in other cases it magnifies the effect. Traditional design techniques as robust
and adaptive control are able to handle a limited class of faults that has only a small
and bounded effect on the system. Explicit status information on individual compo-
nents is generally not available in these approaches, so it is not guaranteed that the most
appropriate action is taken. This is called passive approach to fault tolerance. Active

approaches to fault tolerance differ from this in the way that explicit fault information
is generated on-line and a proper action can be taken. A further explanation on the dif-
ference between passive and active approaches is given in Patton (1997). An example
on passive fault tolerance is presented in Veillette et al. (1992) that applies the ❨❬❩ -
technique to find the set of controllers that provide guaranteed stability in case of sensor
and actuator outages in MIMO systems.

Self-validating components. There is an on-going development of intelligent sensors
and actuators (Isermann et al. (1993), Benítez-Pé rezet al. (1997), Yang and Clarke
(1997)), where more functionalities are incorporated into the device including an inte-
grated fault detection system that provides diagnostic information in parallel with the
measurement and control channels. Intelligent components are a natural element in
FTC, but as they work on local information only, they do not replace high-level FTCSs.

Fault tolerant control. Active FTCSs are designed to deliver a deliberate reaction in
case of faults. Faults in sensors and actuators, anticipated by design, are handled by
a supervisory system that detects their occurrence and reconfigures the system to stop
the faults from developing into failures at a higher level. Whereas fail-safe systems are

10 Fault Tolerant Control Systems in Perspective

designed to withstand any single failure, FTCSs for ordinary processes is designed to
tolerate only the most critical faults. The purpose is not to prevent a shut-down by any
means, but to increase availability and avoid hazardous actions in case of simple faults.

2.2 Thesis Approach

In the light of the discussion in the previous section this thesis treats the design of fault
tolerance in control systems for ordinary processes that are not required to be fail-safe.
Typically, such systems do not have a stated requirement for "the probability of failure"
or inversely a "required up-time" as is the case for fail-safe systems, so it is not neces-
sary to formally apply techniques from reliability theory. The requirement is usually to
improve availability of the process, while keeping the development cost and additional
hardware within strict limits. It is then accepted that the process runs a degraded mode
in case of faults, instead of investing in additional expensive hardware.

The thesis considers control systems in general, from local subsystem controllers
in large plants to high level controllers, but with the common aspect that an increased
level of availability is desirable and feasible. Feasibility in this context means that some
information about the occurrence of faults shall be available (redundant signals, process
knowledge, statistical properties, etc.) which makes fault detection and reconfiguration
possible. Such information can sometimes be derived by combining the measurements
and knowledge of several subsystems.

The subject of this thesis falls within the area of active methods for fault tolerance,
where faults are explicitly detected on-line, and the system is reconfigured to accommo-
date the fault. In this area the content of the thesis can be categorized into the following
three topics:

1. a general development methodology for including on-line fault detection and re-
configuration in process control design,

2. design of fault detection, isolation, and reconfiguration algorithms, and

3. design of the decision logic of supervisory systems for fault handling.

The general guidelines presented in the thesis are the outcome of experience from two
case studies. A complete FTCS for the attitude control of a micro satellite has been
developed and given valuable experience with practical aspects from analysis, design,
implementation, and test. The second application is a speed governor for ship diesel
engines. A laboratory setup of the equipment, which enables repeated faults scenarios,
has been used in the study of real-time fault detection and isolation methods (FDI). This
application was suggested as an international benchmark for FDI methods and several
research groups have participated with a large variety of approaches. The results are
compiled in this thesis with an exceptional opportunity to judge the practical applicabil-
ity of the various methods.

2.3 State-of-the-Art in Fault Tolerant Control Systems Design 11

It is the intent with this thesis to provide practical guidelines with illustrative exam-
ples on each step in the development of FTCSs from analysis to implementation and
test.

2.3 State-of-the-Art in Fault Tolerant Control Systems

Design

This section describes state-of-the-art in FTC with focus on the three topics of this thesis
outlined in the previous section. With few exceptions the literature available today fo-
cuses on specific details within FTC, so the combined usage of the various disciplines is
still an open area for interesting research. An exhaustive overview of the status of FTC
in early 1997 is provided in Patton (1997).

2.3.1 General Development Methods

General strategies for development of technical processes have existed for decades and
are well-established in industry. One of the most applied approaches is the water-fall

model shown in figure 2.1.

Figure 2.1: The water-fall model for development of technical processes.

Detailed guidelines for the development of processes and software in general using
the water-fall model (or V-model if the boxes are arranged in a V-shape) are provided in
Pressman (1988), Biering-Sørensen et al. (1990), or Mazza et al. (1992). It is more prob-
lematic when it comes to specific issues of fault handling. Most publications on fault
handling focus on dedicated methods with applications that suit the problem, whereas

12 Fault Tolerant Control Systems in Perspective

only few consider the issue of selecting a proper method for the present problem. Ques-
tions that need answers are: In which phase in the development shall the first steps of
fault analysis be taken ?, how are functional requirements transformed into specifica-
tions for fault tolerance ?, which modelling paradigm shall be used and how accurate
shall it be?, what is the best FDIR design method for the present fault handling prob-
lem ?, how is fault tolerance adequately implemented along with the control system ?,
and what special problems exist in the verification and validation of FTCS ?. Leitch
(1993) recognizes some of these questions in connection with diagnostic systems and
gives some remarks on model selection and the relationship between requirements and
system specification. Design strategies for high availability and safety, based on risk
assessment, are briefly discussed in Lauber (1991) with special focus on how to design
fault-free software (use of CASE tools) and fault tolerant software (use of redundancy
or "diversity"). It is an aim with this thesis to address the above questions and sug-
gest a number of actions in relation to the water-fall model, which promote systematic
development of FTCSs.

While general development strategies for FTC are missing, there has been a much
wider interest in methods for modelling faults and describing the system behaviour
in case of faults. Fault modelling methods, as for example FMEA (DoD (1980);
Ford/General Motors/Chrysler (1995)) are developed in the field of risk analysis. An
overview of these methods are found in Bell (1989) and Jørgensen (1995), and an inter-
esting discussion in the light of robotic fault tolerance is given in Visinsky et al. (1994).

The issue of system modelling is different whether it concerns the structure of large
complex processes or detailed information for FDI algorithm design. In FDI a mathe-
matical model with sufficient accuracy is needed, and it is usually restricted to only one
modelling paradigm. This is different in large scale plants that typically include unlike
subsystems described in different levels of detail and with different modelling tech-
niques (Quantitative/qualitative variables, linear/nonlinear models, static/dynamic mod-
els, event-driven/time-driven descriptions, discrete-time/continuous-time models, etc.).
Graph theory based methods for representing the structure of large systems have been
developed by the AI community to support diagnosis for supervision and maintenance
(e.g. Misra (1994); Cassar et al. (1994)). These methods use the causal relationships
between subsystems to describe the propagation of faults. Typical methods include fault

tree analysis and event tree analysis (see Hignett (1996) for details). Ideas from the
graph-based methods are used in this thesis although formal graph theory is not applied.

Hierarchical decomposition of large complex systems with respect to fault diagnosis
is discussed in Misra (1994) and a method is suggested that combines a physical struc-
ture model and a functional structure model. The similar approach is taken in this thesis
for design of FTCS.

An interesting concept, that supports FDI design, is presented in Cassar et al. (1994)
where methods from graph theory are applied to capture the structure of large systems
and the behaviour of subsystems in a software tool. The tool produces lists of (possible)
detectable faults and non-detectable faults, and is furthermore able to suggest prelimi-

2.3 State-of-the-Art in Fault Tolerant Control Systems Design 13

nary FDI algorithms.

2.3.2 Fault Detection and Isolation Algorithms

Algorithms for FDI are required in the detailed design phase of the FTCS development
process. The methods are categorized into signal based and model based techniques.
Signal based methods detect faults by testing specific properties of single measurements
like mean value, limit value, spectral power, and variance. They have, clearly, a
restricted use as they apply to separate signals only. Model based fault detection
has a wider range of application, and are normally performed in two steps: Residual

generation and residual evaluation. Residuals are generated by comparing the expected
behaviour of the system with the measured behaviour, where the expected behaviour
is known from some model of the subsystem. The residuals are normally close to
zero and become significantly non-zero in case of faults. Events are then detected by
observing changes in the residuals. The pattern of detected events may provide some
isolation between more possible faults, but further fault isolation (or diagnosis) can
be achieved by evaluating the temporal and spatial characteristic of the pattern against
some statistical or probabilistic knowledge.

Two main trajectories have been followed in model based residual generation: Qual-

itative (heuristic) methods and Quantitative (analytical) methods. The qualitative meth-
ods originate from the above mentioned diagnosis problem of large scale systems
whereas the quantitative methods are signal processing units that filter available mea-
surables. Qualitative methods are typically applied for fault isolation and diagnosis but
studies on qualitative residual generators are also present (Lunze and Schiller (1997);
Calado and Roberts (1997)) typically when the dynamics of the process is not very well
known. Qualitative FDI is not considered in this thesis, so the reader is referred to
Frank (1996) for an introduction and Lunze and Schiller (1996) for a discussion on the
applicability of these methods for FDI in dynamical systems. Verbruggen et al. (1995)
introduces basic elements of expert systems, outlines their application in fault diagnosis,
and compares a number of tools.

Systematic research in quantitative model based residual generation algorithms be-
gan with a survey in Willsky (1976) and today mainly three classes of residual generators
exist: Observer based approaches, parity space approaches, and parameter estimation

approaches (Tzafestas and Watanabe (1990); Frank (1990); Patton and Chen (1996);
Frank (1996)). The three methods have different properties but also similarities, which
seems logical as they operate on the same input-output signals of the process. The major
aspects under concern are the following:❳ robustness to modelling uncertainty,❳ robustness to unknown inputs (disturbances and noise),❳ ability to isolate between more faults,

14 Fault Tolerant Control Systems in Perspective

❳ ability to detect incipient and/or abrupt faults (frequency response),❳ detection of additive and multiplicative faults in linear model descriptions, and❳ application of nonlinear methods,

A very large number of techniques have been applied to solve these problems, with
different areas of applicability.

The principle in observer based approaches for FDI is to estimate the system out-
puts with a Luenberger observer for the deterministic case or a Kalman filter for the
stochastic case and then use the estimation errors (or innovations from the Kalman fil-
ters) as residuals. The observer gain is chosen to fulfill the requirements for robustness,
isolation, and desired frequency response. Various methods for the design of a proper
observer gain have been suggested: Eigenstructure assignment (Patton and Kangethe
(1989); Patton and Chen (1991b)), unknown input observer (Frank and Wunnenberg
(1989); Hou and Müller (1994)), Kronecker canonical form (Frank and Wunnenberg
(1989)), fault detection filters or fault sensitive filters (Beard (1971); Jones (1973); Dou-
glas and Speyer (1996)), and frequency optimization based on a factorization of the
input-output transfer matrix (Frank and Ding (1994)). Recent developments in the ap-
plication of Kalman filters are found in Tzafestas and Watanabe (1990); Basseville and
Nikiforov (1993); Nikhoukhah (1994); Keller and Darouach (1997). A bank of observers
or Kalman filters with distinct properties can be used in parallel to increase the degree
of design freedom (Frank and Wunnenberg (1989); Frank (1996)). Different structures
of the observer scheme are used to suit the requirements for how many faults shall be
detected, how many faults shall be isolated, and how many faults shall be detected and
isolated if they occur simultaneously (Frank (1990)).

In the parity space approach residuals are computed as the difference between mea-
sured outputs and estimated outputs and their associated derivatives. The primary residu-
als are shaped by multiplying a transformation matrix ❭❫❪▼❴❛❵ designed to make the resid-
uals insensitive to unknown inputs and provide isolation between faults. The method
handles both additive faults (leads to ❭❫❪✎❜❝❵ , a constant polynomial or rational matrix)
and multiplicative faults (leads to ❭❫❪❚❞✫❵ , a time-varying numerical matrix). The parity
space approach is described in Gertler (1993, 1997a). The parity equations can also be
derived from a state-space model of the system (Chow and Willsky (1984)).

The parameter estimation methods for FDI are based on the idea that faults typically
effect the physical coefficients of the process. By continuously estimating the parameters
of a process model, fault detection residuals are computed as the parameter estimation
errors. As the parameters of a model are not always the same as the physical process co-
efficients the inverse mapping from model parameters to process coefficients must exist
and be known, if complete fault isolation is required. Different methods for parameter
estimation in FDI have been studied: Least squares estimation, instrumental variable

concept, output error methods (Isermann (1984, 1993, 1997)), sliding mode estimation

(Hermans and Zarrop (1997)), neural network estimation (Han and Frank (1997)) and
extended Kalman filters (Tzafestas and Watanabe (1990); Walker and Huang (1995)).

2.3 State-of-the-Art in Fault Tolerant Control Systems Design 15

Most of the research within these three categories considers only linear models of
the system. The parameter estimation approach can also handle nonlinear systems if
the model is linear in the parameters (Frank (1995)). A survey of nonlinear observer
methods and fault diagnosis in bilinear systems is provided in García and Frank (1997).

The three residual generator design approaches are inherently different, but recently
some similarities have been studied. It has been shown (Patton and Chen (1991a)) that
the original parity space equation (where ❭❫❪✎❜❝❵ is a rational matrix) is a special case
of the observer approach, where the observer is designed dead-beat. It is furthermore
shown that similar results to the observer methods can be achieved by filtering the parity
equation residuals through an adequate filter. Similarities between the parity equations
and parameter estimators have been studied by Gertler (1997b) and the relationship
between observer based methods and parameter estimation has been treated by García
and Frank (1996).

The purpose of the residual evaluation part of FDI is to detect when the residuals
have changed sufficiently to make a decision credible. The most widely used method is
to make a binary decision from a comparison between the residual and a fixed threshold.

Increased robustness to modelling uncertainties is achieved with adaptive thresh-

olds, where the thresholds are determined on-line depending on the excitation level es-
timated from measurable inputs. Significant contributions include the threshold selector
by Emani-Naeini et al. (1988), threshold determination in the frequency domain by Ding
and Frank (1991), and an alternative frequency approach based on maximum singular
values by Isaksson (1993). Surveys of adaptive threshold techniques are provided in
Patton and Chen (1996) and Frank (1996).

A large variety of detection techniques are available in the field of statistical deci-

sion theory such as generalized likelihood ratio test (GLR), sequential probability ratio
test (SPRT), ❡✏❢ -test, and cumulative sum test (CUSUM). A comprehensive study of
these techniques is available in the book by Basseville and Nikiforov (1993). Surveys
are available in Tzafestas and Watanabe (1990), Basseville (1988), and Basseville and
Nikiforov (1993).

Additional alternatives to threshold tests and statistical tests are Fuzzy decision

making (Montmain and Gentil (1993); Frank (1996); Füssel et al. (1997); Kiupel and
Frank (1997); Lee and Vagners (1997); Miguel et al. (1997)) and pattern recognition

techniques (e.g. neural networks) (Himmelblau et al. (1991); Kovio (1994); Köppen-
Seliger and Frank (1995)).

2.3.3 Reconfiguration Methods

The purpose of reconfiguration is to make the control system insensitive to the effect of
a failed component. A particular reconfiguration action can be determined á priori in the
design phase or by on-line optimization after a fault occurred. The techniques are thus

16 Fault Tolerant Control Systems in Perspective

categorized into off-line methods and on-line methods. Some authors confusingly call
these categories as reconfigurable respectively restructurable redesign methods.

A substantial number of publications are found in the field of control of fly-by-wire

aircraft, where advanced algorithms are designed to fully exploit the high level of redun-
dancy and diversity in sensors and actuators to assure the control system to be fail-safe.
Comprehensive surveys of these methods are available in Patton (1997) and Baumgarten
(1996). Although several of the methods suggested within aerospace in principle are pas-
sive (no explicit FDI information is used), they are included here because they are also
applicable in an active scheme. Control law re-scheduling is an off-line method, where
pre-computed control gains are selected from an estimate of the aircraft impairment sta-
tus (Moerder et al. (1989)). This method is very dependent on correct operation of the
FDI system, as incorrect FDI information may lead to serious malfunction. Zheng et al.

(1997) demonstrates a method to handle these FDI robustness problems by using linear

matrix inequality (LMI) theory in the synthesis of the feedback control laws. Another
off-line approach is the pseudo-inverse method (PIM), where the controller gain matrix
is re-computed directly by equating the closed-loop transition matrices of the failed and
the non-failed systems (see e.g. Gao and Antsaklis (1991)). This calculation involves
the estimation of the pseudo-inverse of the failed system’s input distribution matrix. Al-
though the method does not guarantee stability, it has been suggested for on-line use by
for example Ostroff (1985). An approach related to PIM is the control distribution con-

cept (CDC) reported in Celi et al. (1996). This method is dedicated to actuator failures
only and also needs an estimate of the input matrix of the failed system. It computes a
control distribution matrix based on a minimization of the ❣ ❢ -norm of a quantity that
depends on the difference between the failed and non-failed systems and a constraint on
the control demands.

The on-line methods apply information about the damaged system to calculate new
controller parameters. Feedback linearization techniques are suggested, where an adap-
tive base-line controller is changed on-line by the output from a parameter estimation
algorithm. This method is widely used for normal system changes, but is also applied
for fault tolerance (Ochi and Kanai (1991)). The passive model following approach is
also used for FTC in aerospace. Here, the controller gains are computed on-line either
by requiring the system trajectories to follow the desired trajectories (explicit model fol-
lowing, see e.g. Morse and Ossman (1990)) or by minimizing a quadratic function of the
actual and modelled state rates (implicit model following, see e.g. Huang and Stengel
(1990)).

Additional relevant methods for reconfiguration have been studied in other applica-
tion areas, such as high-speed ships and missile guidance systems (Rauch (1995)), robot
control (Visinsky et al. (1994)), underwater vehicles control (Payton et al. (1992)), and
tandem helicopter control (Celi et al. (1996)).

2.3 State-of-the-Art in Fault Tolerant Control Systems Design 17

2.3.4 Supervisor Decision Logic Design Methods

The third major contribution of this thesis concerns the design of the supervisor’s deci-
sion logic for fault handling. The task of the decision logic is to select the most suitable
action(s) in the controlled process based on information about detected events. The
major issues of concern in the design for FTC are:❳ How to map the requirements for FTC into design specifications for the decision

logic design.❳ How to combine fault handling with existing operational command and monitor-
ing systems.❳ How to implement supervisors with the existing control system.❳ How to verify the decision logic for completeness with respect to the design spec-
ifications.❳ How to test the implemented supervisor system.

Systematic design of supervisors and the decision logic for fault tolerant control is
still an unexplored area, which is also recognized by Patton (1997). A general methodol-
ogy in a neighbouring field has, nevertheless, been treated by Yazdi (1997), that develops
a supervisory control system for the start-up and close-down of a distillation plant. The
following introduction, mainly compiled from Yazdi’s thesis and the references herein,
is not meant as a basis for the methods used within this thesis, but more as a discussion
on related approaches.

The expression supervisor has been used in different areas with various interpreta-
tions:❳ Monitoring. Man-machine interface for visualization of process state of operation

and control performance.❳ High level control and planning. Management of production plans (start-up,
close-down, and set-point generation). Path planning for robots.❳ Controller tuning. On-line monitoring and tuning of controllers.❳ Fault handling. Detection and diagnosis of faults with subsequent on-line decision
making and reconfiguration.

18 Fault Tolerant Control Systems in Perspective

Yazdi gives a general definition that also applies to the approach taken in this thesis,
although it is developed to a slightly different purpose:

Definition 2.3.1 From Yazdi (1997): A supervisory system is a system that

1. evaluates whether an object behaviour satisfies a set of specified performance

criteria,

2. diagnosis causes for lack of performance fulfillment,

3. plans actions, and

4. executes planned actions.

Item three involves the task of decision taking, which is the subject of this subsection.
A formal approach to the design of the decision logic is developed in connection with

control and supervision of discrete event systems (DES). The term “supervisor” is used
by the DES community to cover the same functionality as the decision logic in FTC.
Modelling of the behaviour of DES systems is event-driven as opposed to the conven-
tional differential/difference equations that are time-driven. Typical DES applications
are telephone networks, flexible manufacturing systems, and batch processes. Although
fault events basically exhibit a DES behaviour, this thesis does not consider formal DES
theory for the synthesis of supervisors. Recent developments in DES theory relevant for
FTC include Overkamp (1997) that describes a method for handling nondeterminism
and Cho and Lim (1997) that treats failure analysis and diagnosis in dynamical systems.

A formalism called supervisory control theory (SCT) has been developed within the
DES community (Wonham (1988)), where the process is modelled as a finite state ma-

chine (FSM) with controllable and uncontrollable transitions. The supervisor is realized
as a similar FSM, designed with a subset of the model-FSM describing the desired (or
legal) states. The supervisor then disables the controllable transitions in such a way
that the process is forced into the desired states. Within this paradigm SCT provides a
formal specification language, formal proofs for controllability, and existence of super-
visors (Cassandras et al. (1995)).

A shortage of SCT is that the supervisor only facilitates disabling of transitions and
provides no mechanisms for actively enforcing transitions. A theoretical modification of
SCT that overcomes this problem has lead to procedural control theory (PCT) defined by
Rotstein et al. (1995). Within this framework procedural controllers can be synthesized
to make sequential control of DES processes for normal operation as well as abnormal
operation.

Along another track the graphical tool Grafcet has been developed, based on Petri
Net theory, as a platform for implementing sequential as well as parallel logic controllers
(David and Alla (1992)). Grafcet is very powerful for modelling controllers, but - in
contrast to PCT - informal and provides no formal proofs.

A combined usage of PCT and Grafcet is suggested in Yazdi (1997) to make a
completeness check of the supervisor with respect to handling of abnormal situations. A

2.4 Summary 19

mapping from Grafcet into the FSM domain, used by PCT, combines the power of each
method: Flexible controller specification in Grafcet and formal proofs in PCT. A logic
controller specified in Grafcet can then be translated into FSM and verified against an
FSM-model of the system for completeness.

This thesis does not make direct use of SCT, PCT, or Grafcet, although some similar-
ities exist. It is a key subject in SCT and PCT to provide a formal approach to synthesis
of the decision logic of supervisors, but formal methods are not in focus in this thesis. In
this thesis the decision logic is implemented with state event machines (SEMs) which is
equivalent to FSMs. Completeness check is also considered in this thesis, but instead of
modelling the process as an FSM with faults causing uncontrollable transitions, faults
are modelled in a logic network reflecting their propagation through subsystems. In this
framework it is possible to verify completeness of the reconfiguration capabilities of the
decision logic with respect to possible failure modes.

The basic philosophy in this thesis is to provide guidelines for FTCS design which
do not require the design engineer to get acquainted with advanced mathematical disci-
plines that exceeds the normal capabilities of control engineers in industry. This makes
SCT and PCT unappealing, also because the FSM description exhibit an exponential
growth in complexity with increasing plant complexity. Furthermore, the formal specifi-
cation for SCT has proven to be very difficult to establish from natural requirements, al-
though dedicated design techniques exist (Cassandras et al. (1995)). On the other hand,
formal methods for existence and completeness are attractive, so the usage of Grafcet (or
similar tools) in connection with PCT or SCT is an interesting area for future research.

2.4 Summary

Design of FTCSs is a discipline within reliable systems development where the presence
of faults is detected on-line and accommodated automatically. In contrast to fail-safe
systems for high risk applications, an FTCS for ordinary industrial processes accepts
graceful degradation of performance, so it is not required to include a high level of
sensor and actuator redundancy. Instead, the control system is designed to increase
availability as far as possible by using available instrumentation in a clever way. This
thesis presents a development methodology for the design of reliable FTCS software that
fits into existing software development strategies, and practical guidelines are provided,
based on experience from case studies. Existing techniques for fault detection, isolation,
and reconfiguration are combined with a systematic analysis and design strategy that has
the purpose to guarantee a consistent implementation of the supervisory system. It is
assumed that the FTCS software is installed on a reliable platform, so the entire system
can operate satisfactorily.

Chapter 3

Development Method for Fault

Tolerant Control

This chapter describes the ingredients of fault tolerant control systems and how the
building blocks are combined into an implementational architecture, used throughout
the thesis. The architecture has been developed by the department (Blanke et al. (1997))
with the purpose to facilitate simple design, reliable implementation, and systematic test-
ing. A general development procedure is presented that matches this architecture. This
development procedure was initially considered in Blanke et al. (1993) and has been
matured in connection with the satellite FTCS design (Bøgh et al. (1995, 1997)). The
purpose is to give the design engineer a set of coherent activities that, when combined,
guarantees completeness of fault coverage with respect to the design requirements. This
chapter illustrates the general development procedure by applying it to the design of an
FTCS for the benchmark equipment. This case study was earlier introduced in Blanke
et al. (1993). The benchmark design is based on the development method and highlights
important aspects of real industrial applications.

3.1 General Supervisor Architecture

The concept of fault tolerance in control systems basically means that the traditional
feedback controller is augmented with an algorithm that detects and locates faults, deter-
mines a proper remedial action, and reconfigures the system to accommodate the fault.
The system in this context is considered as a local control loop or a group of connected
subsystems, where information from different sources can be processed to make sensible
decisions. Faults are considered as anomalous behaviour of components that can possi-
bly lead to a complete failure of a subsystem or the entire system. A reconfiguration of
the system should prevent the fault from developing into a failure.

21

22 Development Method for Fault Tolerant Control

Figure 3.1: A general three level architecture for fault tolerant control systems. The three levels

are feedback control, fault detection and reconfiguration, and supervision decision

logic. The latter also has communication to the plant-wide control system.

The fault handling functionality is combined with the traditional feedback control
system and also communication with higher levels as shown in Figure 3.1. The fault de-

tectors are signal processing units that use any available process signal (measurements
and internal variables) to detect anomalies in the control level. A successful detection
and isolation of a fault is reported to the decision logic as a boolean fault event. The de-
cision logic determines an appropriate remedial action based on the current operational
state, which is known by the supervisor. The supervisor also includes the command
and monitoring interface connected through a plant wide control system. The actions
requested by the supervisor are executed by effectors that perform the actual reconfigu-

ration in the software of the system.
The assignments of the three levels are described in the following sections.

3.1.1 Control Level

The control level consists of the conventional feedback control loop with sensors and
actuators. Single sensor sanity check (limit, rate, mean value checks, etc.) and basic
filtering (smoothing, EMC protection, outlier removal, etc.) are included as inherent
elements of any FTCS. The validity check has the purpose to prevent propagation of
invalid sensor data into the controller and further to the actuators. This sensor status in-
formation can also be used by the fault detectors and the supervisor for further analysis.

3.1 General Supervisor Architecture 23

3.1.2 Detector-Effector Level

The purpose of the detectors is to detect single faults in all components including sen-
sors, actuators, and networks. They are implemented as a number of units that each de-
tects and isolates one fault or a coherent group of faults. The fault detectors are able to
detect more faults than the sanity check in the control level, because they employ knowl-
edge about the relation between several signals. The detection of faults can be achieved
in different ways, such as voting between hardware redundant sensors (e.g. Tzafestas
and Watanabe (1990)), statistical tests on signals (e.g. Basseville and Nikiforov (1993)),
and comparison between known process behaviour and measured behaviour (see the
survey in section 2.3.2). The latter, which is in focus in this thesis, utilizes analytical
redundancy in the process where fault events can be identified by means of the general
procedure shown in figure 3.2. Input and output measurements are processed using a

Fault
detection

Fault
isolation

Residual
generationSystem

Output

Fault eventsSymptomsResiduals

Input

Figure 3.2: The process of determining fault events requires the three steps of residual genera-

tion, fault detection, and fault isolation.

model of the system to generate residuals that highlight discrepancies. Changes in the
residuals are then detected and used to generate symptoms on the event. Further diag-
nostic facilitates isolation of the actual failed component and produces fault events. The
signal processing performed in these steps is also able to produce characteristics like
fault type and time of occurrence. This diagnostic information is also made available for
the decision logic. A brief overview of methods for fault detection and isolation (FDI)
was given in section 2.3.2. A detailed study on several algorithms for model based FDI
is given in chapter 4 in connection with the benchmark application.

The Effectors are the second block at this level. They include an appropriate recon-
figuration algorithm that changes control of the plant to prevent the detected fault from
developing into a failure. The reconfiguration can be simple switching between hard-
ware components, but also more complicated methods like on-line controller redesign.
An overview of approaches in this field were presented in section 2.3.3.

3.1.3 Decision Logic Level

The decision logic has two objectives; first it shall determine the best modification of the
system to accommodate a given fault and secondly, it shall provide information about
alarms and the operational state to the plant wide control system. The decisions are
taken on the basis of the following information:

24 Development Method for Fault Tolerant Control

❳ Operational state. The decision logic keeps track on the operational state of the
control level (sensor and actuator configuration, controller mode, etc.).❳ Fault events and fault information. The decision logic receives fault events that
either represent true alarms or false alarms about faults. Additional information as
statistics on the number of alarms can be used to diagnose faults. Supplementary
fault information from the detectors as for example time of occurrence and fault
type can also be used in the deduction of an appropriate remedial action.❳ Command inputs. The decision logic receives high level commands from the plant
wide control system. Commands can be directed to the control level (start-up,
close-down, and set-point changes) or to the configuration of the supervisor sys-
tem (e.g. enabling and disabling of a fault detector).

The decision logic is adequately realized as a set of state-event machines (SEMs)
implemented as shown in figure 3.3. The SEMs map inputs (fault events and com-

State-
event

machine

State
Database

Transition
matrix

Fault events

Rules

Present and
past state

State
changes

Remedial actions

State info
& alarms

Commands &
setpoints

Figure 3.3: The supervisor decision logic realized as state-event machines. The decision logic

uses a state transition matrix to deduce an appropriate remedial action based on

fault events, command inputs from higher levels, and knowledge about the present

and past state of operation.

mands) to outputs (remedial actions and state/alarm information) depending on present
and past states given in a state database and a set of rules given in a transition matrix.
The structural separation of the rule base is advantageous because it can be verified for
correctness without considering the implementational problems of the SEM inference.

3.2 Fault Tolerant Control System Development Process

This section presents a guide on how to design the three blocks in FTCS, introduced in
figure 3.1 in the previous section: detectors, effectors, and decision logic. The instru-
mentation and controllers of the control level are assumed to be already designed, so the
approach takes its starting point in the analysis of an existing system.

3.2 Fault Tolerant Control System Development Process 25

The development strategy is a systematic approach that has the objectives to❳ facilitate complete coverage of possible single faults,❳ support means for consistent and complete specifications for the plant reconfigu-
ration algorithms based on a fault propagation analysis,❳ make automatic completeness and correctness tests on the final supervisor deci-
sion logic design,❳ avoid unnecessary plant modelling,❳ use software tools for analysis, and❳ use automatic code generation.

These objectives are in focus in the strategy outlined in figure 3.4. These eight steps

Figure 3.4: Systematic fault tolerant control system development approach. These eight steps

conducts the designer from an analysis of failures to the design of fault detectors,

supervisor decision logic, and fault accommodation.

should be applied in the development of any control system, where the advantages of
increased performance and availability from FTC can be exploited.

The analysis begins with a system modelling, where individual components are iden-
tified and subsystems are organized into a functional structure. Potential failure modes

26 Development Method for Fault Tolerant Control

of each component are identified. An analysis of the fault propagation (FPA) from
each component and throughout the entire system in the functional structure is then per-
formed. This provides a list of fault effects that are judged for severity according to
their influence on system performance. The end-effects that are found severe enough
to demand attention are identified. The FPA database from the first step is then used to
create a fault tree, where faults-effects relationship can be analyzed. The exact location
in the process where the propagation of each fault can be stopped by reconfiguration is
identified from this fault tree. This information is then used together with the functional
structure model to select a set of remedial actions that have the ability to reconfigure
the process according to the requirements for fault tolerance. The purpose of the anal-
ysis so far is to provide information for the definition of fault detection, isolation, and
reconfiguration (FDIR), i.e. faults/effects for the detector design and remedial actions
for the effector design. The detector and effector design tasks involve complex numeric
analysis and represent the major workload. The benefit of the initial qualitative analysis
is that it provides exact requirements for FDIR, i.e. identifies which faults shall be de-
tected, which faults shall be isolated, and where the plant should be reconfigured. This
helps to avoid excessive FDIR design. The last step is the design of the decision logic

that shall select a suitable remedial action when a fault has been detected and also takes
care of command and monitoring.

The eight steps fit into the general water-fall model described in section 2.3.1 as
shown in figure 3.5. The first considerations about faults are included already during

Figure 3.5: The specific actions for FTCS design, shown in figure 3.4, shall be included in the

general water-fall development procedure as shown in this figure.

the preliminary analysis. When more system knowledge has been collected during the
detailed analysis, then the fault effects severity can be estimated and possibilities for
stopping the fault propagation identified. The set of remedial actions shall be determined

3.2 Fault Tolerant Control System Development Process 27

during the architectural design, where also the overall design of the decision logic can
be performed. The detailed design of the decision logic can be completed when the
detectors and effectors have been designed.

A further explanation of the individual steps in this development method is the sub-
ject of the remaining part of this section. The next section demonstrates the procedure
with a complete design of an FTCS for the benchmark application.

3.2.1 System Modelling.

The process of FTCS development begins with a systematic high level modelling of the
system under concern. The model needs only be descriptive for the behaviour under
faulty conditions, which allows it to be simple compared to dynamic models used in, for
example, simulation and control. It is the purpose of the two initial steps (fault modelling
and fault propagation) to establish a qualitative model of how the system reacts to faults,
that can be used for the subsequent analysis and design steps.

Hierarchical system model. The fundamental requirement to the modelling paradigm
is that it must be intuitively simple and it must capture all kind of systems (continu-
ous/discrete time, mechanical/electrical, continuous/logical variables, etc). The choice
is basically between functional models and fault models. The functional models describe
the correct behaviour of the system whereas the fault models describe the behaviour in
fault situations. Functional models are typically based on analytical relationship be-
tween process variables and are often very complex. Hence, they should be avoided as
far as possible because they require superfluous effort. Fault models include only the
necessary information required for describing the effect of a fault. They describe fail-
ure modes and fault propagation in logic terms, which is advantageous when modelling
different kind of systems. The disadvantage with fault models is that each failure mode
must be specified. In functional models, all other modes than normal are automatically
failure modes. This means that fault models have two drawbacks; first, they do not
capture unanticipated faults, and secondly, the analysis becomes complicated when the
components have a large number of failure modes. Fault models are used as the basic
approach in the following, but functional modelling may be necessary if the relationship
between a fault and the effect on some subsystem is too difficult to determine in logic
terms.

An additional requirement is that the description of the system structure must be
adequate for modelling the propagation of faults through subsystems to system level.
The structure of a complex system can be captured in a hierarchical model in various
ways:

1. Component hierarchy, where the physical components are grouped by type (me-
chanical/electrical, digital/analog, etc).

2. Physical structure model, where the physical components are grouped by location

28 Development Method for Fault Tolerant Control

and described by their interconnections.

3. Functional structure model, where the system is broken down into units that per-
form sub-tasks.

The component hierarchy is mentioned here only as a counterpart to the others because
it is suitable for implementation using object oriented techniques. A case study on the
usage of a component hierarchy for an automated failure mode and effects analysis in
hydraulic systems is presented in Atkinson et al. (1993). The paper presents an expert
system that combines component objects at run-time, thus facilitating re-usability of
objects.

The physical structure model describes component failures in terms of failure modes

whereas the functional structure model describes functionality failures in terms of dis-

crepancies. A discrepancy is characterized by an abnormal behaviour of a physical value
(out-of-range, oscillation, etc.) or violation of a relation between physical values (e.g. if
a motor wire disconnects, the discrepancy could be: "Shaft velocity zero although motor
voltage non-zero"). A discrepancy can also describe a degradation of the safety system,
in which case there may be no immediate effect on the system operation, but continued
operation has become unsafe. The two modelling techniques are used in combination
in this thesis to give a suitable modelling paradigm. The required level of detail in the
hierarchy is determined, for each case, by the design engineer based on the complexity
of the subsystems and the requirements and possibilities for reconfiguration. In princi-
ple, the analysis can continue down to the level of capacitors and resistors. But if some
subsystem has entirely known failure modes, known reaction to faults on inputs, and
the entire subsystem will be substituted on failure, it may not be necessary to perform
a detailed breakdown. The use of two different principles may seem superfluous, but it
will show up later in the thesis to be advantageous. The physical model is used to locate
possible component faults and the functional model is used to determine the propagation
of faults. The association between the two models can be used to verify if a particular
reconfiguration scheme actually stops the propagation of faults. It will be clear from
later examples how the concepts are utilized.

Fault modelling. The physical model is used to identify possible component faults.
Traditionally, roughly three techniques have been used: preliminary hazard analysis
(PHA), hazard and operability studies (HazOp), and failure mode and effect analysis
(FMEA). PHA is an early identification method providing a coarse inspection of faults.
HazOp covers both fault analysis and operational problems, but suffers precision and
is thus not suited for completeness of fault coverage. FMEA is very detailed, but is
poor in identifying interconnected failures between subsystems. A further discussion
of the three techniques can be found in Bell (1989). This thesis applies the FMEA
method, which is well documented in form of standards and manuals (DoD (1980);
Ford/General Motors/Chrysler (1995)), extension to software FMEA (Lutz and Wood-
house (1996)), and automation for electrical circuit design (Price et al. (1997)). A graph-

3.2 Fault Tolerant Control System Development Process 29

ical representation, called matrix FMEA, was used as basis for earlier publications in the
department: Blanke et al. (1993), Blanke and Jørgensen (1995), Bøgh et al. (1995),
Jørgensen (1995), and Blanke (1996). It was introduced by Barbour (1977) and later
automated in software by Legg (1978) and Herrin (1981). The matrix method is actually
used to describe the propagation of faults, and this has inspired the approach taken in
the thesis. The modelling of fault propagation is covered in the next section.

The FMEA technique is used, because it is good to ensure that all possible faults
are considered. It is based on a standardised documentation formula that pushes the
design engineer to make a complete analysis where each fault shall be described by
failure mode (type of fault), failure cause, failure effect, frequency, and to which com-
ponent/subsystem the fault is associated. The FMEA is combined with the fault propa-
gation analysis, that is powerful in describing the interconnections between subsystems.

The number of faults to include in the analysis is decided by the design engineer
from detailed system knowledge, price for additional complexity, probability of failure,
and information from reliability databases (if available).

Once the failure effects have been determined by the FMEA, the physical structure
model is linked together with the functional structure model and propagation to func-
tional discrepancies are determined. This is the topic of the next section.

3.2.2 Fault Propagation Analysis

The purpose of the FPA is to examine how the component failure modes, worked out
from the FMEA, propagate through the functional structure model to end-effects on
system level. The result of the FPA is a fault propagation graph (FPG) that shows the
dissemination of discrepancies through each subsystem in the functional structure hier-
archy. The FPA-method presented in this section is based on earlier work (Blanke et

al. (1993); Blanke and Jørgensen (1995); Bøgh et al. (1995); Jørgensen (1995); Blanke
(1996)), but further developed to be more flexible and applicable for a wider range of
systems.

Fault propagation graphs. The list of component failure modes from the previous
section contains a finite number of effects associated to physical values. The functional
model describes how these effects turn into discrepancies and how the system reacts
under these conditions. In feedback control systems, which are in focus in this thesis,
faults often cause values to go to extremes or become constant. This can, for example,
be modelled as a three-tuple (Low, High, Constant). As an example, the logic model for
a potentiometer could be the multi-value truth table shown in table 3.1. The first three
rows represent non-faulty operation, where the position measurement equals the actual
position. The last three rows represent the three failure modes where either the negative
wire, the positive wire, or the output wire is disconnected. All these faults cause the
output to be independent on the input, which is written as ’-’ in the “Input Position”
column.

30 Development Method for Fault Tolerant Control

Table 3.1: Logic model for a position potentiometer.

Potentiometer Input Output
Fault Position Position measurement

NoFault Low Low
Constant Constant
High High

VnegWireDisc - High
VposWireDisc - Low
VoutWireDisc - Constant

All components are modelled in this way and connected into a multi-valued logic
graph, where the operations can be a combination of any logical operations (AND, OR,
and NOT). In this thesis the multi-valued FPG is analyzed using the BeologicTM array
inference tool-box (AIT) from Bang & Olufsen, Denmark. This program is only able to
apply boolean logic, but it is always possible to translate multi-valued logic into boolean
logic with a penalty on memory consumption. The software is dedicated to analyse
logical circuits, where logic relations are written as rules (Møller (1995)). It compiles the
rule base into a special representation using array logic theory, introduced by Franksen
(1979). This makes the run-time inference very fast and assures a fixed response time.
BeologicTM is able to analyse the logic relations between the involved variables, which
is very helpful for the purpose of this thesis. As an example on the use of boolean
logic, the above potentiometer truth table can be translated into the BeologicTM rules
shown in table 3.2. The description of the faults propagation in BeologicTM is based on

Table 3.2: BeologicTM rules for the potentiometer truth table in table 3.1.

Rule
0 NoFault = not (VnegWireDisc or VposWireDisc or VoutWireDisc)

1 PosMeasLow = ((NoFault and PosLow) or (not NoFault and VposWireDisc))

2 PosMeasConst = ((NoFault and PosConst) or (not NoFault and VoutWireDisc))

3 PosMeasHigh = ((NoFault and PosHigh) or (not NoFault and VnegWireDisc))

4 OneOf (PosMeasLow PosMeasHigh PosMeasConst)

the bi-implication (=) that constrains both the left side and the right side of the rule.
The alternative, used in Jensen et al. (1994), is to use an implication (<-) which only
constrains the consequent (left side). If only the implication is used, problems arise when
the rule base is examined for causality backwards from end-effects to faults, because the
antecedents (right side variables) are not constrained by the rule. The last rule ensures
that one and only one of the three values of the output variable will be true.

Feedback loops in graphs. A special problem in FPA is the treatment of feedback

loops where the logical feedback may cause contradictions in the FPA rule base. As an
example, consider the feedback loop illustrated in figure 3.6. The fault variable ❤ causes

3.2 Fault Tolerant Control System Development Process 31

Fault f

dlow elow

dhigh ehigh

Negative
feedback
controller Component

&
&

Figure 3.6: An example on fault propagation in a system with negative feedback.

the effect variable ✐ to be either ✐❝❥✧❦✑❧ or ✐✟♠✡♥✧♦✲♠ depending on the value of the discrepancy♣
. The value of

♣
is determined by ✐ such that there is a “cross-over” which is caused

by the sign change in the negative feedback controller. The FPG is represented by the
following rules: ✐✡❥✧❦✑❧❅qr❤ts ♣ ❥✧❦✑❧✈✉ (3.1)✐✟♠✡♥✇♦✝♠①qr❤ts ♣ ♠✡♥✇♦✝♠②✉ (3.2)♣ ❥✧❦✑❧❅q③✐✟♠✡♥✇♦✝♠✚✉ (3.3)♣ ♠✡♥✇♦✝♠①q③✐✡❥✧❦✑❧⑤④ (3.4)

The values of the logic variables are furthermore mutually exclusive which cause the
following constraints: ♣ ❥✧❦✑❧❅q ♣ ♠⑥♥✧♦✝♠⑦✉ (3.5)✐✡❥✧❦✑❧❅q ✐✟♠✡♥✇♦✝♠✚④ (3.6)

A boolean reduction of, for example, ✐ ❥✧❦✫❧ gives✐✡❥✧❦✫❧⑧q③❤ts ✐⑥❥❖❦✫❧⑨④ (3.7)

This equation is only valid if both ❤ and ✐ ❥✧❦✑❧ are false. This means that the FPG is not
representative for the behaviour of the physical system and it is not possible to analyse
the end-effects from the corresponding fault using the FPG. It is therefore necessary to
first identify such fault inputs and then treat them separately.

The examination of large and complex FPGs for the identification of fault inputs
bound to false is adequately supported by BeologicTM. For each combination of external
conditions (set-point etc.), BeologicTM can perform the boolean reduction of the FPG
rule-base and generate a list of variables bound to false. The FPG is then modified
by decoupling the identified fault inputs from the loop and instead assign them to a
dedicated “oscillation” discrepancy. All involved logic models are augmented with an
oscillation discrepancy to describe the propagation of the oscillation.

32 Development Method for Fault Tolerant Control

In some cases, a logical oscillation in the FPA analysis is associated with an unstable
behaviour of the underlying physical system. One example is a disconnected tachometer
wire within the position control loop of the benchmark equipment described in section
3.3.3, where the fault causes the output arm to oscillate around the desired position
reference.

The issue of feedback loops is also treated in Blanke (1996), Jensen et al. (1994),
and Nilsen and Blanke (1996). The approach taken in Blanke (1996) is to consider the
cases where feedback loops do not lead to potential oscillations in the physical system.
This means that there are no problems with analysis of the corresponding FPG. The
solution presented in Jensen et al. (1994) is to remove the feedback and consider the
different paths of the FPG separately. This means that, in the example in figure 3.6, the
fault ❤ will have two effects, ✐✟❥✧❦✫❧ or ✐✟♠✡♥✇♦✝♠ , depending on

♣
. The discrepancy

♣
is then

considered as an additional input to the analysis. This means that potential oscillations
in the physical system are not specifically analysed. Nilsen and Blanke (1996) proposes
to open the loop at a suitable point and then leave the remaining analysis to the design
engineer.

Modelling of controllers. Another issue is how to design a logic model of a feedback
control law. It is only necessary to describe two scenarios; first, the normal behaviour
where there is no fault in the loop and second, the behaviour where a fault causes the
loop to malfunction. As an example, the truth table of the logic model for a negative
feedback position controller is shown in table 3.3. The first three rows describe the

Table 3.3: Logic model for a negative feedback position controller.

Feedback controller Inputs Output
Fault in loop Position measurement Position reference Desired velocity

No - Low Low
- Constant Zero
- High High

Yes Low - High
High - Low
Constant Low Low
Constant High High

situation with no faults in the feedback loop, where the output equals the reference
value and the feedback is neglected. The fourth and fifth row depicts the cases where
some loop fault causes the measured value to go either low or high. The output is now
independent of the reference, because the measured value is either lower or higher than
the reference value. The last two rows represent the case where a loop fault causes the
position measurement to get stuck. In this case, the output value depends on whether
the reference is lower or higher than this constant measurement value.

A technique has now been presented that provides means for automated analysis of a

3.2 Fault Tolerant Control System Development Process 33

network of interconnected logic subsystem models. The output is a list of end-effects on
system level and an FPG that describes the relation between fault inputs and end-effects.
The FPG has no problems with conflicts arising from logic feedback loops, because
these cases have been organized into separate propagation paths that are independent
from the feedback loops.

3.2.3 Severity Assessment

The next step in the development process is to judge the severity of the end-effects, i.e.
to categorize the impact on the systems operation from the consequences of the faults.
The purpose is to select which end-effects should be treated and which can be treated
with existing system components.

In reliability engineering the evaluation of severity can be included in the failure
mode and effects analysis as a criticality assessment on the component failure modes.
Criticality is a combined measure between severity and probability of occurrence (see
DoD (1980) for a mathematical definition). It is often difficult to quantify criticality
on a component level, because a fault’s consequence on system level is not known. An
alternative approach is chosen in this thesis (see also Blanke et al. (1993) and Bøgh et

al. (1995)), where the severity assessment is performed directly on the end-effects asso-
ciated with component faults. Probability of occurrence is not considered at this point,
because all faults included in the analysis are regarded as equally important. Failure
modes, that are clearly irrelevant, were omitted in the FMEA in section 3.2.1.

The end-effects are categorized into hazard classes that defines how serious the con-
sequences are to aspects like diversion from desired operation (e.g. product quality),
damage to equipment, damage to environment and people, increased wear on equip-
ment, increased cost of production, degradation of the safety system, etc. It is often
necessary to apply some engineering knowledge about the system to estimate the sever-
ity of an end-effect, i.e. how big the effect is and how fast it develops. The severity
assessment must, therefore, be performed in the detailed analysis phase.

A formal classification of the end-effect severity has the benefit that if the system is
modified or the requirements are changed, the designer can easily determine a new set
of end-effects that requires accommodation.

3.2.4 Analysis for Reconfiguration

At this point in the development process a list of end-effects, that must be handled, has
been created. The next step is to locate the components that can be reconfigured to stop
the propagation of faults which cause these end-effects.

This is achieved by organizing the logic models into a fault tree, which is a network
of OR and AND operators that describes the causal relation between faults and discrep-
ancies. Figure 3.7 shows the fault tree of the logic models from table 3.1 and table 3.3.
The analysis of the fault tree is performed with two purposes; first, it shows where the
fault propagation can be stopped by a certain component reconfiguration and second, it

34 Development Method for Fault Tolerant Control

VoutWireDiscVnegWireDisc VposWireDisc

Pos. meas.=Const. Pos. ref.=Low

Pos. meas.=LowPos. meas.=High

Pos. ref.=High

Vel. ref.=HighVel. ref.=Low

&&

End-effects

Discrepancies

Faults

{

Figure 3.7: A fault tree of the fault propagation for the position measurement and control from

table 3.1 and table 3.3.

supports the fault detector design with information about which measurement(s) can be
used to detect and isolate the event (fault or discrepancy) that is needed for the reconfig-
uration. The fault tree can be automatically generated from the FPG rule base, which is
advantageous when a manual analysis becomes unmanageable. Feedback loops are not
a problem in the graph, because the faults that cause unwanted constraints in the graph
have been arranged into independent branches in the tree as described in section 3.2.2.

3.2.5 Remedial Actions Selection

The next step in the development of an FTCS is the identification and selection of reme-
dial actions that are able to reconfigure the plant to oppress the propagation of potential
faults. This process is assisted with the fault tree produced in the previous section, but
also requires insight into the possibilities for reconfiguration of the process. It is not the
purpose, at this point in the development process, to design the actual fault accommo-
dation algorithms. This is postponed to after the FDI design, so it is certain that an FDI
algorithm exists which provides the information required to trigger the remedial action.

The task of locating possibilities for reconfiguration of the system is, by nature,
extremely application dependent. It is difficult to give general advises, but it is advanta-
geous to use the fault tree worked out in the previous step. The fault tree can be used to
point out which subsystems to examine and where to look for reconfiguration possibili-
ties. It also shows, if a discrepancy can be triggered by a group of faults. In this situation
it may be possible to detect the particular discrepancy and reconfigure the system to ac-
commodate all faults in that group in one single remedial action. It is up to the design
engineer, whether to use the fault tree as a starting point, or to consider the abilities of
the system first and then use the fault tree to determine if the fault propagation will be
stopped successfully. In either approach, the fault tree should be examined to verify if all
faults that shall be handled actually are accommodated. It may not be possible to handle
all faults, in which case, either the plant must be augmented with more capabilities or
the requirements must be relaxed.

In the search for remedial actions, the following possibilities can be considered:❳ Reconfiguration between redundant hardware. If redundant sensors and actuators

3.2 Fault Tolerant Control System Development Process 35

are available, continued operation with full performance is possible.❳ Entering a degraded mode. It may be possible to disable the unhealthy subsystem
and continue operation in a degraded mode.❳ Off-line reconfiguration of controllers. Change the configuration of sen-
sors/actuators and controllers to avoid using failed components. A set of con-
trollers is designed off-line to meet anticipated failures.❳ On-line redesign of controllers. This is state-of-the-art in reconfiguration where
an on-line algorithm is executed to modify control parameters based on the present
fault scenario. This facilitates possible coverage of unanticipated faults, but is also
subject to a very complex (and therefore risky) design.❳ In case of a reference set-point fault it may be sensible to restore the situation to
the last non-faulty value and then continue control.❳ Close-down is the last resort if no other possibilities exist.

A short survey of methods for on-line and off-line reconfiguration were given in section
2.3.3.

Once a remedial action has been selected, it is possible to specify the corresponding
reconfiguration condition. The reconfiguration condition defines how serious the effect
of a fault is allowed to be before the reconfiguration must be performed. This has often
been formulated as a temporal requirement (especially by the fault detection commu-
nity), but it is much more sensible to define it with respect to the impact on the systems
operation. Such a criteria is typically a variable or discrepancy that exceeds a threshold,
a maximum time spent in an undesired operational state, or some statistical property of
a specific behaviour.

The reconfiguration conditions are used to derive requirements for the fault detec-
tion and accommodation design. The reconfiguration condition is used to derive the
requirement for the sensitivity of the fault detector and it also indicates how fast the
reconfiguration must be performed in a worst case situation. The specification of the
reconfiguration condition is based on the end-effect severity assessment (section 3.2.3)
and insight into the possibilities of the process.

3.2.6 Fault Detection and Isolation Design

This section describes how the design of the FDI algorithms included in the Detectors

module in figure 3.1 relates to the development steps performed so far. It is illustrated
how the requirements for the design are derived from the above analysis.

The first action is to determine a proper FDI method that matches the particular
problem. It is up to the design engineer to select a suitable method among the techniques
described in section 3.1.2 and from the survey in section 2.3.2.

36 Development Method for Fault Tolerant Control

Once an FDI method has been selected, the FPG is used to examine the necessary
requirements for isolation between faults. It is very important to check if a specific
detector is sensitive to other faults than the expected. It is unacceptable to perform
a reconfiguration that does not match the actual fault. The issue can be investigated by
expanding the FPG with the functionality of the fault detectors. The rule base can then be
searched for possible faults that trigger the detectors. This list is then inspected to check
if it is necessary to distinguish between more faults and include additional detectors.
The major difficulty of doing this analysis in the FPG framework is to ensure agreement
between the fault detectors and the physical characterisation of the discrepancies they
are supposed to detect. The problem is two-fold: First, when several failure modes are
modelled to cause the same discrepancy, care should be taken to ensure that each of
them is correctly described by this discrepancy. Secondly, the FPG is not originally
designed to describe detectable discrepancies so a suitable discrepancy may not exists
for a fault detector. If this is the case, it may be necessary to augment the graph with
more discrepancies. When these problems have been solved, the usage of the FPG
gives a clear overview of which faults must be treated individually and which can be
considered together as a group.

The next action is the actual design of the fault detectors. Depending on the above
choice of method, it may be necessary to derive mathematical models of specific sub-
systems and obtain deeper insight into the system and the characteristics of the failure
modes. The problematic issue of fault detector design is always the trade-off between
false alarms and correct detections. The primary requirement for a fault detector is the
sensitivity to faults, which is derived from the reconfiguration conditions given in the
previous section. False alarms come from unknown inputs like disturbances and noise
and also from modelling errors (e.g. nonlinearities). FDI algorithms must be designed
to be robust against these exogenous signals and this topic has attracted a large interest
in the FDI community. The design of analytical redundancy algorithms is covered in
more detail in chapter 4, where different issues will be discussed in connection with the
benchmark problem.

In the design of fault detectors, it is important to be aware of potential problems
with initialization of the filtering algorithms, which may occur in connection with start-
up of the system or after a reconfiguration has taken place. It can be advantageous to
let the supervisor’s decision logic handle the overall control of these problems, so it is
important that they are recognized at this stage.

3.2.7 Fault Accommodation Design

This section briefly outlines how the design of the fault accommodation algorithms,
included in the effector box in figure 3.1, fit into the development methodology. The
fault accommodation algorithms execute the procedures associated with the remedial
actions that are requested by the supervisor decision logic.

The remedial actions were selected in step 5 in section 3.2.5. At the present step, the

3.2 Fault Tolerant Control System Development Process 37

advanced algorithmic design of the methods for controller reconfiguration and on-line
redesign takes place. These methods require deep insight into the characteristics of the
system, so controllability and stability of the new controllers can be assured. It is out of
the scope of this thesis to consider these aspects, so the reader is referred to the survey
in section 2.3.3 and the references herein.

One requirement, derived from the previous analysis, is the reconfiguration require-

ment defined in section 3.2.5. This requirement determines how long time the fault
accommodation algorithm is allowed to run before the control system is reconfigured.

Other aspects of fault accommodation design are the problems of start-up/close-
down of the system and bump-less transfer between different control schemes when the
system is reconfigured. These issues must be considered together with similar problems
of the fault detectors, designed in the previous section, so a suitable enabling/disabling
scheme of the detectors and effectors can be set up for the supervisor decision logic.

It is, furthermore, a risk with on-line redesign algorithms, that the objectives of the
redesign cannot be met in a particular situation. These algorithms, therefore, include a
measure of success that is fed back to the supervisor decision logic, so a suitable backup
action can be executed if the primary remedial action failed.

These problems of fault accommodation design are not present in the application
examples of this thesis, so they will not be treated further on.

3.2.8 Supervisor Decision Logic Design

The last step in the development of fault tolerant control systems is the design and im-
plementation of the supervisor decision logic module from figure 3.1. This section illus-
trates how requirements to the design are obtained from the above analysis and how the
implemented decision rules can be verified for correctness and completeness. Earlier
results on the design of supervisor decision logic are available in Bøgh et al. (1995),
Zamanabadi et al. (1996), Bøgh et al. (1997), and Blanke et al. (1997).

Although this thesis focuses on fault handling, the decision logic shall also manage
the information exchange with higher levels in the process (command and monitoring).
This is included, at this point, as additional requirements to the design because it is
deeply integrated with fault handling. The complete set of requirements to the decision
logic can then be summarized as the following:❳ Fault handling. The requirements for decision making in connection with fault

handling are directly given by the remedial action list from section 3.2.5. The
faults are inputs to the decision logic and the remedial actions are required out-
puts. The list of faults must be checked up against the experiences from the fault
detector design in section 3.2.6 as there may be additional requirements for the
decision logic. The FDI algorithms may have been designed in such a way, that
the decision logic shall perform further diagnosis to isolate between faults and
remove false alarms. Also special actions in connection with initialization of the
FDI algorithms must be considered. Similarly, there may be additional require-

38 Development Method for Fault Tolerant Control

ments for bump-less transfer during reconfiguration as recognized during the fault
accommodation design in the previous section. Finally, the on-line fault accom-
modation algorithms may include a measure of success of the reconfiguration,
which must be handled by the decision logic.❳ Plant wide communication. The decision logic shall be able to manage commands
(set-point changes, operational mode changes, FDIR and monitoring configura-
tion, etc.) from higher levels. It shall also provide monitoring information (cur-
rent operational state, control and FDIR performance, information about executed
remedial actions, command verification messages, etc.) to the plant wide control
system.❳ Operational mode control. There may be different requirements to fault handling
and monitoring in different operational modes. The decision logic shall be able to
distinguish between these cases.❳ Start-up and close-down of the system. It is out of the scope of this thesis to con-
sider these topics, but the requirements should be recognized before the decision
logic design is finalized. This issue will not be further treated.

The decision logic that fulfils these requirements is now designed and represented by
rules similarly to the FPG in section 3.2.2. The purpose is to examine the properties of
the decision logic and their interaction with the FPG. In this framework a very powerful
test for completeness can be carried out. The meaning of completeness in this context
is that the decision rules cover all the possible faults that are included in the analysis.
The decision rule base corresponds to the transition matrix of the state-event machine
implementation introduced in section 3.1.3. An automatic translation of the decision
rules into the transition matrix makes this procedure very attractive. BeologicTM is able
to support both the analysis of the rules and also automatically generate code for the
inference of the rules.

When the decision rules are considered alone (i.e. not combined with the FPG), the
following properties can be inspected:❳ Potential reduction in rules. For complex expressions there may eventually be a

more compact way to express the same relationship. It can be advantageous to
examine selected subsets of the rule base for these alternatives because a simpler
expression is often more clear and therefore less vulnerable to mistakes.❳ Cross examination of rules. A manual inspection of the relationship between se-
lected variables that appear in different rules can be used to verify correct be-
haviour.❳ Consistency. The rules can be examined for contradictions, bounded variables,
superfluous variables, and redundancy.

3.2 Fault Tolerant Control System Development Process 39

A completeness test can be performed when the decision rules are combined with
the FPG together with the logic flow of both fault detection and isolation and also re-
configuration. The logic model of the entire reconfigurable system is then organized as
illustrated in figure 3.8. The functionality of the fault detectors and remedial actions are

Subsystem
#n FPG

Subsystem
#2 FPG

Top level
FPG

Subsystem
#1 FPG

End-effects

Fault
detectors

Decision
rules

Reconfiguration
Fault events

Total
FPG

d1

e1

r1

f1

d
^

1

Faults &
discrepancies

Remedial
actions

C
om

po
ne

nt
 f

au
lts

Figure 3.8: A complete logic model of fault propagation, fault detection, decision, and recon-

figuration. This model is used to facilitate a completeness check of the supervisor’s

decision rules.

implemented as rules similar to the FPG and decision rules. All necessary information
about operational mode dependencies and configuration of the equipment is included so
the complete logical behaviour of the reconfigurable system is captured in the model.

The completeness test is based on the properties of this complete logic model. Con-
sider as a simple example the following rules describing a single path in the figure:♣❶⑩ q③❤ ⑩ ✉ (3.8)❷♣ ⑩ q❹❸ ⑩ s ♣ ⑩ ✉ (3.9)✐ ⑩ q ❷♣❶⑩ ✉ (3.10)❸ ⑩ q ✐ ⑩ ✉ (3.11)

where ❤ ⑩ represents a fault that propagates to a discrepancy
♣ ⑩

. The system can be
reconfigured by remedial action ❸ ⑩ so propagation into

❷♣ ⑩
is prevented. The fault event

is detected from
❷♣ ⑩

and sent to the decision logic as event ✐ ⑩ .
A boolean reduction with respect to the propagated discrepancy

❷♣ ⑩
gives the equa-

tion: ❷♣❺⑩ q❻❤ ⑩ s ❷♣❶⑩ ✉ (3.12)

which is only valid when both
❷♣❺⑩

and ❤ ⑩ are false. This means that if a fault is success-
fully detected and the system is reconfigured to stop the fault from propagating, then the

40 Development Method for Fault Tolerant Control

variable representing the propagated discrepancy
❷♣ ⑩

will be bound to false by the FPG
rule base.

For large and complex systems BeologicTM can support the boolean reduction and be
used to examine the following properties of the complete logic model:❳ Fault analysis. It is possible to analyse that a selected fault is handled successfully

by assigning this fault true, setting up conditions (if any), and then inspect the rule
base. If there are no solutions, the fault will be handled successfully. Similarly, it
is possible to analyse under which conditions the fault will not be handled.❳ End-effect analysis. As for fault analysis, end-effects can be analysed by setting a
selected end-effect true and then inspect the rules. If no solutions are found, then
the end-effect will never appear. Similarly, it is possible to find the cases, where
the end-effect may appear.❳ Consistency check. The fault and end-effect analyses above are performed man-
ually, but it is possible to automate a partial analysis. The faults and end-effects
that are designed to be handled in all cases (no conditions) can be verified by a
consistency check on the rule base. These faults and end-effects will appear as
bound to false and can then be verified against the requirements.

An example on this completeness check is given for the satellite application in section
5.6.3.

It should be noted, whatsoever, that the above analyses does not cover system dy-
namics, so it is not guaranteed that temporal requirements are met. Similarly, the simple
logic model prevents analysis of false alarms and missing alarms because signal ampli-
tudes and detection thresholds are not included. The completeness check works on the
following conditions: 1) the designer has thought about the faults, 2) it is detected and
isolated in time, 3) and the reconfiguration actually stops the fault propagation. Under
these conditions it is guaranteed that the decision logic will handle the situation.

3.2.9 Summary

A general development methodology for the design of FTCSs and an implementational
architecture have now been introduced. The next sections use the benchmark appli-
cation to illustrate the individual steps in the development procedure and how the final
design can be realized in the three level architecture presented in section 3.1. The bench-
mark case study focuses on the analysis part, i.e. the FMEA and the FPA and how re-
quirements for the FDI and supervisor designs are derived from this analysis. The fault
handling aspect of the benchmark supervisor is rather simple. More complex issues of
supervisor decision logic design is presented in connection with the satellite application
in chapter 5.

3.3 Fault Tolerant Control System Design for the Benchmark 41

3.3 Fault Tolerant Control System Design for the

Benchmark

This section applies the general development process in the design of an FTCS for a typ-
ical industrial system, the electro-mechanical position servo for speed control of large
diesel engines. Although this benchmark equipment is relatively simple, it is well suited
to highlight important aspects of real applications. The basic requirement for the FTCS
is to improve availability so continued operation is possible in case of the most likely
faults. The benchmark FTCS is implemented and tested on a laboratory setup compris-
ing the real industrial hardware. This setup facilitates repeated tests.

3.3.1 Introduction to the Benchmark Equipment

The actuator is part of a ship governor used to control the rotational shaft speed of a
diesel engine (Blanke and Nielsen (1990)). It regulates the amount of fuel to the engine
by controlling the position of a common rod that connects to a valve on each cylinder.
The position is controlled by a digital computer by means of a brush-less DC motor
that connects to the rod through an epicyclic gear and an arm (see figure 3.9). Power to

To PumpsTo Pumps

Rod Rod

Motor
Gear

Arm

Figure 3.9: Electro-mechanical actuator for diesel engine speed control.

the motor is delivered by a switching power drive that has internal current and velocity
control. The power drive also has some safety arrangements and monitoring abilities.
The position is mechanically limited and two micro switches serve as end-stop detectors.
Activation of an end-stop switch inhibits current from the power drive in one direction.
An electro-magnetic brake in the motor is disengaged on power-up. It is engaged if
power is lost or a primary computer watchdog triggers. The power drive has adjustable
limits for peak and mean values of the output current, where the mean value limit is
active if the average electrical effect exceeds a certain limit. The motor temperature is

42 Development Method for Fault Tolerant Control

monitored with a thermistor and the current is limited to the mean value if the motor
becomes too hot. The electrical-mechanical diagram of the equipment is seen in figure
3.10 and the main characteristics are listed in table 3.4.

Thermistor

Motor current

Tacho measurements

Shaft position measurements

End-switch signals

V
elocity reference

V
elocity m

easurem
ent

C
urrent m

onitor

Power drive

Position
measurement

amplifier

Negative
end-stop
switch

Positive
end-stop
switch

Arm

Epicyclic
gear

BrakeMotor TachoPosition
pick-ups

Arm
position
potentio-

meter

Position
control

computer

LAN network

Position reference
Arm position
measurement

Brake
activation

M

Brake
circuit

Figure 3.10: Electrical-mechanical diagram of the benchmark equipment.

Table 3.4: Main characteristics of the benchmark actuator.

Peak power to servo motor 2.5 kW
Peak current ❼ 30 A
Maximum mean current ❼ 12 A
Time to full speed (0-3000 RPM) 22 ms
Arm operating range ❼ 23 degrees
Time for full stroke of arm (0-100%) 270 ms
Velocity control loop time constant 4 - 6 ms ❽
Peak actuator torque on gear output shaft ❼ 1.2 kNm
Maximum external load torque on gear output shaft ❼ 0.6 kNm
Computer sampling time 10 ms❽ The velocity control loop time constant depends on the load inertia.

The basic requirement to fault tolerance is that single faults shall be handled, so
operation shall continue if possible and otherwise the system shall be closed down with
the arm braked at the present position. The faults shall be accommodated before the
diesel engine speed is significantly effected, which is translated into a maximum change
in arm position of 2 degrees (5% of full range).

3.3 Fault Tolerant Control System Design for the Benchmark 43

3.3.2 System Modelling

Hierarchical system model. The first step in the development procedure is to perform
a hierarchical breakdown of the equipment for both the physical structure and the func-
tional structure. The results are presented in figure 3.11. The figure does not show all
details, but illustrates the concept.

Fault modelling. The physical structure model forms the basis for an FMEA that lists
possible component faults. Table 3.5 shows a representative number of the faults which
are considered in this thesis. The actuator is located in a harsh environment so the listed
faults can happen due to mechanical vibration, wear, or loose connections in the wiring.

Table 3.5: Extract of the failure mode and effects analysis for the benchmark equipment.

Fault No. Subsystem Comp./func. Failure mode Effect

2.1.1.1 Velocity ctrl. electronics Reference voltage wire Disconnected Vvelref=0V
2.1.2.1 Velocity ctrl. electronics Vel. meas. scaling pot. Disconnected Vvelmeas=0V
3.2.1.1 Motor brake Input wire Disconnected Brake active
4.2.3.1 Position potentiometer Positive wire Disconnected Vposmeas=0V
4.2.4.1 Position potentiometer Negative wire Disconnected Vposmeas=15V
4.2.5.1 Position potentiometer Output wire Disconnected Vposmeas=remains constant
4.3.1.1 Positive end-stop switch Contact Fails open Rposswitch= ❩
4.3.2.1 Negative end-stop switch Contact Fails open Rnegswitch= ❩

3.3.3 Fault Propagation Analysis

The second step in the development procedure is to determine the functional discrep-
ancies of the failure effects in table 3.5 and model how these discrepancies propagate
through the subsystems in the functional structure model to end-effects on the actual
arm position.

The relationships between the fault effects of the physical model to subsystem dis-
crepancies in the functional model are listed in table 3.6. This table maps the outputs of
the FMEA in table 3.5 to inputs for the fault propagation analysis.

The FPA is based on a qualitative description of the discrepancies using the notation
low, high, zero, and constant. These terms correspond to the variable being lower or
higher than is should be, fixed at zero, and fixed at a constant value. The block diagram
of the system in figure 3.12 shows the relation between the individual subsystems. Each
subsystem is represented by a logic model that describes the behaviour for all combina-
tions of the qualitative values of the inputs. The tables 3.7 through 3.14 are multi-valued
truth tables for all the subsystems involved.

44 Development Method for Fault Tolerant Control

Benchmark Benchmark

1. Positioning

2. Protection

1.1. Mechanical actuation

1.2. Mechanical positioning

1.3. Current control

1.4. Velocity control

1.5. Position control

2.1. Braking

2.2 Power limiting

2.3. Position limiting

2.4. Temperature limiting

Functional Structure Model Physical Structure Model

2.3.1. Positive end-stop

2.3.1.1. Positive end detection

2.3.2.1. Negative end detection

2.3.1.2. Positive current disabling

2.3.2.2. Negative current disabling

2.3.2. Negative end-stop

2.4.1. Temperature measure

2.4.2. Motor power disabling

1.5.1. Position measurement

1.4.1 Velocity measurement

1.3.1. Shaft position measurement

1.5.2. Velocity ref. calculation

1.4.2 Current ref. calculation

1.3.2. Current distribution

1. Pos. control computer

2. Power drive electronics

3. Motor assembly

4. Gear/Arm housing

4.2. Position potentiometer

4.3. End-stop switches

4.3.1. Positive end-stop switch

4.3.2. Negative end-stop switch

3.1. Motor

3.2. Brake

3.2.1. Input wire

3.3. Tachometer

2.1. Velocity ctrl. electronics

2.2. Current generator

2.2.1. Current ctrl electronics

2.1.1. Reference voltage wire

2.1.2. Vel. meas. scaling pot.

2.2.2. Power protection circuit

2.2.3. Power electronics

4.1. Mechanical connections

4.2.1. Wiper

4.2.2. Resistor element

4.2.3. Positive wire

4.2.4. Negative wire

4.2.5. Output wire

Figure 3.11: Illustration of two ways to make a hierarchical breakdown of the structure of the

benchmark equipment: Functional structure model and Physical structure model.

3.3 Fault Tolerant Control System Design for the Benchmark 45

Table 3.6: Relationship between component fault effects and functional discrepancies.

Fault No. Fault effect Subsystem No. Subsystem Discrepancy

2.1.1.1 Vvelref=0V 1.4.2 Current ref. calculation VelRefWireDisc
2.1.2.1 Vvelmeas=0V 1.4.1 Velocity measurement TachoWireDisc
3.2.1.1 Brake active 2.1 Braking BrakeFailedOn
4.2.3.1 Vposmeas=0V 1.5.1 Position measurement VposWireDisc
4.2.4.1 Vposmeas=15V 1.5.1 Position measurement VnegWireDisc
4.2.5.1 Vposmeas=remains constant 1.5.1 Position measurement VoutWireDisc
4.3.1.1 Rposswitch= ❩ 2.3.1.1 Positive end detection EndSwitchPosDisc
4.3.2.1 Rnegswitch= ❩ 2.3.2.1 Negative end detection EndSwitchNegDisc

VelRefDes VelRef CurRef

VelMeas

VelPos

PosMeas

PosRef

Cur

Position
measurement

Velocity
ref. calc.

Velocity
ref. input

Velocity
measurement

Current
ref. calc.

Current
control

Mechanical
actuation

Mechanical
positioning

Low
Zero
High

Low
Zero
High

Low
Zero
High

Low
Zero
High

Low
Zero
High

Low
Const
High

Low
Const
High

Low
Const
High

Low
Zero
High

{ { {

{

{{

{

{

{

Figure 3.12: The structure of the fault propagation analysis of the benchmark equipment. A logic

description of each block determines the relation between the qualitative inputs and

outputs.

Table 3.7: Logic model for the position measurement (potentiometer).

Position measurement Input Output
Fault Pos PosMeas

NoFault Low Low
Const Const
High High

VnegWireDisc - High
VposWireDisc - Low
VoutWireDisc - Const

46 Development Method for Fault Tolerant Control

Table 3.8: Logic model for the velocity reference calculation unit (position controller).

Velocity ref. calc. Inputs Output
Fault in loop PosMeas PosRef VelRefDes

No - Low Low
- Const Zero
- High High

Yes Low - High
high - Low
Const Low Low
Const High High

Table 3.9: Logic model for the velocity reference input (velocity reference wire).

Velocity ref. input Input Output
Fault VelRefDes VelRef

NoFault Low Low
Zero Zero
High High

VelRefWireDisc - Zero

Table 3.10: Logic model for the velocity measurement (tachometer).

Velocity measurement Input Output
Fault Vel VelMeas

NoFault Low Low
Zero Zero
High High

TachoWireDisc - Zero

Table 3.11: Logic model for the current reference calculation unit (velocity controller).

Current ref. calc. Inputs Output
Fault in loop VelMeas VelRef CurRef

No - Low Low
- Zero Zero
- High High

Yes Low - High
high - Low
Zero Low Low
Zero High High

3.3 Fault Tolerant Control System Design for the Benchmark 47

Table 3.12: Logic model for the current control unit (power drive).

Current control Input Output
Fault CurRef Cur

NoFault Low Low
Zero Zero
High High

EndSwitchPosDisc High Zero
EndSwitchNegDisc Low Zero

Table 3.13: Logic model for the mechanical actuation (motor).

Mechanical actuation Input Output
Fault Cur Vel

NoFault Low Low
Zero Zero
High High

BrakeFailedOn - Zero

Table 3.14: Logic model for the mechanical positioning (gear and arm).

Mechanical positioning Input Output
Fault Vel Pos

NoFault Low Low
Zero Const
High High

48 Development Method for Fault Tolerant Control

The logic models are then connected to a multi-valued graph for further analysis. In
this thesis they have been translated to boolean logic rules for BeologicTM (see appendix
A.1). The rule base is easily analyzed in this framework for possible faults that would
lead to oscillation of the physical system caused by negative feedback loops. This is
done, as explained in section 3.2.2, by examining the rule base for bindings on the dis-
crepancy variables representing fault inputs. The discrepancy TachoWireDisc is found
to be bound to false, which means that this fault may be the origin of an oscillation
in the system. The path of propagation of the tacho-fault is shown by the fault tree in
figure 3.13, where the physical oscillation is represented as a “cross-over” between two
paths of discrepancies. In the real system, a velocity measurement failing zero causes

TachoWireDisc

VelMeas=Zero VelRef=High

CurRef=HighCurRef=Low

Cur=HighCur=Low

Vel=HighVel=Low

Pos=HighPos=Low

PosMeas=HighPosMeas=Low

VelRefDes=Low VelRefDes=High

&&

VelRef=Low

Figure 3.13: The fault TachoWireDisc causes oscillation of the output arm in the physical bench-

mark system caused by the sign change in the negative feedback position controller.

This property is evident in the corresponding fault tree, shown in this figure, be-

cause the path of the fault has a “cross-over” between the “Low”-discrepancies

and the “High”-discrepancies.

the arm to oscillate around the demanded position reference point. A test sequence of
this situation from the laboratory setup is seen in figure 3.14. The fault TachoWireDisc
is therefore decoupled from the Low-High paths in the FPG by extending all the logic
models with an “oscillation” discrepancy. As an example, the new model for the velocity
measurement subsystem is given in table 3.15. The “oscillation” discrepancy propagates
further to a new end-effect Pos=Oscil that characterises oscillation of the arm position.
The BeologicTM rules for the final FPG of the benchmark can be found in appendix A.2.

As a conclusion on the development of the FPG, the complete relationship between
faults and end-effects in the benchmark is listed in table 3.16. This table gives an
overview of which end-effects have multiple fault reasons and which faults cause more
end-effects. Note, that the two end-stop switch faults are modelled as causing a con-
stant position, although movement in one direction is still possible. This is the correct
description, because the anomalous situation is present when the arm cannot move.

3.3 Fault Tolerant Control System Design for the Benchmark 49

0 5 10 15
-0.5

0

0.5 Position
reference

Tacho-wire
disconnected

Position

Time [sec]

Actuator position with tachometer fault
Po

si
tio

n
[r

ad
]

Figure 3.14: The end-effect of a disconnected tachometer wire is an oscillation of the arm posi-

tion around the position reference set-point. The fault happens at 3.65 sec.

Table 3.15: Modified logic model for the velocity measurement (tachometer), where the effect of

the fault TachoWireDisc is changed from zero to a dedicated “oscillation” discrep-

ancy.

Velocity measurement Input Output
Fault Vel VelMeas

NoFault Low Low
Zero Zero
High High
Oscil Oscil

TachoWireDisc - Oscil

Table 3.16: The relation between faults and end-effects of the benchmark example.

❾
Fault - End-effect ❿ Po

s=
L

ow

Po
s=

C
on

st

Po
s=

H
ig

h

Po
s=

O
sc

il

VposWireDisc x
VnegWireDisc x
VoutWireDisc x x
VelRefWireDisc x
TachoWireDisc x
BrakeFailedOn x
EndSwitchPosDisc x
EndSwitchNegDisc x

50 Development Method for Fault Tolerant Control

3.3.4 Severity Assessment

The end-effects, found in the previous step, are classified with respect to severity. The
analysis has been continued up to the level of engine speed to determine the top-level
consequences. Table 3.17 shows the classification into 5 hazard classes.

Table 3.17: Severity assessment of end-effects caused by the considered faults in the Benchmark

problem.

Hazard class End-effects on ship speed

1 Catastrophic Acceleration to full speed (Pos=High)
2 Very serious Deceleration to zero speed (Pos=Low)
3 Serious Constant speed (Pos=Const)

Fuel rod position oscillating, possibly ripple on ship speed, extreme
wear on equipment (Pos=Oscil)

4 Not serious
5 Indifferent

3.3.5 Analysis for Reconfiguration

The next step in the process is to produce a fault tree that shows the causal relation
between failure modes and end-effects. The benchmark fault tree shown in figure 3.15
consists of three independent sub-trees.

3.3 Fault Tolerant Control System Design for the Benchmark 51

CurRef=Oscil

Cur=Oscil

Vel=Oscil

Pos=Oscil

VelMeas=Oscil

TachoWireDisc

CurRef=Low CurRef=High

Cur=Low Cur=High

Vel=Low Vel=High

Pos=Low Pos=High

VelRef=Low VelRef=High

VoutWireDiscVnegWireDisc VposWireDisc

PosMeas=Const. PosRef=Low

PosMeas=LowPosMeas=High

PosRef=High

VelRefDes=HighVelRefDes=Low

&&

Cur=Zero

Vel=Zero

Pos=Const

VelRefWireDiscBrakeFailedOn PosRef=High PosRef=Low

VelRef=Zero

CurRef=Zero

EndSwitchPosDisc EndSwitchNegDisc

& &

Figure 3.15: The benchmark fault tree showing the possible faults that cause the four end-effects

on the arm position: constant, oscillating, low, and high.

3.3.6 Remedial Action Selection

The benchmark equipment does not offer many possibilities for reconfiguration, but
a few things can be done to maintain operation. The search for remedial ac-
tions is supported by an inspection of the fault tree in figure 3.15, where a spe-
cific reconfiguration proposal can be examined for its ability to stop fault prop-
agation. Possible remedial actions for the benchmark are listed in table 3.18.

52 Development Method for Fault Tolerant Control

Table 3.18: Possible remedial actions for the benchmark equipment.
No.: Name
Faults

Remedial action Reconfiguration
condition

Degradation

1: PosEstim
Position measurement
faults (PosMeas=High,
PosMeas=Low, Pos-
Meas=Const)

Substitute position measurement with
filtered integration of velocity mea-
surement. Use softer position con-
trol to avoid large velocity changes as
these cause estimation errors.

Position error ex-
ceeds 5% ❽ Longer position change

response times. Limited
operation duration due to
drift from sensor noise and
measurement errors

2 : VelCtrlBypass
Faults connected to
the velocity controller
(VelMeas=Oscil, Vel-
Ref=Zero)

Disable velocity control loop by
switching power drive to current con-
trol. Activate alternative position con-
troller that uses the current reference
as controllable

Position error ex-
ceeds 5% or more
than 5 oscillations
about position set-
point ➀

Longer position change
response times

3: CloseDown
Motor and power
drive faults (Cur=Zero,
Vel=Zero)

No reconfiguration possibilities on
present equipment, so make a close-
down (brake) ➁ Position changes

more than 5% ➂ System inoperable. Fuel
pump rod fixed at last ac-
tive position✞

These faults cause either a change to full or zero engine speed and it is undesirable to have a

large actuator position change before reconfiguration is activated. It may also be unsafe to use a

position estimate based on velocity, if there has been large velocity changes because the discrete

sampling of the velocity causes position estimation errors. A full stroke is 270 ms, so the reaction

time must be considerably smaller.✠
The end-effect of a zero velocity measurement is an oscillation about the position set-point,

but the amplitude is not yet known. The condition for reconfiguration is either that the position

changes more than 5% or that there has been a sufficient number of oscillations to expose the

equipment to excess wear.➃
The equipment could be slightly modified, so the control computer could override the end-stop

switch signals by a digital output. This would reduce safe operation as the end-stop switches are

mounted to protect the equipment, but operation could continue un-effected. Also, the reliability

of the system would degrade because additional electronics (wires, relays, etc.) would have to be

mounted.➄
The end-stop switch failure still facilitates motion in one direction, but it is impossible to

return in the opposite direction. The reconfiguration condition is thus formulated as a position

change because this is the undesired effect.

The variables in brackets in the first column show the points in the fault tree, where fault
propagation is stopped by the corresponding reconfiguration. It can be seen that it is
possible to prevent the occurrence of any end-effect with one of these remedial actions.
It should be noted, whatsoever, that a shut-down also causes the arm to be fixed at the
present position (same as the Pos=Const end-effect).

The reconfiguration condition, that determines the maximum tolerable position
change before the remedial action is executed, is considered for each remedial action.
The overall requirement was stated in section 3.3.1 as a maximum position error of 5%
corresponding to 2 degrees deviation of the arm position.

The last column in table 3.18 lists the operational degradation following a recon-

3.3 Fault Tolerant Control System Design for the Benchmark 53

figuration. There is no redundant hardware in the equipment, so it is not possible to
reconfigure without any degradation. Nevertheless, it is extremely important to have at
least some control of the system until other contingency procedures have been effectu-
ated by the operator.

3.3.7 Fault Detection and Isolation Design

The basic requirements to FDI are given in the remedial action list (table 3.18). It can
be seen that the following three groups of discrepancies must be detected and isolated:

1. PosMeas=High, PosMeas=Low, and PosMeas=Const

2. VelMeas=Oscil (same as VelMeas=Low and VelMeas=High) and VelRef=Zero

3. Cur=Zero and Vel=Zero

From the reconfiguration condition in the same table, it is clear that simple out-of-range
detections of the involved variables are not feasible. The zero-discrepancies are within
the legal range and the low/high discrepancies must be detected before the position
change becomes big enough to exceed the operational range. The detection must then be
performed using analytical redundancy where the mathematical models of the velocity
controller, the power drive, and the mechanics are utilized.

It is possible to do an initial feasibility study of model based FDI using the FPG,
before the heavy job of FDI design is begun. The principle of model based FDI is, ba-
sically, to detect deviations between measurable signals. The measurable signals in the
benchmark are velocity reference, velocity, current, and position. An example on a fault
detector is an observer with velocity and position measurements as inputs that models
the gear and the integration from velocity to position. Such an observer is presented
in section 4.3 on page 74. This detector is sensitive to position and velocity measure-
ment faults. The logic model of this detector (table 3.19) is then connected to the FPG.
Likewise, detectors for deviation between the other measurable signals are connected to
the FPG. The BeologicTM rules for these detectors are found in appendix A.3. It is then
possible to analyze the combined FPG/detector rule base to determine which faults will
be detected by the individual detectors. The benchmarks fault-detector matrix is shown
in table 3.20. The faults have been organized into three groups that shall be isolated.
From an inspection of the matrix it is obvious that the VelRefWireDisc fault cannot be
distinguished from the end-switch faults. It may be possible to isolate VelRefWireDisc
if information about the dynamic responses to the involved faults are included in the
detector algorithm. This problem is then postponed to the actual FDI algorithm design.
It is also obvious that the two detectors, DetVelCur and DetVelRefCur, are superfluous
from an isolation point of view. It is possible to isolate the three groups (except the
VelRefWireDisc) with the logic relations given in table 3.21, that do not include these
two detectors.

54 Development Method for Fault Tolerant Control

Table 3.19: Logic model of a fault detector that uses the position and velocity measurements for

detection of faults in these sensors.

DetVelPos
Inputs Output

PosMeas VelMeas DetVelPos

Low Low False
Low Zero True
Low High True
Const Low True
Const Zero False
Const High True
High Low True
High Zero True
High High False
Oscil Oscil True

Table 3.20: A matrix showing the relationship between faults and suggested fault detectors for

the benchmark example. A “True” means that the fault can be detected by the cor-

responding detector. The fault detectors detect inconsistencies between two measur-

able signals.

Fault detectors (named “Det<signal1><signal2>”)
Fault group Fault DetVelPos DetVelRefVel DetVelCur DetVelRefCur

PosMeasFault VposWireDisc True False False False
VnegWireDisc True False False False
VoutWireDisc True False False False

VelCtrlFault TachoWireDisc True True False True
VelRefWireDisc False True False True

OtherFault BrakeFailedOn False True True False
EndSwitchPosDisc False True False True
EndSwitchNegDisc False True False True

Table 3.21: The benchmark fault isolation BeologicTM rules.

Rule
0 IsoPosMeasFault = (DetVelPos and not DetVelRefVel)

1 IsoVelCtrlFault = (DetVelPos and DetVelRefVel)

2 IsoOtherFault = (not DetVelPos and DetVelRefVel)

This feasibility study of detectability and isolability must be considered as being
only preliminary, because the logic models do not include dynamics, disturbances, ex-
ternal load, and unmodelled dynamics - all factors that influence the FDI performance.

The actual design of the two FDI algorithms for DetVelPos and DetVelRefVel are
designed at this point in the development procedure, but only DetVelPos is presented
in this report. DetVelPos is realized as the observer designed in section 4.3 in the next
chapter. This observer is able to detect discrepancies between the position and velocity

3.3 Fault Tolerant Control System Design for the Benchmark 55

measurements corresponding to a position error of 0.3 degrees, which fulfils the recon-
figuration requirements of 2 degrees from table 3.18.

3.3.8 Fault Accommodation Design

Fault accommodation in the benchmark case involves the design of the remedial actions
listed in table 3.18. The two secondary position controllers and the position estimation
algorithm are designed off-line so the run-time handling requires only simple switching
between separate configurations of the control level. There is no need to consider the
transition between the different configurations.

The basic requirements for the design of the two secondary position controllers were
given in table 3.18. The controller for remedial action #1 shall have a lower bandwidth
than the primary controller to avoid large changes in velocity, as this causes estimation
errors in the velocity based position estimation. The controller for remedial action #2
shall be designed to use the current reference as control output instead of the velocity
reference. These requirements are refined for the detailed design of the algorithms. The
results are not included in this thesis.

3.3.9 Supervisor Decision Logic Design

The requirements to the benchmark supervisor’s decision logic are compiled from the
analysis above and summarized in table 3.22, where also commands and monitoring
messages to higher levels are included. The additional requirements are not used in this
paragraph, but they will be dealt with under the implementation of the supervisor in
section 3.4.

The design of the fault handling part of the decision logic is very simple for the
present case. The three remedial actions listed in table 3.18 shall be activated/deactivated
by the output from the FDI algorithms (table 3.21) in a one-to-one scheme, such that
IsoPosMeasFault governs remedial action #1, IsoVelCtrlFault governs remedial action
#2, and IsoOtherFault governs remedial action #3. The simple BeologicTM rules for this
scheme are listed in table 3.23.

The task is now to verify the decision logic’s fault handling functionality in combi-
nation with the FPG of section 3.3.3. The logic models are therefore modified to include
the functionality of reconfiguration. The two subsystems effected by the reconfiguration
are shown in table 3.24 and table 3.25. Note that the two models also include the “os-
cillation” discrepancy that was added in section 3.3.3. The complete logic model of the
system is now available including the FPG, the FDI logic, the decision logic rules, and
the reconfiguration (corresponding to the general scheme in figure 3.8). The boolean
BeologicTM rules for this model are listed in appendix A.4.

56 Development Method for Fault Tolerant Control

Table 3.22: Requirements to the benchmark supervisor’s decision logic design.

Input event Value Actions

CmdStartStop Start Disengage brake, enable power, enable position controller in default primary
mode (PosCtrlPrim), enable FDI.

Stop Disable power, engage brake.
CmdSmallPerturb On Test mode: Generate 5% steps around current position reference.

Off Disable small perturbations test.
CmdLargePerturb On Test mode: Generate full stroke steps in position

Off Disable large perturbations test.
CmdPosCtrlBypass On Test mode: Bypass position controller and apply velocity reference directly.

Off Restore position control
CmdRestoreNormal Restore to normal controller configuration. This command is sent by the operator

when a detected fault has been manually repaired or if the event was concluded to
be a false alarm.

SetPosRef PosRef Update position reference to PosRef.
SetVelRef VelRef In PosCtrlBypass mode, update velocity reference to VelRef.
IsoPosMeasFault Switch position acquisition to estimation from velocity measurement, enable po-

sition controller in PosCtrlPosEstim mode, disable FDI, send alarm message. Run
this mode for 5 minutes then close-down and send alarm message.

IsoVelCtrlFault Disable velocity controller and use current input instead, enable position control
in PosCtrlVelBypass mode, disable FDI, send alarm message.

IsoOtherFault Disable power, engage brake, send alarm message.
TimPosEstimTimeout Time-out signal from an external timer used to force close-down some minutes

after a position measurement fault (IsoPosMeasFault) caused the position acqui-
sition to be based on the velocity measurement.

Key Cmd : Command from plant wide control system.

Set : Reference set-point from plant wide control system.

Iso : Detected and isolated fault event.

Tim : External timer event.

Table 3.23: The benchmark supervisor’s BeologicTM rules for fault handling decision logic.

Rule
0 PosEstim = IsoPosMeasFault

1 VelCtrlBypass = IsoVelCtrlFault

2 CloseDown = IsoOtherFault

Assisted by BeologicTM, the complete logic system is analysed for the properties
outlined in section 3.2.8. It is not difficult to see, in this simple case, that the decision
logic successfully stops the propagation of position and velocity measurement faults
and makes a shut-down in the other cases. There is, nevertheless, a number of useful
properties that can be observed from the coherence of the complete logic model. The
following characteristics of the rule base illustrate the potential of the outlined method:❳ An automatic consistency check on the rule base yields the following faults

bound to false: VposWireDisc, VnegWireDisc, VoutWireDisc, and TachoWire-
Disc. These faults will thus be reconfigured correctly.

3.3 Fault Tolerant Control System Design for the Benchmark 57

Table 3.24: Modified model for the position measurement (potentiometer) where reconfiguration

is included. The potentiometer faults will only propagate when the potentiometer is

in use (PosEstim=Off).

Position measurement Inputs Output
Fault PosEstim Pos PosMeas

NoFault On Low Low
On Const Const
On High High
On Oscil Oscil

VnegWireDisc Off - High
VposWireDisc Off - Low
VoutWireDisc Off - Const

Table 3.25: Modified model for the velocity reference (velocity reference wire) where reconfig-

uration is included. If the velocity controller is bypassed (VelCtrlBypass=On) then

the output of this unit becomes the current reference instead of the velocity reference

and the disconnected velocity reference wire will have no effect.

Velocity ref. input Inputs Output
Fault VelCtrlBypass VelRefDes VelRef CurRef

NoFault Off Low Low -
Off Zero Zero -
Off High High -
Off Oscil Oscil -

VelRefWireDisc Off - Zero -
- On Low - Low

On Zero - Zero
On High - High
On Oscil - Oscil

❳ Likewise, the end-effects are analysed with the following result:
Pos=Low false
Pos=Const true
Pos=High false
Pos=Oscil false

This means that the three faults causing the arm to accellerate in either positive
or negative direction or start oscillating are handling correctly. The binding on
Pos=Const means that all other faults will cause the arm position to freeze, which
is correct.❳ The binding on Pos=Const is further examined by searching for solutions, and
the possible faults are VelRefWireDisc, BrakeFailedOn, EndSwitchPosDisc, and
EndSwitchNegDisc. This means that these faults will cause the arm position to
freeze. The velocity reference fault (VelRefWireDisc) is included in this list be-

58 Development Method for Fault Tolerant Control

cause it cannot be isolated from the end-switch faults and is handled by a shut-
down (see section 3.3.7).

This analysis completes the verification of the supervisor decision logic.

3.3.10 Summary of FTCS design for the Benchmark

The complete the design of a fault tolerant control system for the benchmark actuator
has now been presented. Two ways to reconfigure the system have been applied to keep
the system running when the position measurement or the velocity controller fails. A
scheme for fault detection and isolation was established and decision logic rules were
assigned to handle the reconfiguration. The ingredients of the FTCS are then ready for
implementation in the three layer structure presented in section 3.1. This is the topic of
the last section in this chapter.

3.4 Supervisor Architecture for the Benchmark

The last section in this chapter shows how a supervisor for the benchmark actuator can
be implemented in the three layer structure presented in section 3.1. The bottom layer
consists of the reconfigurable position control loop, the second layer consists of the fault
detectors and effectors, and the third layer consists of the decision logic. The supervisor
is implemented to meet the requirements for fault handling and operational commands
as specified in the previous section.

3.4.1 Control Level

The position control loop is expanded with the extra functionality for reconfiguration
as required by the list in table 3.22. This includes switching between different position
control algorithms, changing to position estimation based on velocity measurement, and
bypass of the velocity controller in the power drive. The components of this reconfig-
urable control level is presented in figure 3.16.

The data flow management in the control level has been implemented simply as if-
then structures in the controller task. The different configurations of the control level
can be tested separately in this arrangement.

3.4.2 Detector-Effector Level

The detector and effector modules are shown in figure 3.17. The two detectors (DetVel-
Pos and DetVelRefVel) use three control level signals to create fault symptoms and the
isolation logic (see table 3.21) distinguishes between the two possible fault events: Posi-
tion measurement fault and velocity controller fault. The fault detectors can be disabled
by the decision logic, which is used when a fault has been detected.

3.4 Supervisor Architecture for the Benchmark 59

PosCtrlPrim

PosCtrl
PosEstim

Position
estimation

Position
potentiometer

PosCtrl
VelBypass

Brake
power

PosRef VelRef
Power

(On,Off)
VelCtrl
Bypass

Brake
(On,Off)

Off

Off

Off

On

On

On CurRef

VelRef
PosMeas

VelMeas

Power
drive

Estimated
position

Pos
Estim

PosCtrl
Bypass

Figure 3.16: Reconfigurable controller for the benchmark actuator. All the inputs in the top of

the figure are settings coming from the effectors and the supervisor decision logic.

Boldface variables indicate remedial actions and solid lines are data signals.

DetVelRefVel

DetVelPos

FDIenabled
(On,Off)

PosMeas
VelMeas

VelRef

Isolation
logic

IsoPosMeasFault IsoVelCtrlFault

DetectorsEffectors

Small
perturbation
algorithm

Large
perturbation
algorithm

+

SmallPeturb

LargePeturb

PosRef

Raw
PosRef

Off

Off
On

On

Figure 3.17: Detector-effector level for the benchmark supervisor. Two fault detectors and iso-

lation logic produce fault events based on input from the control level. The effector

box consists of the position reference perturbation generators.

60 Development Method for Fault Tolerant Control

The effector box consists of two perturbation algorithms used by the operator for
test purposes. SmallPerturb adds small steps to the current position reference whereas
LargePerturb substitutes the position reference with full stroke steps. There is no spe-
cific reconfiguration algorithms for fault handling, because the remedial actions deter-
mined in section 3.3.8 are all realised by direct switching in the control level. The two
perturbation algorithms are conveniently located in the effector box, because they are
independent of the control level and can be assigned to separate real-time tasks.

3.4.3 Decision Logic Level

The decison logic is implemented as a set of state-event machines (SEMs), where the
states represent the setting of the different switches in the control level, the effectors
and the detectors (see figure 3.18). These SEMs define the complete reaction scheme
on input events (commands, set-points, and faults). The difficulty in setting up a SEM
scheme is the choice of functionality for each SEM. More SEMs could be joined to one
by expanding the state space to all combinations, but this is normally not advantageous.
To keep the design simple, it is beneficial to let each SEM be as small as possible and
then include dependencies between the individual SEMs as conditions on transitions.
This issue is treated in more detail in Zamanabadi et al. (1996). All the SEMs in the
benchmark decision logic can be seen to have only two possible values, but internal
dependencies make the entire SEM suite an involved decision device.

The SEM matrices are mostly self-instructional, but a few comments highlight spe-
cific details:❳ The requirement to run the position estimation based control for only some min-

utes has been implemented using an external timer. When the position estimation
is started (PosEstim=On) a timer is enabled by the output PosEstimTimerOn. At
time-out, the input TimPosEstimTimeout is sent to the decision logic and this
forces a close-down.❳ An example on dependencies between SEMs is illustrated between SmallPerturb
and LargePerturb. The dashed lines indicate dependencies that inhibit simultane-
ous activation of both perturbation generators.❳ A second example on internal dependencies is shown from PosEstim to Brake and
Power. When the TimPosEstimtTimeout signal is received, the system is closed
down by forcing Power to Off and Brake to On.❳ All commands to the supervisor are replied with a verification message that is
either Failed or Ok. Additional diagnostic information can follow a "VerifFailed"
message, but this is not shown in the figure.❳ Alarm messages are sent to the plant wide control system when the actuator is
autonomously reconfigured. Details on the cause of reconfiguration follows the
alarm, but is not included in the figure.

3.4 Supervisor Architecture for the Benchmark 61

On Off

CmdStartStop=Start
[VerifOk]

CmdStartStop=Stop
[VerifOk]

IsoOtherFault=True
[Alarm]

C
m

dStartStop=Stop
[V

erifFailed]

C
m

dS
ta

rt
St

op
=S

ta
rt

[V
er

if
Fa

ile
d]

Power

On Off

CmdStartStop=Stop

CmdStartStop=Stop
CmdRestoreNormal

CmdStartStop=Start

IsoOtherFault=True

Brake

On Off

IsoVelCtrlFault=True
[Alarm]

CmdStartStop=Stop
CmdRestoreNormal

VelCtrlBypass

On Off

IsoVelCtrlFault=True
IsoPosMeasFault=True

CmdRestoreNormal [VerifOk]

IsoVelCtrlFault=False
IsoPosMeasFault=False

CmdStartStop=Stop

FDIenabled

On Off

CmdPosCtrlBypass=On
[VerifOk]

CmdPosCtrlBypass=Off
[VerifOk]

C
m

dPosC
trlB

ypass=O
ff

[V
erifFailed]

SetV
elR

ef [V
erifFailed]

SetPosR
ef [PosR

ef]

C
m

dP
os

C
tr

lB
yp

as
s=

O
n

[V
er

if
Fa

ile
d]

Se
tP

os
R

ef
 [

V
er

if
Fa

ile
d]

Se
tV

el
R

ef
 [

V
el

R
ef

]

PosCtrlBypass

CmdLargePerturb=On AND
SmallPerturb=Off

[VerifOk]

CmdLargePerturb=Off
[VerifOk]

C
m

dL
argePerturb=O

n A
N

D
Sm

allPerturb=O
n

[V
erifFailed]

C
m

dL
argePerturb=O

ff
[V

erifFailed]

C
m

dL
ar

ge
Pe

rt
ur

b=
O

n
[V

er
if

Fa
ile

d]

LargePerturb

CmdSmallPerturb=On AND
LargePerturb=Off

[VerifOk]

CmdSmallPerturb=Off
[VerifOk]

C
m

dSm
allPerturb=O

n A
N

D
L

argePerturb=O
n

[V
erifFailed]

C
m

dSm
allPerturb=O

ff
[V

erifFailed]

C
m

dS
m

al
lP

er
tu

rb
=O

n
[V

er
if

Fa
ile

d]

SmallPerturb

OffOn

On Off

On Off

IsoPosMeasFault=True
[Alarm,PosEstimTimerOn]

PosEstim

PosEstimTimer=TimeOut =>
Brake=On, Power=Off

[Alarm]

Figure 3.18: The benchmark supervisor decision logic suite of state-event machines. Default

states are in boldface. Outputs are in square brackets. Dashed lines show internal

dependencies between SEMs.

62 Development Method for Fault Tolerant Control

The decision logic is now tested and verified for correct operation. This verification
is different from the completeness check described in section 3.3.9, because it concerns
the sequential behaviour of the state transitions whereas the completeness check is a
single parse analysis. The checks described below involve only the operation of the
SEMs and does not (as for the completeness check) check up against the logic model of
the system described by the FPG in section 3.3.3. The characteristics, that are desired to
verify, are the following:❳ Dead-ends. The decision logic can be examined for SEMs that can be locked in a

state where there is no exit to other states.❳ Superfluous information. The SEMs can be analyzed for states that can never
be entered and also for superfluous inputs, outputs, and rules. This excessive
information represents potential errors in the design.❳ Contradiction. The SEM rule base can be examined for contradictions between
rules. A contradiction exists, if two rules try to force one SEM into two different
states.❳ Forbidden state combinations. The supervisor requirements indicate which com-
binations of states are not allowed. The final decision logic must be checked up
against a list of these forbidden combinations. An example in the benchmark case
is SmallPerturb and LargePerturb that are not allowed to be both On. The for-
bidden combinations can be found by temporarily including transition rules that
violate the forbidden relations. When a contradiction check is performed, as ex-
plained under the previous bullet, these additional rules will be reported as being
in contradiction with the existing SEM rules.

These apects have been verified for the benchmark FTCS using the Beologic
VisualStateTM tool-box (Beologic (1996)). The BeologicTM AIT tool-box used earlier for
the FPG analysis is not designed for SEM analysis as is VisualStateTM. VisualStateTM is,
on the other hand, not able to perform a logical verification as AIT, so it is necessary
to use both software packages in a two-step verification. VisualStateTM is therefore used
to simulate the operation of the decision logic and perform the above checks. The soft-
ware tool facilitates automatic code generation, so the final decision logic module can
be automatically generated and compiled into the software on the benchmark control
computer.

3.4.4 Experiments in the Laboratory

The performance of the implemented supervisory control system is verified through ex-
periments on a laboratory setup. The laboratory setup is equipped with the real power
drive, actuator motor, gear, arm, and rod. It facilitates a programmable load force on the
rod generated by a motor arrangement similar to the actuator part.

3.5 Summary 63

An experiment is presented in figure 3.19 where the actuator position reference is
changed stepwise within 75% of the full range. A random load torque is added as a
pseudo random binary sequence (PRBS) with 30% of maximum value. A step-like fault
is induced by disconnecting the negative wire of the position potentiometer at 5.42 sec.
This causes the position measurement to jump to 0.51 rad, which is detected in the next
sample by a first order FDI observer that monitors velocity and position. Subsequently,
the faulty position measurement is substituted with an estimate based on the velocity
measurement.

The figure shows the position signals with and without FDIR. When FDIR is not

0 2 4 6 8 10 12 14 16 18
-0.5

0

0.5

Time [sec]

Actuator position control with and without reconfiguration

Po
si

tio
n

[r
ad

]

Real position
with reconf.

Real position
without reconf.

Estimated
position

Faulty position
measurement

Position
measurement

Position reference

Collision with
end-stop

Figure 3.19: An experiment with the actuator benchmark illustrating the reaction to a position

measurement fault with and without fault detection and reconfiguration.

applied, the position controller forces the arm to the negative end-stop in only 180 msec
with the very serious consequence that the diesel engine speed is reduced to zero. When
FDIR is applied, an alarm is issued to the operator and operation continues on the esti-
mated position. It is clear from the figure that noise and disturbances cause a bias on the
position estimate. After 10 sec this bias is about 0.03 rad (8% of full range). There has
been taken no means to estimate this bias prior to the fault, but it is feasible to improve
performance with the position estimate by compensating the bias. The experiment il-
lustrates the situation, where the operation can be continued a few minutes until other
contingency procedures have been organized.

3.5 Summary

The realization of an FTCS contains basically three tasks in addition to the existing con-
trol function: Fault detection and isolation, decision taking, and reconfiguration. A con-
sistent development methodology, presented in this chapter, enables the design engineer
to include fault analysis in the early controller design phase and establish specifications

64 Development Method for Fault Tolerant Control

for the three FTCS elements. The preliminary fault analysis is based on a systematic ex-
amination of potential component failures and an analysis of the fault effect propagation
through subsystems in a simple logic-value model of the system. Assisted by software
tools, the preliminary fault analysis is used to determine the end-effect on system level.
This is particularly difficult when internal feedback loops are present in the system, and
a method to handle this was given. The preliminary analysis supports the specification
of requirements for fault handling, and thereby enables early design of the decision logic
responsible for fault handling. Combined with the logic-value fault propagation model,
this decision logic design can be verified for complete fault coverage and consistency.
A procedure for this verification, that has a potential for automation in software, was
provided in this chapter.

Application of the development methodology to the benchmark equipment illus-
trated the potentials of the method. The case study showed how feedback in a cascaded
controller structure, that leads to oscillation in case of a tachometer failure, is handled. It
also demonstrated a method to analyse the possibilities for isolation between more faults
in the same subsystem. Finally, it illustrated the realization of a supervisor’s decision
logic as state-event machines and how it can be checked for consistency.

Chapter 4

Fault Detection and Isolation on

the Benchmark

The general fault detection and isolation problem was introduced in section 3.2.6 and
state-of-the-art was presented in section 2.3.2. This chapter compares a wide range
of FDI algorithms that have been applied to the benchmark problem. The benchmark
proposal was motivated by the scarcity of real industrial test platforms for comparison
of advanced FDI methods. Since the announcement in 1993, nine papers have been
published with various approaches to solve the problem. This chapter gives a short
introduction to the individual methods and discusses the pros and cons in connection
with the benchmark problem.

4.1 The Benchmark Proposal

The diesel engine actuator introduced in section 3.3.1 was proposed for an international
benchmark test by the Department of Control Engineering at Aalborg University at the
Tooldiag’93 conference in Toulouse, France. The purpose was to establish a common
platform for comparison between miscellaneous approaches for analytical fault detec-
tion and isolation based on a real application. A benchmark kit was distributed with
mathematical models of the system implemented in Matlab SimulinkTM, data sequences
with fault scenarios, and design specifications for FDI (Nielsen et al. (1993)). The re-
sponse was very positive and six groups presented their results at the Safeprocess’94
symposium in Helsinki, Finland. These papers were later published in revised form in
the Control Engineering Practice journal. Three additional papers have subsequently
been published.

The benchmark proposal is available in Blanke and Patton (1995) and a test descrip-
tion is provided in Blanke et al. (1995) with all relevant details for FDI studies. The

65

66 Fault Detection and Isolation on the Benchmark

background for the approaches discussed in this chapter is summarized in this section
and the necessary information on the mathematical models is provided in the next sec-
tion.

Two realistic fault scenarios are considered:❳ A temporary interruption between the wiper and the resistance element in the po-
sition potentiometer (same as VoutWireDisc in table 3.6 in the previous chapter).
This causes the position measurement to remain constant until the fault disappears
again.❳ A broken wire or defect in the negative end-stop switch (EndSwitchNegDisc in
table 3.6 in the previous chapter). This causes the power drive to inhibit negative
currents in the motor.

Both faults could cause over-speed of the diesel engine, so computerized fault detection
and reconfiguration are required. The available signals for FDI are velocity reference,
velocity measurement, and position measurement. The basic requirements to the FDI
design are the following:❳ The detection delay shall be very short, preferably within one samples.❳ The false alarm rate shall be very low, preferably zero.❳ The unknown load torque input shall not cause false alarm. No assumptions can

be made on the signal except that the maximal load torque on the actuator arm is
0.6 kNm (see table 3.4).❳ The FDI scheme shall be robust to model uncertainty. The critical parameters are
inertia and friction because they depend on the attached load equipment.

Simulations of the behaviour with the two fault events are provided, where also a
load disturbance is included. Five different data-sets are generated with different models,
different excitation levels on the velocity reference input, and different periods where the
position fault, current fault and load disturbances are enabled. An overview of the data-
sets is given in table 4.1. The linear and the simplified nonlinear models are used for
linear and nonlinear design approaches, whereas the full scale simulations are used for
verification of the design. The full scale nonlinear model is a very close approxima-
tion to the real equipment. The high excitation simulation DS4 includes periods with
current saturation and can be used to examine robustness properties to unmodelled non-
linearities. DS5 involves a long period with current fault and also simultaneous load
disturbances. It can be used to verify isolability between the current fault and the load
disturbance. Plots of all data-sets except DS2 are presented in figure 4.1 – 4.4.

4.1 The Benchmark Proposal 67

0

100

200

300

400

500

600

Load input Ql

DS1

Position fault Current fault

[N
m

]

-15

-10

-5

0

5

10

15
Actuator motor velocity reference nref and measurement nm

[r
a

d
/s

]

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Load velocity nl

[r
a

d
/s

]

-40

-30

-20

-10

0

10

20
Actuator current im and with fault i’mν

[A
]

0 0.5 1

s’oν

i’mν

i m

nref

nm

αsoν
sl

1.5 2 2.5 3
-0.02

-0.01

0

0.01

0.02

0.03

0.04
Position of actuator αsoν, with fault s’oν , and load sl

Time [s]

[r
a

d
]

} }

Figure 4.1: Benchmark test data sequence DS1: Small excitation of linear design model. .

68 Fault Detection and Isolation on the Benchmark

Position fault Current fault

s’oν

i’mν

i m

nref

nm

αsoν

sl

} }

0

100

200

300

400

500

600
DS 3

[N
m

]

-15

-10

-5

0

5

10

15

[r
a

d
/s

]

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

[r
a

d
/s

]

-40

-30

-20

-10

0

10

20

[A
]

0 0.5 1 1.5 2 2.5 3
-0.02

-0.01

0

0.01

0.02

0.03

0.04

Time [s]

[r
a

d
]

Load input Ql

Actuator motor velocity reference nref and measurement nm

Load velocity nl

Actuator current im and with fault i’mν

Position of actuator αsoν, with fault s’oν , and load sl

Figure 4.2: Benchmark test data sequence DS3: Small excitation of full scale nonlinear model. .

4.1 The Benchmark Proposal 69

Position fault Current fault

s’oν

i’mν

i m

nref

nm

αsoν

sl

} }

-600

-400

-200

0

200

400
DS 4

[N
m

]

-300

-200

-100

0

100

200

300

[r
a

d
/s

]

-4

-2

0

2

4

[r
a

d
/s

]

-40

-20

0

20

40

[A
]

0 0.5 1 1.5 2 2.5 3
-0.2

-0.1

0

0.1

0.2

Time [s]

[r
a

d
]

Load input Ql

Actuator motor velocity reference nref and measurement nm

Load velocity nl

Actuator current im and with fault i’mν

Position of actuator αsoν, with fault s’oν , and load sl

Figure 4.3: Benchmark test data sequence DS4: High excitation of full scale nonlinear model. .

70 Fault Detection and Isolation on the Benchmark

Current fault ON Current fault OFF

s’oν

i’mν

i m

nref

nm

αsoν

sl

Time [s]

Load input Ql

Actuator motor velocity reference nref and measurement nm

Load velocity nl

Actuator current im and with fault i’mν

Position of actuator αsoν, with fault s’oν , and load sl

-60

-40

-20

0

20

40

[r
a

d
/s

]

-2

-1.5

-1

-0.5

0

0.5

1

[r
a

d
/s

]

-30

-20

-10

0

10

20

[A
]

0.5 1 1.5 2 2.5 3 43.5

-0.05

0

0.05

0.1

0.15

[r
a

d
]

-400

-200

0

200

400

600
[N

m
]

DS5

Figure 4.4: Benchmark test data sequence DS5: Medium excitation of full scale nonlinear model

with long current fault period. .

4.2 Benchmark Actuator Description 71

Table 4.1: Overview of the data-sets used in the benchmark test. The table describes for each

data-set which model was used for generation, the excitation level on the reference

input, and the periods were the faults and load inputs are enabled.

Name Model type Excitat. Pos. fault [msec] Cur. fault [msec] Load [msec]

DS1 Linear design model Low 70-90 270-300 120-230
DS2 Simplified nonlinear model Low 70-90 270-300 120-230
DS3 Full scale nonlinear model Low 70-90 270-300 120-230
DS4 Full scale nonlinear model High 70-90 270-300 120-170

190-230
DS5 Full scale nonlinear model Medium - 40-230 140-180

190-205
300-340
350-365

The different FDI approaches presented in this chapter are compared on characteris-
tics like detection delay, false alarm rate, isolability, and the quality of the residuals. The
detection delay is measured from the last sample before the faults manifest themselves
in the velocity, current, or position signals (see table 4.2).

Table 4.2: This table lists the time of the first sample, where the benchmark faults manifest them-

selves in the data signals for the 5 test data-sets.

Fault DS1 [msec] DS2 [msec] DS3 [msec] DS4 [msec] DS5 [msec]

Position fault 70 70 70 74 -
Current fault 270 270 270 273 50

Further details on the benchmark proposal and fault scenarios are available in Blanke
et al. (1995).

4.2 Benchmark Actuator Description

This section gives a brief introduction to the mathematical model of the benchmark
equipment. The necessary information for FDI design is provided in Blanke et al. (1995)
and further details on the full scale nonlinear model are available in the technical report
Bøgh et al. (1993).

The fundamental model, shown in figure 4.5, consists of a velocity PI controller
within the power drive, an actuator motor, a gear, and an output arm. The velocity ref-
erence ➅➇➆✣➈▼➉ is generated by a digital position controller. The velocity servo determines
the desired motor current ➊✫➋⑨➌ to control the motor shaft velocity ➅➍➋ . Current saturation
within the power drive limits the actual current to ➊✑➋ . The position of the output arm is
denoted ❜❝❦ . The unknown load torque ➎➏❥ acts on the motor shaft with a torque ➎✾❥✇➋ . The
figure also includes measurement disturbances and the input location of the two faults

72 Fault Detection and Isolation on the Benchmark

Kqη

αs

Itot

ftot

1 1
N

Qlm

Ql

Qm

Kv

i2

nmν

s’oν

im0 im

∆im

∆so

Ipeak
Irms

i’m nm

νso(t)νnm(t)

so1
s

1
s

1
s

1
N

Kv
Tv

nref

Power drive Motor Gear & arm

Figure 4.5: Block diagram of the actuator servo-motor with velocity control loop of the power

drive. The speed reference is generated by a digital position controller. The points of

additive faults and disturbances are included.

considered. The parameter values and variables ranges are listed in table 4.3 and table
4.4.

The linear design model provided for the benchmark test is given as the continuous-
time state-space model➐➑ ❪❚❞✫❵✍q③➒➔➓ ➑ ❪❚❞✫❵➣→✜↔↕➓✫➙❂❪❚❞✫❵➇→✜➛✹➓ ♣ ❪❚❞✫❵➍→➝➜❱➞✝➓✣❤➟➞❺❪❲❞✫❵ (4.1)➠ ❪❲❞✫❵⑤q❃➡ ➑ ❪❲❞✫❵➣→✜➜❱➢✝❤➟➢❝❪❚❞✫❵➍→✜➤➥❪❲❞✫❵✲✉
where the state vector is ➑ q➧➦ ➊ ❢ ➅ ➋ ❜ ❦✲➨➫➩ , the measurable output is ➠ q➧➦ ➅ ➋➯➭ ❜✡➲❦✥➭ ➨➳➩ ,
the control input is ➙➵q❻➅➣➆✣➈▼➉ , the load disturbance is

♣ qr➎❍❥ , the additive actuator fault
is ❤➟➞✹q③➸①➊✌➋ , the additive sensor fault is ❤➺➢✈qr➸t❜❝❦ , and ➤➻q➼➦ ➤✟➽➾➋③➤➟➢▼❦ ➨➫➩ are white noise
inputs on the velocity and position sensors with corresponding variances ➚ ❢➽➟➋ and ➚ ❢➢▼❦ .
The system matrices are

➒ ➓ q ➪➶❹➹ ➘➷➴⑤➬➩ ➬ ➹➴⑤➮✑➱✃✭❐❖❒✖❐ ❮ ➉ ❐❖❒✖❐ ❮ ➴✍➬✲➴⑤➮✑➱✃✭❐❖❒✖❐ ➹➹ ⑩❰ ➹ ÏÐ ↔ ➓ q ➪➶Ñ➴✍➬➩ ➬➴✍➬✲➴⑤➮✑➱✃✭❐➫❒✎❐➹ ÏÐ ➛ ➓ q ➪➶ ➹ ⑩❰✈✃✭❐❖❒✖❐➹ ÏÐ
(4.2)

➜❱➞✝➓☞q ➪➶ ➹➴⑤➮✫➱✃ ❐➫❒✖❐➹ ÏÐ ➡ÒqÔÓ ➹ Õ ➹➹Ö➹Ø× ➢✥Ù ➜❱➢⑨qÚÓ ➹× ➢✑Ù
This model has the velocity feedback noise input ➤➺➽➟➋ located outside the velocity con-
trol loop, which is incorrect corresponding to the real system. The incorrect model was
by mistake provided for the benchmark test, so it is used throughout this thesis. The
significance of the error is anyway very small.

The corresponding discrete-time representation is➑ ❪✖Û➏→ Õ ❵✍q❹➒ ➑ ❪✖Û✰❵➍→✜↔①➙✏❪✖Û✰❵➇→➝➛ ♣ ❪✎Û✰❵➣→✜➜ ➞ ❤ ➞ ❪✖Û✰❵ (4.3)➠ ❪✎Û✰❵☞q③➡ ➑ ❪✎Û✰❵✏→➝➜ ➢ ❤ ➢ ❪✎Û✰❵➣→Ü➤➥❪✖Û✰❵✲✉

4.2 Benchmark Actuator Description 73

Table 4.3: Benchmark actuator linear design model parameters.

Par. Value Unit Description➴✍➬ 0.9 As/rad Velocity controller gain➩ ➬ Ý☎Þ Ý➇ß ⑩ ➌⑥à ➁ s Velocity controller integral time✃✎á✥â✖ã✫ä
30 A Power drive peak current limit✃✭å✭æ➣ç
12.2 A Power drive mean current limit➉ ❐➫❒✖❐ ⑩✫è Þ é➍ß ⑩ ➌☎à ➁ Nms/rad Total friction referred to servo motor✃✭❐❖❒✖❐ ❢ Þ ê✑ë➍ß ⑩ ➌ à ➁ ì ♦✲➋ ➀ Total inertia referred to servo motor➴⑤➮ 0.54 Nm/A Torque constant for servo motor❰
89 Gear ratioí ç 0.978 (DS1) Measurement scaling factor
1.045 (DS2-DS5)➱ 0.85 Gear efficiency➴✍î æ 1 Noise amplitude on velocity measurement➴ ç✖❒ ê➍ß ⑩ ➌⑥à ➂ Noise amplitude on position measurement

Table 4.4: Benchmark actuator variables.

Var. Range Unit Description♥ æ -30 to 30 A Motor current from power drive➽ æ -314 to 314 rad/s Shaft speed of servo motor➽ å â✖ï -314 to 314 rad/s Shaft speed referenceð➍ñ æ
-6 to 6 Nm Load torque referred to servo motorð➣æ
-14 to 14 Nm Load torque referred to servo motor➢ ❒ -0.4 to 0.4 rad Output arm position

where the discrete-time system matrices ➒ , ↔ , ➛ , and ➜ ➞ are found for a sampling time
of 10 ms.

A full scale 7th order nonlinear description is also provided that includes the follow-
ing details:

1. Velocity reference input filter in the power drive.

2. Limit on the integral term in the velocity controller (60 A).

3. Peak and mean current saturation in the power drive. The mean limit is active if
the energy ➊✌❢➋ ❞ exceeds a certain threshold.

4. Ripple on motor torque depending on motor shaft position.

5. Nonlinear friction terms: Stiction, columbic friction, and viscous friction.

6. Small backlash in gear.

7. Small spring effect in the rod, although not intended by design.

8. Analog-digital quantization effects.

74 Fault Detection and Isolation on the Benchmark

The load is modelled in the full scale description as a separate subsystem with inertia
and friction connected to the motor subsystem through a spring (rod). The model is
presented as nonlinear differential equations that also include hard nonlinearities where
the time derivative is discontinuous (Bøgh et al. (1993)).

4.3 Approaches to Fault Detection and Isolation on the

Benchmark

This section gives a description of the nine methods used in the design of FDI schemes
for the actuator position measurement and current faults. Each approach is presented
with an outline of the technique, choice of parameters, plots of the decision functions
(residuals), and resulting detection delays. The comments and conclusions included in
the individual descriptions originate from the associated paper unless specifically stated.

The two faults comprise different challenges for FDI. The current fault is not difficult
to detect, but very difficult to isolate from the unknown load disturbance and current
saturation. The problem is that the two inputs, ➸✾➊✥➋ and ➎❍❥ , act at the same point
in the system, and cannot be distinguished when they are just considered as additive
inputs unless further information (e.g. amplitude or frequency) is included. This makes
it difficult because no assumptions can be taken on the load input except a maximum
amplitude.

The position fault can be detected by simple means using solely the velocity and po-
sition measurements when assuming a fault-free velocity measurement. The following
first order observer is considered as a base-line observer where the estimation error is
used to detect position measurement faults:➐ò q❻❣ ò →❻➦ Õó ➘ ❣× ➢ ➨☞Ó ➅➇➋✈➭❜✡➲❦✥➭ Ù (4.4)❸❝➢➯q Õ× ➢ ❜ ➲ ❦✑➭ ➘ ò ④
The gain ❣ is selected to give an appropriate trade-off between noise/disturbance atten-
uation and detectability of incipient position measurement faults. A proper choice is a
pole in L=-10 rad/s which leads to the residuals for data-set DS1-DS4 seen in figure 4.6.
The major challenge for this detector is the low sampling rate. The actual velocity and
position can change between two samples because the velocity control loop time con-
stant (4-6 msec) is much lower than the sampling time (10 msec). This is most evident
from the residual plot of DS4, that clearly necessitates a higher threshold than the low
excitation residuals in DS1-DS3.

4.3 Approaches to Fault Detection and Isolation on the Benchmark 75

0 1 2 3
−0.01

−0.005

0

0.005

0.01
Data set DS1

Time [sec]

[r
a
d
]

0 1 2 3
−0.01

−0.005

0

0.005

0.01
Data set DS2

Time [sec]

[r
a
d
]

0 1 2 3
−0.01

−0.005

0

0.005

0.01
Data set DS3

Time [sec]

[r
a
d
]

0 1 2 3
−0.01

−0.005

0

0.005

0.01
Data set DS4

Time [sec]

[r
a
d
]

Figure 4.6: Residuals for position measurement fault detection generated by the base-line ob-

server. Dotted lines indicate the period where the position fault is enabled.

4.3.1 Observer and Signal Processing Approach

The paper by Höfling et al. (1995) presents two different approaches for the detection
of position measurement faults and current faults. The former is based on an observer
similar to the base-line observer described above and with an adaptive threshold. The
latter is based on a dedicated filtering technique.

The position measurement fault is first considered in the context of a systematic
parity space design, where all available measurements are used to generate a single
residual signal:❸❝➢✟❪✎Û✰❵☞q❄ô ➩ ❪❚õö❪✎Û✰❵ ➘❅÷ ➑ ❪✎Û✰❵ ➘öø➷ù✍ú ➆✣➈▼➉②❪✎Û✚❵ ➘öø➷û✍ü➵ý ❪✎Û✰❵✑❵þ✉ (4.5)

where ô contains the design parameters, õ holds present and past measurables (➅ ➋➯➭
and ❜✡➲❦✥➭), ➑ is the state vector,

ú ➆✥➈✫➉ is present and past values of ➅ ➆✥➈▼➉ ,
ü ý

is present

76 Fault Detection and Isolation on the Benchmark

and past values of ➎➏❥ , and the matrices
÷ ✉ ø➷ù ✉ and

ø➷û
are given by the system matrices

(➒ÿ✉✑↔➔✉✣➡ ✉ and ➛).
The values of the elements in ô are determined to minimize the residual’s sensitivity

to the load (➎ ❥), the internal states (➑), and ➅ ➆✣➈▼➉ ❪✖Û✰❵ :❸ ➢ ❪✖Û✰❵⑤q ✁ ④✄✂✆☎ ❴ Õ✡➹ ❮ ê ➅ ➋✈➭ ❪✎Û ➘❇Õ ❵➇→✞✝✰④ ✟ Õ ❴ Õ⑥➹ ❮ ê ➅ ➋✈➭ ❪✎Û✰❵→ Õ ④ ☎✠✂✸❴ Õ✡➹ ❮ ê ➅ ➆✥➈✫➉ ❪✖Û ➘ÜÕ ❵➇→✜❜ ➲❦✥➭ ❪✎Û✰❵✝④ (4.6)

The resulting residual is found to be inappropriate for detection because it is too sen-
sitive to noise, load, and unmodelled dynamics compared to the fault sensitivity. The
underlying problem is twofold: First, the residual depends on ➅✘➆✣➈▼➉ , which is superflu-
ous information, that causes the residual to be dependent on the load and nonlinearities
in the velocity controller. Second, there is no filtering to attenuate measurement noise.
This example shows the difficulties by applying a standard method without considering
the system structure. Parity space design is also considered in section 4.3.8 in connection
with current fault detection.

Höfling et al. (1995) then recognizes that the position fault is detectable by using
only the velocity and position measurements. It is demonstrated that a direct comparison
between position and the integrated velocity❸ ➢ q❻❜ ➲❦✥➭ ➘ × ➢ó ✡☞☛➌ ➅ ➋➯➭ ❪✍✌✚❵ ♣ ✌✚✉ (4.7)

cannot be used, because the residual drifts due to noise and inter-sampling dynamics
Instead, the base-line observer, presented above, is considered in connection with

an adaptive threshold, that takes an "integration-factor-uncertainty", ➸①➚ , into account.
The principle is to make an adaptive threshold ✎ ➞✑✏ dependent on velocity:✎ ➞✑✏ q✓✒✒✒✒ ➸t➚❜✈→ × ➢ ❣ ➅ ➋✈➭ ✒✒✒✒ → ✁✠✔ ➆✥➈✫➢✌♥✕✏ ✉ (4.8)

where ❣ is the observer gain. A lower limit is chosen to four times the root-mean-square
of the fault-free residual, which gives a confidence probability for no false alarms of at
least 93.75%. ➸t➚ is selected to 4% of

× ➢✗✖ ó ✉ i.e.
✁ ④ ✂❱❴ Õ⑥➹ ❮✙✘ . An observer pole in L=-12

rad/s (almost equal to the base-line design with L=-10 rad/s) is found to be appropriate.
The residuals and the adaptive thresholds are shown for different data-sets in figure 4.7.
The corresponding detection delays are listed in table 4.5, including a comparison to a
fixed threshold test against a threshold of 0.005 rad. The design fulfills the requirement
for no false alarms for all data-sets.

The detection of current faults is achieved by applying a signal processing procedure,
where a residual is generated by filtering the velocity control error through a fourth
order low-pass filter. The residual is then compared to an adaptive threshold that is high
during large position reference changes and is downward bounded by a fixed threshold.

4.3 Approaches to Fault Detection and Isolation on the Benchmark 77

0 1 2 3
−0.01

−0.005

0

0.005

0.01
Data set DS1

Time [sec]

[r
a

d
]

0 1 2 3
−0.01

−0.005

0

0.005

0.01
Data set DS5

Time [sec]

[r
a

d
]

0 1 2 3
−0.01

−0.005

0

0.005

0.01
Data set DS3

Time [sec]

[r
a

d
]

0 1 2 3
−0.01

−0.005

0

0.005

0.01
Data set DS4

Time [sec]

[r
a

d
]

Figure 4.7: Residuals (solid) with adaptive thresholds (dashed) and fixed thresholds (dash-

dotted) for the position fault detection algorithm designed by Höfling et al. (1995).

Position fault period is indicated with dotted lines.

Threshold

ri

0
-15

-5

-10

5

10

15
DS3

0

0.5 1 1.5 2 2.5 3
Time [sec]

Figure 4.8: Residuals for data-set DS3 with adaptive thresholds for the current fault detection

algorithm designed by Höfling et al. (1995).

78 Fault Detection and Isolation on the Benchmark

Table 4.5: Fault detection delays for the position fault detection algorithm designed by Höfling

et al. (1995).

Detection delay [msec] DS1 DS2 DS3 DS4

Position fault, observer with adaptive threshold 30 30 30 40
Position fault, observer with fixed threshold 90 80 90 100

An example on this is given in figure 4.8. Different values of the design parameters are
chosen for the different data-sets. The detection scheme successfully catches the current
faults in all sequences, but false alarms are present in DS5 where the a step in the load
is the reason for the current fault to appear. No detection delay values are given in the
paper.

4.3.2 Frequency Domain Approach

A frequency domain approach for detection of both position measurement and current
faults is presented in García et al. (1995). The method uses ❨ÿ❩ -optimization for the
design of an observer that decouples the two faults.

The basic idea is stated in the paper: "Through a frequency characterization of all
achievable residual dynamics, based on coprime stable factorizations and an analog re-
sult of Youla parameterization to observers, the robust residual generation design is for-
mulated as an optimization problem and solved by ❨ ❩ -optimization techniques"

A residual is generated as a comparison between measured and estimated output➠ ❪❲❞✫❵ . In generalized format this is given by✚ ❪✖❜❝❵⑤q✜✛❬❪✎❜❝❵✝❪ ❷✢✤✣ ❪✎❜❝❵ ➠ ❪✖❜❝❵ ➘ ❷✥✦✣✠✧ ❪✎❜❝❵✫❵✝✉ (4.9)

where the transfer matrices
❷✢ ✣

and
❷✥ ✣

are stable coprime factorizations of the input
matrix transfer function ★ ✣ which is given by the system matrices ➒ ➓ ✉✑↔ ➓ ✉ and ➡ . A
procedure is provided in the paper to determine the filter ✛ so robustness and fault
isolation are achieved.

The resulting residual generators are found to be of third order:❸ ➞ ❪✎❜❝❵⑤q ✁ ✂➾❜ ë →✪✩✫✩ ➹ ✩➟❜✡❢✍→✞✝✫✟✫✬✮✭✫✭✫✝➺❜❪✖❜⑨→ Õ⑥➹➺➹ ❵ ë ➅ ➋➯➭ ❪✖❜✡❵➍→ ✩✆✟ ✁ ✬ ❜✡❢❂→✞✝✠✭✫✬✠✭✫✭✫✝➺❜❪✎❜✈→ Õ✡➹➾➹ ❵ ë ➅ ➆✣➈▼➉ ❪✎❜❝❵✲✉ (4.10)❸ ➢ ❪✖❜✡❵☞q ➹ ④ ➹✰Õ✡➹ ✬ ❜⑥❢✘→ Õ ④ ✝➺❜☞→ Õ ☎✠✬✰④✯✩❪✎❜⑨→ Õ✡➹➾➹ ❵ ë ➅ ➋➯➭ ❪✎❜❝❵ ➘ ❜ ë → Õ ✩ Õ ❜✡❢⑤→ Õ ✝✮✂✫✂ ✁ ❜❪✎❜⑨→ Õ✡➹➾➹ ❵ ë ❜ ➲ ❦✑➭ ❪✎❜❝❵✲④ (4.11)

The residuals for the three data-sets, DS2, DS3, and DS4 are shown in figure 4.9. It
is clear that it is possible to find a fixed threshold for the position fault detection. It is
impossible to use fixed threshold testing for the current fault detection because the resid-
ual is too sensitive to external load disturbances and large velocity reference changes.

4.3 Approaches to Fault Detection and Isolation on the Benchmark 79

DS2

DS3

DS4

400
(a) Current fault detection (b) Position fault detection

-600

-200

200
0

-400

400

6000
-600

-6000

-200

-2000
0

0 0.5 1 1.5 2 2.5 3

200

4000

0

2000

-400

-4000

Time [sec]

DS2

DS3

DS4

0

-0.01

-0.008

-0.004

0.004

0.04
-0.012

-0.1

-0.04
-0.02

0 0.5 1
Time [sec]

1.5 2 2.5 3

0

0.02

-0.004

0

-0.008

-0.06
-0.08

Figure 4.9: (a) Current fault detection residuals (✂ ✄) and (b) position fault detection residuals

(✂ ✆) for the FDI algorithm designed by García et al. (1995). Dashed lines indicate

fault periods.

García et al. (1995) provides an equation for an adaptive threshold, determined in the
frequency domain, but it has not been applied to the benchmark test because no bounds
on the unknown load torque was provided in the benchmark proposal. The authors did
not analyse the test sequences to estimate the bounds on the load torque.

4.3.3 Eigenstructure Assignment Approach

The paper by Jørgensen et al. (1995) describes the design of fault detection observers in
connection with both faults. Eigenstructure assignment is applied for the current fault
detector.

A first order observer for detection of the position fault is designed similarly to the
base-line observer (eq. 4.4), except that a fixed threshold is used. Different thresholds
are selected for the different data-sets. The observer pole is chosen to L=-22.3 rad/s
about twice as fast as the base-line design so the residual plots are roughly similar
to those in figure 4.6, but with slightly faster responses. The detection delays for the
different data-sets are listed in table 4.6.

An observer for detection of current faults is designed, where the right Eigenstruc-
ture assignment technique is used to decouple the position fault from the residual. The

80 Fault Detection and Isolation on the Benchmark

Table 4.6: Fault detection delays for the position fault detection algorithm designed by Jørgensen

et al. (1995).

Detection delay DS1 DS2 DS3 DS4

Value of fixed threshold [rad] 0.002 0.002 0.002 0.046
Position fault, observer [msec] 40 40 40 120

unknown load input is entirely neglected in the design.
A standard discrete-time observer is used:❷➑ ❪✖Û➏→ Õ ❵✍q❹➒ ❷➑ ❪✎Û✰❵➍→➝↔ ✧ ❪✖Û✰❵➣→✞✰ö❪ ➠ ❪✖Û✰❵ ➘ ➡ ❷➑ ❪✎Û✰❵✑❵✲✉ (4.12)

where ➒ÿ✉✥↔ , and ➡ are the system matrices and ✰ is the observer gain matrix. A
residual is generated as a filtered version of the output estimation error:❸ ➞ ❪✎Û✰❵✍q✲✱ö❪✴✳➟❵☎❪ ➠ ❪✖Û✰❵ ➘ ➡ ❷➑ ❪✎Û✰❵✑❵✲④ (4.13)

The basic idea with right Eigenstructure assignment is to design ✰ , so ✰ ➜❍➢ becomes a
right eigenvector of the observer feedback matrix, ★➧q③➒ ➘ ✰➵➡ , where ➜✹➢ is the entry
matrix for the position fault, ❤➺➢ . It is shown in the paper that this, together with a proper
design of the output filter ✱ö❪✵✳➟❵ decouples the residual ❸➾➞ from ❤➾➢ . The resulting residual
generator is of 4th order and not presented in the paper. A fixed threshold is applied,
which leads to the detection delays listed in table 4.7. The current fault is not detectable

Table 4.7: Fault detection delays for the current fault detection algorithm designed by Jørgensen

et al. (1995).

Detection delay [msec] DS1 DS2 DS3 DS4

Value of fixed threshold [rad/sec] 8 11 12 242
Current fault, observer 120 130 130 ❩

in DS4 because the threshold has to set high enough to avoid false alarms. Plots of the
residuals with thresholds are shown in figure 4.10.

The paper also presents a method for the determination of the values of the fixed
thresholds which can also be used for a subsequent analysis of robustness. The method
is based on an experimental (or simulated) analysis of the standard deviation of the
residuals when the system is subject to 1) normal set-point changes (➅❂➆✣➈▼➉), 2) changes
in unknown input (➎➏❥), or 3) active fault events (➸①➊✫➋ or ➸↕❜❝❦). The threshold for a
residual, that is sensitive to a specific fault, is then determined as a trade-off between the
standard deviation identified with the considered fault and the standard deviations of all
the other inputs. The robustness analysis is performed by computing the ratio between
the different standard deviations. Sufficient robustness is achieved if the standard devi-
ation of the fault input is much larger than the standard deviations of the other inputs. It

4.3 Approaches to Fault Detection and Isolation on the Benchmark 81

0 1 2 3
Time [sec]

0 1 2 3
Time [sec]

DS1 DS2

DS3 DS4

-20

-20

-20

-400

-10

-10

-10

-200

0

0

0

0

10

20

20

400

10

10

200

Figure 4.10: Residuals for the current fault detection algorithm designed by Jørgensen et al.
(1995).

is found, by this method, that the position measurement faults are detectable, although
perfect decoupling from the current fault is not achieved. It is also concluded that current
faults are detectable, but the load input is a source of false alarms. It can, furthermore,
be seen from the results in the paper that the standard deviation measures depend on the
input signal selection. This is clear from data-set DS4, where the standard deviations are
systematically different from the other data-sets, because this data-set is generated with
larger velocity reference changes than the other data-sets.

It is recognized in the paper that the thresholds must be adaptive to cope with dif-
ferent excitation levels. This is further developed in the Ph.D thesis, Jørgensen (1995),
where the standard deviation approach is developed into a technique for adaptive thresh-
old design.

4.3.4 Parametric Statistical Approach

A statistical approach to the detection of both faults is presented in Grainger et al.

(1995), where the change detection problem is solved with a set of sequential probability
tests of the innovations from a bank of Kalman filters.

The occurrence of a fault is formulated as a change detection problem, where the
nominal system parameters (✶➟➌) changes to the faulty system parameters (✶ ⑩) at an un-
known time step ✷ . This is a problem of testing a hypothesis ❨✹✸ against a hypothesis

82 Fault Detection and Isolation on the Benchmark

❨➷➌ , where ❨➷➌✻✺✼✶①q✽✶❝➌➾✉ ➹✿✾ ❞ ✾ Û (4.14)❨✿✸❀✺✼✶①q✓❁ ✶❝➌➺✉ ➹✿✾ ❞❃❂❄✷✶ ⑩ ✉❅✷ ✾ ❞ ✾ Û
For each hypothesis, ❨ ✸ , a sequential probability test (SPRT) compares the likelihood
ratio ❆ ✸ì q✜✎❚➅❈❇ ✸➾❪✍❉➟➌ ✉☎④❖④✧④❖✉❊❉ ì ❵❇ ➌ ❪✍❉ ➌ ✉☎④❖④❖④✧✉❋❉ ì ❵ ✉ (4.15)

to a threshold ● . The function ❇ ✸ is the probability density of the innovations under
hypothesis ❨ ✸ .

The likelihood ratio

❆ ✸ì is computed from innovations with associated variance esti-
mates that are generated by a bank of Kalman filters. A recursive algorithm for this is
provided in the paper. The decision function is given as❍ ì q❏■▲❑✆▼➌✗◆❖✸✑◆ ì ❆ ✸ì ✉ (4.16)

where a fault is declared active if ❍ ì exceeds a threshold ● . Explicit expressions for the
alarm time and estimated fault onset time are provided in the paper.

The number of Kalman filters needed for calculation of the decision function is Û➏→Õ
. The paper introduces a "pruning" rule that restricts the number of filters to a fixed

number that for the benchmark example was chosen to 5. In the position measurement
fault case, only one filter is required because the fault enters as an output fault. This is
not the case for the current fault, so a total of six filters is used for the FDI.

The Kalman filters need an estimate of the unmeasured disturbance (➎ ❥). The paper
proposes a generalized likelihood ratio (GLR) test to obtain an estimate

❷➎ ❥ . It is assumed
that the disturbance is a step function that changes from zero to ➎ ❥ at some time step ✷ .
The GLR test is performed in a fixed window of past samples. The step magnitude (

❷➎ ❥)
and time of occurrence can be determined with a decision function ❍ ì◗P ✏ that is compared
to a fixed threshold ●❘✏ .

Linear Kalman filters are used for both position and current fault detection for all
data-sets, except for the current fault detection of DS4. This data-set is generated under
large input excitations and it has been necessary to apply a 6th order nonlinear observer,
that includes the effect of current saturation and load dynamics, instead of a Kalman
filter. A decision function is computed based on the observer estimation error. The
unknown load input is not included in the nonlinear observer, so the above GLR test for
load estimation is not performed in this case. The residuals are thus sensitive to load
changes. As a solution for this problem, it is suggested to restart the testing when all
residuals become large. An overview of the algorithms used for FDI is given in table
4.8.

4.3 Approaches to Fault Detection and Isolation on the Benchmark 83

Figure 4.11: Decision functions for current and position measurement faults for data-set DS1,

DS3, and DS4, as presented by Grainger et al. (1995). Test threshold are horizon-

tal dotted lines. Estimated load signal is dash-dotted line. The alarm times are

indicated with vertical dotted lines.

84 Fault Detection and Isolation on the Benchmark

Table 4.8: An overview of the algorithms used by Grainger et al. (1995) to detect position and

current faults.

Fault Data-set Algorithms

Position DS1, DS3, DS4: One 1st order linear Kalman filter; 5 SPRTs,
Current DS1, DS3 : Six 3rd order linear Kalman filters; 5 SPRTs; 1 GLR,
Current DS4 : Six 6th order nonlinear observers; 5 SPRTs; Test reset mechanism.

Table 4.9: Fault detection delays for the position and current fault detection algorithms designed

by Grainger et al. (1995).

Detection delay [msec] DS1 DS3 DS4

Position fault 20 30 90
Current fault 70 30 30

The performance of the FDI scheme is given by the detection delays listed in table
4.9. Plots of the decision functions ❍ ì for the three data-sets are seen in figure 4.11

The design parameters are tuned differently for each data-set to provide optimal de-
tection and avoid false alarms. The threshold for the large excitation case in DS4 is much
higher than for the low excitation cases, and it is recognized that better performance can
be achieved by improved models and faster sampling. The results show a very good
decoupling between the unknown load input and the current fault.

4.3.5 Multiple Models Hypothesis Testing Approach

Earlier studies on detection of the current fault and isolation of load disturbances are
presented in Bøgh (1995). The method is based on a hypothesis test of a model of the
faulty system against a model of the non-faulty system.

Multiple models hypothesis test is used to test a number of observers, each rep-
resenting a specific failure mode, against a 3rd order linear observer, representing the
non-faulty system. This means that explicit information about influences of the faults on
the system is utilized. The linear observer is designed with the Eigenstructure assign-
ment approach (as described in section 4.3.3) with the purpose to increase sensitivity
to the current fault and robustness to velocity measurement noise. The current fault is
modelled as a “diode” (only positive current possible) and included in a 3rd order nonlin-
ear continuous time observer together with the effects of current saturation and velocity
controller integrator limits. The linear part of the nonlinear observer is designed similar
to the linear observer using Eigenstructure assignment. The observer is executed using
a fourth order Runge-Kutta algorithm with a fixed step length of 5 msec.

4.3 Approaches to Fault Detection and Isolation on the Benchmark 85

Decision

Persistance
test

SPRT 2

SPRT 1
Linear observer for
non-faulty system

Event
detection

Benchmark
actuator

Nonlinear observer
for current fault

No decision

Current
fault

Load
disturbance

r

u y

r

Current
fault

No
decision

Event detected

Event detected

Load
disturbance

Current fault or
load disturbance

time

time

L or
L

L ,L

L ,L

L or
L

A

B

11

11

21

21

12

12

22

22

1

2

Figure 4.12: Statistical test scheme for detection of the current fault and isolation to unknown

load inputs. The decision is based on sequential probability ratio tests (SPRTs) of

the residuals from two observers, one for the nominal non-faulty system, and one

for the system with current fault.

The residual from the linear observer is used to detect an event which is either an
excitation of unmodelled dynamics, a current fault, or a load disturbance. When an event
is detected, two SPRT algorithms begin processing the residuals from each observer
with the purpose to isolate between the current fault and the load disturbance. This is
illustrated in figure 4.12. The hypotheses for the two SPRTs are based on changes in
the mean value of the residuals, ❙ ⑩ and ❙ ❢ , as given by table 4.10. Four log-likelihood
variables are computed for this purpose to indicate either a positive or negative change
in the average of the two residuals:❣❚✸ ⑩ q✜❯❲❱ ❇ ❪❚❸✫❳✸❘❨ ❙❩✸✸q❃→✹➤✗✸⑥❵❇ ❪❚❸ ❳✸ ❨ ❙ ✸ q ➹ ❵ ❣❬✸ ❢ q❭❯✕❱ ❇ ❪❲❸✫❳✸❘❨ ❙❩✸✸q ➘ ➤✗✸⑥❵❇ ❪❲❸ ❳✸ ❨ ❙ ✸ q ➹ ❵ ✉❪✷①q Õ ✉❫✭ (4.17)

where ❇ ❪❲❸✫❳✸❴❨ ❙❩✸tq✤❵ ❵ is the probability density function for a window of past samples
of the residual ❸✑✸ under the hypothesis that the mean value is ❵ . A recursive formula for
the calculation of these decision variables is provided in the paper under the assumption
that the residuals are Gaussian random sequences.

The outputs of SPRT1 (❣ ⑩✑⑩ and ❣ ⑩ ❢) are used to determine if the effect of a detected
event is persistent enough to draw a conclusion. If either ❣ ⑩✑⑩ or ❣ ⑩ ❢ exceeds a threshold❛

then the event is persistent. If both ❣ ⑩✑⑩ and ❣ ⑩ ❢ reaches zero, no decision is taken and

86 Fault Detection and Isolation on the Benchmark

Table 4.10: Hypothesis tests for the detection of current faults and isolation to unknown load

disturbances for the two SPRT algorithms shown in figure 4.12.

Test Hypothesis Rationale

SPRT 1 ❜❃❝ : ❞ ❽❴❡ ➌ No event❜ ❽ : ❢ ❞ ❽ ❢ ❡ ➭ ❽ Event persistent
SPRT 2 ❜ ❝ : ❞ ➀ ❡ ➌ Current fault active❜ ❽ : ❢ ❞ ➀ ❢ ❡ ➭ ➀ Load disturbance

the test is stopped. Otherwise, the test is continued until a conclusion is drawn. If the
event was found persistent, the output of SPRT2 is then examined. If both ❣ ❢ ⑩ and ❣ ❢✥❢
are below a threshold ❣ , it is concluded that a current fault caused the event. If ❣ ❢ ⑩ or❣ ❢✑❢ exceeds ❣ , a load disturbance is concluded.

This FDI scheme has been tested with different data-sets. The design parameters for
residual mean and average were selected differently for the individual data-sets, which
indicate a need to adapt to the signal excitation level. The resulting detection delays are
shown in table 4.11. Results for DS5 are presented in figure 4.13. It it seen that the

Table 4.11: Fault detection delays for the fault detection algorithm designed by Bøgh (1995).

Detection delay [msec] DS3 DS4 DS5

Current fault 50 50 40

current fault can be successfully detected without having false alarms caused by load
changes. It is anyway, as anticipated by design, not always possible to detect the current
fault when load changes appear simultaneously with the presence of current faults.

4.3.6 Parameter Estimation Approach with Extended Kalman Fil-
ter

As the only paper considering parameter estimation for FDI, Walker and Huang (1995)
presents the application of extended Kalman filters for both position measurement and
current fault detection.

The extended Kalman filter (EKF) has the formÓ ➐➑ ❪❚❞✫❵➐✶✚❪❚❞✫❵ Ù qÚÓ✐❤ ❪ ➑ ❪❲❞✫❵✲✉ ✧ ❪❲❞✫❵✲✉❊✶✚✉✫❞✫❵➜❦❥❧✶ Ù → Ó✐♠ ⑩ ❪❚❞✫❵♠ ❢ ❪❚❞✫❵▼Ù (4.18)➠ ❪❲❞ ì ❵✍qÒ➦ ➡ ... ♥ ➨⑤Ó ➑ ❪❚❞ ì ❵✶✚❪❲❞ ì ❵ Ù →öô⑤❪❲❞ ì ❵✝✉
where ➑ is the system state vector with covariance ♦q♣ , ❤ contains a linear or nonlinear

4.3 Approaches to Fault Detection and Isolation on the Benchmark 87

-40
-30
-20
-10

0
10
20
30

Observer #2 Residual

0

10

20

30

40

50
SPRT Decision variables from observer #2 Residual

Threshold B

L_21

L_22

-20

0

20

40

60

80
Observer #1 residual and Threshold

Current fault ON Current fault OFF

Threshold T

0

20

40

60

80
SPRT Decision variables from observer #1 Residual

Threshold A

L_11

L_12

Load presence

Current fault presence

0 0.5 1 1.5 2 2.5 3 3.5 4

False

False

False

True

True

True

Decisions (solid)

Time [s]

No Decision

Current Fault

Other Cause

Figure 4.13: Test results of the current fault detection scheme proposed in Bøgh (1995) for data-

set DS5. Above are the residuals for the two observers: The linear observer for

the non-faulty system ✂ ✞ and the nonlinear observer for the current fault ✂ ✠ . These

residuals are used to generate the decision variables ☛ ✞✌✞ , ☛ ✞✎✠ , ☛ ✠✑✞ , and ☛ ✠✌✠ that

underlie the decisions shown in the bottom graph. The decisions are shown together

with the periods of load and current fault presence. The current fault is only present

when the desired current is negative.

88 Fault Detection and Isolation on the Benchmark

description of the system, ✶ holds the parameters to be estimated, ♠ ⑩
is process noise,♠ ❢ is a "pseudo-noise" that improves parameter convergence, ➜ ❥ is a decay term for the

parameter estimates that mitigates the problems with biased parameter estimates, ➡ is
the output matrix, and ô is measurements noise.

The paper presents two approaches for comparison, a linear and a nonlinear EKF
denoted EKF-L and EKF-NL respectively. EKF-L is based on the linear model (eqs.4.1-
4.2) and has the state vector ➑ qÚ➦ ➊ ❢ ➅ ➋ ❜ ❦ ò❖r ❦✥➢✥➨ ➩ , where the additional state ò✙r ❦✥➢
is the internal state in the PI position controller. The parameters to be estimated are
the position sensor bias ❤➺➢ and the actuator current bias ❤➺➞ , which are both supposed
to be zero when the faults are not present. The parameter vector is then ✶ q ➦ ❤❶➞✟❤➟➢ ➨➳➩ .
The load input is considered unknown. The design of the nonlinear EKF-NL is based
on a nonlinear model of the system, which includes the dominant nonlinearities and the
dynamics of the load torque. This model is a simplified version of the full scale nonlinear
model mentioned in section 4.2 and it is available in Bøgh et al. (1993)). The state vector
is again augmented with ò r ❦✥➢ , which makes the filter of 7th order. The parameter vector
is extended to ✶✜q ➦ ❤ ➞ ❤ ➢ ➎ ➉⑥❥ts ❮ ⑩❥ ✉➎ ➢ ➎ ➉✡➋➯➨ , where the additional parameters are,
respectively, the friction torque (➎ ➉⑥❥) and inertia (s✝❥) of the load subsystem, the load
torque (✉➎✾➢ which is the same as ➎➏❥ for the linear model), and the motor subsystem
friction torque (➎①➉✡➋). Both Kalman filters are implemented with a standard algorithm.
The integration of the state equations of EKF-NL is done with a 2nd order Runge-Kutta
algorithm.

The EKF-approach includes a large number of parameters (♠ ⑩ ✉ ♠ ❢ ✉✑ô , and ➜❦❥) that
are determined by inspection of the data-sets and from experience. Different values for
the parameters are used for the different data-sets. The thresholds for the fault signa-
tures (❤ ➞ and ❤ ➢) are computed on-line from ✈①✇ ✔ , where

✔ ❢ is the appropriate diagonal
element of the state covariance matrix ♦q♣ and ✇ is chosen by design. ✇ is assigned
different values for EKF-L and EKF-NL and also for the different data-sets.

The two Kalman filters are applied to data-set DS3 and DS4, where the threshold
is tuned for each simulation. The tests on DS4 show poor performance with several
false alarms so an additional test with fixed threshold is examined. Table 4.12 shows
the results. The corresponding time histories of the current bias ❤❶➞ and the sensor bias❤➟➢ are shown in figure 4.14. It can be seen that the decision signals are very sensitive
to changes in the reference and load inputs and also subject to significant bias build-up.
There is, furthermore, a poor isolation between the two faults.

The complexity of the EKF-NL algorithm is indicated in the paper. It requires several
hours to simulate the 3 seconds data-set on a time-shared IBM RS6000 workstation.

4.3.7 Interacting Multiple Model Approach

An alternative approach using Kalman filters based on statistical decision theory is pre-
sented in Efe and Atherton (1997). The paper presents the interacting multiple model
(IMM) technique and shows it’s ability to detect and isolate both faults in some special

4.3 Approaches to Fault Detection and Isolation on the Benchmark 89

00 0.50.5 11
Time [sec]Time [sec]

1.51.5 22 2.52.5 33

30

40 40

30fa EKF-L DS3

fa EKF-L DS4 fa EKF-NL DS4

fa EKF-NL DS3

fs EKF-L DS3

fs EKF-L DS4 fs EKF-NL DS4

fs EKF-NL DS3

20

20 20

20
10

-20 -20

10

0

0 0

0

0

0.02

0.2 0.2

0.02

0.01

0.1 0.1

0.01

0

0 0

-0.1 -0.1

Figure 4.14: Fault detection signals for the FDI scheme proposed by Walker and Huang (1995)

applied to DS3 and DS4. The graphs show the current bias ✒ ✄ and the sensor bias✒✝✆ for a linear Kalman filter (EKF-L) and a nonlinear Kalman filter (EKF-NL).

Dotted lines are decay terms, solid lines are estimated biases, and dashed lines are

actual biases.

Table 4.12: Fault detection delays for the position and current fault detection algorithms de-

signed by Walker and Huang (1995). The table shows the detection delays and false

alarm rates for the different design approaches and also the different choices of the

decision threshold.

Data-set ❿ DS3 DS4
Threshold - Det. delay - False alarms ❿ [msec] [%] [msec] [%]

Position fault, EKF-L 1.8 ② 40 - 5 ② 70 1
Position fault, EKF-NL 5 ② 40 - 15 ② 110 1.7
Position fault, EKF-NL, fixed threshold - - - 0.03 rad 110 0.3
Current fault, EKF-L 3 ② 60 - 5 ② 40 17
Current fault, EKF-NL 5 ② 40 - 8 ② 110 2
Current fault, EKF-NL, fixed threshold - - - 26 A 100 1

cases.
The IMM algorithm uses a bank of Kalman filters where one filter represents the

nominal model and the remaining filters represent dedicated fault models. Probabilities
of each model being correct are calculated from the filter innovations and associated co-
variances. These probabilities are used to mix the internal states between all the Kalman
filters before the state update of the filters are performed. The IMM algorithm works as

90 Fault Detection and Isolation on the Benchmark

Model
probabilities
calculation

Fault
detection &

isolation

Interacting

Filter 1 Filter N

X̂1(n-1),P1(n-1)

X̂1(n),P1(n)

o
X̂1(n-1),P1(n-1)

o o
X̂N(n-1),PN(n-1)

o

X̂N(n-1),PN(n-1)

X̂N(n),PN(n)

u(n),y(n)

ω(n-1)

ω(n)

νΝ(n),BNν1(n),B1

Figure 4.15: The interacting multiple model (IMM) algorithm used for FDI (reproduced from Efe

and Atherton (1997)).

depicted in figure 4.15. The figure shows the actions performed before and after update
of the

ó
Kalman filters (from time-step ➅ ➘❹Õ

to ➅). The Kalman filter states and state
covariance matrices (

❷③ ✸➺❪❲➅ ➘tÕ ❵ and ♦④✸➺❪❚➅ ➘↕Õ ❵) are mixed (hence the name "interacting")
in proportion to the individual model probabilities ⑤✶❪❚➅ ➘❇Õ ❵ by❷③ ❦✸ ❪❲➅ ➘❇Õ ❵✍q ❰⑥ ♥ ❡ ⑩ ⑦ ♥✄✸ ⑤ ♥ ❪❚➅ ➘❇Õ ❵⑥ ❰❥ ❡ ⑩ ⑦ ❥ ✸ ⑤ ❥ ❪❲➅ ➘❇Õ ❵ ❷③ ♥✥❪❚➅ ➘ÜÕ ❵ (4.19)⑧ ❦✸ ❪❲➅ ➘❇Õ ❵✍q ❰⑥ ♥ ❡ ⑩⑩⑨ ⑦ ♥✯✸✑⑤✏♥✥❪❚➅ ➘ÜÕ ❵⑥ ❰❥ ❡ ⑩ ⑦ ❥✄✸✑⑤➍❥▼❪❚➅ ➘❇Õ ❵ Ó ⑧ ♥✑❪❲➅ ➘ÜÕ ❵➇→ (4.20)

❪ ❷③ ♥ ❪❲➅ ➘ÜÕ ❵ ➘ ❷③ ❦♥ ❪❚➅ ➘❇Õ ❵✑❵✝❪ ❷③ ♥ ❪❲➅ ➘ÜÕ ❵ ➘ ❷③ ❦♥ ❪❚➅ ➘❇Õ ❵✑❵ ➩ Ù❚❶ ✉
where ⑦ ♥✯✸ is a transition probability matrix with dominant values along the diagonal.
It is selected in advance and remains constant. The filter innovations are denoted ➤✫✸
and the associated covariance matrices denoted ↔q✸ . Fault detection is performed on the
model probability time histories. If the probability from a particular fault model exceeds
a fixed threshold (set to 0.15 for the benchmark), the corresponding fault is declared.
Further details on the IMM algorithm is found in the paper.

4.3 Approaches to Fault Detection and Isolation on the Benchmark 91

The current fault detection problem is solved using three Kalman filters, each with a
different amplitude of the current fault vector ❤ ➞ :

Model # 1 2 3
Current fault ➉ ã 0 30 A 40 A

Model 1 represents the nominal system whereas model 2 and 3 represent different ampli-
tudes on a positive current fault. Model 2 is applied for DS1 and model 3 for DS2-DS4.
Model 2 successfully detects the current fault in DS1, but if it is applied to DS3, false
alarms will be present (these graphs are not shown here). Examples on the time histories
of the probability of model 3 applied to DS3 and DS4 are shown in figure 4.16. Graph

(a) Model 3, DS3

(c) Modified model 3, DS4 (d) Position FDI, DS4

Faulty position output
Model 1 position estimate
fault free position output

(b) Model 3, DS4
0.35

0.25

0.15

0

0.1

0.2

0.3

0.05

0.2

0.4

0.6

0.8

1

0.2

0.4

0.6

0.8

1

0

0.02

0.04

0.01

-0.01

0.03

0.05

0

0 -0.02
0 00.5 0.51 11.5 1.52 22.5 2.53 3

Time [sec] Time [sec]

Figure 4.16: Probability time histories for the interacting multiple model FDI approach pre-

sented by Efe and Atherton (1997). Current fault detection signals are shown in

(a), (b), and (c), whereas (d) shows the signals for position fault detection. Vertical

dashed lines are decision thresholds.

(a) shows successful detection of the current fault but also sensitivity to negative veloc-
ity reference changes (e.g. spike at 2.5 sec). By inspection of the graphs in the paper,
the reason for this is found to originate from negative current spikes that match the mod-
elling of the fault (❤➺➞ = 40 A). It is also clear that load changes are able to cause those
changes in the model 3 probability. This conclusion is not addressed by the authors. The
sensitivity problem is even worse for the large excitation case of DS4 in (b), which is
clearly inadequate for detection. To solve this problem, the authors suggest a modifi-
cation to the algorithm, so the model probability update is suppressed if the probability

92 Fault Detection and Isolation on the Benchmark

exceeds the threshold simultaneously with a velocity reference change greater then 333
rad/ ❜✡❢ . The detection scheme for the corresponding sample is then skipped. The result-
ing model 3 probability time history is seen in (c). This shows improved performance
relative to (b), but also a need for a larger threshold.

Position fault detection requires no additional fault models, but is achieved by com-
paring the position estimate of model 1 to the position measurement ❜➺➲❦✑➭ . The estimated
position, plotted in figure 4.16 (d), is seen to converge slowly, and will possibly be appli-
cable for fault detection over time. The performance is not clear from the paper. It can
be seen that this position FDI method is sensitive to current faults so isolation between
the two faults is not achieved. The thresholds selected for position fault detection are
different for low and high excitation: 0.005 rad for DS1-DS3 and 0.09 rad for DS4.

The resulting detection delays, presented in table 4.13, are claimed in the paper
although they are not all verifiable from the presented material.

Table 4.13: Fault detection delays for the position and current fault detection algorithms de-

signed by Efe and Atherton (1997).

Detection delay [msec] DS1 DS2 DS3 DS4

Position fault 20 40 50 100
Current fault 30 20 60 20

4.3.8 Parity Equations Approach

The parity space method is considered in Mediavilla et al. (1997) for the detection of the
current fault. As time-invariant linear methods are incapable to detect the current fault,
the paper suggests the parity space approach for the design of a time-variant linear filter
that decouples the multiplicative current fault from the additive load disturbance. The
parity space approach is also applied in section 4.3.1 for position fault detection.

The design of parity equations is considered both by input-output models and by
state-space models. The parity equation for the state-space approach is similar to eq.
4.5 except that the transformation vector ô is made time-variant. ô⑤❪❚❞✫❵ is designed to
decouple the residual ❸❶❪❚❞✫❵ from states and load torque byô☞❪❚❞✫❵ ➩ ÷ q ➹ ✉ (4.21)ô⑤❪❲❞✫❵ ➩ ø➻û q ➹ ④ (4.22)

The residual shall, furthermore, be sensitive to the multiplicative fault. The multiplica-
tive fault leads to changes in the system matrices, ➸t➒ , ➸t↔ , and ➸➻➡ , which again
lead to changes in

÷
and

ø û
of ➸ ÷

and ➸ ø➻û
. It is shown in the paper, that optimal

sensitivity to the multiplicative fault is obtained by maximizingô⑤❪❚❞✫❵ ➩❸❷ ❪❚❞✫❵✝✉ (4.23)

4.3 Approaches to Fault Detection and Isolation on the Benchmark 93

where ❷ ❪❲❞✫❵⑤q❻➸ ÷ ➑ ❪❲❞ ➘ Û✰❵ ➘ ➸ ø û❺❹❻ ➙✏❪❲❞ ➘ Û✰❵✺➙✏❪❲❞✫❵❽❼❾ ④ (4.24)

This means that ô⑤❪❲❞✫❵ can be chosen as one of the vectors, spanned by the subspace
described by eq. 4.22, that is most parallel to ❷ ❪❚❞✫❵ . This problem is solved by using least
squares minimization. An additional problem is that ❷ ❪❚❞✫❵ depends on the state variables
(➊ ❢ and ➅ ➋) which cannot be measured nor estimated without being effected by the
faults. A solution to this problem is suggested where ❷ ❪❲❞✫❵ is estimated from data-set
DS1. ❷ ❪❚❞✫❵ can easily be calculated using the linear model applied for DS1, so an average
value of ❷ ❪❲❞✫❵ during the current fault period 2.7-3.0 sec is calculated and used for the
other data-sets. An observation, which is not stated in the paper, is that the constant value
of ❷ ❪❚❞✫❵ leads to a time-invariant detection filter which makes it theoretically impossible
to decouple the load disturbance.

0 0.5 1 1.5 2 2.5 3
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.4

0.3

0.5
(a) State-space method, DS3 (b) IO method, DS3

Time [sec]
0 0.5 1 1.5 2 2.5 3

-600

-400

-200

0

200

400

600

Time [sec]

Figure 4.17: Residuals for the current fault detection algorithm proposed by Mediavilla et al.
(1997). Graph (a) shows the cumulative sum of the primary parity space residu-

als from the state-space approach (solid). Graph (b) shows the primary residuals

from the input-output approach (solid). Indicators are shown for periods with load

disturbance (dotted), active current faults (dashed), and significant changes in ref-

erence (dash-dotted). Horizontal dashed lines are thresholds..

The state-space approach is tested on DS1-DS4, where the cumulative sum of the
residuals are used as detection signals. The result for DS3 is shown in figure 4.17 (a),
where it is clear that the current fault can be detected but not isolated from the position
fault. The residuals show some sensitivity to load torque inputs but almost no influence
from velocity reference changes.

94 Fault Detection and Isolation on the Benchmark

The input-output model of the system with an additive load input (
♣ q ➎t❥) and a

multiplicative fault is described by❪✴✱ö❪✴✳➟❵➍→✜➸❿✱ö❪✴✳➟❵✑❵ ➠ ❪❲❞✫❵☞qÒ❪➀★❅❪✵✳➟❵➣→✜➸▲★❅❪✵✳➟❵✫❵✌➙❂❪❚❞✫❵✏→❻❪➁★ ➢ ❪✴✳➟❵➍→✜➸▲★ ➢ ❪✵✳➟❵✫❵ ♣ ❪❚❞✫❵✝✉ (4.25)

where ★ and ✱ are the nominal transfer functions and ➸▲★ and ➸❿✱ represent the
changes in ★ and ✱ caused by the current fault. A residual is generated as a filtered
version of the primary parity residuals, which gives the analytical equation❸❶❪❚❞✫❵⑤q❻❭❫❪❚❞✫❵❊➂➍❪❲❞✫❵⑤q❭❫❪❚❞✫❵⑩➃⑦➸▲★❅❪✴✳➟❵▼➙✏❪❲❞✫❵ ➘ ➸q✱ö❪✵✳➟❵ ➠ ❪❲❞✫❵➍→③❪➀★ ➢ ❪✵✳➟❵➣→Ü➸✿★ ➢ ❪✴✳➟❵✫❵ ♣ ❪❲❞✫❵➅➄t④ (4.26)

The transformation ❭❫❪❲❞✫❵ is designed to obtain the desired properties. Decoupling from
additive inputs leads to a constant polynomial ❭❫❪✵✳➟❵ whereas decoupling from multi-
plicative inputs (as in this case) leads to a time-varying matrix (see also the introduction
to parity space on page 14). By experiments, the authors recognized lack of freedom in
the design of ❭❫❪❚❞✫❵ to isolate the additive load input from the multiplicative fault. In-
stead, the residuals are maximized with respect to the fault. Results from simulations for
all data-sets are available in the paper and as an example, DS3 is seen in figure 4.17 (b).
It can be seen from the results that the residual is sensitive to both load disturbances and
velocity reference changes, but in contradiction to the state-space residuals, insensitive
to position faults.

Both the state-space and the input-output approaches are able to detect the two faults
for data-sets DS1-DS3, but the input-output method is not able to isolate between the
two faults. Both methods are incapable to detect faults for the high excitation signals in
DS4 because they are based on linear design. Current saturation effects cause several
false alarms for this case. The final results are given as the detection delays presented in
table 4.14.

Table 4.14: Fault detection delays for the current fault detection algorithm designed by Mediav-

illa et al. (1997).

Detection delay [msec] DS1 DS2 DS3 DS4

State-space residuals 140 40 40 ❩
Input-output residuals 130 110 110 ❩

4.3.9 Approach using Neural Networks

An alternative to the model-based techniques is presented by Köppen-Seliger and Frank
(1996) that applies a neural network (NN) to detect and isolate the two faults, even
when they appear simultaneously.

4.4 Discussion 95

The NN technique has previously been applied to FDI problems in slowly vary-
ing processes, but Köppen-Seliger and Frank (1996) illustrates feasibility also for fast
processes such as the benchmark equipment. Two approaches are presented. One is a
scheme of two NNs, where the first NN is trained to imitate the behaviour of the process
for residual generation, and the second NN is trained to evaluate the residuals for classi-
fication of the faults. The other approach is a one-step diagnosis (OSD), where a single
NN is trained to classify the faults directly from measured signals.

The NN for residual generation is based on a radial-basis-function (RBF) network
trained with the gradient-descent method to reproduce the nonlinear mapping function➆ of the system’s input-output form:➠ ❪✖Û✰❵⑤q ➆ ❪ ➠ ❪✎Û ➘ÜÕ ❵✲✉☎④❖④❖④✧✉ ➠ ❪✎Û ➘ ✳➟❵✲✉✑➙✏❪✖Û✰❵✲✉⑥④✧④❖④✧✉✑➙✏❪✖Û ➘ ❇ ❵✫❵✲④ (4.27)

The training data represents the nominal system without faults. The network is then
used to generate residuals and the result is presented in the paper for a position fault
case. The residual shows sensitivity to the fault but also a drift in the non-faulty period
that is large enough to cause false alarm. This is not further explored in the paper and
the second NN for residual evaluation is therefore not considered.

The OSD design is based on a restricted-coulomb-energy (RCE) network that has
the ability to add neurons depending on the complexity of the underlying problem. The
NN is trained with a binary output pattern reflecting the fault categories of the input
vector. The input vector consists of the velocity reference ➅ ➆✥➈▼➉ , the measured position❜✡➲❦✥➭ , and the motor velocity ➅ ➋➯➭ . The training is performed with different combinations
of reference input, load disturbances, and fault scenarios. Results are presented for two
fault scenarios, one where the position fault and the current fault occur in different time
periods, and one where the two fault periods overlap. In both cases, the network is
able to detect and isolate correctly. The data-sets are different to those suggested in the
benchmark proposal but the excitation level is comparable to the low amplitude cases
DS1-DS3. No results for high excitation as in DS4 are provided.

The paper recognizes the inevitable problem of black box modelling, that the training
input must represent literally all possible operating conditions including fault situations.
In practice, fault scenarios are not available from the real process, so the OSD approach
necessitates the development of a sufficient accurate simulation model. The NN in the
OSD scheme has, furthermore, increased complexity and training time compared to the
residual evaluation network because the raw input signals vary continuously within the
entire operational range whereas the residuals are nominally close to zero.

4.4 Discussion

The nine contributions to detection and isolation of the position measurement and cur-
rent faults in the benchmark actuator, described in the previous section, represent a wide
range of approaches. This gives an excellent opportunity to directly compare the fea-

96 Fault Detection and Isolation on the Benchmark

sibility of different FDI methods applied to typical failures in fast electro-mechanical
equipment.

4.4.1 Residual Generation

The main categorization of the residual generation techniques is into methods based on
parameter estimators, state observers, and parity space equations. Each approach has
it’s pros and cons although similarities exist.

The parameter estimation methods are inadequate for the present problem, because
the two considered faults have a very abrupt effect on the system variables. The current
fault, modelled as an additive input, has almost the characteristics of a step function and
the position fault act as a ramp with a relatively steep slope. Generally, parameter esti-
mation techniques are slow and more appropriate for detection of incipient faults. This
is also pointed out in Höfling et al. (1995). The difficulties with parameter estimation
are illustrated by the extended Kalman filter approach presented in section 4.3.6. The
estimated position and fault parameters are continuously subject to undesirable biases,
even after means have been taken to avoid this. These biases cause false alarms although
high thresholds are chosen. The high thresholds lead to large detection delays. Further-
more, some of the detection delay values stated in the paper can be seen from the graphic
material to be a matter of coincidences: First, a current fault is detected very quickly be-
cause the detection signal shows a favourable bias immediately before the fault becomes
active. Second, a position fault is detected in the same sample where it is manifested
in the signal, caused by what is most reasonable called a false alarm. In spite of these
problems, the position detection signal seems appropriate for detection without false
alarm even though the presented results operate with false alarms. A higher threshold
will solve this issue but with a penalty on the detection delay.

An advantage with the parameter estimation approaches is that the fault amplitude
is automatically estimated, if this is desirable. It is not entirely the case for the estimates
in section 4.3.6 because the bias compensation (decay term ➇ ❥) tends to reduce the
estimated size.

The parity equations approach treated in section 4.3.8 (and also briefly considered
in section 4.3.1) provides a nice and systematic approach for decoupling between faults
and exogenous inputs. A drawback with the basic method is that the residuals suffer
from a shortage of low frequency information. Detection of faults from the residual in
figure 4.17 (b) is based on spikes in a single sample, which is inadequate for a proper
decision. A similar residual is given in Höfling et al. (1995) for the position fault, that
shows a small bias during the ramp period and a large spike when the fault disappears
with a step. A solution to the problem is to process the primary residuals with a low pass
filter. This makes the parity space design equivalent to the observer design as pointed
out in the introduction to FDI on page 15. It is also possible to improve the detection
by applying some statistical testing technique. The approach taken in Mediavilla et al.

4.4 Discussion 97

(1997) for the state-space residuals is to use the cumulative sum of the residuals (see
figure 4.17 (a)).

Observer based approaches are considered in Höfling et al. (1995) and Jørgensen et

al. (1995) for a direct design similar to the base-line observer in eq. 4.4, in García et al.

(1995) for an ❨ ❩ -design that separates the two faults, and in Jørgensen et al. (1995)
for an Eigenstructure assignment of a current fault detector that is decoupled from the
position fault. The various design approaches and parameter selections lead to different
eigenvalues but also a different number of observer poles. The ❨ÿ❩ -design in García et

al. (1995) lead to a 3rd order filter with three poles in -100 rad/sec for the position fault
detector. Compared to the 1st order base-line observer, no significant improvement is
gained from the higher order. The 3rd order filter is furthermore too fast to facilitate
rapid detection of the position fault’s ramp effect.

A common challenge for all the residual generation approaches is that the character-
istics of the load disturbance is unknown. Additional knowledge about the load would
have been helpful for isolation to the current fault. Some approaches therefore assume
specific properties of this unknown input. The statistical approach presented by Grainger
et al. (1995) assumes the load torque to be a step input which may not be the case. The
IMM strategy presented by Efe and Atherton (1997) indirectly assumes positive load
torque inputs. This detection scheme is sensitive to large positive additive current fault
inputs (❤➾➞), so large negative load disturbances may lead to false alarms. This situation
was not represented in the proposed data-sets and therefore not considered in Efe and
Atherton (1997).

4.4.2 Residual Evaluation

The task of residual evaluation is basically approached in two ways, either by threshold
test or statistical testing. The latter is applied in both Grainger et al. (1995) and Bøgh
(1995) as a sequential probability ratio test (SPRT) of observer residuals. An advantage
with SPRT is that the thresholds can be designed directly from requirements to the ratio
between false alarms to missed alarms, provided the statistical properties of the residuals
are known. Normally, the residuals are assumed to be Gaussian random sequences,
which is often an inadequate approximation to real life.

An important detail in the application of SPRT can be observed: The Kalman filters
in Grainger et al. (1995) directly provide an estimate of the variance of the residuals
(or innovations) that is used by the SPRT algorithm. The approach presented by Bøgh
(1995) is based on observers that do not produce variances, so these are treated as fixed
design parameters. This means that the latter approach is more sensitive to changes in
the operational conditions.

It is a general experience that the dominant unmodelled nonlinear effect of current
saturation together with a low sampling rate constitute the major sources for FDI perfor-

98 Fault Detection and Isolation on the Benchmark

mance degradation. The typical solution is to improve the detection scheme by making
the residual evaluation task dependent on changes in the position or velocity reference
signals, which cause the nonlinear effects to develop. These problems are approached
either with adaptive thresholds as suggested in Höfling et al. (1995) and García et al.

(1995) or by altering the detection logic as proposed in Efe and Atherton (1997) and
also included as an idea in Walker and Huang (1995). Also Grainger et al. (1995) uses a
kind of online adaptation in the resetting mechanism that clears the detection variables
if all residuals becomes large. It must be realized that these modifications lead to a vary-
ing sensitivity to faults and may cause missed alarms, especially if the reference input
activity is high. Generally, it is preferable to shape the residuals with the additional
information (if possible) and maintain a fixed threshold.

4.4.3 Standard Versus Dedicated Techniques

Some of the approaches apply a standard technique whereas others examine the structure
of the system and design dedicated FDI schemes that suit the problems. The results
show that the dedicated schemes often produce improved residuals compared to the
standard techniques because specific details can be utilized and certain problems can
be avoided. As an example, consider the position fault detection schemes that take all
available signals as input (Walker and Huang (1995); Efe and Atherton (1997)). The
residuals show sensitivity to current saturation and load effects, which is an unnecessary
source to false alarms. These effects are easily decoupled by using only the velocity and
position measurements in FDI, as suggested with the base-line observer in eq. 4.4. It
is interesting to observe that the frequency domain approach presented in García et al.

(1995) follows a strict recipe and still ends up with decoupled design, where the position
FDI uses only the velocity and position measurements and the current FDI uses only the
velocity reference and the velocity measurement.

4.4.4 Black-Box Neural Net Approach

The one-step diagnosis (OSD) approach using neural networks presented by Köppen-
Seliger and Frank (1996) differs from the other methods, because residual generation
and evaluation is combined into one algorithm. This makes it difficult to evaluate the
performance with respect to fault sensitivity, isolability and robustness. The tests pre-
sented in the paper are performed with small reference input changes that do not trigger
the dominant nonlinear characteristics of the actuator. As neural networks are known to
be excellent to reproduce nonlinear mappings, it would have been interesting to investi-
gate the performance for large input excitations.

A general problem with learning based methods for FDI is that long training se-
quences must be available that represent virtually all relevant combinations between
operating conditions, external influences, and fault scenarios. It may be possible to col-
lect these data in the laboratory setup of the benchmark actuator, but in many real-life
processes it is not feasible to artificially introduce faults. Instead, mathematical models

4.5 Conclusion 99

are developed to generate simulated sequences that can be used for training and verifi-
cation of the networks. The question is now, why a black-box model shall be trained to
reproduce an existing and known mapping.

4.5 Conclusion

In general, the results show that the position measurement fault is detectable with lin-
ear methods and that no improvement is gained by applying nonlinear techniques. The
current fault is detectable with linear methods, but can only be decoupled from the un-
known load torque input with nonlinear or time-varying techniques, or if more infor-
mation about the unknown input is assumed. Only the current fault detection technique
presented in Bøgh (1995) successfully discriminates the current fault from the load input
without assumptions on the unknown load torque.

Furthermore, most of the suggested FDI schemes have been designed with different
parameters for the small signal data-sets (DS1-DS3) and the large excitation data-set
(DS4). The common problem is that robustness to unmodelled dynamics stimulated by
the large velocity changes in DS4 lead to unacceptable detection delays or missed alarms
for the smaller fault effects in DS1-DS3. In practice, no á priori information can be
assumed on the operation of the actuator (the ship may be in open sea or manoeuvring in
harbour) so the FDI scheme shall operate in all situations. This means that the mentioned
approaches must be further developed to adapt to different operational conditions.

An unambiguous comparison between the different approaches is impossible be-
cause different design decisions are taken. Some results show that the faults can be
detected but not isolated. Others are able to catch the current fault but not distinguish to
load disturbances. Different methods show different trade-offs between detectability of
incipient faults versus false alarm rate. Most of the methods use different design parame-
ters for the results obtained for the different data-sets, which means that the design is not
mature. With these conflicts in mind, a summary of the detection delays, an assessment
of the executional complexity, and the abilities to isolate are presented in figure 4.18.
It is noticeable that the application of a more advanced algorithm does not necessarily
lead to improved results. Instead, it seems advantageous to examine the structure of the
system before the FDI design method is selected.

From the material involved in the benchmark test, it is concluded that the trivial
position measurement fault is easily detected and isolated using the base-line observer
presented in eq. 4.4 combined with an adaptive threshold test as suggested in Höfling
et al. (1995). The more troublesome current fault is best detected with the application
of nonlinear observers, where the approach described in Bøgh (1995) is superior taking
run-time complexity of the algorithm into consideration. Although this method has not
been designed to isolate the position fault, it proves it’s potential in producing satis-
factory short detection delays with a rather simple algorithm. The algorithm is able to
distinguish load torque disturbances from current faults, which has only been achieved
by one other approach, namely the fairly complex statistical approach by Grainger et al.

(1995).

100 Fault Detection and Isolation on the Benchmark

Obs. with adaptive threshold (Höfling et al. 95)
Obs. with fixed threshold (--"--)

Frequency domain approach (García et al. 95)

Frequency domain approach (García et al. 95)

Obs. with fixed threshold (Jørgensen et al. 95)

Obs. with fixed threshold (Jørgensen et al. 95)

Signal processing approach (Höfling et al. 95)

Parametric statistical (Grainger et al. 95)

Parametric statistical (Grainger et al. 95)

Interact. multiple model (Efe and Atherton 97)
Neural nets (Köppen-Seliger and Frank 96)

Neural nets (Köppen-Seliger and Frank 96)

Interact. multiple model (Efe and Atherton 97)
Parity eq. state-space res. (Mediavilla et al. 97)

Parity eq. input-output residuals (--"--)

Par. est., EKF-L (Walker and Huang 95)

Par. est., EKF-L (Walker and Huang 95)
Multiple models hypothesis test (Bøgh 95)

Par. est., EKF-NL (--"--)

Par. est., EKF-NL (--"--)

Par. est., EKF-NL fix. thresh. (--"--)

Par. est., EKF-NL fix. thresh. (--"--)

Position fault

Current fault

Legend

Detection delay [msec]

Com-
plexity

Isolation to

C
urrent faults

O
ther inputs

Position faults

L
ow

H
igh

30

120

30

130

30

130

40

20#
100#

90

70

80 90

30

100

110#
110#

30

40 40

40

40
110

40

50#

120

50

20 30

60

90

40*#

20

140
130

20# 6030#

50

40

40
110

100

DS1Data-set DS2 DS3 DS4 DS5

40

40

40
70*#

110#

Detection delay Never detected
Result not thrustworthy
False alarms also present

*:
:

#:
OK
Not OK

Not known

Isolation

?

?

?

Figure 4.18: Comparison of the performance of the fault detection algorithms presented in this

chapter. The figure shows the detection delays for each data-set, the executional

complexity of the algorithms, and the abilities to isolate the two faults and avoid

false alarms from other exogenous inputs as load disturbances and large reference

changes.

4.6 Summary

The applicability of several methods for FDI were compared in this chapter based on
studies using the same sets of data sequences from the benchmark equipment. In general,
the investigation of the results showed that realistic problems like low sampling rate,
saturation effects, and different operating conditions play an important role in the design.
The standard techniques available today do not systematically account for these effects,
so different ad-hoc solutions were suggested. Most FDI methods today are based on
linear models, but to handle the real-life problems, nonlinear techniques must be applied.
It was also shown that it is more beneficial to examine the structure of the system before
FDI design than just applying a standard method to all available inputs and outputs.

4.6 Summary 101

The benchmark application belongs to the category of systems that have fast dynam-
ics and where faults appear abruptly. Some FDI methods showed up to be inadequate
for the benchmark case, but this does not mean they are inappropriate for other applica-
tions. The basic benchmark model used for FDI design is of only 3rd order, and most
FDI algorithms are developed to take advantage of models of higher order to decouple
disturbances and isolate between faults. This means that the benchmark case does not
illustrate the full potential of the FDI methods, but it is a challenging realistic example.

Chapter 5

Fault Tolerant Control for the

Ørsted Satellite

The second application example of this thesis is the attitude control system (ACS) of
the Ørsted micro satellite. This chapter presents the design and implementation of fault
tolerance in the control system using the analysis and design methodology presented in
chapter 3. Earlier results on the Ørsted FTCS design have been published in Bøgh et al.

(1995). The satellite represents a more complex system than the benchmark application
so it is well suited to emphasize features of FTCS design that have not been addressed
so far in the thesis.

The main emphasis of this chapter is on the design of the fault handling decision
logic and the implementation in the three layer supervisor structure. Examples are given
on how to structure the decision logic’s state-event machines and how the design can
be verified. The implementation of a supervisor in multitasking software is discussed
in connection with synchronization to a control level task. Finally, a presentation of the
ACS test procedures are used to illustrate how FTCS aspects can be tested and how an
appropriate FTCS design supports testability.

5.1 Motivation and Related Work

There is a clear motivation for considering fault tolerance in ACSs for satellites. Wim-
mer (1997) reviews four ESA mission cases flown in the 1980s and 1990s, where each
mission experienced roughly 150 anomalies. The attitude and orbit control system were
responsible for 25-50% of all anomalies, several being mission critical. Many anomalies
were related to software in the ACS and command and data handling (CDH) subsystems,
because they have been made unnecessarily complicated. The reason for this was that
digital avionics has been recently introduced in space, so experience and systematic

103

104 Fault Tolerant Control for the Ørsted Satellite

methods were lacking. Among the lessons learned, Wimmer stresses the need to design
for simplicity, include in-orbit flexibility for introducing work-around solutions, and al-
low adjustments of the control- and fault management processes. He emphasises the
necessity to include fault tolerance design early in connection with operational aspects.

The major developments of fault tolerance in space have been concentrated on fail-
safe aspects in connection with large and expensive missions. The analysis techniques
applied are very involved and require extensive manpower. The ESA standards for
space product assurance of dependability (ESA-ECSS (1996a)) and safety (ESA-ECSS
(1996b)) illustrate the complexity. These documents instruct the contractor to perform
tasks such as function criticality assessment; failure mode, effects, and criticality anal-
ysis (FMECA); reliability modelling; availability analysis; hazard analysis; and prob-
abilistic safety risk assessment. Fulfillment of these standards require expertise and
experience, and will lead to a vast amount of documentation. This procedure is not
applicable for small short-term projects as Ørsted.

To fulfill the fail-safe requirements, large satellites employ hardware redundancy
and highly distributed architectures. An example is the $112 million 805 kg NEAR as-
teroid rendezvous spacecraft launched in February 1996 (Santo et al. (1995); Lee and
Santo (1996)). The attitude and guidance control system uses 2-redundant computers,
2-redundant interface units, and a collection of partially redundant sensor and actua-
tors that are dedicated for control only. Such architectures provide means for advanced
cross-check and health monitoring strategies that are not possible in small satellites like
Ørsted. The Ørsted ACS uses the science instruments for attitude determination and
the ACS software is integrated with the CDH software on a single computer. It is not
feasible to let the CDH subsystem watch the ACS performance and prevent malicious
events, as is done on the NEAR spacecraft. This means that the ACS must be inherently
fault tolerant and designed resistant to mission critical failures.

Recent advances in fault tolerance for space applications are found in connection
with interplanetary missions. These missions are characterised by long communica-
tion delays, periods without ground contact, and goal-oriented mission objectives. The
goal-oriented aspect means that the spacecraft shall be turned and pointed in different
directions during different mission phases. On-board autonomy is implemented that
optimizes the scheduling of activities in connection with planned manoeuvres, unantic-
ipated spacecraft anomalies, and changes in the environment. The Saturn-bound $3.3
billion 5.6 ton Cassini spacecraft launched in October 1997 (Brown et al. (1995); Slon-
ski (1996)) represents state-of-the-art in autonomy for satellites that are flying today.
On-board rule-based reasoning is used for fault handling combined with a bank of error
monitors and hard-coded fault responses. The New Millennium Project (NMP) Deep
Space 1 (DS-1) spacecraft (Pell et al. (1997)), that is scheduled for launch in mid 1998,
exceeds the autonomy capabilities of Cassini by applying AI-techniques for on-board
constrained-based planning and scheduling together with model-based fault diagnosis.

Micro satellites like Ørsted are, in contrast to the above mentioned spacecraft, light-
weight and cheap constructions. The Ørsted budget for development and operation is

5.2 Introduction to the Ørsted Satellite 105

$20 million (this amount actually exceeds typical micro satellite projects because it sub-
sumes a relatively large amount of basic research). Expenses are kept low by avoiding
the use of elaborate analysis methods like criticality assessment and reliability modelling
and thus accepting reduced reliability assurance. It is not required that the satellites are
fail-safe on the same level as expensive satellites, so the level of redundant hardware is
kept low. Furthermore, the Ørsted mission is not goal-oriented as the planetary missions.
The single task of the ACS is to stabilize the satellite throughout the entire mission. This
means that the ACS is simpler and thus justifies the use of less complex development
approaches and implementation techniques.

The approach for fault tolerance of the Ørsted ACS, presented in this chapter, is
aimed at simplicity and flexibility. It is simple in the way, that the fault analysis is
not based on formal use of reliability engineering. The method captures the necessary
behaviour of the system during fault events in a simple description, that supports the im-
plementation of fault tolerance, but without an associated estimate of the probability of
system failure. The implementation is kept simple by organising independent function-
alities into separate modules. The on-board decision taking is hard-coded, in contrast
to rule-based reasoning, but designed with a systematic method, that ensures flexibil-
ity in both the design phase and the in-orbit maintenance phase. The use of systematic
correctness verification and automated code generation ensures that the reliability of the
FTCS is not compromised during design iterations and maintenance updates.

5.2 Introduction to the Ørsted Satellite

The Danish Ørsted satellite is scheduled for launch in spring 1998 from Vandenberg,
California. The science mission is related to the geomagnetic field and its interaction
with the solar wind plasma. It is launched into a 450 ➈ 850 km orbit with a 96 de-
gree inclination by a Delta II launcher. After release the ACS captures the satellite from
a random tumbling and subsequently an 8 meter boom is deployed. In the remaining
part of the mission the ACS stabilizes the satellite in three axes with the boom point-
ing away from the Earth. The performance requirements for ACS are to maintain the
attitude within ✈ 10 degrees in pitch and roll (angular deviation of the boom from ver-
tical), ✈ 20 degrees in yaw (rotation about the boom) and an angular velocity below 10
degrees/minute.

The configuration of the satellite is shown in figure 5.1. The science instruments
are located on platforms displaced from the main body with the purpose to minimize
EMC interference. Table 5.1 summarises the assignment of the on-board sensors. The
ACS is an integrated part of the satellite where science instruments are used for attitude
acquisition as far as possible instead of dedicated ACS instruments. This reduces the
weight for the spacecraft platform and thereby improves the scientific potential. Two 16
MHz 80186 processors provide on-board data handling with partial redundancy between
tasks. The ACS algorithm is integrated in the software on one of the computers and is
not redundant on the other one. Attitude control actuation is provided by three per-

106 Fault Tolerant Control for the Ørsted Satellite

Star camera (SIM)
Vector magnetometer (CSC)

Scalar magnetometer (OVH)Magnetorquers
Charged particle detectors
Solar panels
Sun sensors & thermistors
GPS receivers
Computers/electronics

6 m

2 m

Figure 5.1: The Ørsted satellite with the boom deployed.

Table 5.1: The Ørsted satellite instruments.

Abbrev. Instrument Assignment

CSC Vector magnetometer Science instrument that measures the magnetic field in three axes with
very high accuracy.

SIM Star camera Science instrument that provides very precise inertial attitude estimates
based on a star pattern recognition system.

OVH Scalar magnetometer Used for in-flight calibration of the vector magnetometer.
CPD Charged particle detectors Six science instrument that measure high energy electrons, protons and

Alpha particles.
GPS Global positioning system Two GPS receivers provide orbit position and satellite velocity esti-

mates.
SSA< ♥ >
SSB< ♥ >

Sun sensors, ♥➊➉ (1..8) Two sets of 8 sun sensors give the direction of the sun for use in attitude
determination.

SST< ♥ > Sun sensor thermistors,♥❖➉ (1..4)
4 thermistors provide sun sensor temperature measurements for the pur-
pose of thermal compensation.

pendicalur two-redundant electro-magnetic coils, called magnetorquers (MTQs). The
MTQ currents are generated with individual coil drivers (CDA< ➊ > and CDB< ➊ > where➊➌➋ (X,Y,Z)).

The configuration of the ACS software is shown in figure 5.2. The two scientific
sensors, CSC and SIM, are the most vital ACS sensors. The initial detumbling entirely
relies on the CSC measurement that is used to compute the rate of the satellite with re-
spect to the external magnetic field (this is called B-dot). When the boom is deployed,
attitude stabilization is based on the SIM’s inertial attitude estimates that are transformed
with orbit position information into local attitude and rate estimates. The SIM instru-
ment is not operable if the angular velocity is higher than 10 deg/min or if bright objects
are in the field of view of the camera. Consequently, a secondary attitude determination
algorithm is required. This is based on an extended Kalman filter (EKF) that computes
attitude and rate estimates from the measured magnetic field and sun vector together with
model vectors of the geomagnetic field and the sun direction. The sun vector is com-
puted from the sun sensor (SS) measurements where the SS temperature dependency

5.2 Introduction to the Ørsted Satellite 107

16 SS

4 SST

2 GPS

CSC

SIM

Pr
ep

ro
ce

ss
in

g

Sun vector

B-dot
Current

calculation

6 Magne-
torquers

Current
monitor

Detumbling

Stabilization

Sec. AD

Sun/magn.
model

Orbit
model

Orbit
determination

x

B-vector
B-rate

Coil
currents

Magnetic
moment

Desired con-
trol torque

Attitude
& Rate

Inertial
attitude

Down
link

Uplink
Attitude determination

Attitude control

Prim. AD

Figure 5.2: The attitude control system configuration. The main components are sensors, attitude

determination, attitude control, and actuators.

has been compensated using a temperature measurement (SST). The orbit model is dy-
namically updated from ground every 5th day based on information from the GPSs. The
attitude control algorithm determines a desired control torque that is used to compute the
coil currents based on the measured geomagnetic field direction. The producible control
torque may differ from the desired torque because the physical relationship between the
generated torque, the magnetic moment of the magnetorquers, and the external magnetic
field is given by a cross product. Finally, a coil current measurement (CCM) provides
the absolute value of each magnetorquer current.

The detumbling control cycle runs with a sampling time of one second. In each
cycle, the magnetorquer currents are activated for about 900 ms and paused in the re-
maining period. The magnetic influence from the coils on the CSC, when it is stowed
inside the body, prevents the usage of the instrument during the active period. A mea-
surement of the external magnetic field is therefore acquired during the zero-current
period. After boom deployment the stabilization controller runs every 10th second. The
magnetorquer currents can now be active all the time because the magnetic influence on
the CSC in the boom-out configuration is smaller than 15 nT (below 1 per mille of the
geomagnetic field amplitude). This small disturbance is without importance for attitude
control and it can be compensated in the scientific measurements.

A general introduction to attitude determination and control of the Ørsted satellite is
provided in Bøgh et al. (1997). Details on attitude determination using a Kalman filter
is given in Bak (1996) and details on attitude control using magnetic actuation is given
in Wisniewski (1996).

108 Fault Tolerant Control for the Ørsted Satellite

5.2.1 Requirements for Autonomy

The Ørsted satellite is controlled from a single ground station situated in Denmark per-
mitting only 2-3 contact periods of 10 minutes each 24 hours. Therefore, autonomous
operation and on-board fault handling is required to avoid serious impact on the sci-
entific mission or even temporal loss of the satellite. Some of the functionality that is
traditionally implemented on ground stations must, consequently, be moved to the space
segment.

To illustrate the necessity of fault handling consider the consequence of a CD shunt
resistor short circuit during detumbling, shown in figure 5.3. The purpose of detumbling

0

160

180

20

40

60

80

100

120

140

Time [min]

Fault free case

Faulty case

A
ng

le
 b

et
w

ee
n

z-
ax

is
 a

nd
 B

-v
ec

to
r [

de
g]

Coil Driver BX shunt
short circuit at 50 min

500 100 150 200 250 300 350 400 450 500

1

2

3

Po
w

er
 co

ns
um

pt
io

n
[W

at
t]

Figure 5.3: Example on a hardware fault occurring during detumbling of the satellite. The con-

trol error increases significantly and the average power consumption becomes very

large.

is to align the satellite’s z-axis with the local geomagnetic field vector (an angle of 180
degrees). The fault causes the control error to increase from a peak value of about 30
degrees to 140 degrees. This reduces the availability of high rate communication with
ground. Even worse is the consequence on power consumption that increases from about
1/4 Watt to about 3 Watts in average. This is three times the allocated power for ACS, so
the consequence is that the batteries will be drained and subsequently the ACS or some
on-board instruments will be disengaged.

The basic requirement for the FTCS is to keep running as far as possible in case

5.2 Introduction to the Ørsted Satellite 109

of single faults, and make a close-down if continued operation is impossible. The fun-
damental principle is that it is more sensible to leave the satellite without control than
produce erroneous torques, because the system is conservative.

A summary of requirements for fault tolerance together with requirements for com-
mands and monitoring are given in the following list:❳ Fault handling. Any single fault in CSC, SIM, SSs, SSTs, CDs, and associated

transmission lines shall be handled if it is a potential risk for the mission. Fault
accommodation can be done through reconfiguration between redundant devices,
graceful degradation, or close-down. GPS receiver faults shall not be handled
on-board.❳ Sampling time monitoring. Critical deviation in the control cycle sampling time
shall be handled.❳ Operational phase commands. The handling of the detumbling and stabilization
phases is controlled from ground. It shall be possible to activate the algorithms by
ground command.❳ ACS execution control commands. It shall be possible to activate and deactivate
the entire control cycle by ground command. It shall also be possible to disable
and enable only the torque generation, but continue attitude determination.❳ Attitude determination mode handling. The switching between the primary and
secondary attitude determination algorithms shall be handled on-board. When the
primary mode is re-enabled after a period with secondary mode, the controller
shall be disabled for two minutes to allow the angular velocity estimate to con-
verge.❳ Attitude control mode handling. The stabilization controller has three modes: Low
power mode, high power mode, and boom-down mode. In low power mode the
control torque is restricted to minimize magnetic disturbance on CSC. This is
feasible for small attitude corrections, but for large manoeuvres high power mode
is required. The switching between these two modes shall be handled on-board.
If the boom points towards Earth, control shall be disabled and a message shall
be sent to ground. The boom-down controller can then be activated by ground
command. When the boom points upwards again, the normal high power mode
shall be activated automatically.❳ Eclipse monitoring. The use of sun sensors in secondary attitude determination
requires monitoring of periods with sun and eclipse.❳ On-board autonomy management. It shall be possible to disable/enable the on-
board autonomous operations.

110 Fault Tolerant Control for the Ørsted Satellite

❳ Reset command. A ground command shall be able to restore all internal variables
in ACS to default values.❳ Telemetry. Status information shall be sent to ground following any ACS reconfig-
uration. Housekeeping information with key variables shall be sent every minute.❳ Command verification. All received commands shall be acknowledged with one
of (received, completed) and one of (success, illegal command).

These requirements are all of a general character. Detailed specification of the require-
ments for the ACS supervisor fault handling will be available after an analysis of the
failure modes of the instruments and an examination of the behaviour of the control
system in case of faults.

5.3 Attitude Control System Analysis

This section provides a list of possible failure modes of the ACS instruments and an
analysis of their propagation into end-effects on the attitude control performance. An
overview of possibilities for reconfiguration is also given. The analysis is used later for
fault detection and isolation design and for specification of the decision logic require-
ments.

5.3.1 Failure Modes

The assessment of potential failure modes is supported by a physical structure model

as introduced in section 3.2.1 about fault modelling. The level of detail in the physical
structure depends for the individual subsystems on the á priori knowledge on failure
modes and the possibilities of reconfiguration. A short description of each subsystem
and the identified failure modes are given below.

Vector magnetometer (CSC). The magnetic field is determined independently in
three axes (X, Y, and Z) with individual fluxgates and converted with a common ADC.
Potential faults are a broken wire causing a reading to be zero or a malfunction in the
amplifier circuit causing a reading of ✈ 65535 nT. The zero fault can also happen si-
multaneously in all three axes due to ADC failure or a disconnected wire. The CSC
sample is sent to ACS from the other computer via a bus with non-deterministic delay
so temporarily missing samples are possible.

Star camera (SIM). The SIM has its own computer running an algorithm that
searches for matching patterns in a star catalog, so any fault in the SIM will cause an
absence of samples. This means that all samples received by ACS are assumed adequate

5.3 Attitude Control System Analysis 111

for attitude control. A SIM fault will thus be equivalent to a blackout due to bright ob-
jects in the field of view or high angular velocity of the satellite, so there is no dedicated
failure modes for this instrument.

Sun sensors (SS). Each of the 8 SS heads consists of two small solar cells that each
generates a current depending on the amount of illumination. The two cells are electri-
cally independent. All currents are converted to voltages with individual amplifiers and
sampled with a common ADC through a multiplexer. Potential faults include broken
wires or defects in the semiconductor that lead to zero voltage reading (corresponding
to zero current). Amplifier malfunctions may lead to maximum voltage reading (corre-
sponding to a current of 2.0 mA). All readings can fail to zero simultaneously due to
broken wires or ADC failure.

Sun sensor thermistors (SST). Each SST consists of a temperature sensitive resistor
mounted in a Wheatstone bridge that provides a voltage reading. The voltage is read by
an ADC through a multiplexer. Potential faults are broken wires, disconnected resistor
elements, and ADC faults that lead to zero voltage reading (corresponding to a temper-
ature of about 72 degrees centigrade) or amplifier faults that lead to maximum voltage
reading (corresponding to a temperature of about -21 degrees centigrade).

Coil drivers (CD). The current in each of the six magnetorquers is controlled by a coil
driver as illustrated in figure 5.4. Possible faults in this circuit are the following:❳ Shunt resistor short circuit.❳ Shunt resistor disconnected.❳ Sign logic fails permanent negative.❳ Sign logic fails permanent positive.❳ Power supply transistor T5 fails open.❳ Power supply transistor T5 fails short.❳ One of the four bridge transistors (T1-T4) fails short.❳ One of the four bridge transistors (T1-T4) fails open.

112 Fault Tolerant Control for the Ørsted Satellite

T1

T5

T2

T3

T4

+

_

H-bridge

Shunt
resistor

Switch mode
power supply

Power
bus

Desired sign
Paste
bus

Sign
control

Current
regulator

Measurement
amplifier

Shunt
amplifier

Current
measurement

Current
reference{

Figure 5.4: Electrical diagram of a coil driver and magnetorquer in the Ørsted satellite. The

magnetorquer is driven by a bridge coupling of four power transistors. The bridge is

controlled to provide the desired direction of current flow by the sign control block.

The desired current amplitude is controlled by a regulator with feedback from a shunt

measurement. Power to the bridge is provided by a switch mode supply. The absolute

current measurement is also made available for the control computer..

Magnetorquers (MTQ). Each of the six magnetorquers are connected to their coil
driver with a positive and negative terminal. Possible faults are:❳ Coil disconnects or wiring fails open.❳ Coil fails short.❳ Coil positive terminal short circuit to ground.❳ Coil negative terminal short circuit to ground.

Data busses and wiring. The acquisition of data from sun sensors (SSs), sun
sensor thermistors (SSTs), and coil current measurements (CCMs) are requested via a
dedicated serial-parallel bus (called Paste) and sampled via multiplexers and an ADC.
Transmission faults and conversion faults are reported by the low level driver software.

This list does not cover all possible faults, but is representable for the range of pos-
sible end-effects.

5.3 Attitude Control System Analysis 113

5.3.2 Fault Propagation

The end-effects on attitude control performance for the above faults are very difficult
to derive by analytical examination using logic models of the fault propagation through
each subsystem as suggested in section 3.2.2. The reason is that the dynamic behaviour
of the satellite is far too complex for the qualitative analysis. The torque produced on the
satellite depends on both the satellite attitude and the rotating external magnetic field.
This means that the behaviour of the satellite, following specific failure modes of the
magnetorquer current, is not well defined, although an experienced spacecraft engineer
may be able to predict the fault’s consequence without further analysis. In this thesis the
end-effects have been estimated, as an alternative, using a numerical simulation program
developed for the attitude determination and controller design.

The simulation program does not include the electrical details of the coil drivers
and magnetorquers as presented in figure 5.4. The failure modes of these subsystems
are therefore determined by the suggested fault propagation analysis (FPA) using logic
models. This case study is presented below and is succeeded by a summary of the final
end-effects on attitude control performance caused by the failure modes of the previous
section.

5.3.2.1 Fault Propagation of the Coil Drivers and Magnetourqers

The fault propagation analyses of the CD and MTQ are included in the presentation be-
cause they demonstrate additional interesting aspects about the problem of modelling
feedback loops. Feedback via sensors in a control loop was earlier discussed in section
3.2.2 and illustrated on the benchmark problem in section 3.3.3. The interconnection
between the CD and the MTQ illustrates another situation, namely an equilibrium be-
tween a current generator and the resistance of the load. The magnetic moment naturally
depends on the current output from the supply, but the current flow in the supply also
depends on the coil. If for example the coil is broken open circuit, there will be zero cur-
rent flow. This is conveniently modelled as a bidirectional propagation of discrepancies,
which is similar to feedback.

The components of the electrical diagram in figure 5.4 are organized into a set of
logic models, shown in figure 5.5. This figure shows the interface variables between the
different logic models. The six logic models are listed in table 5.2 through table 5.6.

Table 5.2: Logic model for the sign control and shunt resistor.

Sign control Input Output
Fault SignDes Sign

NoFault Plus Plus
NoFault Minus Minus
SignFailedPos Minus WrongSign
SignFailedNeg Plus WrongSign

Shunt resistor Input Output
Fault ShuntCur ShuntVolt

NoFault OK OK
NoFault Zero Zero
NoFault Max Max
ShuntDisc – Max
ShuntShort – Zero

114 Fault Tolerant Control for the Ørsted Satellite

CurRef

CurAmplDes

CurDesPowerUsage

MagMom

CurDrawn

BridgeCur
CurReturn

ShuntVolt
ShuntCur

Sign

Current
regulator

Sign
control

Bridge

Switch
mode

supply

Magne-
torquer

Shunt
resistor

Supply

SignDes

OK
Zero
Max
WrongSign

OK
Zero
Max
WrongSign

OK
Zero
Max
WrongSign

OK
Zero
Max

Plus
Minus
WrongSign

OK
Zero
Max

OK
Zero
Max

OK
Zero
Max

OK
Zero
Max

Low
High

Low
High

Low
High

Plus
Minus

{

{

{

{

{

{{{
{

{
{

{

{

Figure 5.5: The structure between the logic models of the Ørsted coil driver and magnetorquer

circuit in figure 5.4. The figure shows the involved variables and their logic values.

Table 5.3: Logic model for the current regulator.

Current regulator Inputs Output
Fault in loop ShuntVolt CurRef CurAmplDes

No – OK OK
No – Zero Zero
No – Max Max
Yes OK – OK
Yes Zero – Max
Yes Max – Zero

Table 5.4: Logic model for the switch mode supply.

Switch mode supply Inputs Output
Fault BridgeCur CurAmplDes Supply PowerUsage

NoFault – OK OK
NoFault – Zero Zero
NoFault – Max Max
– Low – Low
– High – High
T5Short – – Max
T5Open – – Zero

5.3 Attitude Control System Analysis 115

Table 5.5: Logic model for the bridge coupling. The bridge transistor faults are represented here

by T1 and T2 only. The other transistors, T3 and T4, have equivalent effects.

Bridge Inputs Outputs
Fault Supply Sign CurDrawn CurReturn CurDes BridgeCur ShuntCur

NoFault OK Plus – – OK
NoFault OK Minus – – OK
NoFault Zero Plus – – Zero
NoFault Zero Minus – – Zero
NoFault Max Plus – – Max
NoFault Max Minus – – Max
NoFault – – Low – Low
NoFault – – High – High
NoFault – – – OK OK
NoFault – – – Zero Zero
NoFault – – – Max Max
NoFault – – – WrongSign OK
NoFault – WrongSign – – WrongSign OK
T1Short OK Minus – – Zero Low OK
T1Short Zero Minus – – Zero Low Zero
T1Short Max Minus – – Zero High Max
T2Short OK Plus – – Zero Low OK
T2Short Zero Plus – – Zero Low Zero
T2Short Max Plus – – Zero High Max
T1Open – Plus – – Zero Low Zero
T2Open – Minus – – Zero Low Zero

Table 5.6: Logic model for the magnetorquer.

Magnetorquer Inputs Outputs
Fault Sign CurDes MagMom CurDrawn CurReturn

NoFault – OK OK Low OK
NoFault – Zero Zero Low Zero
NoFault – Max Max High Max
NoFault – WrongSign WrongSign Low WrongSign
CoilShort – OK Zero Low OK
CoilShort – Zero Zero Low Zero
CoilShort – Max Zero High Max
CoilDisc – – Zero Low Zero
PosTermShortGND Plus OK Zero Low Zero
PosTermShortGND Plus Zero Zero Low Zero
PosTermShortGND Plus Max Zero High Zero
PosTermShortGND Minus OK OK Low Zero
PosTermShortGND Minus Zero Zero Low Zero
PosTermShortGND Minus Max Max High Zero
NegTermShortGND Minus OK Zero Low Zero
NegTermShortGND Minus Zero Zero Low Zero
NegTermShortGND Minus Max Zero High Zero
NegTermShortGND Plus OK OK Low Zero
NegTermShortGND Plus Zero Zero Low Zero
NegTermShortGND Plus Max Max High Zero

116 Fault Tolerant Control for the Ørsted Satellite

Inputs to the suite of logic models are current reference, desired sign, and component
faults. Outputs are the end-effects on magnetic moment and power consumption.

The characterization of the discrepancies are a three-tuple for unidirectional signals
(OK, Zero, Max) and a four-tuple for bidirectional signals (OK, Zero, Max, WrongSign).
“Zero” means that the signal failed permanent zero, “Max” means that it failed too high,
and “WrongSign” means that it failed with opposite direction. The non-faulty opera-
tion (OK) is included because the WrongSign fault in bidirectional variables propagates
into an OK state of the unidirectional variables. The reason for this is that the current
measurement gives only the current amplitude and not the direction of flow. Finally, the
variables associated to the power consumption take the values Low or High describing
whether they are lower than normal or OK (“Low”) or too high (“High”).

The following comments on the logic models are useful to understand the interplay
between the components:❳ Magnetorquer terminal faults. The fault effects for the short circuit of the neg-

ative and positive terminals to ground (Pos/NegTermShortGND) are rather intri-
cate because these faults relate to the physical components (terminals) whereas
the discrepancies relate to the functional information flow (current and magnetic
moment). The problem is that the bridge coupling changes the functional con-
figuration when it changes current direction, so the effects of component faults
depend on the current direction (Sign).❳ Current control loop faults. All the considered component faults except CoilShort,
SignFailedPos, and SignFailedNeg effect the current feedback loop. The three ex-
cepted faults do not effect the current measurements (they lead to ShuntCur=OK),
so they are not included as "Fault in loop" in the model for the current regulator
in table 5.3. This is an interesting observation because the effected variables are
located inside the feedback loop.

The fault propagation graph (FPG) of the logic models is analyzed in BeologicTM and
the rules can be found in appendix B.1. Table 5.7 presents an examination of the relations
between faults and end-effects. The last column is added to show the cases where the
current measurement can be used for fault detection. The current measurement is wrong
if the shunt voltage is faulty (ShuntVolt ➋ [Zero, Max]). It can be seen that a coil short
circuit, a sign failure on the magnetic moment, and bridge transistors short circuit faults
cannot be detected with the current measurement. A wrong direction of the control
torque is catastrophic, so the fact that this is not detectable with the current measurement
will show up later to necessitate implementation of a rather elaborate fault detection
algorithm.

5.3 Attitude Control System Analysis 117

Table 5.7: A table showing the relations between faults and end-effects of the Ørsted coil driver

and magnetorquer subsystems. The current reference input is forced to the non-faulty

value CurRef=OK in this analysis to indicate that only CD and MTQ faults are anal-

ysed.

❾
Fault - End-effect ❿ Po

w
er

=H
ig

h

M
ag

M
om

=Z
er

o

M
ag

M
om

=M
ax

M
ag

M
om

=W
ro

ng
Si

gn

C
ur

re
nt

M
ea

s=
W

ro
ng

ShuntShort x x x
ShuntDisc x x
T5Short x x
T5Open x x x
SignFailedPos x
SignFailedNeg x
CoilShort x
CoilDisc x x
PosTermShortGND & Sign=Plus x x x
PosTermShortGND & Sign=Minus x x x
NegTermShortGND & Sign=Plus x x x
NegTermShortGND & Sign=Minus x x x
T1Short & Sign=Minus x
T2Short & Sign=Plus x
T1Open & Sign=Plus x x
T2Open & Sign=Minus x x

5.3.2.2 End-Effects on Attitude Control Performance

An analysis of the effects on attitude control performance from faults in all subsystems
(including coil drivers) can now be performed by simulating the individual component
failure modes using a simulation program of the satellite dynamics. The end-effects on
attitude control performance are categorized into three classes: small increase in attitude
error, large increase in attitude error, and random motion. Also a large increase in power
consumption is included as an end-effect. The complete relationship between faults and
end-effects on top level is listed in table 5.8. This FPG will be used later in section 5.6 for
a completeness check of the fault handling decision logic design. The BeologicTM rules
of the complete FPG are listed in appendix B.2.

5.3.3 Severity Assessment

A severity assessment on the end-effects yields a requirement for handling of any end-
effect except SmallError. The SmallError end-effect will still be accommodated because
the same failure modes that lead to this effect, cause more severe end-effects for other
coil drivers. These more severe cases shall be handled, so the SmallError end-effect is
automatically accommodated.

118 Fault Tolerant Control for the Ørsted Satellite

Table 5.8: A table showing the relation between faults and end-effects of the Ørsted attitude con-

trol system in the two operational phases; detumbling and stabilization.

Detumbling Stabilization

In
st

ru
m

en
t ❾

Fault - End-effect ❿ R
an

do
m

M
ot

io
n

L
ar

ge
E

rr
or

Sm
al

lE
rr

or

Po
w

er
=H

ig
h

R
an

do
m

M
ot

io
n

L
ar

ge
E

rr
or

Sm
al

lE
rr

or

Po
w

er
=H

ig
h

CSC Any single axis failed zero x x
Any single axis failed maximum x x
All axes fails zero x x
Absence of samples x x

SIM Absence of samples - - - - x
SS Any active sensor failed zero - - - - x

Any active sensor failed high - - - - x
SST Any active sensor failed zero or high - - - - x
CD Zero magnetic moment in CDAX or CDBX x x

Zero magnetic moment in CDAY or CDBY x x
Zero magnetic moment in CDAZ or CDBZ x x
Maximum mag. mom. in CDAX or CDBX x x
Maximum mag. mom. in CDAY or CDBY x x
Maximum mag. mom. in CDAZ or CDBZ x x
Wrong sign on mag. mom. in CDAX or CDBX x x
Wrong sign on mag. mom. in CDAY or CDBY x x
Wrong sign on mag. mom. in CDAZ or CDBZ x x
High power consumption in CD x x

5.3.4 Remedial Actions

The possibilities for reconfiguration of the ACS for fault accommodation is rather lim-
ited because the level of hardware redundancy is very low and the available computa-
tional capacity is restricted to execute FDIR algorithms of only modest complexity. The
following remedial actions are available:❳ Attitude acquisition. The acquisition of attitude estimates can be switched be-

tween the primary (SIM based) and the secondary (CSC and SS based) attitude
determination algorithms.❳ Sun sensors. Each of the 8 sun sensor heads has two-redundant cells. If a primary
head fails, the secondary head can be sampled instead. The secondary attitude de-
termination algorithm is furthermore able to operate without the sun vector input.❳ Coil drivers. Each coil driver and magnetorquer is two-redundant. Both sets
are normally enabled to facilitate maximum control torque. If one coil driver or
magnetorquer fails, it can be disabled independently of the other set. The six coil
drivers are grouped in two sets (A and B). Each set is powered separately and
can be disabled and enabled individually. The power supplies are disabled to save
energy if the three coils in one set are not used.

5.3 Attitude Control System Analysis 119

❳ Close down. If a serious fault cannot be accommodated the ACS is closed down
and the magnetorquer currents set to zero.

The ACS block diagram from figure 5.2 is repeated in figure 5.6 with extensions for
reconfiguration. The possibilities for reconfiguration are indicated either with switches
that control the data flow, or with dashed boxes showing groups of modules that can be
enabled and disabled. The figure shows the reconfigurable components for both fault
handling and operational control. The latter will be covered later.

x

SSA1

CDAX

CDBX

CDAZ

CDBZ

SSB8

CSC

SIM

4 SST

B-dot
Current

calculation

Detumbling

Stabilization

Sec. AD

Orbit
model

Sun and
geomagnetic

models

Su
n

ve
ct

or
ca

lc
ul

at
io

nOn

On

On

On

On

On

On

On

On

Off

Off

Off

Off

Off

Off

Off

Off

Off

SS1(A)

CDX(A)

CDA
Enabled

CDB
Enabled

CDX(B)

CDZ(A)

CDZ(B)

ControlEnabled (Off,On)
ADACEnabled (Off,On)

ACSTask (Off,On)

SS8(B)

SVector
Enabled

AttDetMode

Phase

Control
Mode

Sec

LP

HP

BD

Prim

Prim. AD

....

....
....

+
Bias

currents

Low power

High power

Boom down

Det

Stab

Figure 5.6: Possibilities of reconfiguration of the attitude control system. Switches indicate the

usage of instruments and selection between operational modes. Dashed boxes indi-

cate execution control over groups of functionalities.

The general reconfiguration requirement is that the attitude in the stabilization phase
shall change with no more than 10 degrees in pitch or roll and 20 degrees in yaw before
reconfiguration is accomplished. The requirements for the detumbling phase are a max-
imum change in angular rate of 80 deg/min and a maximum change in control error of
60 degrees (2 times the normal variations). An additional requirement is that an increase
in power consumption following a fault shall add up to no more than 3 Watt-hours (12
Watt in 15 minutes).

120 Fault Tolerant Control for the Ørsted Satellite

5.4 Fault Detection and Isolation Design

This section gives a short introduction to the methods chosen to detect the occurrence
of the faults listed in section 5.3.1. In summary the requirements for fault detection and
isolation (FDI) are the following:❳ Detection of any faults in CSC. Isolation between the three axes is not required.❳ Detection of periods with and without SIM samples.❳ Detection of faults in any SS. Isolation between the individual elements is re-

quired.❳ Detection of faults in any SST. Isolation not required.❳ Detection of faults in any CD/MTQ. Isolation between the individual drivers is
required.

5.4.1 Overview of Fault Detectors for ACS

The detection of erroneous signals is performed on two levels. The control level includes
protection against out-of-limit values on individual channels and also performs outlier
filtering on most signals. The FDI algorithms on the next level (which are in focus in
this thesis) use the correlation between more signals to detect and isolate faults. The
following list explains, for each instrument, the preprocessing performed on the control
level and presents the additional FDI methods used on the detector level.

Vector magnetometer faults (CSC). The preprocessing in the control level of each
channel includes outlier filtering and out-of-limit test from the range [-65000, +65000]
nT. The operational range is approximately within [21000, 46000] nT. If a CSC sample
arrives later than 300 ms after the request or if an out-of-limit was detected, the control
loop is suppressed. The range check is not performed on the CSC measurement for
the non-zero current period in the detumbling phase, because the instrument may be
saturated.

The detector level includes, both during detumbling and stabilization, an out-of-limit
test on the magnitude of the measured external magnetic field filtered through a first
order low pass filter. An out-of-limit is detected if the magnitude exceeds the interval
[15000, 55000] nT.

During the stabilization phase, output from the geomagnetic field model is used to
verify the magnitude of the magnetic field measurement. A residual is generated as a first
order filtered version of the difference between the two magnitudes. The test threshold
is set to 1000 nT.

5.4 Fault Detection and Isolation Design 121

Star camera faults (SIM). The SIM samples are declared absent if the age of the last
received sample is older than 15 seconds (nominal sampling rate is 1.2 seconds). The
usage of SIM samples is resumed when the sample rate is sufficiently high. This is
implemented as a hypothesis test of the sampling rate being higher than 20 seconds.

Sun sensor faults (SS). The preprocessing in the control level of each of the 8 chan-
nels includes outlier filtering, out-of-limit test from the range [-0.02, 2.0] mA, and tem-
perature compensation. The operating range for each sensor is approximately [0.0, 1.6]
mA. The three elements of the sun vector are then computed from the three sensors with
the largest excitation.

Fault detection is achieved by an out-of-limit test on the magnitude of the sun vector.
The normal magnitude is 1.0 so a fault is detected if it exceeds the range [0.8, 1.2].
Isolation of the faulty sensor is achieved by inspecting the innovations from the Kalman
filter (EKF) of the secondary attitude determination (introduced on page 106). The
EKF innovations are scaled relatively to the normalized sun vector. If one of the three
innovations exceeds 0.2 (20%) then the corresponding axis is assumed faulty. The SS
element that was used as input for this axis is then determined by index information
from the sun vector calculation in the control level.

Sun sensor thermistor faults (SST). The preprocessing in the control level of each
of the 4 channels includes outlier filtering and out-of-limit test from the range [-20, 60]
degrees centigrade. The normal operating range is [-15, 45] degrees centigrade. There
is no need for further fault detection as both failure modes fall outside this range.

Coil driver and magnetorquer faults (CD/MTQ). Detection of faults in CDs and
MTQs are primarily performed by comparing the current measurement with the desired
current. This is not sufficient, as revealed in section 5.3.2, because the current mea-
surement does not provide directional information and is not effected by a coil short
circuit.

In detumbling, the coil currents are measured twice each sample, once in the zero-
current period and once in the active period. The zero-current measurement is used
to assure that the corresponding magnetic field measurement is not disturbed by the
magnetorquers. In the stabilization phase, only one measurement is taken. The prepro-
cessing of the zero current measurement includes outlier filtering and out-of-limit check
whereas the other measurement only has an out-of-limit test. The test range is [-8, 558]
mA where the normal operating range is [0, 550] mA.

Non-zero currents in the detumbling zero-current period is detected by a fixed thresh-
old for each individual CD/MTQ. The test threshold is 10 mA corresponding to a 1000
nT disturbance on CSC.

The primary detection of faults in CD/MTQ, when currents are non-zero, is done
by comparing the absolute value of the desired currents with the current measurements.
The difference is filtered with a first order filter and compared to a threshold of 50 mA.

122 Fault Tolerant Control for the Ørsted Satellite

The problem with detection of wrong direction on currents, coil short circuits,
and bridge transistor short circuits (see table 5.7) can be solved for the detumbling
phase, where the coupling between the magnetorquer currents and the magnetic field
measurement from the CSC can be utilized. Estimates of the coil currents are calculated
from the magnetic disturbance and compared to the desired currents. In this way, the
failed axis is determined. Isolation between the two CD/MTQs in the identified axis is
achieved by comparing the currents in each CD/MTQ to the residual. It is important
to notice that the magnetic coupling in the stabilization phase is not strong enough to
make this FDI method feasible.

It is a requirement for all the fault detectors, that use outlier filtered signals, to avoid
false detections during the initialization of the filters. This is achieved by postponing the
activation of the FDI algorithms a few samples following an ACS activation command.

These FDI algorithms are able to catch all the required component faults, except the
CD/MTQ faults that cannot be detected by the current measurement during the stabi-
lization phase (see table 5.7). These faults cannot be detected by simple means, so the

requirements cannot be fulfilled on this point ! The wrong direction error could be de-
tected by a small extension to the hardware in the power drive that provides a signature
on the current measurement. The remaining faults could be detected by analytical re-
dundancy methods, where the real torques are estimated from the angular acceleration
of the satellite and compared to the expected torques. This requires extensive non-linear
modelling and has not been feasible for implementation on the 80186 platform with the
present load of the application software.

5.4.2 Assessment on Potential False Alarms

An inspection of the dependency between the functional model of the ACS and the
FDI algorithms yields important information about potential false alarms and erroneous
isolation of faults:❳ The CSC is very sensitive to the magnetorquer currents during the detumbling

phase. This means that the CSC can erroneously be declared faulty if a CD/MTQ
fault causes a non-zero current during the zero-current period.❳ The CSC measurement is used during the detumbling phase to detect CD/MTQ
faults. This means that a CSC fault may cause false detection of CD/MTQ faults.❳ The CSC fault detector depends on the on-board geomagnetic field model to com-
pute the magnitude of the estimated magnetic field. The magnetic field model
determines the local field vector from the orbit position given by the on-board
orbit model. Correct orbit position estimates requires updates every 5th day with
valid orbit data. If the orbit model update fails then the estimated magnetic field
magnitude will differ from the real value and the CSC instrument may be incor-
rectly declared faulty.

5.5 Supervisor Decision Logic Design 123

❳ The on-board eclipse monitor uses the magnitude of the sun vector measurement
to identify sunrise and the orbit position estimate to predict sunset a few min-
utes before the sun disappears. This monitor is thus sensitive to both orbit model
malfunctions and sun sensor faults.

These dependencies must be taken into consideration in the subsequent decision logic
design and realised during the verification of the FTCS behaviour.

5.5 Supervisor Decision Logic Design

The prerequisites for the decision logic design have now been developed and are given
by the general requirements from section 5.2.1, the detected and isolated fault events
from section 5.4, and the list of remedial actions from section 5.3.4. This section treats
the design of the decision logic that handle both these fault events and also the op-
erational command/monitoring interface. The decision logic is implemented as state-
event machines (SEMs) and analyzed in the Beologic VisualStateTM tool-kit The usage
of VisualStateTM imposes a few restrictions on the design. The principles of the analysis
are, anyway, generally applicable. The purpose of this section to introduce solutions to
some typical problems encountered in the design of the ACS supervisor. An overview
of the SEMs is first given whereupon examples are drawn to illustrate key problems and
solutions.

5.5.1 Overview of the Decision Logic State-Event Machines

The inference of the SEMs, implemented in the decision logic module, makes a logic
mapping from inputs (commands, faults and monitoring events) to outputs (monitoring
information and remedial actions). The remedial actions are represented as changes in
the active states of the SEMs, so control level updates are executed by transferring the
new states after an inference to the control level. The names of the SEMs are therefore
identical to the switches in figure 5.6. Not all decision logic tasks are adequately solved
by SEM logic, so the decision logic module supports the SEM inference mechanism
with input preprocessing, output postprocessing and some utility functions (e.g. timer
functions). The present design of the SEMs allows only one active input in one call, so
the decision logic task scans the list of active events and calls the inference mechanism in
each iteration. Multiple events can occur in one sampling instant because more detectors
can be active on the same time. This is the background for the SEM design that is
presented in this section.

The choice of the number of SEMs and their mutual dependencies are important in
the design of the decision logic so simplicity can be ensured. The Ørsted ACS decision
logic has not been designed with any formal approaches, but with the common philos-
ophy that each SEM shall represent an independent functionality as far as possible. An

124 Fault Tolerant Control for the Ørsted Satellite

CDAEnabled

ControlEnabled

ADUncert

ADACEnabled

SVectorEnabled

ControlMode

SamplTimeStatus

CSCStatus

Eclipse

ModelsInit

Deactivated

Paused

BiasCurrent

Phase

ACSTask

CDBEnabled
AttDetMode

DetCDA<i>Status
DetCDB<i>Status CD<i>

3

DetSST<i>Status SST<i>
4

DetSS<i>Status SS<i>
8

....

DetEclipse

DetCSCStatus

DetSamplTimeStatus

CmdDeactivate

CmdPause

CmdReactivate

CmdResume

CmdTimeUploaded
CmdOrbitUploaded

DetAttCond
CmdActivateBD

DetSIMStatus
TimSIMTimeout

CmdDetumble

Propagate

CmdStabilize

DetAttUncert

CmdBiasNonzero
CmdBiasZero

Figure 5.7: The internal structure of the Ørsted ACS decision logic’s state-event machines. Inputs

to the state-event machines are commands, events from detectors, time-out signals

from external timers, and internal dependencies from other state-event machines.

The input "Propagate" is used to trigger transition of the state-event machines that

have internal dependencies. The CmdReset command is not shown as well as all the

dependencies from the CmdDetumble and CmdStabilize commands.

overview of the SEMs is presented in figure 5.7 and the tables 5.9-5.10 contain lists of
inputs, outputs, and assignments of SEMs. These tables include items in connection to
operational mode handling that has not been treated so far. Their assignments are clear
from the explanation in the tables. The decision logic is realized with 32 state-event
machines with a total of 83 states and 116 rules relating the inputs and old states with
new states and outputs.

The overview of the SEMs in figure 5.7 shows the influence from inputs to SEMs
and the dependency between the individual SEMs. Each box represents a SEM that can
be in one state and change into another state when an input is activated. A dedicated
input called "Propagate" is included to trigger the propagation of changes through the
chain of dependent SEMs. After the decision logic module has called the inference
mechanism with an active input it is then necessary to repeat the call to "Propagate"
as long as it remains an active input. It is generally not desirable to solve the problem

5.5 Supervisor Decision Logic Design 125

Table 5.9: Inputs to the Ørsted decision logic’s state-event machines.

Input Explanation

CmdDetumble Activate detumbling control.
CmdStabilize Activate stabilization control.
CmdDeactivate Stop ACS control task.
CmdReactivate Restart ACS control task in same state as before CmdDeactivate.
CmdPause Stop attitude control and torque generation but continue attitude acquisition.
CmdResume Resume attitude control and torque generation.
CmdReset Reset all internal states to default values at boot-up.
CmdActivateBD Enable boom-down controller.
CmdBiasNonzero A nonzero bias to the control currents has been requested.
CmdBiasZero A zero bias to the control currents has been requested.
CmdTimeUploaded A time reference has been uploaded from ground. This is required for correct operation of

the orbit model.
CmdOrbitUploaded Orbit parameters have been uploaded. This is required for correct operation of the orbit

model.
DetCSCStatus Failure status of CSC, (Fault, NoFault).
DetSS< ♥ >Status Failure status of active SS sensor number ♥❘➉ (1..8). The active sensor is either SSA< ♥ > or

SSB< ♥ >, (Fault, NoFault).
DetSST< ♥ >Status Failure status of Sun sensor thermistor number ♥❖➉ (1..4) failed, (Fault, NoFault).
DetCD< ➢ >< ♥ >Status Failure status of coil driver/magnetorquer in axis ♥❃➉ (X, Y, Z) of set ➢①➉ (A, B), (Fault,

NoFault).
DetSIMStatus Monitoring of SIM, (NotOk, Ok).
DetSamplTimeStatus Failure status of controller sampling time, (Fault, NoFault).
DetAttCond Monitoring of attitude deviation from set-point. Three categories represent the limits be-

tween low power mode, high power mode, and boom-down (LP, HP, BD).
DetEclipse Monitoring of periods with sun and eclipse (Sun, Ecl).
DetAttUncert Monitoring of the convergence of the extended Kalman filter in secondary attitude determi-

nation, (NotOk, Ok).
TimSIMTimeout Time-out signal from the external SIM timer.

Key Cmd : Telecommands from ground.

Det : Fault detector or monitor events.

Tim : External timer events.

Table 5.10: Outputs from the Ørsted decision logic’s state-event machines.

Output Explanation

IllegalCommand The command received is invalid for the present state combination.
BDControlRequest Request to ground for activation of the boom down control mode.
NotBoomDown The boom down control mode command CmdActivateBD was sent, but the boom is not

down anymore.
StartSimTimer Start the external timer for re-enabling of attitude control after SIM has become valid again.

126 Fault Tolerant Control for the Ørsted Satellite

Table 5.11: States in the Ørsted decision logic’s state-event machines.

State event machine Explanation

Phase Mission phase (Det=detumbling, Stab=stabilization).
ACSTask Main ACS control task, (On=enabled, Off=disabled).
ADACEnabled Switch for attitude determination and control, while control task still running. Disabled if

CSC fails or sampling time is violated, (On=enabled, Off=disabled).
ControlEnabled Switch for attitude control output, while attitude determination still running, (On=enabled,

Off=disabled).
Paused Internal memory for pause-resume commands, (YES=paused, NO=not paused).
Deactivated Internal memory for Deactivate-Reactivate commands, (YES=deactivated, NO=not deacti-

vated).
AttDetMode Attitude determination algorithm, (Sec=secondary mode, PrimTimerRunning=primary

mode and SIMTimer running, Prim=primary mode and SIMTimer stopped). The output
StartSIMTimer is activated when entering PrimTimerRunning, and Prim is entered when
the TimSIMTimeout is received. See the TimSIMTimeout for further explanation.

AttUncert Uncertainty of the attitude estimate computed by the Kalman filter in the secondary attitude
determination algorithm, (NotOk, Ok).

ControlMode Attitude control mode, (LP=low power, HP=high power, BDRequested=high power and re-
quest, BD=boom down). When the input DetAttCond=BD is received, BDRequested is
entered and a request for boom down control is sent to ground. When the command Acti-
vateBD is received, the state BD is entered.

ModelsInit Internal memory showing the update status of the time reference and the orbit model
(None=no models updated, Time=time reference updated, Orbit=orbit model updated,
All=both items updated).

CSCStatus Internal memory for CSC status, (Fault, OK).
SS< ♥ > 8 Switches for the sun sensor sets, ♥➊➉ (1..8), (AOnBOn, AOnBOff, AOffBOn, AOffBOff).
SST< ♥ > Internal memory for sun sensor thermistor state, ♥❖➉ (1..4), (On, Off)
SVectorEnabled Sun vector enabled for secondary attitude determination (On=enabled, Off=disabled)
CD< ♥ > 3 Switches for the coil driver sets in axis ♥➍➉ (X, Y, Z), (AOnBOn, AOnBOff, AOffBOn,

AOffBOff)
CD< ➢ >Enabled Switch for coil driver set ➢➎➉ (A, B), (On, Off)
BiasCurrent Internal memory that shows whether a nonzero bias current has been requested from ground,

(Zero, Nonzero).
SamplTimeStatus Internal memory for the status of controller sampling time, (Fault, OK).
Eclipse Internal memory for the eclipse status (InEclipse, InSun).

with internal dependencies with such a propagation-signal, because it restricts the
capabilities of consistency checks as will be evident below, but it is a necessary
requirement in connection with the VisualStateTM software. A more appropriate solution
is to include additional variables (which are not states of SEMs) that describe the
internal dependencies, but this is not feasible in VisualStateTM. Another alternative is
to modify the structure of the SEMs in such a way that each SEM in a dependency
chain has direct event input and no SEM dependencies. This solution is undesirable
because the SEM conditions become unnecessary complex even for simple applications.

The following examples describe specific details on the design using the state-event
technique.

5.5 Supervisor Decision Logic Design 127

5.5.2 Controller Mode - Example with Internal Memory

The requirements for the controller operational mode handling was given on page 109.
The ControlMode SEM uses an internal state (BDRequested) to memorize the situation
where the controller is in high power mode and a need for boom down control has
been detected and requested (see figure 5.8). The detection of a boom down condition

LP

HP
BD

Requested

BD
C

m
dA

cti-
vateB

D

D
et

A
tt

C
on

d=
H

P

DetAtt
Cond=HP

DetAttCond=BD
[BDControlRequest]

DetAtt
Cond=LP

CmdActivateBD
[NotBoomDown]

CmdActivateBD
[IllegalCommand]

CmdActivateBD
[NotBoomDown] DetAttCond=HP

DetAttCond=LP

DetAttCond=BD

[BDControlRequest]D
et

A
tt

C
on

d=
L

P

ControlMode

Figure 5.8: A state-event machine for handling of the attitude controller mode. The controller can

be in either low power (LP), high power (HP), or boom down (BD) mode. The fourth

state (BDRequested) memorizes when a BDControlRequest has been sent and the

SEM is waiting for a CmdActivateBD command. Square brackets indicate outputs.

leads to a request for boom down control, that is sent to ground, and subsequently the
SEM enters into BDRequested. Boom down control mode (BD) is entered when the
ground command, CmdActivateBD, is received. If a boom up condition is detected
(DetAttCond=LP or HP) while the SEM is waiting for the CmdActivateBD command
the corresponding mode is enabled (LP or HP) and when the command arrives, it will
be refused and the output, NotBoomDown, will be sent to ground.

5.5.3 Attitude Determination Mode - Example with External Timer

The SEM for handling the two attitude determination modes is shown in figure 5.9. The
requirement to disable the controller output (ControlEnabled=Off) during two minutes
following a transition to the primary mode is controlled with an additional state that is
active while an external timer counts down.

128 Fault Tolerant Control for the Ørsted Satellite

PrimTimer
Running

PrimTimer
Stopped

Sec

D
et

SI
M

St
at

us
=

N
ot

O
k

DetSIMStatus=

NotOk

DetSIMStatus=Ok

[StartSIMTimer]

TimSIMTimeout

AttDetMode

Figure 5.9: A state-event machine for the attitude determination mode handling. The attitude de-

termination can be in either primary (PrimTimerStopped) or secondary (Sec) mode.

The extra state PrimTimerRunning is used to memorize that the external SIMTimer

has been activated and the SEM is waiting for a timeout signal.

5.5.4 Controller Enabled Switch - Example on Internal Dependen-
cies

The ControlEnabled SEM illustrates how internal dependencies between SEMs are used
(see figure 5.10). The transitions to On and Off are triggered with the Propagate input
and determined by a combination of the current states of other SEMs.

5.5.5 How to avoid Combinatorial Explosions

It is important to separate naturally independent functionalities into individual state-
event machines. Otherwise, combinations of these functionalities will be assigned su-
perfluous states leading to excess complexity. An alternative design of the ControlMode
SEM is given as an example. It would have been intuitively reasonable to let this SEM
handle all controller modes, which include the four states seen in figure 5.8 but also the
pause and detumbling modes. This leads to the fairly complex SEM shown in figure
5.11. It is not always obvious how to define the set of SEMs, but care should be taken to
avoid these combinatorial explosions. A formalized approach to this problem is given in
Zamanabadi et al. (1996) using the concept of extended state-event machines.

5.5 Supervisor Decision Logic Design 129

On Off

Propagate AND

Propagate AND

ControlEnabled

AttDetMode=PrimTimerRunning

(AttDetMode=Sec AND ADUncert=Ok)

(

((

ControlMode=BDRequested

NOT ControlMode=BDRequested

OR

OR

OR

OR

OR

OR
(ADUncert=NotOk AND AttDetMode=Sec)

CDX=AOffBOff

NOT CDX=AOffBOff

CDY=AOffBOff

NOT CDY=AOffBOff

CDZ=AOffBOff)

NOT CDZ=AOffBOff)

AND

AND
AND

AND

AttDetMode=Prim)

Figure 5.10: A state-event machine to control the execution of the attitude controller algorithm.

The controller is disabled in a number of different situations that is represented by

a combination of other states.

LP

LP
Paused

BD
Paused

HPReq
Paused

HP
Paused

Detumbling
Pause

Detumbling HP HPReq

BD

C
m

dA
cti-

vateB
D

C
m

dA
ctivateB

D

D
et

A
tt

C
on

d=
H

P

C
m

d
R

es
um

e

DetAttCond=HP

DetAttCond=HP

Cmd
Stabilize

Cmd
Detumble

DetAtt
Cond=BD

DetAttCond=BD

DetAtt
Cond=LP

DetAttCond=LP

DetAtt
Cond=HP

DetAttCond=LP

DetAttCond=BDD
et

A
tt

C
on

d=
L

P

C
m

d
Pa

us
e

ControlMode,Phase,Paused

CmdPause Cm
dP

au
se

Cm
dPauseCmdPause

CmdResume Cm
dR

es
um

e

Cm
dResum

eCmdResume

D
et

A
ttC

on
d=

H
P

D
et

A
ttC

on
d=

LP
D

etA
ttC

ond=B
D

D
etA

ttC
ond=L

P

DetAttCond=HP

Figure 5.11: Illustration of an inappropriate SEM design. The ControlMode SEM from figure

5.8 has been combined with the Pause and the Phase SEMs and the result is an

unnecessary complicated design.

130 Fault Tolerant Control for the Ørsted Satellite

5.6 Decision Logic Verification

The purpose of this section is to examine the properties of the SEM design that can be
tested before implementation and illustrate these properties with a few examples.

The verification for correctness is performed in three ways: First, an analysis of
the SEMs is performed in VisualStateTM to ensure consistency of the inference rules.
Secondly, the decision logic’s SEMs are combined with a SEM description of the entire
system to locate potential dead-ends. Third, correct operation against the fault analysis
in section 5.3.2.2 is verified with BeologicTM AIT. The latter requires a translation of
the fault reconfiguration part of the VisualStateTM rules into AIT rules which is possible
although not automatic. The two tool-boxes supplement each other, so the conversion is
necessary. The BeologicTM products are not the ultimate tools for this task, but are used
here to investigate the principles.

5.6.1 Stand-alone Check of the SEM Rules

The coherence between the decision logic’s SEMs is analysed in VisualStateTM for a
number of properties. The analysis does not guarantee correct operation, but it helps to
locate important problems.

Correct initialization. A default state must be assigned to each SEM to ensure a de-
terministic behaviour after initialization or reset. An error message will be reported if
not all SEMs have initial states defined.

Unused inputs, outputs, states, and rules. Unused items represent potential design
errors. Inputs, outputs, and states, that have been declared, but are never used indicate
incomplete implementation and are pointed out with a warning. Unused rules are more
complicated. A rule will never be used, if the condition side is unattainable. This is
the case when an illegal combination of states is used as condition. Unused rules cause
an error message. No examples are given, but the check is used to find illegal state
combinations described below.

Dead-ends. A dead-end is a state that can only be left with a complete reset. A warning
is issued if dead-ends exist in single SEMs. It is also possible that the entire system of
SEMs gets locked up due to internal dependencies. This situation will cause an error
message.

The SS< ➊ > SEMs can be used to illustrate this situation. If both an A sensor and
a B sensor have failed, the entire sun vector is rejected until one of the commands,
CmdDetumble or CmdStabilize, is received. If these dependencies on the commands
are forgotten, the SS< ➊ > AOffBOff-state will be an illegal dead-end.

Dead-ends in single SEMs may be desired by design as it is the case with the Mod-
elsInit SEM. This SEM is used to memorize that the time and orbit parameters have

5.6 Decision Logic Verification 131

been uploaded to the on-board models. This information is only lost in case of computer
reset, so this SEM has a legal dead-end.

Contradiction between rules. A contradiction exists if two rules with the same con-
ditions (input and internal dependencies) forces a SEM into two different states. The
ControlEnabled SEM in figure 5.10 serves as an example. If, for example, the condition
"NOT ControlMode=BDRequested" was forgotten in the on-transition, it is possible to
have a transition into both the On- and Off-state. This causes a contradiction warning
message.

Illegal state combinations. It is possible to utilize the check for unused rules (de-
scribed above) to verify that state combinations, known by design to be illegal, will
never occur. This is achieved by temporarily entering an additional rule that has the ille-
gal state combination as condition. If an error message indicates that the rule will never
be activated, then the design is successful.

As an example consider the fact that the coil driver sets shall be Off if the on-board
models have not been initialized in the stabilization phase. This can be verified by
adding the rule,

Propagate AND CDAEnabled=On AND (NOT ModelsInit=All) AND Phase=Stab:IllegalOutput

A warning message will indicate that this rule will never be activated. The input
(Propagate) and output (Illegal) of this rule are not important, but are used to constitute
a legal rule.

It is not possible to verify all illegal combinations in VisualStateTM because the prop-
agation of events through the SEMs allow many state combinations to be legal, although
they will never appear together after the state propagation is finished. It is, for example,
not possible to verify that the coil driver sets are disabled if the CSC has failed. In the
first iteration after a DetCSCStatus=Fault input, the coil driver sets can be on. Only
after the third iteration both coil driver sets will be turned Off. This problem is specific
for VisualStateTM and it would be possible to make a complete check with a dedicated
software tool.

5.6.2 Combined Check with SEM Model of the Control Level

It is a wrong design if the decision logic disables the control level subsystems that pro-
duce inputs for active fault detectors, when it reconfigures in connection with fault hand-
ling. It is possible to make an automatic check for such dead-locks in VisualStateTM.
Consider the following example that was discovered and corrected in the Ørsted soft-
ware at a very late point in the development. The CSC FDI uses both the on-board
geomagnetic model and the measured magnetic field for fault detection. If the sensor
is detected faulty, the switch ADACEnabled is disabled (see figure 5.6 on page 119).

132 Fault Tolerant Control for the Ørsted Satellite

In the earlier software version this switch also disabled the call to the on-board models
and thereby update of the geomagnetic model. Consequently, the CSC instrument will
never be declared non-faulty again. This means that an intermittent fault or false alarm
will cause the CSC to be permanently disabled and the satellite left uncontrolled (until
a ground command restores operation).

The above problem can be analysed by combining the decision logic’s SEMs with a
SEM description of the functionality of the control level as shown in figure 5.12 for the
old software version. Two additional SEMs are introduced: One for the geomagnetic

On

Propagate AND
ADACEnabled=On

BModel ADACEnabled

OnOffOff

Propagate AND
CSCStatus=Fault

Propagate AND
ADACEnabled=Off

Propagate AND
CSCStatus=Ok

CSCDetector

Off

Propagate AND
BModel=Off

Propagate AND
BModel=On

CSCStatus

OkFault

CSCFault
(forced)

(forced)

CSCFault =>
CSCStatus=Fault

CSCNoFault =>
CSCStatus=Ok

CSCNoFault

On

Figure 5.12: Example on a method to check for possible dead-ends between the supervisor’s de-

cision logic and the control level. A SEM description of the control system and FDI

(BModel and CSCDetector) is combined with the SEMs of the supervisor’s decision

logic (ADACEnabled and CSCStatus). The dependencies between the SEMs are

shown with dashed lines. In this example, a CSC fault will lead to a dead-end in the

system.

model (BModel) and one for the CSC fault detector (CSCDetector). These are turned
On or Off depending on the status of the ADACEnabled SEM. A change in CSC failure
status (CSCFault or CSCNoFault) is only propagated through the CSC detector if the de-
tector is on. This is shown as the dotted lines connecting CSCDetector with CSCStatus.
These lines represent the input, DetCSCStatus, that carries the CSC status information.
The system is now analysed in VisualStateTM and a dead-end is found because the CSC
fault event turns ADACEnabled Off, which causes the detector to be Off and thereby to
be insensitive to the CSC failure status inputs.

Generally, the entire system can be analysed in one step this way, but this is not
possible in VisualStateTM. This tool-kit can only determine total system dead-end or
dead-ends in single SEMs. It cannot locate dead-ends in the interaction between more
SEMs if there is not a total system dead-end.

5.6 Decision Logic Verification 133

5.6.3 Combined Check with Fault Propagation and Reconfigura-
tion Analysis

A completeness check of the supervisor’s fault handling can be performed in
BeologicTM AIT, where it is verified that the decision logic handles all considered faults.
The entire logic model of the system is implemented in AIT following the principle il-
lustrated earlier in figure 3.8 on page 39. This includes the fault propagation analysis
from section 5.3.2, the logic behaviour of the fault detectors and the reconfiguration,
and the operation of the fault handling part of the decision logic’s SEMs. The combined
rule base is then examined in the same way as for the benchmark example on page 56.
Appendix B.3 contains a representative extract of all the rules that describe the entire
ACS logic model.

A simple example illustrating the principle of analysis is given in table 5.12 that lists
the rules for analysis of a coil driver sign fault. A wrong sign on the magnetic moment

Table 5.12: An example on BeologicTM rules used to verify completeness of the supervisor deci-

sion logic.

Rule
Coil driver FPG:

1 CDAZMagMomWrongSign = (CDAZSignFailedPos or CDAZSignFailedNeg)

Propagation through reconfiguration switches:
2 CDAZMagMomWrongSign_ = (CDAZOn and CDAEnabledOn and

CDAZMagMomWrongSign)

FPG to end-effects:
3 RandomMotion = ((PhaseStabilize and (SSA1Low_ or

SIMStatusNotOk_)) or CSCStatusFault_ or

CDAYMagMomMax_ or CDAZMagMomWrongSign_)

Fault detector:
4 DetCDAZStatusFault = (CDAZon and CDAEnabledon and

(CDAZCurrentMeasWrong_ or ((CDAZMagMomWrongSign_

or CDAZMagMomZero_) and PhaseDetumbling)))

Decision Logic:
5 CDAZOn = (not DetCDAZStatusFault)

(rule 1) has only an effect on the system if the two reconfiguration switches CDAZ and
CDAEnabled are both On (rule 2). In that case, it causes a random motion of the satellite
along with some other faults that have the same end-effect (rule 3). The coil driver sign
fault is detectable, but only in the detumbling phase and if CDAZ is On (rule 4). The
decision logic reconfigures by disabling CDAZ switch (rule 5).

The analysis works, as explained on page 39, on the fact that the propagated fault
(CDAZMagMomWrongSign_) will be bound to false by the rules. This is clear because
if it was true then CDAZOn will be false by rule 5, and this will lead to CDAZMag-
MomWrongSign_=False by rule 2. Based on this observation, the following is analyzed:

134 Fault Tolerant Control for the Ørsted Satellite

Fault analysis. The rule base is searched for bindings on the propagated fault vari-
ables. The list of variables bound to false indicate the faults that are successfully re-
configured. Table 5.13 shows the results of the analysis, performed separately for de-
tumbling and stabilization. It is clear from the table that all faults are accommodated in

Table 5.13: Analysis of the completeness of the Ørsted ACS decision logic. The table shows the

component faults that will be handled (OK) and those that will not be handled (Not

OK).

Fault Detumbling Stabilization

CSCStatusFault OK OK
SIMStatusNotOk – OK
SS< ♥ >Low – OK
SS< ♥ >High – OK
SST< ♥ >StatusFault – OK
CD< ➢ >< ♥ >ShuntShort OK OK
CD< ➢ >< ♥ >ShuntDisc OK OK
CD< ➢ >< ♥ >T5Short OK OK
CD< ➢ >< ♥ >T5Open OK OK
CD< ➢ >< ♥ >SignFailedPos OK Not OK
CD< ➢ >< ♥ >SignFailedNeg OK Not OK
CD< ➢ >< ♥ >CoilShort OK Not OK
CD< ➢ >< ♥ >CoilDisc OK OK
CD< ➢ >< ♥ >PosTermShortGND OK OK
CD< ➢ >< ♥ >NegTermShortGND OK OK
CD< ➢ >< ♥ >T1Short OK Not OK
CD< ➢ >< ♥ >T2Short OK Not OK
CD< ➢ >< ♥ >T1Open OK OK
CD< ➢ >< ♥ >T2Open OK OK

detumbling, but some are not handled in the stabilization phase. The reason for this is
that these faults cannot be detected as explained earlier in section 5.4.1.

End-effect analysis. An inspection of the rule-base for possible end-effects yields the
results for the two operational phases shown in table 5.14. The table shows that the three

Table 5.14: Analysis of the completeness of the Ørsted ACS decision logic. The table shows

which end-effects are prevented from occurring with the implemented decision logic

and which can still happen.

End-effect Detumbling Stabilization

RandomMotion Impossible Possible
LargeError Impossible Possible
SmallError Impossible Possible
PowerHigh Impossible Impossible

end-effects RandomMotion, LargeError, and SmallError can still happen.
A further search for faults that cause these possible end-effects during the stabi-

lization phase gives the fault distribution shown in table 5.15. The faults that cause

5.7 Supervisor Implementation in Software 135

Table 5.15: Analysis of the faults that can cause the possible end-effects during the stabilization

phase shown in table 5.14.

RandomMotion LargeError SmallError

CDAZSignFailedPos CDAYCoilShort CDAXCoilShort
CDAZSignFailedNeg CDAYT1Short CDAXSignFailedPos

CDAYT2Short CDAXSignFailedNeg
CDAXT1Short
CDAXT2Short
CDAYSignFailedPos
CDAYSignFailedNeg
CDAZCoilShort
CDAZT1Short
CDAZT2Short

RandomMotion and LargeError are required to be handled (see section 5.3.3), but as
explained in section 5.4.1, this is not feasible for the Ørsted satellite. This means that
the requirements are relaxed on this point.

5.7 Supervisor Implementation in Software

The Ørsted ACS, including the FTCS supervisor, is implemented in the object oriented
multi-tasking language Ada. Sophisticated programming techniques are not employed,
so the experience gained from the realization can be useful as a general assessment
on problems and solutions encountered in such systems. This section presents some
issues relevant to the implementation of the supervisor task in the three layer structure
presented in section 3.1.

136 Fault Tolerant Control for the Ørsted Satellite

5.7.1 The Supervisor Task

The ACS supervisor is assigned a separate task and runs independently of the control
level task. The sampling time is 20 seconds which has been derived from the reconfigu-

ration requirements in section 5.3.4. The following pseudo-code explains the supervisor
loop:

Infinite loop

Supervisor_task

Receive synchronuous command
If parameter modification command (CmdModify) then

Stop control level task
Modify parameters
Restart control level task

Call SEM inference with commands
Update control level with new states (including start and stop)
Process SEM outputs
Send command verification to ground
If reset command (CmdReset) then call initialization subroutines

Every 20th second:
Call detector subroutines
Decrement timer and collect timeout signals (TimSIMTimeout)
Override detector outputs with mask from ground
Call SEM inference with masked detector outputs
Update control level with new states
Process SEM outputs
Collect and send housekeeping every minute, if enabled

end loop

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

The main loop executes the detectors periodically (line 12) and receives commands from
the on-board data handler through a synchronous call (line 2). The SEM inference of
detector outputs and commands is thus separated into two different subroutines (lines
7 and 16), both operating on the same SEM states. The additional supervisor tasks are
reconfiguration of the control level by transferring the new SEM states (lines 8 and 17),
execution handling (start, stop) of the periodic control level and supervisor tasks (lines 4,
6 and 8), handling of parameter updates in ACS (lines 3-6), and transmitting information
to ground (housekeeping, command verification, and state updates in lines 10 and 19).

The list of general requirements on page 109 includes a mechanism for disabling
and enabling the on-board autonomous functions. This is implemented with a detection
mask that makes it is possible to override the boolean values of the detector events before
the vector is presented for the inference (line 15). The detector mask is changed by a
parameter update command from ground. It provides full control over the SEMs from
ground.

It has not been feasible to implement the decision logic inference with automat-
ically generated code from VisualStateTM due to memory limitations. Instead, the
above methodology with design and verification of the SEMs using BeologicTM AIT
and VisualStateTM has been followed, while the implemented code was developed as an
Ada counterpart that was verified with a test sequence developed in BeologicTM.

5.7 Supervisor Implementation in Software 137

5.7.2 Synchronization between the Control Level and the Supervi-
sor Tasks

The control and data flows between the supervisor and control level tasks are presented
in figure 5.13. The supervisor cycle with FDIR can be interrupted by a synchronous

Call
detectors

Reconfig-
uration

Detection
inference

Reconfigure
control level

Send info.
to ground

Read
sensors

Sensor
preprocessing
and validation

Calculate
control output

Send actuator
control signal

Commands
processing,

inference, and
reconfiguration
of control level

Synchronuous call with
commands from the

on-board data handler

20 second
cycle

1 or 10
second
cycle

Reconfiguration
through

synchronuous call

Supervisor task

Control level task

Asynchronuous
variable pool

Fault detection
variables

House-
keeping
variables

Rendez-
vous

Rendez-
vous

Figure 5.13: Control and data flow diagram between the supervisor task and the control level

task. Dashed lines indicate data flow and solid lines indicate control flow.

rendezvous with commands from the on-board data handler. The control level task runs
a one second (detumbling) or 10 seconds (stabilization) cycle that can be interrupted by
a synchronous rendezvous with reconfiguration commands from the supervisor task.

The variables needed for fault detection and ground information are transferred asyn-
chronously from the control level task to the supervisor task through a variable pool that
is protected by a semaphore. The semaphore ensures synchronism between more vari-
ables when this is required. Also the results of the sensor validity checks performed by
the control level (see section 5.4.1) are stored in the variable pool.

138 Fault Tolerant Control for the Ørsted Satellite

5.7.3 Sequential versus Parallel SEM Inference

The SEM inference mechanism is implemented in traditional sequential code using for-
loops and if-then structures. It would have been advantageous to realize it with a number
of matrices containing the SEM transition rules, and use a common state transition sub-
routine to perform the inference. This solution was rejected because the Ada compiler
creates an instantiation for each matrix and this causes the entire SEM code to swell up
to all-most 5 times the size of the sequential counterpart (7 kbyte against 1.4 kbyte).

The disadvantage with sequential code is that internal dependencies between SEMs
are difficult to overview. The ControlEnabled SEM serves as an example on this. This
SEM is used by both the detection inference and the command inference subroutines as
indicated with the following pseudo code:

ControlEnabled = Off

Inference_Detections

Epilog

if attitude determination is OK AND
boom down control is not requested then

ControlEnabled = On

ControlEnabled = Off
else

Inference_Commands

if CmdDetumble or CmdStabilize then

Enable all coil drivers
ControlEnabled = On

if coil drivers disabled so three axes control is not possible then

if coil driver faults then

Disable relevant coil drivers

Both subroutines call the Epilog in the bottom box. If the coil drivers are disabled by In-
ference_Detections, so three axes control is not possible, then ControlEnabled is turned
Off in the Epilog. The coil drivers are re-enabled by ground command (CmdDetumble
or CmdStabilize). It is necessary that Inference_Commands also turns ControlEnabled
On because the Epilog is only able to turn it Off. If this was neglected, the controller
will not be enabled before the next supervisor cycle. This illustrates the undesirable
considerations required for sequential implementations.

5.8 Test of the Fault Tolerant Control System

The fault tolerant control system for the Ørsted ACS was designed with the methodology
presented in this thesis, but this does not replace a well structured test. This section
discusses how the supervisor algorithms can be tested on different test levels and also
how the supervisor can be designed to improve testability of the ACS subsystems.

The ACS has been tested with the ordinary sequence of module test, integration

test and acceptance test. The module test involves only the software subsystems. The
integration test involves the entire on-board software (data handling and ACS) and elec-

5.8 Test of the Fault Tolerant Control System 139

trical interface to sensors, actuators, and computers. The acceptance test involves all
ACS relevant instruments on the satellite.

5.8.1 Fault Detector Tests

A MatlabTM simulation program of the satellite dynamics which includes fault models
provides inputs for the FDI algorithm module tests. The tests are executed with dedicated
test drivers and test stubs that are linked to the module under test at compile-time.

The integration test is also based on simulated sensor values. A test bench that
emulates sensors and actuators through the electrical interfaces serves as a platform for
a hardware-in-the-loop test, where the MatlabTM simulated sensor values are presented
in real-time by a PC. The MatlabTM simulation is executed off-line so the test is not a
closed loop test. These tests ensure correct synchronization between the control level
task and the supervisor task as well as consistency of the interfaces. It is possible to
imitate all the considered failure modes using this equipment.

The final acceptance test is more involved because it is very difficult and expensive to
create a realistic environment around the satellite. It is furthermore prohibited to induce
deliberate faults in the equipment. This makes it literally impossible to test detection
of faults, but it is likewise important to test absence of false alarms. In the cases where
a suitable close-to-normal condition can be established, tests for incorrect intervention
from the supervisor can be performed. The detumbling phase can, for example, be tested
in this way. Only the magnetic field measurement and the magnetorquers are active in
this period, so the test covers only the CSC and CD/MTQ FDI algorithms. The test
is performed simply by activating the detumbling control and then rotate the satellite
slowly. The only non-space phenomena in this setup is a stronger magnetic field on
ground than in space and a 50 Hz fluctuation of the field caused by nearby power lines.

5.8.2 Supervisor Tests

The module test of the decision logic’s SEMs is based on a sequence of input events that
has been developed during the SEM design. The inference algorithm is linked to a test
driver that generates inputs for the test sequence and also a list of desired outputs and
state transitions. The performance of the SEM inference is then compared to the desired
functionality.

Correct operation of the supervisor loop, presented in section 5.7.1, is verified in
the integration test using the hardware-in-the-loop test bench. The most important issue
here is the synchronization between the three tasks involved (control level, supervisor,
and the on-board data handler’s command interface), where possible multi-tasking dead-
locks can terminate the tasks. The integration test is also used to verify that the fault
reconfiguration is appropriate and performed in time.

The only supervisor aspects, that can be tested during the acceptance test, are the
commands/monitoring treatment and the ability to reconfigure the control level. The

140 Fault Tolerant Control for the Ørsted Satellite

latter is achieved by forcing desired state transitions with the detector mask (see section
5.7.1) and observe correct reconfiguration of the control level in different situations.

5.8.3 ACS Performance Tests

The supervisor is an integrated part of the ACS, and it is very important to design the
system, so the supervisor supports testability of the control level. A control level test
typically requires some subsystems to be forced into a specific mode whereas others
shall be reconfigurable by the supervisor. An example on this is the test of the secondary
attitude determination mode (refer to figure 5.6 on page 119). The AttDetMode switch
must be forced to "Sec" during the test, but the SVectorEnabled switch shall still be
operable by the supervisor. The SVectorEnabled switch enables and disables the sun
vector input depending on the eclipse condition, and it is a part of the test to include
these transitions. Such requirements are supported by the present supervisor design,
where the detector mask is able to disable selected detectors and thereby force desired
settings of the control level.

The entire ACS is designed to be very flexible with respect to testing, debugging, and
maintenance. All internal parameters, both in the control level and the detectors, can be
modified by ground command and most variables can be diagnosed. This is used in a set
of formalized test sequences, implemented and executed from the ground station. Each
test sequence is dedicated to perform a specific subsystem test. Built-in test drivers have
been considered, but discarded due to memory limitations.

5.8.4 Test Results

As an illustration on the test of the Ørsted satellite’s FTCS, a single test result is pre-
sented where a particular fault is detected, isolated, and accommodated. Several tests
have been performed with a MatlabTM simulation of the satellite dynamics, and the real
on-board software have been verified in using the open-loop hardware-in-the-loop test
setup.

The fundamental purpose of testing is to verify fulfillment of the reconfiguration re-

quirement stated in section 5.3.4. This includes an assessment on the time to detect and
reconfigure and the amount of performance degradation the fault caused before the sys-
tem was reconfigured. Also situations with potential false alarms and missed detections
are investigated.

The test presented here concerns the detumbling phase that has the purpose to damp
the initial rotational energy of the tumbling satellite and align the satellite’s z-axis with
the geomagnetic field vector. The ZB coil driver fails after 20 minutes so only positive
currents are producible (CDZBSignFailedPos). This fault is detected and the coil system
is reconfigured so the ZB coil is disabled and the ZA coil is used instead. Figure 5.14
shows the two situations where the fault is handled and where it is not handled. It is
clear from the figure that the satellite will continue tumbling with approximately 20
times the nominal angular velocity if the fault is not accommodated. This end-effect

5.8 Test of the Fault Tolerant Control System 141

Without fault handling

With fault handling

0

20

40

60

80

100

120

140

160

180
Angle between z-axis and geomagnetic field vector

[d
e

g
]

Nominal Reconfigured

Without fault handling

0

100

200

300

400

500

600

700

800

positive torques only
CD ZB coil failed

Fault active

Fault detected

[d
e

g
/m

in
]

Angular rate during detumbling

0 50 100 150
Time [min]

Nominal
convergence
level

Nominal

Reconfigured

Without fault handling

18 20 22 24 26 28 30

180

200

220

240

260

280

300

320

Time [min]

Figure 5.14: Example on fault handling on the Ørsted satellite in the detumbling phase. The top

graph shows the angle between the satellite and the local geomagnetic field vector,

which is supposed to approach 180 deg. The bottom graph shows the amplitude of

the angular velocity. When the fault is not accommodated, the satellite will continue

tumbling and thereby prevent boom deployment.

142 Fault Tolerant Control for the Ørsted Satellite

will prevent the boom from deploying successfully. When the fault is accommodated
the performance is maintained on the same level as if no fault would have happened.

The detection time is 60 seconds, which is fast enough to ensure that the angular rate
is changed no more than 7 deg/min, which is far below the requirement of 80 deg/min
stated on page 119.

5.9 Summary

This chapter described the development of fault tolerance in the Ørsted satellite attitude
control system based on the general procedure introduced in chapter 3. The Ørsted
satellite is realized with a low level of redundancy, so the methods typically used for
large and expensive satellites are not applicable in this case. This chapter illustrated
how system availability and performance can be improved by considering faults in a
systematic way.

It was shown that a simple logic modelling of the fault effect propagation through
subsystems is feasible when the system is not too complex. If it is not possible to de-
termine the end-effects from faults by experience or simple analysis, as is the case for
the satellite dynamic motion, then it is necessary to apply numerical simulation. It is
up to the design engineer whether this step is required or not, but often such simulation
models are available from the controller design.

The major difference between the Ørsted application and the benchmark case pre-
sented in section 3.3 lies in the complexity of the supervisor. This chapter illustrated
how a complex decision logic can be designed as a set of state-event machines (SEMs)
and verified on three levels: Consistency of the decision logic’s SEM rules, consistency
between the decision logic’s SEM rules and a SEM description of the control system,
and finally completeness of the fault handling. Implementation in a multi-tasking system
were presented with a discussion on the separation of the FTCS elements into several
real-time tasks. It was furthermore realized, that a systematic implementation of the
supervisor was not feasible due to memory limitations, so the final code had to be im-
plemented as the more compact if-then sentences. This problem will, probably, vanish
with the progress of larger computers that, with some years lag, become available in
space qualified versions.

Finally, it was discussed how the fault handling system can be tested on various test
levels, and specifically how the FTCS can be designed to improve testability.

Chapter 6

Conclusion and

Recommendations

This thesis considered a number of aspects for the design and implementation of fault
tolerant control systems. General guidelines were given to each step in the development
process with the purpose to make the approach applicable for real-life systems. As a
general conclusion, a number of innovative ideas have been developed from case studies,
but they need to be matured and proved for industrial applicability by further realistic
examples and application studies. This chapter summarizes the major achievements of
the work and suggests directions for future investigations.

6.1 Conclusion

The following conclusions are drawn on the accomplishments of this thesis:❳ A general development methodology for FTCS analysis and design was presented
in chapter 3. An eight-step procedure was introduced with reference to the stan-
dard water-fall model, where each step covers an issue in the FTCS development.
A systematic analysis methodology was presented that leads to consistent spec-
ifications for the design of algorithms for fault detection, fault accommodation,
and supervisory control. It was shown that a systematic analysis of potential fail-
ures, carried out in the preliminary analysis phase, and a logic modelling of the
fault effect propagation through subsystems can be used as a valuable assessment
on fault aspects. This preliminary analysis draws the attention to possible severe
fault effects and the necessities/possibilities for implementing fault tolerance in
the system. The case studies in section 3.3 and chapter 5 illustrated that the logic
fault propagation models implemented in a software tool-kit establish a practi-
cal instrument for analysis of the relationship between component faults and their

143

144 Conclusion and Recommendations

end-effects. It also supports a preliminary assessment on the detectability and
isolability of faults with a particular detection scheme (section 3.3.7). When the
fault propagation models are combined with the design of decision logic for fault
handling, this framework provides a powerful tool for checking completeness of
the decision logic with respect to fault coverage. This completeness check iss only
reasonable if the underlying fault analysis is sufficient and the logic models are
adequate and correct. The suggested development methodology will therefore be
applicable for industrial use, when a library containing component failure modes
and fault propagation models has been developed.❳ The method using logic models for fault propagation was shown to provide a con-
venient tool for analyzing the behaviour of feedback loops. It was shown that this
analysis can be used to determine if a fault causes the serious effect of an oscil-
lation in the physical system. Feedback loops in the logic models lead to cyclic
graphs, and these have been recognized by graph theorists as a problematic issue.
A simple and sufficient solution for identifying such loops in connection with
fault propagation analysis was given in section 3.2.2. This method was proven
successful in section 3.3.3 for a simple example with two cascaded controllers,
but full applicability for large complex systems with multiple control loops must
be further investigated.❳ Implementation of the fault handling decision logic as state-event machines

(SEMs) was shown in section 5.5 to be adequate for fault handling and on the same
time suitable to manage existing requirements for operational control. The thesis
has not considered automatic translation of the specifications for the decision logic
into SEMs, but selected design guidelines were given on typical problems. Sec-
tion 5.6 showed the advantages of applying an established method for realization
(such as SEMs), because a number of potential design and implementation errors
can be automatically identified by existing software tools. The methods described
in the thesis can be used in connection with automatic generation of executable
code, which is vital to ensure agreement between the requirement specification
and the final implementation.❳ A three-level architecture for the implementation of an FTCS was applied to the
benchmark case in section 3.4 and to the micro satellite in chapter 5. The three
levels are the bottom layer with reconfigurable control, the second layer with
fault detectors, and the third layer with decision logic. This arrangement sup-
ports modular implementation and test and has proven to be especially fruitful
for the satellite control system development, where individual programmers have
implemented and tested each layer.❳ A comparison between nine different methods for detection of two realistic faults
in the electro-mechanical benchmark equipment was provided in chapter 4. This
study demonstrated fundamental equivalence between several approaches and full

6.2 Recommendations 145

potential for detection of simple faults that can be described satisfactorily as addi-
tive inputs to a linear model. It is more problematic when standard techniques are
used to solve realistic problems that involve dominating nonlinear characteristics
like saturation, and where it is not sufficient to assume the fault to be an unknown
additive input. The nine research groups that contributed to the benchmark test
have shown remarkable creativity to either modify the standard techniques to ac-
commodate this problem or design dedicated schemes that accept structural infor-
mation. The thesis contributed specifically with simple and sufficient algorithms
for detection of the considered faults, where standard engineering knowledge was
used to design an appropriate detection scheme that uses only the necessary pro-
cess measurements with corresponding models of the system characteristics.❳ A complete design and implementation of an FTCS for the Ørsted satellite in
chapter 5 illustrated the potentials of the development methodology introduced in
this thesis. It was shown how the logic fault propagation analysis of a complex
system can be broken up into subsystems and be combined later with the decision
logic for a completeness check as mentioned above. The satellite example also
showed the limitations of the logic modelling framework. If it is not possible to
predict the effect of a fault in a complicated dynamic system, as is the case for the
satellite, it may be necessary to apply numerical simulation or advanced analysis
techniques. Another problem experienced in the satellite application was that a
systematic implementation of the decision logic SEMs is infeasible due to mem-
ory consumption. Both automatically generated code and a systematic matrix
implementation required substantially more memory than ordinary if-then struc-
tures. This is a potential degradation of the supervisor reliability due to the risk
of implementation errors and also unanticipated dependencies in the sequential
if-then structure. In spite of these hurdles, it showed up to be advantageous to or-
ganize the entire FTCS with the decision logic as a central function, because late
modifications in the requirements for the supervisor could easily be implemented
and verified.

6.2 Recommendations

It was the purpose with this thesis to give a coherent set of practical guidelines that
support the implementation of fault tolerance in control systems. For further extensions
and refinements of the methodology, the following recommendations are given:❳ The logic fault propagation modelling framework introduced in section 3.2.2 does

not include system dynamics. It is possible to include a coarse description of the
temporal behaviour of fault propagation by including a minimum and maximum
time in the description. This could be used to extend the completeness check to
also guarantee that the fault handling system will reconfigure the process within
the temporal requirements. Misra (1994) uses this approach in connection with

146 Conclusion and Recommendations

diagnosis of dynamical systems. The software tool-boxes used in this thesis do
not support this analysis.❳ This thesis has not considered formal methods for the design of the supervisor’s
decision logic. Supervisory control theory (SCT), used in the field of discrete
event systems (DES), is an interesting research area, where formal methods pro-
vide automatic synthesis of supervisors and completeness checks (see section
2.3.4 for a discussion). While SCT may be unapplicable for practical use, the same
fundamental principles are used in procedural control theory (PCT), so combined
with a suitable tool (e.g. Grafcet) this framework may be suitable for a systematic
design of the decision logic in FTCS.❳ It has been sufficient for the case studies in this thesis to base the fault handling
decisions solely on boolean fault events, i.e. whether a fault is detected present
or not. Additional information like time of occurrence and magnitude of the fault
effect may also be used if required. It can, furthermore, be advantageous to allow
non-boolean information as input to the supervisor to indicate the degree of mem-
bership to true or false. Such information could be derived from the significance
of the fault and the credibility of the detection. Fuzzy techniques could then be
applied for the design of the supervisor decision logic.❳ The software tool-boxes used in this thesis to support development of FTCSs are
not designed for the purpose, so a suitable software environment must be estab-
lished before the methodology becomes industrially applicable. Such a tool-box
should be based on a library containing failure modes of standard components
and corresponding fault propagation models. In this software, it shall be possi-
ble to connect the component models into a complete system description, identify
and handle feedback loops, analyse fault-effect relationships, synthesize decision
logic for fault handling and operational control, make completeness checks of
the decision logic, generate test sequences, generate executable code, and make
systematic documentation.

Appendix A

Benchmark BeologicTM Rules

This appendix contains listings of the BeologicTM Array Inference Toolbox (AIT) rules
for the benchmark application.

A.1 Fault Propagation Graph - without “Oscillation”-

Discrepancy

PosMeasLow = ((not (VnegWireDisc or VoutWireDisc) and PosLow) or

VposWireDisc)

PosMeasConst = ((not (VposWireDisc or VnegWireDisc) and PosConst) or

VoutWireDisc)

PosMeasHigh = ((not (VposWireDisc or VoutWireDisc) and PosHigh) or

VnegWireDisc)

VelRefDesLow = ((PosRefLow and not PosCtrlLoopFault) or

(PosCtrlLoopFault and (PosMeasHigh or (PosMeasConst and

PosRefLow))))

VelRefDesZero = (PosRefConst and not PosCtrlLoopFault)

VelRefDesHigh = ((PosRefHigh and not PosCtrlLoopFault) or

(PosCtrlLoopFault and (PosMeasLow or (PosMeasConst and

PosRefHigh))))

VelRefLow = (not VelRefWireDisc and VelRefDesLow)

VelRefZero = (VelRefWireDisc or (not VelRefWireDisc and

VelRefDesZero))

VelRefHigh = (not VelRefWireDisc and VelRefDesHigh)

VelMeasLow = ((not TachoWireDisc and VelLow))

VelMeasZero = (TachoWireDisc or VelZero)

VelMeasHigh = ((not TachoWireDisc and VelHigh))

CurRefLow = ((VelRefLow and not VelCtrlLoopFault) or

(VelCtrlLoopFault and (VelMeasHigh or (VelMeasZero and

VelRefLow))))

CurRefZero = (VelRefZero and not VelCtrlLoopFault)

CurRefHigh = ((VelRefHigh and not VelCtrlLoopFault) or

(VelCtrlLoopFault and (VelMeasLow or (VelMeasZero and

VelRefHigh))))

PowerFailed = ((EndSwitchNegDisc and CurRefLow) or (EndSwitchPosDisc

and CurRefHigh)),

“PowerFailed is an intermediate variable”

147

148 Benchmark BeologicTM Rules

(not CurZero) -> not (EndSwitchNegDisc or EndSwitchPosDisc),

"This rule ensures that EndSwitchNegDisc and

EndSwitchPosDisc are both false if CurZero is false.

CurLow = ((not PowerFailed and CurRefLow))

CurZero = ((not PowerFailed and CurRefZero) or PowerFailed)

CurHigh = ((not PowerFailed and CurRefHigh))

VelLow = (not BrakeFailedON and CurLow)

VelZero = (CurZero or BrakeFailedON)

VelHigh = (not BrakeFailedON and CurHigh)

PosLow = VelLow

PosConst = VelZero

PosHigh = VelHigh

VelCtrlLoopFault = (TachoWireDisc or BrakeFailedON or EndSwitchPosDisc or

EndSwitchNegDisc),

"Manual assignment of faults that appear inside the

velocity control loop"

PosCtrlLoopFault = (VelCtrlLoopFault or VposWireDisc or VnegWireDisc or

VoutWireDisc or VelRefWireDisc),

"Manual assignment of faults that appear inside the

position control loop"

oneof(PosLow PosHigh PosConst)

oneof(PosRefLow PosRefHigh PosRefConst)

oneof(PosMeasLow PosMeasHigh PosMeasConst)

oneof(VelMeasLow VelMeasHigh VelMeasZero)

oneof(VelRefDesLow VelRefDesHigh VelRefDesZero)

oneof(VelRefLow VelRefHigh VelRefZero)

oneof(CurRefLow CurRefHigh CurRefZero)

oneof(CurLow CurHigh CurZero)

oneof(VelLow VelHigh VelZero)

oneof (VelRefWireDisc TachoWireDisc VposWireDisc VnegWireDisc VoutWireDisc

BrakeFailedON EndSwitchPosDisc EndSwitchNegDisc),

"Limit to single fault analysis. One and only fault is

allowed true."

A.2 Fault Propagation Graph Rules - with

“Oscillation”-Discrepancy

The FPG above is expanded with an “oscillation” discrepancy. Changes are emphasized
in boldface.

PosMeasLow = ((not (VnegWireDisc or VoutWireDisc) and PosLow) or

VposWireDisc)

PosMeasConst = ((not (VposWireDisc or VnegWireDisc) and PosConst) or

VoutWireDisc)

PosMeasHigh = ((not (VposWireDisc or VoutWireDisc) and PosHigh) or

VnegWireDisc)

PosMeasOscil = (not (VposWireDisc or VnegWireDisc or VoutWireDisc) and

PosOscil)

VelRefDesLow = ((PosRefLow and not PosCtrlLoopFault) or

(PosCtrlLoopFault and (PosMeasHigh or (PosMeasConst and

PosRefLow))))

VelRefDesZero = (PosRefConst and not PosCtrlLoopFault)

VelRefDesHigh = ((PosRefHigh and not PosCtrlLoopFault) or

(PosCtrlLoopFault and (PosMeasLow or (PosMeasConst and

PosRefHigh))))

VelRefDesOscil = (PosCtrlLoopFault and PosMeasOscil)

VelRefLow = (not VelRefWireDisc and VelRefDesLow)

VelRefZero = (VelRefWireDisc or (not VelRefWireDisc and

VelRefDesZero))

A.2 Fault Propagation Graph Rules - with “Oscillation”-Discrepancy 149

VelRefHigh = (not VelRefWireDisc and VelRefDesHigh)

VelRefOscil = (not VelRefWireDisc and VelRefDesOscil)

VelMeasLow = ((not TachoWireDisc and VelLow))

VelMeasZero = ((not TachoWireDisc and VelZero))

VelMeasHigh = ((not TachoWireDisc and VelHigh))

VelMeasOscil = TachoWireDisc or VelOscil

CurRefLow = ((VelRefLow and not VelCtrlLoopFault) or

(VelCtrlLoopFault and (VelMeasHigh or (VelMeasZero and

VelRefLow))))

CurRefZero = (VelRefZero and not VelCtrlLoopFault)

CurRefHigh = ((VelRefHigh and not VelCtrlLoopFault) or

(VelCtrlLoopFault and (VelMeasLow or (VelMeasZero and

VelRefHigh))))

CurRefOscil = ((VelRefOscil and not VelCtrlLoopFault) or

(VelCtrlLoopFault and VelMeasOscil))

PowerFailed = ((EndSwitchNegDisc and CurRefLow) or (EndSwitchPosDisc

and CurRefHigh)),

“PowerFailed is an intermediate variable”

(not CurZero) -> not (EndSwitchNegDisc or EndSwitchPosDisc),

"This rule ensures that EndSwitchNegDisc and

EndSwitchPosDisc are both false if CurZero is false.

CurLow = ((not PowerFailed and CurRefLow))

CurZero = ((not PowerFailed and CurRefZero) or PowerFailed)

CurHigh = ((not PowerFailed and CurRefHigh))

CurOscil = ((not PowerFailed and CurRefOscil))

VelLow = (not BrakeFailedON and CurLow)

VelZero = (CurZero or BrakeFailedON)

VelHigh = (not BrakeFailedON and CurHigh)

VelOscil = (not BrakeFailedON and VelMeasOscil)

PosLow = VelLow

PosConst = VelZero

PosHigh = VelHigh

PosOscil = VelOscil

VelCtrlLoopFault = (TachoWireDisc or BrakeFailedON or EndSwitchPosDisc or

EndSwitchNegDisc),

"Manual assignment of faults that appear inside the

velocity control loop"

PosCtrlLoopFault = (VelCtrlLoopFault or VposWireDisc or VnegWireDisc or

VoutWireDisc or VelRefWireDisc),

"Manual assignment of faults that appear inside the

position control loop"

oneof(PosLow PosHigh PosConst PosOscil)

oneof(PosRefLow PosRefHigh PosRefConst)

oneof(PosMeasLow PosMeasHigh PosMeasConst PosMeasOscil)

oneof(VelMeasLow VelMeasHigh VelMeasZero VelMeasOscil)

oneof(VelRefDesLow VelRefDesHigh VelRefDesZero VelRefDesOscil)

oneof(VelRefLow VelRefHigh VelRefZero VelRefOscil)

oneof(CurRefLow CurRefHigh CurRefZero CurRefOscil)

oneof(CurLow CurHigh CurZero CurOscil)

oneof(VelLow VelHigh VelZero VelOscil)

oneof (VelRefWireDisc TachoWireDisc VposWireDisc VnegWireDisc VoutWireDisc

BrakeFailedON EndSwitchPosDisc EndSwitchNegDisc),

"Limit to single fault analysis. One and only fault is

allowed true."

150 Benchmark BeologicTM Rules

A.3 Fault Detection and Isolation Rules

DetVelPos = ((PosMeasLow and VelMeasZero) or (PosMeasLow and

VelMeasHigh) or (PosMeasConst and VelMeasLow) or

(PosMeasConst and VelMeasHigh) or (PosMeasHigh and

VelMeasLow) or (PosMeasHigh and VelMeasZero) or

PosOscil),

"Detector: Detect deviations between velocity and

position measurements bas ed on model of gear and

integrator"

DetVelRefVel = ((VelRefDesLow and VelMeasZero) or (VelRefDesLow and

VelMeasHigh) or (VelRefDesZero and VelMeasLow) or

(VelRefDesZero and VelMeasHigh) or (VelRefDesHigh

and VelMeasLow) or (VelRefDesHigh and VelMeasZero) or

VelOscil),

"Detector: Detect deviations between velocity reference

and velocity measur ement based on model of motor"

DetVelCur = ((CurLow and VelMeasZero) or (CurLow and VelMeasHigh) or

(CurZero and VelMeasLow) or (CurZero and VelMeasHigh) or

(CurHigh and VelMeasLow) or (CurHigh and VelMeasZero)),

"Detector: Detect deviations between velocity

measurement and current measu rement based on model of

motor"

DetVelRefCur = ((CurLow and VelRefDesZero) or (CurLow and VelRefDesHigh)

or (CurZero and VelRefDesLow) or (CurZero and

VelRefDesHigh) or (CurHigh and VelRefDesLow) or (CurHigh

and VelRefDesZero) or CurOscil),

"Detector: Detect deviations between velocity reference

and current based o n model of motor"

IsoPosMeasFault = (DetVelPos and not DetVelRefVel),

"Isolation: Isolate position measurement fault"

IsoVelCtrlFault = (DetVelPos and DetVelRefVel),

"Isolation: Isolate velocity measurement fault"

IsoOtherFault = (DetVelRefVel and not DetVelPos),

"Isolation: Isolate power drive, end-switch, or motor

faults"

A.4 Complete Rule Base with FPG, FDI, Decision Logic,

and Reconfiguration

The complete logic model includes switches for reconfiguration. The extensions and
changes to the FPG in A.2 are emphasized in boldface.

Fault propagation graph:

PosMeasLow = ((not (VnegWireDisc or VoutWireDisc) and PosLow) or (

VposWireDisc and not PosEstim))

PosMeasConst = ((not (VposWireDisc or VnegWireDisc) and PosConst) or (

VoutWireDisc and not PosEstim))

PosMeasHigh = ((not (VposWireDisc or VoutWireDisc) and PosHigh) or

(VnegWireDisc and not PosEstim))

PosMeasOscil = (not (VposWireDisc or VnegWireDisc or VoutWireDisc) and

PosOscil)

VelRefDesLow = ((PosRefLow and not PosCtrlLoopFault) or

(PosCtrlLoopFault and (PosMeasHigh or (PosMeasConst and

PosRefLow))))

VelRefDesZero = (PosRefConst and not PosCtrlLoopFault)

A.4 Complete Rule Base with FPG, FDI, Decision Logic, and Reconfiguration 151

VelRefDesHigh = ((PosRefHigh and not PosCtrlLoopFault) or

(PosCtrlLoopFault and (PosMeasLow or (PosMeasConst and

PosRefHigh))))

VelRefDesOscil = (PosCtrlLoopFault and PosMeasOscil)

VelRefLow = (not VelRefWireDisc and VelRefDesLow and not

VelCtrlBypass)

VelRefZero = (VelRefWireDisc or (not VelRefWireDisc and VelRefDesZero)

and not VelCtrlBypass)

VelRefHigh = (not VelRefWireDisc and VelRefDesHigh and not

VelCtrlBypass)

VelRefOscil = (not VelRefWireDisc and VelRefDesOscil and not

VelCtrlBypass)

(VelCtrlBypass and VelRefDesLow) -> CurRefLow

(VelCtrlBypass and VelRefDesZero)-> CurRefZero

(VelCtrlBypass and VelRefDesHigh)-> CurRefHigh

(VelCtrlBypass and VelRefDesOscil) -> CurRefOscil

VelMeasLow = ((not TachoWireDisc and VelLow))

VelMeasZero = ((not TachoWireDisc and VelZero))

VelMeasHigh = ((not TachoWireDisc and VelHigh))

VelMeasOscil = TachoWireDisc or VelOscil

((VelRefLow and not VelCtrlLoopFault) or (VelCtrlLoopFault and (VelMeasHigh or

(VelMeasZero and VelRefLow)))) -> CurRefLow

(VelRefZero and not VelCtrlLoopFault) -> CurRefZero

((VelRefHigh and not VelCtrlLoopFault) or (VelCtrlLoopFault and (VelMeasLow or

(VelMeasZero and VelRefHigh)))) -> CurRefHigh

((VelRefOscil and not VelCtrlLoopFault) or (VelCtrlLoopFault and VelMeasOscil)) ->

CurRefOscil

PowerFailed = ((EndSwitchNegDisc and CurRefLow) or (EndSwitchPosDisc

and CurRefHigh)),

“PowerFailed is an intermediate variable”

(not CurZero) -> not (EndSwitchNegDisc or EndSwitchPosDisc),

"This rule ensures that EndSwitchNegDisc and

EndSwitchPosDisc are both false if CurZero is false.

CurLow = ((not PowerFailed and CurRefLow))

CurZero = ((not PowerFailed and CurRefZero) or PowerFailed)

CurHigh = ((not PowerFailed and CurRefHigh))

CurOscil = ((not PowerFailed and CurRefOscil))

VelLow = (not BrakeFailedON and CurLow)

VelZero = (CurZero or BrakeFailedON)

VelHigh = (not BrakeFailedON and CurHigh)

VelOscil = (not BrakeFailedON and VelMeasOscil)

PosLow = VelLow

PosConst = VelZero

PosHigh = VelHigh

PosOscil = VelOscil

VelCtrlLoopFault = (TachoWireDisc or BrakeFailedON or EndSwitchPosDisc or

EndSwitchNegDisc),

"Manual assignment of faults that appear inside the

velocity control loop"

PosCtrlLoopFault = (VelCtrlLoopFault or VposWireDisc or VnegWireDisc or

VoutWireDisc or VelRefWireDisc),

"Manual assignment of faults that appear inside the

position control loop"

Fault detection and isolation:

DetVelPos = ((PosMeasLow and VelMeasZero) or (PosMeasLow and

VelMeasHigh) or (PosMeasConst and VelMeasLow) or

(PosMeasConst and VelMeasHigh) or (PosMeasHigh and

VelMeasLow) or (PosMeasHigh and VelMeasZero) or

PosOscil),

152 Benchmark BeologicTM Rules

"Detector: Detect deviations between velocity and

position measurements based on model of gear and

integrator"

DetVelRefVel = ((VelRefDesLow and VelMeasZero) or (VelRefDesLow and

VelMeasHigh) or (VelRefDesZero and VelMeasLow) or

(VelRefDesZero and VelMeasHigh) or (VelRefDesHigh

and VelMeasLow) or (VelRefDesHigh and VelMeasZero) or

VelOscil),

"Detector: Detect deviations between velocity reference

and velocity measur ement based on model of motor"

DetVelCur = ((CurLow and VelMeasZero) or (CurLow and VelMeasHigh) or

(CurZero and VelMeasLow) or (CurZero and VelMeasHigh) or

(CurHigh and VelMeasLow) or (CurHigh and VelMeasZero)),

"Detector: Detect deviations between velocity

measurement and current measu rement based on model of

motor"

DetVelRefCur = ((CurLow and VelRefDesZero) or (CurLow and VelRefDesHigh)

or (CurZero and VelRefDesLow) or (CurZero and

VelRefDesHigh) or (CurHigh and VelRefDesLow) or (CurHigh

and VelRefDesZero) or CurOscil),

"Detector: Detect deviations between velocity reference

and current based o n model of motor"

PosMeasFault = (VposWireDisc or VnegWireDisc or VoutWireDisc),

"Extra: Position measurement faults"

VelCtrlFault = (VelRefWireDisc or TachoWireDisc),

"Extra: Velocity controller faults"

OtherFault = (BrakeFailedON or EndSwitchNegDisc or EndSwitchPosDisc

),

"Extra: Power drive, end-switch, and motor faults"

IsoPosMeasFault = (DetVelPos and not DetVelRefVel),

"Isolation: Isolate position measurement fault"

IsoVelCtrlFault = (DetVelPos and DetVelRefVel),

"Isolation: Isolate velocity measurement fault"

IsoOtherFault = (DetVelRefVel and not DetVelPos),

"Isolation: Isolate power drive, end-switch, or motor

faults"

Decision logic:

PosEstim = IsoPosMeasFault,

"Supervisor: If position measurement fault then enable

position estimation and use secondary position controller

#1"

VelCtrlBypass = IsoVelCtrlFault,

"Supervisor: If velocity measurement fault then bypass

velocity controller by switching power drive to current

input and use secondary position contr oller #2"

CloseDown = IsoOtherFault,

"Supervisor: If power drive fault, end-switch fault, or

motor fault then ma ke a shut-down"

Rules for mutually exclusive variables:

oneof(PosLow PosHigh PosConst PosOscil)

oneof(PosRefLow PosRefHigh PosRefConst)

oneof(PosMeasLow PosMeasHigh PosMeasConst PosMeasOscil)

oneof(VelMeasLow VelMeasHigh VelMeasZero VelMeasOscil)

oneof(VelRefDesLow VelRefDesHigh VelRefDesZero VelRefDesOscil)

oneof(VelRefLow VelRefHigh VelRefZero VelRefOscil)

oneof(CurRefLow CurRefHigh CurRefZero CurRefOscil)

oneof(CurLow CurHigh CurZero CurOscil)

oneof(VelLow VelHigh VelZero VelOscil)

A.4 Complete Rule Base with FPG, FDI, Decision Logic, and Reconfiguration 153

oneof (VelRefWireDisc TachoWireDisc VposWireDisc VnegWireDisc VoutWireDisc

BrakeFailedON EndSwitchPosDisc EndSwitchNegDisc),

"Limit to single fault analysis. One and only fault is

allowed true."

Appendix B

BeologicTM Rules for the Ørsted

Satellite Case Study

This appendix contains listings of the BeologicTM Array Inference Toolbox (AIT) rules
for the Ørsted satellite application.

B.1 Coil Driver Fault Propagation Graph

SignPlus = (NoSignFault and SignDesPlus)

SignMinus = (NoSignFault and SignDesMinus)

SignWrongSign = ((SignFailedPos and SignDesMinus) or (SignFailedNeg and

SignDesPlus))

ShuntVoltOK = (NoShuntFault and ShuntCurOK)

ShuntVoltZero = ((NoShuntFault and ShuntCurZero) or (ShuntShort))

ShuntVoltMax = ((NoShuntFault and ShuntCurMax) or (ShuntDisc))

CurAmplDesOK = ((not CurrentLoopFault and CurRefOK) or (CurrentLoopFault

and ShuntVoltOK))

CurAmplDesZero = ((not CurrentLoopFault and CurRefZero) or

(CurrentLoopFault and ShuntVoltMax))

CurAmplDesMax = ((not CurrentLoopFault and CurRefMax) or

(CurrentLoopFault and ShuntVoltZero))

SupplyOK = ((NoSwitchFault and CurAmplDesOK))

SupplyZero = ((NoSwitchFault and CurAmplDesZero) or T5Open)

SupplyMax = ((NoSwitchFault and CurAmplDesMax) or T5Short)

PowerUsageHigh = BridgeCurHigh

CurDesOK = (NoBridgeFault and not SignWrongSign and SupplyOK)

CurDesZero = ((NoBridgeFault and not SignWrongSign and SupplyZero)

or (T1Short and SignMinus) or (T2Short and SignPlus) or

(T1Open and SignPlus) or (T2Open and SignMinus))

CurDesMax = (NoBridgeFault and not SignWrongSign and SupplyMax)

CurDesWrongSign = (NoBridgeFault and SignWrongSign)

BridgeCurHigh = ((NoBridgeFault and CurDrawnHigh) or (((T1Short and

SignMinus) or (T2Short and SignPlus)) and SupplyMax))

ShuntCurOK = ((NoBridgeFault and (CurReturnOK or CurReturnWrngSgn)) or

(((T1Short and SignMinus) or (T2Short and SignPlus)) and

SupplyOK))

B.2 Complete Ørsted Fault Propagation Graph 155

ShuntCurZero = ((NoBridgeFault and CurReturnZero) or (T1Open and

SignPlus) or (T2Open and SignMinus) or (((T1Short and

SignMinus) or (T2Short and SignPlus)) and SupplyZero))

ShuntCurMax = ((NoBridgeFault and CurReturnMax) or (((T1Short and

SignMinus) or (T2Short and SignPlus)) and SupplyMax))

MagMomOK = ((NoMTQFault and CurDesOK) or (PosTermShortGND and

SignMinus and CurDesOK) or (NegTermShortGND and SignPlus

and CurDesOK))

MagMomZero = (CurDesZero or (CoilShort or CoilDisc or (PosTermShortGND

and SignPlus) or (NegTermShortGND and SignMinus)))

MagMomMax = ((NoMTQFault and CurDesMax) or (PosTermShortGND and

SignMinus and CurDesMax) or (NegTermShortGND and SignPlus

and CurDesMax))

MagMomWrongSign = (CurDesWrongSign)

CurDrawnHigh = ((NoMTQFault or CoilShort or PosTermShortGND or

NegTermShortGND) and CurDesMax)

CurReturnOK = ((NoMTQFault and CurDesOK) or (CoilShort and CurDesOK))

CurReturnZero = (CurDesZero or CoilDisc or PosTermShortGND or

NegTermShortGND)

CurReturnMax = ((NoMTQFault and CurDesMax) or (CoilShort and CurDesMax))

CurReturnWrngSgn = (NoMTQFault and CurDesWrongSign)

oneof (SignDesPlus SignDesMinus)

oneof (SignPlus SignMinus SignWrongSign)

oneof (CurRefOK CurRefZero CurRefMax)

oneof (ShuntCurOK ShuntCurZero ShuntCurMax)

oneof (ShuntVoltOK ShuntVoltZero ShuntVoltMax)

oneof (CurAmplDesOK CurAmplDesZero CurAmplDesMax)

oneof (CurDesOK CurDesZero CurDesMax CurDesWrongSign)

oneof (SupplyOK SupplyZero SupplyMax)

oneof (CurReturnOK CurReturnZero CurReturnMax CurReturnWrngSgn)

oneof (MagMomOK MagMomZero MagMomMax MagMomWrongSign)

NoSignFault = (not (SignFailedPos or SignFailedNeg))

NoShuntFault = (not (ShuntDisc or ShuntShort))

NoSwitchFault = (not (T5Short or T5Open))

NoBridgeFault = (not (T1Short or T2Short or T1Open or T2Open))

NoMTQFault = (not (PosTermShortGND or NegTermShortGND or CoilShort or

CoilDisc))

CurrentLoopFault = (ShuntShort or ShuntDisc or T1Open or T2Open or

T1Short or T2Short or T5Open or T5Short or CoilDisc or

PosTermShortGND or NegTermShortGND)

"Faults that affect the current control loop. NB:

CoilShort, SignFailedPos, and SignFailedNeg are not

included as they do not affect the returned current."

CurrentMeasWrong = (not ShuntVoltOK)

oneof (SignFailedPos SignFailedNeg ShuntShort ShuntDisc CoilShort CoilDisc

PosTermShortGND NegTermShortGND dummy)

oneof (not dummy T1Short T2Short T5Short T1Open T2Open T5Open)

B.2 Complete Ørsted Fault Propagation Graph

CDAXPowerHigh = (CDAXShuntShort or CDAXT5Open or CDAXPTermShort or

CDAXNTermShort)

CDAXMagMomZero = (CDAXShuntDisc or CDAXT5Short or CDAXCoilShort or

CDAXCoilDisc or CDAXPTermShort or CDAXNTermShort or

CDAXT1Short or CDAXT2Short or CDAXT1Open or CDAXT2Open)

CDAXMagMomMax = (CDAXShuntShort or CDAXT5Open or CDAXPTermShort or

CDAXNTermShort)

CDAXMagWngSgn = (CDAXFailedPos or CDAXFailedNeg)

156 BeologicTM Rules for the Ørsted Satellite Case Study

CDAXCurMeasWng = (CDAXShuntShort or CDAXShuntDisc or CDAXT5Short or

CDAXT5Open or CDAXCoilDisc or CDAXPTermShort or

CDAXNTermShort or CDAXPTermShort or CDAXT1Open or

CDAXT2Open)

CDAYPowerHigh = (CDAYShuntShort or CDAYT5Open or CDAYPTermShort or

CDAYNTermShort)

CDAYMagMomZero = (CDAYShuntDisc or CDAYT5Short or CDAYCoilShort or

CDAYCoilDisc or CDAYPTermShort or CDAYNTermShort or

CDAYT1Short or CDAYT2Short or CDAYT1Open or CDAYT2Open)

CDAYMagMomMax = (CDAYShuntShort or CDAYT5Open or CDAYPTermShort or

CDAYNTermShort)

CDAYMagWngSgn = (CDAYFailedPos or CDAYFailedNeg)

CDAYCurMeasWng = (CDAYShuntShort or CDAYShuntDisc or CDAYT5Short or

CDAYT5Open or CDAYCoilDisc or CDAYPTermShort or

CDAYNTermShort or CDAYPTermShort or CDAYT1Open or

CDAYT2Open)

CDAZPowerHigh = (CDAZShuntShort or CDAZT5Open or CDAZPTermShort or

CDAZNTermShort)

CDAZMagMomZero = (CDAZShuntDisc or CDAZT5Short or CDAZCoilShort or

CDAZCoilDisc or CDAZPTermShort or CDAZNTermShort or

CDAZT1Short or CDAZT2Short or CDAZT1Open or CDAZT2Open)

CDAZMagMomMax = (CDAZShuntShort or CDAZT5Open or CDAZPTermShort or

CDAZNTermShort)

CDAZMagWngSgn = (CDAZFailedPos or CDAZFailedNeg)

CDAZCurMeasWng = (CDAZShuntShort or CDAZShuntDisc or CDAZT5Short or

CDAZT5Open or CDAZCoilDisc or CDAZPTermShort or

CDAZNTermShort or CDAZPTermShort or CDAZT1Open or

CDAZT2Open)

RandomMotion = ((PhaseStab and (SSA1Zero or SIMFault or CSCZero

or CDAXMagMomMax or CDAZMagMomMax or CDAXMagWngSgn

or CDAYMagWngSgn)) or CSCMax or CDAYMagMomMax or

CDAZMagWngSgn)

"FPA: Failure causes for random motion"

LargeError = ((PhaseStab and (SST1Fault or SST2Fault or SSA1High

or CDAXMagMomZero or CDAZMagMomZero)) or (!PhaseStab

and (CSCZero or CDAXMagMomMax or CDAZMagMomMax)) or

CDAYMagMomZero)

"FPA: Failure causes for large increase control errors"

SmallError = (!PhaseStab and (CDAXMagMomZero or CDAXMagWngSgn or

CDAXMagWngSgn or CDAYMagWngSgn or CDAYMagWngSgn or

CDAZMagMomZero))

"FPA: Failure causes for small increase in control

errors"

PowerHigh = (CDAXPowerHigh or CDAYPowerHigh or CDAZPowerHigh)

"FPA: Failure causes for increase in power consumption"

oneof (Dummy1 CSCZero CSCMax SSA1Zero SSA1High SST1Fault SST2Fault)

"SIMFault is not included in this list because it is

allowed together with other faults. It determines the

setting of AttDetMode, which must be flexible.”

oneof (!Dummy1 Dummy2 CDAXShuntShort CDAXShuntDisc CDAXT5Short CDAXT5Open

CDAXFailedPos CDAXFailedNeg CDAXCoilShort)

oneof (!Dummy2 Dummy3 CDAXCoilDisc CDAXNTermShort CDAXPTermShort CDAXT1Open

CDAXT1Short CDAXT2Open CDAXT2Short)

oneof (!Dummy3 Dummy4 CDAYShuntShort CDAYShuntDisc CDAYT5Short CDAYT5Open

CDAYFailedPos CDAYFailedNeg CDAYCoilShort)

oneof (!Dummy4 Dummy5 CDAYCoilDisc CDAYNTermShort CDAYPTermShort CDAYT1Open

CDAYT1Short CDAYT2Open CDAYT2Short)

oneof (!Dummy5 Dummy6 CDAZShuntShort CDAZShuntDisc CDAZT5Short CDAZT5Open

CDAZFailedPos CDAZFailedNeg CDAZCoilShort)

oneof (!Dummy6 CDAZCoilDisc CDAZNTermShort CDAZPTermShort CDAZT1Open CDAZT1Short

CDAZT2Open CDAZT2Short)

oneof (RandomMotion LargeError SmallError)

B.3 Complete Rule base with FPG, FDI, Decision Logic, and Reconfiguration 157

B.3 Complete Rule base with FPG, FDI, Decision Logic,

and Reconfiguration

Coil driver FPG:

CDAXPowerHigh = (CDAXShuntShort or CDAXT5Open or CDAXPTermShort or

CDAXNTermShort)

CDAXMagMomZero = (CDAXShuntDisc or CDAXT5Short or CDAXCoilShort or

CDAXCoilDisc or CDAXPTermShort or CDAXNTermShort or

CDAXT1Short or CDAXT2Short or CDAXT1Open or CDAXT2Open)

CDAXMagMomMax = (CDAXShuntShort or CDAXT5Open or CDAXPTermShort or

CDAXNTermShort)

CDAXMagWngSgn = (CDAXFailedPos or CDAXFailedNeg)

CDAXCurMeasWng = (CDAXShuntShort or CDAXShuntDisc or CDAXT5Short or

CDAXT5Open or CDAXCoilDisc or CDAXPTermShort or

CDAXNTermShort or CDAXPTermShort or CDAXT1Open or

CDAXT2Open)

CDAYPowerHigh = (CDAYShuntShort or CDAYT5Open or CDAYPTermShort or

CDAYNTermShort)

CDAYMagMomZero = (CDAYShuntDisc or CDAYT5Short or CDAYCoilShort or

CDAYCoilDisc or CDAYPTermShort or CDAYNTermShort or

CDAYT1Short or CDAYT2Short or CDAYT1Open or CDAYT2Open)

CDAYMagMomMax = (CDAYShuntShort or CDAYT5Open or CDAYPTermShort or

CDAYNTermShort)

CDAYMagWngSgn = (CDAYFailedPos or CDAYFailedNeg)

CDAYCurMeasWng = (CDAYShuntShort or CDAYShuntDisc or CDAYT5Short or

CDAYT5Open or CDAYCoilDisc or CDAYPTermShort or

CDAYNTermShort or CDAYPTermShort or CDAYT1Open or

CDAYT2Open)

CDAZPowerHigh = (CDAZShuntShort or CDAZT5Open or CDAZPTermShort or

CDAZNTermShort)

CDAZMagMomZero = (CDAZShuntDisc or CDAZT5Short or CDAZCoilShort or

CDAZCoilDisc or CDAZPTermShort or CDAZNTermShort or

CDAZT1Short or CDAZT2Short or CDAZT1Open or CDAZT2Open)

CDAZMagMomMax = (CDAZShuntShort or CDAZT5Open or CDAZPTermShort or

CDAZNTermShort)

CDAZMagWngSgn = (CDAZFailedPos or CDAZFailedNeg)

CDAZCurMeasWng = (CDAZShuntShort or CDAZShuntDisc or CDAZT5Short or

CDAZT5Open or CDAZCoilDisc or CDAZPTermShort or

CDAZNTermShort or CDAZPTermShort or CDAZT1Open or

CDAZT2Open)

Top level FPG:

RandomMotion = ((PhaseStab and (SSA1Low or SIMFault)) or CSCFault or

CDAYMagMomMax or CDAZMagWngSgn)

"FPA: Failure causes for random motion"

LargeError = ((PhaseStab and (SST1Fault or SST2Fault or SSA1High))

or CDAXMagMomMax or CDAYMagMomZero or CDAZMagMomMax)

"FPA: Failure causes for large increase control errors"

SmallError = (CDAXMagMomZero or CDAXMagWngSgn or CDAXMagWngSgn or

CDAYMagWngSgn or CDAYMagWngSgn or CDAZMagMomZero)

"FPA: Failure causes for small increase in control

errors"

PowerHigh = (CDAXPowerHigh or CDAYPowerHigh or CDAZPowerHigh)

"FPA: Failure causes for increase in power consumption"

Fault propagation through reconfiguration switches:

CDAXMagMomZero = (CDAX and CDAEnabled and CDAXMagMomZero)

158 BeologicTM Rules for the Ørsted Satellite Case Study

"FPA: Propagation of CDAX failed MZero"

CDAXMagMomMax = (CDAX and CDAEnabled and CDAXMagMomMax)

"FPA: Propagation of CDAX failed MMax"

CDAXPowerHigh = (CDAX and CDAEnabled and CDAXPowerHigh)

"FPA: Propagation of CDAX failed PMax"

CDAXMagWngSgn = (CDAX and CDAEnabled and CDAXMagWngSgn)

"FPA: Propagation of CDAX failed wrong sign on mag.

mom."

CDAXCurMeasWng = (CDAX and CDAEnabled and CDAXCurMeasWng)

"FPA: Propagation of CDAX failed wrong sign on current

meas."

CDAYMagMomZero = (CDAY and CDAEnabled and CDAYMagMomZero)

"FPA: Propagation of CDAY failed MZero"

CDAYMagMomMax = (CDAY and CDAEnabled and CDAYMagMomMax)

"FPA: Propagation of CDAY failed MMax"

CDAYPowerHigh = (CDAY and CDAEnabled and CDAYPowerHigh)

"FPA: Propagation of CDAY failed PMax"

CDAYMagWngSgn = (CDAY and CDAEnabled and CDAYMagWngSgn)

"FPA: Propagation of CDAY failed wrong sign on mag.

mom."

CDAYCurMeasWng = (CDAY and CDAEnabled and CDAYCurMeasWng)

"FPA: Propagation of CDAY failed wrong sign on current

meas."

CDAZMagMomZero = (CDAZ and CDAEnabled and CDAZMagMomZero)

"FPA: Propagation of CDAZ failed MZero"

CDAZMagMomMax = (CDAZ and CDAEnabled and CDAZMagMomMax)

"FPA: Propagation of CDAZ failed MMax"

CDAZPowerHigh = (CDAZ and CDAEnabled and CDAZPowerHigh)

"FPA: Propagation of CDAZ failed PMax"

CDAZMagWngSgn = (CDAZ and CDAEnabled and CDAZMagWngSgn)

"FPA: Propagation of CDAZ failed wrong sign on mag.

mom."

CDAZCurMeasWng = (CDAZ and CDAEnabled and CDAZCurMeasWng)

"FPA: Propagation of CDAZ failed wrong sign on current

meas."

SIMFault = (AttDetModePrim and SIMFault)

"FPA: Propagation of SIM fault"

CSCFault = (ADACEnabled and CSCFault)

"FPA: Propagation of CSC fault"

SSA1Low = (!AttDetModePrim and SVectorEnabled and SSA1 and SSA1Low)

"FPA: Propagation of SSA1 failed low"

SSA1High = (!AttDetModePrim and SVectorEnabled and SSA1 and

SSA1High)

"FPA: Propagation of SSA1 failed high"

SST1Fault = (!AttDetModePrim and SST1 and SVectorEnabled and

SST1Fault)

"FPA: Propagation of SST1 fault"

SST2Fault = (!AttDetModePrim and SST2 and SVectorEnabled and

SST2Fault)

"FPA: Propagation of SST2 failed"

Fault detectors:

DetSIMFault = SIMFault

"DET: Detection of SIM fault"

DetCSCFault = CSCFault

"DET: Detection of CSC fault"

DetSSA1Fault = ((SSA1 and SSA1Low) or (SSA1 and SSA1High))

"DET: Detection of SSA1 fault.”

DetSST1 = (SST1 and SST1Fault)

"DET: Detection of SST1 fault"

DetSST2 = (SST2 and SST2Fault)

"DET: Detection of SST2 fault"

B.3 Complete Rule base with FPG, FDI, Decision Logic, and Reconfiguration 159

DetCDAXFault = (CDAX and CDAEnabled and (CDAXCurMeasWng or

((CDAXMagWngSgn or CDAXMagMomZero) and !PhaseStab)))

"Detection of CDAZ fault. "

DetCDAYFault = (CDAY and CDAEnabled and (CDAYCurMeasWng or

((CDAYMagWngSgn or CDAYMagMomZero) and !PhaseStab)))

"Detection of CDAZ fault."

DetCDAZFault = (CDAZ and CDAEnabled and (CDAZCurMeasWng or

((CDAZMagWngSgn or CDAZMagMomZero) and !PhaseStab)))

"Detection of CDAZ fault."

Decision logic:

!CDAX = DetCDAXFault

"SUP: Disable CDAY if failed"

!CDAY = DetCDAYFault

"SUP: Disable CDAY if failed"

!CDAZ = DetCDAZFault

"SUP: Disable CDAZ if failed"

CDAE All Off = ((!CDAX) and (!CDAY) and (!CDAZ))

"SUP: Flag: CDAE All Off is true if no CDs in group one

is ON"

CDAEnabled = (ADACEnabled and !CDAE All Off)

"SUP: Enable coil group one if at least one CD is ON"

!ADACEnabled = DetCSCFault

"SUP: Enable control loop only if CSC is OK"

!AttDetModePrim = (PhaseStab and DetSIMFault)

!SSA1 = (PhaseStab and DetSSA1Fault)

!SST1 = (PhaseStab and DetSST1)

"SUP: Disable SST1 if it failed"

!SST2 = (PhaseStab and DetSST2)

"SUP: Disable SST2 if it failed"

SVectorEnabled = (SST1 and SST2 and SSA1)

"SUP: Enable SS in EKF if satellite in Sun, all SST

works, and full 8 SSs are available"

One and only one fault:

oneof (Dummy1 CSCFault SSA1Low SSA1High SST1Fault SST2Fault)

"SIMFault is not included in this list because it is

allowed together with other faults. It determines the

setting of AttDetMode, which must be flexible “

oneof (!Dummy1 Dummy2 CDAXShuntShort CDAXShuntDisc CDAXT5Short CDAXT5Open

CDAXFailedPos CDAXFailedNeg CDAXCoilShort)

oneof (!Dummy2 Dummy3 CDAXCoilDisc CDAXNTermShort CDAXPTermShort CDAXT1Open

CDAXT1Short CDAXT2Open CDAXT2Short)

oneof (!Dummy3 Dummy4 CDAYShuntShort CDAYShuntDisc CDAYT5Short CDAYT5Open

CDAYFailedPos CDAYFailedNeg CDAYCoilShort)

oneof (!Dummy4 Dummy5 CDAYCoilDisc CDAYNTermShort CDAYPTermShort CDAYT1Open

CDAYT1Short CDAYT2Open CDAYT2Short)

oneof (!Dummy5 Dummy6 CDAZShuntShort CDAZShuntDisc CDAZT5Short CDAZT5Open

CDAZFailedPos CDAZFailedNeg CDAZCoilShort)

oneof (!Dummy6 CDAZCoilDisc CDAZNTermShort CDAZPTermShort CDAZT1Open CDAZT1Short

CDAZT2Open CDAZT2Short)

Bibliography

Åström, K.J. (1991a). Assessment of Achievable Performance of Simple Feedback
Loops. Int. Journal of Adaptive Control and Signal Processing 5, 3–19.

Åström, K.J. (1991b). Intelligent Control. In proc.: European Control Conference,

ECC’91. pp. 2328–2339.

Åström, K.J. and T. Hägglund (1995). PID Controllers: Theory, Design, and Tuning. 2
ed. Instrument Society of America, Research Triangle Park, NC.

Atkinson, R.M., M.R. Montakhab, D.J. Woollons, P.A. Hogan, C.R. Burrows and K.A.
Edge (1993). DESHC: A Diagnostic Expert System for Hydraulic Circuits. In proc.:
CERT ONERA Tooldiag’93. Vol. 3. pp. 882–895.

Avizienis, A. (1997). Toward Systematic Design of Fault-Tolerant Systems. Computer

30(4), 51–58.

Bak, T. (1996). Onboard Attitude Determination for a Small Satellite. In proc.: 3rd ESA

International Conference on Spacecraft Guidance, Navigation and Control Systems.
Noordwijk, the Netherlands.

Balls, B.V., G.R. Duke and A.B. Rentcome (1988). Application of RAM to the Design
of Fault-Tolerant Safety Systems for Industrial Processes. In proc.: Workshop on Re-

liability, Availability, and Maintainability on Industrial Process Control. pp. 27–31.

Barbour, G.L. (1977). Failure Mode and Effects Analysis by Matrix Method. In proc.:
Annual Reliability & Maintainability Symposium. pp. 114–119.

Basseville, M. (1988). Detecting Changes in Signals and Systems - A Survey. Automat-

ica 24(3), 309–326.

Basseville, M. and I.V. Nikiforov (1993). Detection of Abrupt Changes: Theory and

Application. Prentice Hall, New Jersey.

Baumgarten, Götz (1996). Ein Neues Flugregelungskonzept zur Rekonfiguration bei

Stellgliedfehlern. Forschungsbericht 96-22. Deutsche Forschungsanstallt für Luft-
und Raumfahrt e.V. (DLR). Köln, Germany.

161

162 BIBLIOGRAPHY

Beard, R.V. (1971). Failure Accommodation in Linear Systems Through Self-
Reorganization. PhD thesis. Man Vehicle Laboratory. Cambridge, Massachusetts.
Rept. MVT-71-1.

Bell, T.E. (1989). Managing Murphy’s Law: Engineering a Minimum-Risk System.
Spectrum pp. 24–27.

Benítez-Pé rez,H., H.A. Thompson and P.J. Flemming (1997). Implementation of a
Smart Sensor Using Analytical Redundancy Techniques. In proc.: IFAC Safepro-

cess’97. pp. 585–590.

Beologic (1996). Beologic ➏ visualSTATETM 3.0 Classic for MS-Windows.

Biering-Sørensen, S., F.O. Hansen, S. Klim and P.T. Madsen (1990). Håndbog i Struk-

tureret Program-Udvikling. Teknisk Forlag. In Danish.

Blanke, M. (1996). Consistent Design of Dependable Control Systems. Control Engi-

neering Practice 4(9), 1305–1312.

Blanke, M. and P.B. Nielsen (1990). The Marine Engine Governor. In proc.: Second

International Conference on Maritime Communications and Control. The Institute of
Marine Engineers. London, UK. pp. 11–19.

Blanke, M. and R.B. Jørgensen (1995). Fault Handling Design for Integrated Marine
Systems. In proc.: 3rd IFAC Workshop on Control Applications in Marine Systems.
Trondheim. pp. 86–95.

Blanke, M. and R.J. Patton (1995). Industrial Actuator Benchmark for Fault Detection
and Isolation. Control Engineering Practice 3(12), 1727–1730.

Blanke, M., R.I. Zamanabadi, S.A. Bøgh and C.P. Lunau (1997). Fault-Tolerant Control
Systems - A Holistic View. Control Engineering Practice 5(5), 693–702.

Blanke, M., S. Bøgh and R.B. Jørgensen (1993). Fault accommodation in feedback
control systems. In: Hybrid Systems (R.L. Grossman, A. Nerode, A.P. Ravn and
H. Rischel, Eds.). pp. 393–425. Lecture Notes in Computer Science (736). Springer
Verlag.

Blanke, M., S. Bøgh, R.B. Jørgensen and R.J. Patton (1995). Fault Detection for Diesel
Engine Actuator - A Benchmark for FDI. Control Engineering Practice 3(12), 1731–
1740.

Bøgh, S. (1995). Multiple Hypothesis-Testing Approach to FDI for the Industrial Actu-
ator Benchmark. Control Engineering Practice 3(12), 1763–1768.

Bøgh, S., M. Blanke and R.B. Jørgensen (1993). Nonlinear Characterization and Sim-
ulation of Industrial Position Control Loop. Technical Report R93-4017. Dept. of
Control Eng., Aalborg University, Denmark.

BIBLIOGRAPHY 163

Bøgh, S.A., R. Wisniewski and T. Bak (1997). Autonomous Attitude Control System
for the Ørsted Satellite. In proc.: Workshop on Control of Small Spacecraft. Colorado,
U.S.

Bøgh, S.A., R.I. Zamanabadi and M. Blanke (1995). Onboard Supervisor for the Ørsted
Satellite Attitude Control System. In proc.: 5th ESA/ESTEC workshop on Artifical

Intelligence and Knowledge Based Systems for Space. pp. 137–152.

Brown, G.M., D.E. Bernard and R.D. Rasmussen (1995). Attitude and Articulation Con-
trol for the Cassini Spacecraft: A Fault Tolerance Overview. In proc.: AIAA/IEEE 14th

Digital Avionics Systems Conference. pp. 184–192.

Calado, J.M.F. and P.D. Roberts (1997). Fault Detection and Diagnosis Based on Fuzzy
Qualitative Reasoning. In proc.: IFAC Safeprocess’97. pp. 534–539.

Cassandras, C.G., S. Lafortune and G.J. Olsder (1995). Introduction to the modelling,
control and optimization of discrete event systems. In: Trends in Control (A. Isidori,
Ed.). pp. 217–291. Springer Verlag.

Cassar, J.Ph., M. Staroswiecki and P. Declerck (1994). Structural Decomposition for
Large Scale Systems for the Design of Failure Detection and Identification Proce-
dures. Systems Science 20(1), 31–42.

Celi, R., C.Y. Huang and I.-C. Shih (1996). Reconfigurable Flight Control Systems for
a Tandem Rotor Helicopter. In proc.: 52nd Annual Forum. American Helicopter So-
ciety. Washington DC. pp. 1569–1588.

Cho, K.H. and J.T. Lim (1997). Fault-Tolerant Supervisory Control of Discrete Event
Dynamical Systems. Int. Journal of Systems Science 28(10), 1001–1009.

Chow, E.Y. and A.S. Willsky (1984). Analytical Redundancy and the Design of Robust
Failure Detection Systems. Transactions on Automatic Control AC-29(7), 603–614.

David, R. and H. Alla (1992). Petri Nets and Grafcet: Tools for Modelling Discrete

Event Systems. Prentice Hall.

de Selding, P.D. (1996). Faulty software caused ariane 5 failure. Published in Space
News 24 June 1996.

Ding, X. and P.M. Frank (1991). Frequency Domain Approach and Threshold Selector
for Robust Model-based Fault Detection and Isolation. In proc.: IFAC Safeprocess’91.
Vol. 1. pp. 307–312.

DoD (1980). Procedure for Performing a Failure Mode, Effects and Criticality Analysis.
Technical report. Dept. of Defence, NAEC. Lakehurst, NJ, US.

Douglas, R.K. and J.L. Speyer (1996). Robust Fault Detection Filter Design. Journal of

Guidance, Control, and Dynamics 19(1), 214–218.

164 BIBLIOGRAPHY

Drejer, N. (1994). Methods of Run-Time Error Detection in Distributed Process Control
Software. PhD thesis. Dept. of Control Eng., Aalborg University, Denmark.

Efe, M. and D.P. Atherton (1997). The IMM Approach to the Fault Detection Problem.
In proc.: System Identification SYSID’97. pp. 625–630.

Emani-Naeini, A., M.M. Athter and S.M. Rock (1988). Effect of Model Uncertainty
on Failure Detection: The Threshold Selector. IEEE Trans. on Automatic Control

33(12), 1106–1115.

ESA-ECSS (1996a). Space Product Assurance: Dependability (ECSS-Q-30A). Techni-
cal report. European Space Agency ESA, Requirements & Standards Division. No-
ordwijk, The Netherlands.

ESA-ECSS (1996b). Space Product Assurance: Safety (ECSS-Q-40A). Technical re-
port. European Space Agency ESA, Requirements & Standards Division. Noordwijk,
The Netherlands.

ESA-ECSS (1997). Glossary of Terms (ECSS-P-001A, rev. 1). Technical report. Eu-
ropean Space Agency ESA, Requirements & Standards Division. Noordwijk, The
Netherlands.

Ford/General Motors/Chrysler (1995). Potential Failure Mode and Effects Analysis
(FMEA) - Reference Manual. Technical report. Chrysler Corporation, Ford Motor
Company, and General Motors Corporation.

Frank, P.M. (1990). Fault Diagnosis in Dynamic Systems using Analytical and
Knowledge-Based Redundancy - A Survey and some New Results. Automatica

26(3), 459–474.

Frank, P.M. (1995). Advances in Fault Tolerance by Model-Based Fault Diagnosis. In
proc.: ESF workshop on Control of Complex Systems COSY. pp. 15–21.

Frank, P.M. (1996). Analytical and Qualitative Model-Based Fault Diagnosis - a Survey
and Some New Results. European Journal of Control 2(1), 6–28.

Frank, P.M. and J. Wunnenberg (1989). Robust fault diagnosis using unknown input
observer schemes. In: Fault Diagnosis in Dynamic Systems - Theory and Applications

(R. Patton, P.M. Frank and R. Clark, Eds.). Chap. 3. Prentice Hall International.

Frank, P.M. and X. Ding (1994). Frequency Domain Approach to Optimally Robust
Residual Generation. Automatica 30(5), 789–804.

Franksen, O.I. (1979). Group representation of finite polyvalent logic - a case study us-
ing APL notation. In: A Link between Science and Applications of Automatic Control

(A. Niemi, Ed.). pp. 875–887. Pergamon Press, Oxford and New York.

BIBLIOGRAPHY 165

Frydkjær, K. (1997). Failure of the Conveyer Belt Encoder in 1992. Personal contact to
K. Frydkjær, Sander Hansen and H. Rosentoft, Carlsberg, Denmark.

Füssel, D., P. Ballé and R. Isermann (1997). Closed Loop Fault Diagnosis Based on
a Nonlinear Process Model and Automatic Fuzzy Rule Generation. In proc.: IFAC

Safeprocess’97. pp. 359–364.

Gao, Z. and P. Antsaklis (1991). Stability of the Pseudo-Inverse Method for Reconfig-
urable Control Systems. Int. Journal of Control 53(3), 717–729.

García, E.A. and P.M. Frank (1996). On the Relationship between Observer Based and
Parameter Identification Based Approaches to Fault Detection. In proc.: 13th IFAC

World Congress. Vol. N. San Francisco. pp. 25–30.

García, E.A. and P.M. Frank (1997). Deterministic Nonlinear Observer-Based Ap-
proaches to Fault Diagnosis: A Survey. Control Engineering Practice 5(5), 663–760.

García, E.A., B.Köppen-Seliger and P.M. Frank (1995). A Frequency Domain Approach
to Residual Generation for the Industrial Actuator Benchmark. Control Engineering

Practice 3(12), 1747–1750.

Gertler, J. (1993). Optimal Residual Decoupling for Robust Fault Diagnosis. In proc.:
CERT ONERA Tooldiag’93. pp. 436–452.

Gertler, J. (1997a). Fault Detection and Isolation using Parity Relations. Control Engi-

neering Practice 5(5), 653–661.

Gertler, J. (1997b). On the Relationship between Parity Relations and Parameter Esti-
mation. In proc.: IFAC Safeprocess’97. pp. 468–473.

Grainger, R.W., J. Holst, A.J. Isaksson and B.M. Ninness (1995). A Parametric Statis-
tical Approach to FDI for the Industrial Actuator Benchmark. Control Engineering

Practice 3(12), 1757–1762.

Hägglund, T. (1995). A Control-Loop Performance Monitor. Control Engineering Prac-

tice 3, 1543–1551.

Hägglund, T. and K.J. Åström (1997). Supervision of Adaptive Control Algorithms. In
proc.: IFAC Conference on Control of Industrial Systems. Belfort, France.

Han, Z. and P.M. Frank (1997). Physical Parameter Estimation Based FDI with Neural
Networks. In proc.: IFAC Safeprocess’97. pp. 294–299.

Hermans, F.J.J. and M.B. Zarrop (1997). Parameter Estimation Using Sliding Mode
Principles. In proc.: IFAC Safeprocess’97. pp. 282–287.

Herrin, S.A. (1981). Maintainability Applications Using the Matrix FMEA Technique.
Transactions on Reliability R-30(2), 212–217.

166 BIBLIOGRAPHY

Hignett, K.C. (1996). Practical Safety and Reliability Assessment. 1 ed. E & FN Spoon.
2-6 Boundary Row, London SE1 8HN, UK.

Himmelblau, D.M., R.W. Barker and W. Suewatanakul (1991). Fault Classification with
Aid of Artificial Neural Networks. In proc.: IFAC Safeprocess’91. Vol. 2. pp. 369–
373.

Höfling, Th., Th. Pfeufer, R. Deibert and R. Isermann (1995). An observer and Sig-
nal Processing Approach to FDI for the Industrial Actuator Benchmark Test. Control

Engineering Practice 3(12), 1741–1746.

Holding, D. (1991). Software fault tolerance. In: Failsafe Control Systems, Application

and Emergency Management (K. Warwick and M.T. Tham, Eds.). Chap. 2. Chapman
and Hall.

Hou, M. and P.C. Müller (1994). Fault-Detection and Isolation Observers. Int. Journal

of Control 60(5), 827–846.

Huang, C.Y. and R.F. Stengel (1990). Restructurable Control Using Proportional-
Integral Implicit Model Following. J. Guidance 13(2), 303–309.

Isaksson, A.J. (1993). An On-line Threshold Selector for Failure Detection. In proc.:
CERT ONERA Tooldiag’93. pp. 628–634.

Isermann, R. (1984). Process Fault-Detection based on Modelling and Estimation Meth-
ods - A Survey. Automatica 20(4), 387–404.

Isermann, R. (1993). Fault Diagnosis of Machines via Parameter Estimation and Knowl-
edge Processing. Automatica 29, 815–836.

Isermann, R. (1997). Supervision, Fault-Detection and Fault-Diagnosis Methods - an
Introduction. Control Engineering Practice 5(5), 639–652.

Isermann, R. and P. Ballé(1997). Trends in the Application of Model-Based Fault Detec-
tion and Diagnosis of Technical Processes. Control Engineering Practice 5(5), 709–
719.

Isermann, R., H. Keller and U. Raab (1993). Smart Actuators. In proc.: CERT ONERA

Tooldiag’93. pp. 117–126.

Jensen, B., L. Nielsen and M. Svavarsson (1994). Approach for design of reliable con-
troller. Master’s thesis. Dept. of Control Eng., Aalborg University, Denmark. In Dan-
ish.

Jones, H.L. (1973). Failure Detection in Linear Systems. PhD thesis. Dept. of Aeronau-
tics and Astronautics, M.I.T.. Cambridge, Massachusetts.

BIBLIOGRAPHY 167

Jørgensen, R.B. (1995). Development and Test of Methods for Fault Detection and Iso-
lation. PhD thesis. Dept. of Control Eng., Aalborg University, Denmark.

Jørgensen, R.B., R.J. Patton and J. Chen (1995). An Eigenstructure Assignment Ap-
proach to FDI for the Industrial Actuator Benchmark Test. Control Engineering Prac-

tice 3(12), 1751–1756.

Kapur, K.C. (1977). Reliability in Engineering Design. John Wiley & Sons.

Keller, J.Y. and M. Darouach (1997). A New Estimator for Dynamic Stochastic Sys-
tems with Unknown Inputs: Application to Robust Fault Diagnosis. In proc.: IFAC

Safeprocess’97. pp. 177–180.

Kiupel, N. and P.M. Frank (1997). A Fuzzy FDI Decision Making System for the Sup-
port of the Human Operator. In proc.: IFAC Safeprocess’97. pp. 731–736.

Köppen-Seliger, B. and P.M. Frank (1995). Fault Detection and Isolation in Technical
Processes with Neural Networks. In proc.: Decision and Control CDC’95. New Or-
leans. pp. 2414–2419.

Köppen-Seliger, B. and P.M. Frank (1996). Neural Network in Model-Based Fault Di-
agnosis. In proc.: 13th IFAC World Congress. 7f-02 5. pp. 67–72.

Kovio, H.N. (1994). Artificial Neural Networks in Fault Diagnosis and Control. Control

Engineering Practice 2(7), 89–101.

Laprie, J.C. (1987). Computing Systems Dependability and Fault Tolerance: Basic Con-
cepts and Terminology. Agardograph (289), 1.1–1.15.

Lauber, R.J. (1991). Aspects of Achieving Total Systems Availability. In proc.: IFAC

Safeprocess’91. Vol. 1. pp. 35–41.

Lee, K.-S. and J. Vagners (1997). Reliable Decision Unit utilizing Fuzzy Logic for Ob-
server Based Fault Detection Systems. In proc.: IFAC Safeprocess’97. pp. 693–698.

Lee, S.C. and A.G. Santo (1996). Near Earth Asteroid Rendezvous (NEAR) Spacecraft
Safing Design. Acta Astronautica 39(1-4), 197–206.

Legg, J.M. (1978). Computerized Approach for Matrix-Form FMEA. Transactions on

Reliability R-27(1), 254–257.

Leitch, R. (1993). Engineering Diagnosis: Matching Problems to Solutions. In proc.:
CERT ONERA Tooldiag’93. pp. 837–844.

Lions, J.L. (1996). Ariane 5 Flight 501 Failure. Inquiry board report. Eu-
ropean Space Agency. Available at http://www.esrin.esa.it/htdocs/tidc/Press/
Press96/ariane5rep.html.

168 BIBLIOGRAPHY

Lunze, J. and F. Schiller (1996). Diagnosis Based on a Probabilistic Model of Dynamic
Systems. In proc.: IFAC World Congress. pp. 145–150.

Lunze, J. and F. Schiller (1997). An Example of Fault Diagnosis by Means of Proba-
bilistic Logic Reasoning. In proc.: IFAC Safeprocess’97. pp. 540–545.

Lutz, R.R. and R.M. Woodhouse (1996). Contributions of SFMEA to Requirements
Analysis. In proc.: IEEE International Conference on Requirements Engineering,

ICRE. Colorado Springs, CO, USA. pp. 44–51.

Mazza, C., A. Scheffer, B. Melton, D. de Pablo, R. Stevens and J. Fairclough (1992).
ESA’s Software Engineering Standard - The Foundation for Reliable Software. ESA

Bulletin 69, 97–104.

Mediavilla, M., L.J. Miguel and P. Vega (1997). Isolation of Multiplicative Faults in the
Industrial Actuator Benchmark. In proc.: IFAC Safeprocess’97. pp. 855–860.

Miguel, L.J., M. Mediavilla and J.R. Perán (1997). Decision-Making Approaches for a
Model-Based FDI Method. In proc.: IFAC Safeprocess’97. pp. 719–725.

Misra, A. (1994). Sensor-Based Diagnosis of Dynamical Systems. PhD thesis. Vander-
bilt University, US.

Moerder, D.D., N. Halyo, J.R. Broussard and A.K. Caglayan (1989). Application of
Precomputed Control Laws in a Reconfigurable Aircraft Flight Control System. J.

Guidance 12(3), 325–333.

Møller, G. (1995). On the Technology of Array-based Logic. PhD thesis. Electric Power
Eng. Dept., Tech. University of Denmark, Lyngby, Denmark.

Montmain, J. and S. Gentil (1993). Decision-Making in Fault Detection: A Fuzzy Ap-
proach. In proc.: CERT ONERA Tooldiag’93. pp. 653–660.

Morse, A.S. (1996). Supervisory Control of Families of Linear Set-Point Controllers -
Part 1: Exact Matching. IEEE Trans. on Automatic Control 41(10), 1413–1431.

Morse, W.D. and K.A. Ossman (1990). Model Following Reconfigurable Flight Control
System for the AFTI/F-16. J.Guidance 13(6), 969–976.

NASA (1993). NASA Safety Policy and Requirements Document. NASA hand-
book, nhb 1700.1 (v1-b). QS Safety & Risk Management Division. Avail-
able at http://nodis.hq.nasa.gov/Library/Directives/NASA-WIDE/Procedures/
Organization_and_Administration/N_HB_1700_1_(V1-B).html.

Nelson, V.P. (1990). Fault-Tolerant Computing: Fundamental Concepts. Computer

23(7), 19–25.

BIBLIOGRAPHY 169

Nielsen, S.B., R. Patton, M. Blanke and R.B. Jørgensen (1993). Industrial Actuator
Benchmark Test. Technical Report R93-4020. Aalborg University, Denmark and York
University, England.

Nikhoukhah, R.N. (1994). Innovations Generation in the Presence of Unknown Inputs:
Application to Robust Failure Detection. Automatica 30, 1851–1868.

Nilsen, S.O. and M. Blanke (1996). Overall Specification FMEA Module. Technical
Report R96-4149. Dept. of Control Eng., Aalborg University, Denmark.

Ochi, Y. and K. Kanai (1991). Design of Restructurable Flight Control Systems Using
Feedback Linearization. Journal of Guidance, Control & Dynamics 14(5), 903–911.

Ostroff, A.J. (1985). Techniques for Accommodating Control Effector Failures on
Mildly Statically Unstable Airplane. In proc.: American Control Conference. pp. 906–
913.

Overkamp, A. (1997). Supervisory Control Using Partial Failure Semantics and Partial
Specifications. IEEE Trans. on Automatic Control 42(4), 498–510.

Patton, R.J. (1997). Fault-Tolerant Control: The 1997 Situation. In proc.: IFAC Safepro-

cess’97. pp. 1033–1055.

Patton, R.J. and J. Chen (1991a). A Review of Parity Space Approaches to Fault Diag-
nosis. In proc.: IFAC Safeprocess’91. Vol. 1. pp. 239–255.

Patton, R.J. and J. Chen (1991b). Robust Fault Detection using Eigenstructure Assign-
ment: A Tutorial Consideration and some new Results. In proc.: 30th conf. on Deci-

sion and Control, CDC’91. pp. 2242–2247.

Patton, R.J. and J. Chen (1996). Robust fault detection and isolation (FDI) systems. In:
Techniques in Discrete and Continuous Robust Systems (C.T. Leondes, Ed.). Vol. 74
of Dynamics & Control Series. pp. 171–224. Academic Press.

Patton, R.J. and S.M. Kangethe (1989). Robust fault diagnosis using eigenstructure as-
signment of observers. In: Fault Diagnosis in Dynamic Systems - Theory and Applica-

tions (R. Patton, P.M. Frank and R. Clark, Eds.). Chap. 4. Prentice Hall International.

Payton, D.W., D. Keirsey, D.M. Kinble, J. Krozel and K. Rosenblatt (1992). Do What-
ever Works: A Robust Approach to Fault-Tolerant Autonomous Control. Journal of

Applied Intelligence 2, 225–250.

Pell, B., D.E. Bernard, S.A. Chien, E. Gat, N. Muscettola, P.P. Nayak, M.D.Wagner and
B.C. Williams (1997). An Autonomous Spacecraft Agent Prototype. In proc.: 1st Int.

Conf. on Autonomous Agents. pp. 253–261.

Pressman, R.S. (1988). Software Engineering - A Practitioner’s Approach. McGraw-Hill
Book Co.

170 BIBLIOGRAPHY

Price, C.J., D.R. Pugh, N. Snooke, J.E. Hunt and M.S. Wilson (1997). Combining Func-
tional and Structural Reasoning for Safety of Electrical Designs. The Knowledge En-

gineering Review 12, 271–287.

Rauch, H.E. (1995). Autonomous Control Reconfiguration. IEEE Control System Mag-

azine 15(6), 37–48.

Rotstein, G.E., A. Sanchez and N. Alsop (1995). Synthesis of Procedural Controllers and
the Automatic Generation of Sequential Controllers. In proc.: Workshop on Analysis

and Design of Event-Driven Operation in Process Systems (ADEDOPS). Centre for
Process Systems Engineering, Imperial College, UK.

Santo, A.G., S.C. Lee and R.E. Gold (1995). NEAR Spacecraft and Instrumentation.
The Journal of Astronautical Sciences 43(4), 373–397.

Shafaghi, A., P.K. Andow and F.P. Lees (1984). Fault Tree Synthesis based on Control
Loop Structure. Chemical Engineering Research and Design 62, 101–110.

Slonski, J.P. (1996). System Fault Protection Design for the Cassini Spacecraft. In proc.:
Aerospace Applications Conference. IEEE. Aspen, CO. pp. 279–292.

Tzafestas, S. and K. Watanabe (1990). Modern Approaches to System/Sensor Fault De-
tection and Diagnosis. Journal A. 31(4), 42–57.

Veillette, R.J., J.V. Medani and W.R. Perkins (1992). Design of Reliable Control Sys-
tems. Trans. on Automatic Control 37(3), 290–304.

Verbruggen, H., S. Tzafestas and E. Zanni (1995). Knowledge-based fault diagnosis of
technical systems. In: Artificial Intelligence in Industrial Decision Making, Control

and Automation (S.G. Tzafestas and H.B. Verbruggen, Eds.). pp. 449–506. Kluwer
Academic.

Visinsky, M.L., J.R. Cavallaro and I.D. Walker (1994). Robotic Fault Detection and
Fault Tolerance: A Survey. Reliability Engineering and System Safety 46, 139–158.

Walker, B.K. and K.Y Huang (1995). FDI by Extended Kalman Filter Parameter Estima-
tion for Industrial Actuator Benchmark. Control Engineering Practice 3(12), 1769–
1774.

Willsky, A.S. (1976). A Survey of Design Methods for Failure Detection in Dynamic
Systems. Automatica 12, 601–611.

Wimmer, W. (1997). Lessons to be Learned from European Science and Application
Space Missions. Control Engineering Practice 5(2), 155–165.

Wisniewski, R. (1996). Satellite Attitude Control Using Only Electromagnetic Actua-
tion. PhD thesis. Dept. of Control Eng., Aalborg University, Denmark.

BIBLIOGRAPHY 171

Wonham, W.M. (1988). A control theory for discrete-event system. In: Advanced Com-

puting Concepts and Techniques in Control Engineering (M.J. Denham and A.J. Laub,
Eds.). pp. 129–169. Springer-Verlag.

Yang, J.C. and D.W. Clarke (1997). The Self-Validating Actuator. In proc.: IFAC Safe-

process’97. pp. 579–584.

Yang, J.E., S.H. Han, J.H. Park and Y.H. Jin (1997). Analytic Method to Break Logical
Loops Automatically in PSA. Reliability Engineering and System Safety 56, 101–105.

Yazdi, H. (1997). Control and Supervision of Event-Driven Systems. PhD thesis. Tech-
nical University of Denmark.

Zamanabadi, R.I., S.A.Bøgh and M. Blanke (1996). On the Design and Realization of
Supervisory Functions in Fault Tolerant Control. In proc.: KoREMA conference. Za-
greb, Croatia. pp. 91–95.

Zheng, C., R.J. Patton and J. Chen (1997). Robust Fault-Tolerant Systems Synthesis via
LMI. In proc.: IFAC Safeprocess’97. pp. 347–352.

