
  

  

Abstract—A fault-tolerant (FT) control approach for 
four-wheel independently-driven (4WID) electric vehicles is 
presented.  An adaptive control based passive fault-tolerant 
controller is designed to ensure the system stability when an 
in-wheel motor/motor driver fault happens.  As an 
over-actuated system, it is challenging to isolate the faulty wheel 
and accurately estimate the control gain of the faulty in-wheel 
motor for 4WID electric vehicles.  An active fault diagnosis 
approach is thus proposed to isolate and evaluate the fault.  
Based on the estimated control gain of the faulty in-wheel 
motor, the control efforts of all the four wheels are redistributed 
to relieve the torque demand on the faulty wheel. Simulations 
using a high-fidelity, CarSim, full-vehicle model show the 
effectiveness of the proposed in-wheel motor/motor driver fault 
diagnosis and fault-tolerant control approach. 

I. INTRODUCTION 
OUR-wheel independently-driven (4WID) electric vehicle 
is an promising vehicle architecture due to its potentials in 

emissions and fuel consumption reductions [1].  A 4WID 
electric vehicle employs four in-wheel (or hub) motors to 
drive the four wheels, and the torque and driving/braking 
mode of each wheel can be controlled independently.  Such 
actuation flexibility together with the electric motors’ fast and 
precise torque responses can enhance the existing vehicle 
control strategies, e.g. traction control system (TCS) and 
direct yaw-moment control (DYC), and other advanced 
vehicle motion / stability control systems [2][3][23]. 

However, due to the significantly increased system 
complexity and number of actuators, the probability for a 
fault, e.g. in-wheel motor/motor driver fault, taking place in a 
4WID electric vehicle is higher.  The in-wheel motor faults 
may be caused by mechanical failures, overheat of the 
motors, or faults associated with the motor drivers.  When 
such a fault occurs, the faulty wheel may fail to provide the 
expected torque and thus jeopardize the vehicle motion 
control.  Without appropriate accommodations, the in-wheel 
motor or motor driver faults may result in vehicle 
performance deterioration or even instability due to loss of 
desired torque on a particular wheel [4][6].  Therefore, the 
demands on reliability, safety, and fault tolerance for 4WID 
electric vehicles are substantially elevated.    

 Several fault diagnosis and fault-tolerant (FT) control 
strategies for ground vehicles have been suggested in the 

 
 

*Corresponding author. Rongrong Wang and Junmin Wang are with the 
Department of Mechanical and Aerospace Engineering, The Ohio State 
University, Columbus, OH 43210 USA (e-mail: wang.1862@ 
@buckeyemail.osu.edu;  wang.1381@osu.edu).  This research was 
supported by the Office of Naval Research Young Investigator Award under 
Grant N00014-09-1-1018, Honda-OSU Partnership Program, and OSU 
Transportation Research Endowment Program. 

 

literatures [7][8][9][10][11].  However, most of these 
algorithms dealt with the problems associated with 
conventional vehicle architectures, but not for the 4WID 
electric vehicles.  It is known that the 4WID electric vehicle is 
a typical over-actuated system, and the fault diagnosis design 
for such systems is challenging [12].  Yang proposed a FT 
path-tracking control for a 4WID electric vehicle [13][14], 
but the fault diagnosis approach was not presented.  Fault 
diagnosis and FT control methods for electric motors are also 
proposed and reviewed in [15][17].  Some motor faults, such 
as the bearing faults, are difficult to diagnose with only 
current and voltage sensors [17].  Thus, these motor/motor 
controller diagnosis approaches are not used in this study.  

This paper considers the vehicle dynamics-based fault 
diagnosis and FT control for 4WID electric vehicles.  As an 
over-actuated system, the conventional fault diagnosis and FT 
control methods may not work for the 4WID electric vehicles.  
For example, the front and rear wheels on the same side of a 
vehicle have the same effect on the vehicle yaw and 
longitudinal motion dynamics when the vehicle is running in 
a straight line.  Such features associated with the actuation 
redundancy make some of the FT controllers, such as the 
multiple model based approaches [19], difficult to be 
implemented on 4WID electric vehicles.  An adaptive control 
based passive FT controller is designed to maintain the 
vehicle stability and desired motion when an in-wheel 
motor/motor driver fault happens.  Then, an active fault 
diagnosis approach is proposed to isolate and evaluate the 
fault under the designed passive FT controller.  Finally, the 
control efforts of all the in-wheel motors are readjusted based 
on the diagnosis result to relieve the torque demand on the 
faulty motor/motor driver for avoiding further damages.  
Simulations using a high-fidelity vehicle model illustrate the 
effectiveness of the proposed strategy.  

The rest of the paper is organized as follows.  System 
modeling is presented in section 2.  The proposed FT 
controller is described in section 3.  The active diagnosis 
method with control effort redistribution is proposed in 
section 4.  Simulation results are presented in section 5 
followed by conclusive remarks. 

II. SYSTEM MODELING AND PROBLEM FORMULATION 
A. Vehicle modeling 

Ignoring the pitch and roll motion, the vehicle has three 
degrees of freedom for longitudinal motion, lateral motion 
and yaw motion.  A schematic diagram of a vehicle model is 
shown in Figure 1.  
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Figure 1.  Schematic diagram of a vehicle model. 

Vehicle equations of motion can be expressed as: 
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⎨
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⎧�̇�𝑥 = 𝑉𝑦Ω𝑧 −

𝐶𝑎
𝑀
𝑉𝑥2 + 1

𝑀
𝐹𝑋

�̇�𝑦 = −𝑉𝑥Ω𝑧 + 1
𝑀
𝐹𝑌            

�̇�𝑧 = 1
𝐼𝑧
𝑀𝑧                            

� ,                  (1) 

where 𝑉𝑥  and 𝑉𝑦  are longitudinal speed and lateral speed, 
respectively,  Ω𝑧  is the yaw rate,  M  is the mass of the 
vehicle, 𝐼𝑧 is the yaw inertia, and 𝐶𝑎 is the aerodynamic drag 
term.  𝐹𝑋, 𝐹𝑌, and 𝑀𝑧 are the total forces/moment by the tire 
forces generated at all the four wheels, and can be defined by 

⎩
⎪⎪
⎨
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where, 𝜎 is the front wheel steering angle.  Based on (2), (1) 
can be rewritten as 

�
�̇�𝑥
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−𝑉𝑥Ω𝑧
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� + 𝐵𝑦𝐹𝑦 + 𝐵𝑥𝐹𝑥,           (3) 

where 𝐹𝑥 = �𝐹𝑥𝑓𝑙 𝐹𝑥𝑓𝑟  𝐹𝑥𝑟𝑙 𝐹𝑥𝑟𝑟�
𝑇 , 𝐹𝑦 = �𝐹𝑦𝑓𝑙 𝐹𝑦𝑓𝑟𝐹𝑦𝑟𝑙𝐹𝑦𝑟𝑟�

𝑇
are 

the tire longitudinal and lateral forces, which can be 
calculated by a tire model based on measured tire slip ratios, 
slip angles, and normal loads.  In this paper, the Magic 
Formula tire model [16] is used to calculate the tire forces. 
And a load transfer model can be used to calculate the tire 
normal load.  The corresponding matrices are.  

𝐵𝑥 = 𝑄 �
𝑐𝑜𝑠 𝜎
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with 𝑄 = 𝑑𝑖𝑎𝑔 �
1
𝑀

1
𝑀

1
𝐼𝑧
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The mechanical motion of a motor or a vehicle is much 
slower than a motor’s electromagnetic dynamics, implying 
that the dynamics of the motor driver and in-wheel motor can 
be ignored.   If each pair of in-wheel motor and driver is 
treated as a unit, the motor driver and motor pair model can be 
described by a control gain 𝑘𝑖, which is defined as 

𝑘𝑖 = 𝑇𝑖
𝑢𝑖

, (4)  

where  𝑖 ∈ 𝑆 ∶= {𝑓𝑙 𝑓𝑟 𝑟𝑙 𝑟𝑟} indicates the specific wheel, 𝑇𝑖  

is the output torque of the in-wheel motor, 𝑢𝑖 is the torque 
control signal to the motor’s driver.   Note that the control 
gain 𝑘𝑖 can be obtained with experimental data.  In general, if 
a fault happens to a certain motor and/or the motor driver, the 
corresponding control gain will be reduced. 

The rotational dynamics of each wheel is represented by 
𝐼�̇�𝑖 = 𝑘𝑖𝑢𝑖 − 𝑅𝑒𝑓𝑓𝐹𝑥𝑖, (5)  

where 𝜔𝑖 is the wheel longitudinal rotational speed in rad/s, 
𝑅𝑒𝑓𝑓 is the tire effective rolling radius in meter, and I is the 
wheel moment of inertia.  Thus, the above equation can be 
written as 

𝐹𝑥𝑖 = 𝑘𝑖𝑢𝑖−𝐼�̇�𝑖
𝑅𝑒𝑓𝑓

.                                  (6) 

So one can have 
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⎥
⎥
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Based on (7), the vehicle model (3) can be further written as 
�̇� = 𝑓(𝑋) + 𝐵𝐾𝑈, (8)  

with 𝑋 = �
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⎥
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𝑓1(𝑋)
𝑓2(𝑋)
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𝐶𝑎
𝑀
𝑉𝑥2

−𝑉𝑥Ω𝑧
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� + 𝐵𝑦𝐹𝑦 −

𝐵𝑥
𝑅𝑒𝑓𝑓

⎣
⎢
⎢
⎡
𝐼�̇�𝑓𝑙
𝐼�̇�𝑓𝑟
𝐼�̇�𝑟𝑙
𝐼�̇�𝑟𝑟⎦

⎥
⎥
⎤
.  The �̇�𝑖  can be estimated in real-time using a 

Kalman filter [21]. 
B. Problem formulation 

When one of the four in-wheel motors/motor drivers has a 
fault, without accommodating control action, the vehicle may 
deviate from the expected trajectory as the torque provided by 
the faulty wheel will be less than expected.  In this paper, 
vehicle longitudinal speed and yaw rate are controlled to 
follow the references.  A fault diagnosis approach and FT 
controller is designed to maintain the vehicle stability and 
desired performance when a fault happens.  Moreover, it is 
also desirable that the vehicle controller can automatically 
relieve the torque demand on the faulty in-wheel motor to 
avoid further damage. It is assumed that when a fault happens 
to a motor/driver, the respective control gain will jump to a 
lower constant value. 

Global positioning system (GPS) and inertia measurement 
unit (IMU) have been proved to be effective in measuring 
vehicle states [18]. Based on these advanced sensing 
technologies, the vehicle yaw rate, longitudinal and lateral 
speeds can be accurately measured.  Tire slip ratios, slip 
angles and the speeds at the wheel centers can also be 
calculated.     
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III. PASSIVE FAULT TOLERANT CONTROL DESIGN 
A. Straight Line Case 

When the vehicle is running in a straight line, the vehicle 
model can be written as  

 �̇� = 𝑓(𝑋) + 1
𝑅𝑒𝑓𝑓

�

1
𝑀 0 0
0 1

𝑀 0
0 0 𝑙𝑠

𝐼𝑧

� �
1
0

−1    

1
0
1

   
1
0
−1

    
1
0
1

 � 𝐾𝑈. 

 
(9)  

The cost function for the four motors can be defined as  
𝐽 = ∑ 𝑤𝑖𝑢𝑖2𝑖 , 

Subject to �
𝑢𝑓𝑟𝑘𝑓𝑟 + 𝑢𝑟𝑟𝑘𝑟𝑟 = 𝑇𝑟
𝑢𝑓𝑙𝑘𝑓𝑙 + 𝑢𝑟𝑙𝑘𝑟𝑙 = 𝑇𝑙

.� 

(10)  

with 𝑤𝑖  being the weighting factor for each of the wheels.  𝑇𝑟 
and 𝑇𝑙  are the required total motor torques from the right and 
left sides of the vehicle, respectively.  As the four wheels are 
assumed to be the same, one can make 𝑤𝑟𝑟 = 𝑤𝑟𝑓 = 𝑤𝑙𝑟 =
𝑤𝑙𝑓 = 𝑤0.  The above cost function can be minimized if the 
two control signals on the same side of the vehicle are 
identical, that is 

�
𝑢𝑙 = 𝑢𝑓𝑙 = 𝑢𝑟𝑙
𝑢𝑟 = 𝑢𝑓𝑟 = 𝑢𝑟𝑟

�. (11)  

It can be seen from (9) that the two wheels on the same side 
of the vehicle have the same effect on the vehicle dynamics.  
Putting the two wheels on the same side into one subspace, 
one has 

�
𝑘𝑓𝑙𝑢𝑓𝑙 + 𝑘𝑟𝑙𝑢𝑟𝑙 = 𝑢𝑙𝑘𝑙
𝑘𝑓𝑟𝑢𝑓𝑟 + 𝑘𝑟𝑟𝑢𝑟𝑟 = 𝑢𝑟𝑘𝑟

�, 
(12)  

with  

�
𝑘𝑙 = 𝑘𝑓𝑙 + 𝑘𝑟𝑙
𝑘𝑟 = 𝑘𝑓𝑟 + 𝑘𝑟𝑟

�. 
(13)  

When a fault happens, the actual value of 𝑘𝑙 or 𝑘𝑟 will be 
unknown as 𝑘𝑖  is unknown due to the fault.  An adaptive 
controller, which does not need the accurate value of 𝑘𝑙 or 𝑘𝑟, 
is proposed to design the passive FTC for stabilizing the 
faulty vehicle.  As the vehicle trajectory is mostly determined 
by its longitudinal speed and yaw rate, only these two states 
are controlled to follow the references.   

Choose a Lyapunov function candidate as 

𝑉 = (𝑉𝑟𝑥−𝑉𝑥)2+(𝛺𝑟𝑧−𝛺𝑧)2+�𝑘𝑙−𝑘� 𝑙�
2
+�𝑘𝑟−𝑘�𝑟�

2

2
, 

(14)  

where 𝑉𝑟𝑥  and Ω𝑟𝑧  are the longitudinal speed and yaw rate 
references.  𝑘�𝑙  and 𝑘�𝑟  are the estimations of 𝑘𝑙  and 𝑘𝑟 , 
respectively. The time derivative of the Lyapunov function is 
 �̇� = 𝑒𝑟𝑥��̇�𝑟𝑥 − �̇�𝑥� + 𝑒𝛺��̇�𝑟𝑧 − �̇�𝑧� − �𝑘𝑙 − 𝑘�𝑙�𝑘��̇� − 
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𝑀𝑅𝑒𝑓𝑓

� − �𝑘𝑟 − 𝑘�𝑟�𝑘��̇� 

         +𝑒𝛺 ��̇�𝑟𝑧−𝑓3(𝑋) +  𝑙𝑠𝑘𝑙𝑢𝑙−𝑙𝑠𝑘𝑟𝑢𝑟
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= 𝑒𝑟𝑥 ��̇�𝑟𝑥 − 𝑓1(𝑋)� + 𝑒𝛺 ��̇�𝑟𝑧−𝑓3(𝑋)� + 𝑘�𝑙𝑘��̇� 

        +𝑘�𝑟𝑘��̇� − �𝑒𝑟𝑥𝑘𝑙𝑢𝑙
𝑅𝑒𝑓𝑓𝑀

− 𝑒𝛺𝑙𝑠𝑘𝑙𝑢𝑙
𝑅𝑒𝑓𝑓𝐼𝑍

− 𝑘𝑙𝑘��̇�� 

        −�𝑒𝑟𝑥𝑘𝑟𝑢𝑟
𝑅𝑒𝑓𝑓𝑀

+ 𝑒𝛺𝑙𝑠𝑘𝑟𝑢𝑟
𝑅𝑒𝑓𝑓𝐼𝑍

− 𝑘𝑟𝑘��̇�� 

(15)  

where 𝑒𝑟𝑥 = 𝑉𝑟𝑥 − 𝑉𝑥, 𝑒𝛺 = Ω𝑟𝑧 − Ω𝑧.  By making 

 �
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� 𝑢𝑟
�, 

 
(16)  

one can rewrite the derivative of the Lyapunov function as 
 �̇� = 𝑒𝑟𝑥 ��̇�𝑟𝑥 − 𝑓1(𝑋)� + 𝑒𝛺 ��̇�𝑟𝑧−𝑓3(𝑋)� 
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� 𝑢𝑟. 

(17)  

If the control law for 𝑢𝑙 and 𝑢𝑟 can be chosen such that 

 �
𝐿1𝑒𝑟𝑥2 + 𝑒𝑟𝑥 ��̇�𝑟𝑥 − 𝑓1(𝑋)� = 𝑒𝑟𝑥

𝑅𝑒𝑓𝑓𝑀
�𝑘�𝑙𝑢𝑙 + 𝑘�𝑟𝑢𝑟�

𝐿2𝑒𝛺2 + 𝑒𝛺 ��̇�𝑟𝑧−𝑓3(𝑋)� = 𝑒𝛺𝑙𝑠
𝑅𝑒𝑓𝑓𝐼𝑍

�−𝑘�𝑙𝑢𝑙 + 𝑘�𝑟𝑢𝑟�
� 

 
(18)  

with 𝐿1 and 𝐿2 > 0.  Then, one has 
�̇� = −𝐿1𝑒𝑟𝑥2 − 𝐿2𝑒𝛺2 ≤ 0, (19)  

which means that the actual longitudinal speed and yaw rate 
can follow their references.  Based on (18) we can get the 
control law as 

⎩
⎪
⎨

⎪
⎧𝑢𝑙 =

𝑅𝑒𝑓𝑓𝑀�𝐿1𝑒𝑟𝑥+�̇�𝑟𝑥−𝑓1(𝑋)�−
𝑅𝑒𝑓𝑓𝐼𝑍
𝑙𝑠

�𝐿2𝑒𝛺+�̇�𝑟𝑧−𝑓3(𝑋)�

2𝑘�𝑙

𝑢𝑟 =
𝑅𝑒𝑓𝑓𝑀�𝐿1𝑒𝑟𝑥+�̇�𝑟𝑥−𝑓1(𝑋)�+

𝑅𝑒𝑓𝑓𝐼𝑍
𝑙𝑠

�𝐿2𝑒𝛺+�̇�𝑟𝑧−𝑓3(𝑋)�

2𝑘�𝑟

�.           (20) 

In order to guarantee the control signals are bounded, a 
projection method is used to modify the adaption laws [20].  
Based on the control gain definition (12), one can see that 
both  𝑘�𝑙 and 𝑘�𝑟 should be bounded as 

�0 < 𝜀 ≤ 𝑘�𝑙 ≤ 2𝑘𝑚𝑎𝑥
0 < 𝜀 ≤ 𝑘�𝑟 ≤ 2𝑘𝑚𝑎𝑥

�, 
 
(21)  

where 𝜀 is a small positive constant and 𝑘𝑚𝑎𝑥 is the maximal 
control gain of a single motor.  Note that if only one motor is 
in fault, 𝜀 will equal to the single motor minimal control gain 
𝑘𝑚𝑖𝑛.  Based on the projection method, the adaption law for 
𝑘�𝑙 in (16) can be modified as: 

𝑘��̇� =

⎩
⎪
⎨

⎪
⎧𝑠     𝑖𝑓 �0 < 𝜀 < 𝑘�𝑙 < 2𝑘𝑚𝑎𝑥�            

   𝑜𝑟 �𝑘�𝑙 = 𝜀 𝑎𝑛𝑑 𝑠 > 0�
             𝑜𝑟 �𝑘�𝑙 = 2𝑘𝑚𝑎𝑥 𝑎𝑛𝑑 𝑠 < 0�

0      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                     

,� 

 
(22)  

where 𝑠 is defined as 𝑠 = � 𝑒𝑟𝑥
𝑅𝑒𝑓𝑓𝑀

− 𝑙𝑠𝑒𝛺
𝑅𝑒𝑓𝑓𝐼𝑍

� 𝑢𝑙.  Similarly, the 

adaption law for 𝑘�𝑟 can be modified as well. 
B. Turning Case 

When the vehicle is turning, as only the vehicle 
longitudinal speed and yaw rate are controlled to follow the 
references, the vehicle model (3) can be written as   

    � �̇�𝑥
�̇�𝑧
� = �𝑓1

(𝑋)
𝑓3(𝑋)� + 

           1
𝑅𝑒𝑓𝑓

 �
𝑐𝑜𝑠𝜎
𝑀

𝑐𝑜𝑠𝜎
𝑀

1
𝑀

𝑙𝑓𝑠𝑖𝑛𝜎−𝑙𝑠𝑐𝑜𝑠𝜎
𝐼𝑧

𝑙𝑓𝑠𝑖𝑛𝜎+𝑙𝑠𝑐𝑜𝑠𝜎
𝐼𝑧

−𝑙𝑠
𝐼𝑧

     
1
𝑀
𝑙𝑠
𝐼𝑧

� 𝐾𝑈. 

 
(23)  

With the assumption (11), we can have, 

 � �̇�𝑥
�̇�𝑧
� = �𝑓1

(𝑋)
𝑓3(𝑋)� + 1

𝑅𝑒𝑓𝑓
�
1
𝑀 0
0 𝑙𝑠

𝐼𝑧

� � 𝑘𝑙𝑥 𝑘𝑟𝑥
−𝑘𝑙𝑧 𝑘𝑟𝑧

� �
𝑢𝑙
𝑢𝑟� 

(24)  

with  
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⎩
⎪
⎨

⎪
⎧

𝑘𝑙𝑥 = 𝑘𝑓𝑙 𝑐𝑜𝑠 𝜎 + 𝑘𝑟𝑙  
𝑘𝑟𝑥 = 𝑘𝑓𝑟 𝑐𝑜𝑠 𝜎 + 𝑘𝑟𝑟

𝑘𝑙𝑧 = 𝑘𝑓𝑙 𝑐𝑜𝑠 𝜎 + 𝑘𝑟𝑙 − 𝑘𝑓𝑙
𝑙𝑓𝑠𝑖𝑛𝜎

𝑙𝑠
      

𝑘𝑟𝑧 = 𝑘𝑓𝑟 𝑐𝑜𝑠 𝜎 + 𝑘𝑟𝑟 + 𝑘𝑓𝑟
𝑙𝑓𝑠𝑖𝑛𝜎

𝑙𝑠
         

�. 

 
 
(25)  

Redefine the Lyapunov function candidate as 

𝑉 = 𝑒𝑟𝑥2 +𝑒𝛺
2+�𝑘𝑙𝑥−𝑘� 𝑙𝑥�

2
+�𝑘𝑟𝑥−𝑘� 𝑟𝑥�

2
+�𝑘𝑙𝑧−𝑘� 𝑙𝑧�

2
+�𝑘𝑟𝑧−𝑘� 𝑟𝑧�

2

2
. 

(26)  

Ignoring the time derivative of the steering angle, the time 
derivative of the above Lyapunov function can be written as   

 �̇� = 𝑒𝑟𝑥 ��̇�𝑟𝑥 − 𝑓1(𝑋) − 𝑘𝑙𝑥𝑢𝑙+𝑘𝑟𝑥𝑢𝑟
𝑅𝑒𝑓𝑓𝑀

� − �𝑘𝑙𝑥 − 𝑘�𝑙𝑥�𝑘�𝑙𝑥̇  

        +𝑒𝛺 ��̇�𝑟𝑧−𝑓3(𝑋) − −𝑙𝑠𝑘𝑙𝑧𝑢𝑙+𝑙𝑠𝑘𝑟𝑧𝑢𝑟
𝑅𝑒𝑓𝑓𝐼𝑍

� − 

        �𝑘𝑟𝑥 − 𝑘�𝑟𝑥�𝑘�𝑟𝑥̇ − �𝑘𝑙𝑧 − 𝑘�𝑙𝑧�𝑘�𝑙𝑧̇ − �𝑘𝑟𝑧 − 𝑘�𝑟𝑧�𝑘�𝑟𝑧̇  
    = 𝑒𝑟𝑥 ��̇�𝑟𝑥 − 𝑓1(𝑋)� + 𝑒𝛺 ��̇�𝑟𝑧−𝑓3(𝑋)� + 𝑘�𝑙𝑥𝑘�𝑙𝑥̇  

        −�𝑒𝑟𝑥
𝑘𝑙𝑥𝑢𝑙
𝑅𝑒𝑓𝑓𝑀

+ 𝑘𝑙𝑥𝑘�𝑙𝑥̇ � − �𝑒𝑟𝑥
𝑘𝑙𝑥𝑢𝑟
𝑅𝑒𝑓𝑓𝑀

+ 𝑘𝑙𝑥𝑘�𝑙𝑥̇ � 

        + �𝑒𝛺
𝑙𝑠𝑘𝑙𝑧𝑢𝑙
𝑅𝑒𝑓𝑓𝐼𝑧

− 𝑘𝑙𝑧𝑘�𝑙𝑧̇ � + �−𝑒𝛺
𝑙𝑠𝑘𝑟𝑧𝑢𝑟
𝑅𝑒𝑓𝑓𝐼𝑍

− 𝑘𝑟𝑧𝑘�𝑟𝑧̇ � 

        +𝑘�𝑟𝑥𝑘�𝑟𝑥̇ + 𝑘�𝑙𝑧𝑘�𝑙𝑧̇ + 𝑘�𝑟𝑧𝑘�𝑟𝑧̇ . 
By making 

(27)  

⎩
⎪
⎪
⎨

⎪
⎪
⎧𝑘�𝑙𝑥

̇ = − 𝑒𝑟𝑥
𝑅𝑒𝑓𝑓𝑀

𝑢𝑙

𝑘�𝑟𝑥̇ = − 𝑒𝑟𝑥
𝑅𝑒𝑓𝑓𝑀

𝑢𝑟

𝑘�𝑙𝑧̇ = 𝑙𝑠𝑒𝛺
𝑅𝑒𝑓𝑓𝐼𝑍

𝑢𝑙

𝑘�𝑟𝑧̇ = − 𝑙𝑠𝑒𝛺
𝑅𝑒𝑓𝑓𝐼𝑍

𝑢𝑟

�, 

 
 
(28)  

one can write the derivative of the Lyapunov function as 
 �̇� = 𝑒𝑟𝑥 ��̇�𝑟𝑥 − 𝑓1(𝑋)� + 𝑒𝛺 ��̇�𝑟𝑧−𝑓3(𝑋)�  − 𝑒𝑟𝑥𝑢𝑙𝑘� 𝑙𝑥

𝑅𝑒𝑓𝑓𝑀
 

        −𝑒𝑟𝑥𝑢𝑟𝑘�𝑟𝑥
𝑅𝑒𝑓𝑓𝑀

+ 𝑙𝑠𝑒𝛺𝑢𝑙𝑘�𝑙𝑧
𝑅𝑒𝑓𝑓𝐼𝑍

− 𝑙𝑠𝑒𝛺𝑢𝑟𝑘�𝑟𝑧
𝑅𝑒𝑓𝑓𝐼𝑍

. 

The following equations 

(29)  

 �
𝐿1𝑒𝑟𝑥2 + 𝑒𝑟𝑥 ��̇�𝑟𝑥 − 𝑓1(𝑋)� = 𝑒𝑟𝑥

𝑅𝑒𝑓𝑓𝑀
�𝑘�𝑙𝑥𝑢𝑙 + 𝑘�𝑟𝑥𝑢𝑟�

𝐿2𝑒𝛺2 + 𝑒𝛺 ��̇�𝑟𝑧−𝑓3(𝑋)� = 𝐼𝑧𝑒𝛺
𝑅𝑒𝑓𝑓𝐼𝑧

�−𝑘�𝑙𝑧𝑢𝑙 + 𝑘�𝑟𝑧𝑢𝑟�
� 

 
(30)  

can make (19) holds.  Thus, the control law for the turning 
case can be written as 

 

⎩
⎪
⎨

⎪
⎧
𝑢𝑙 =

𝑅𝑒𝑓𝑓�𝑀𝑘� 𝑙𝑧�𝐿1𝑒𝑟𝑥+��̇�𝑟𝑥−𝑓1(𝑋)��−𝐼𝑧𝑙𝑠𝑘
� 𝑙𝑥�𝐿2𝑒𝛺+��̇�𝑟𝑧−𝑓3(𝑋)���

𝑘� 𝑙𝑥𝑘�𝑟𝑧+𝑘�𝑟𝑥𝑘� 𝑙𝑧

𝑢𝑟 =
𝑅𝑒𝑓𝑓�𝑀𝑘� 𝑙𝑧�𝐿1𝑒𝑟𝑥+��̇�𝑟𝑥−𝑓1(𝑋)��+𝐼𝑧𝑙𝑠𝑘

� 𝑙𝑥�𝐿2𝑒𝛺+��̇�𝑟𝑧−𝑓3(𝑋)���

𝑘� 𝑙𝑥𝑘�𝑟𝑧+𝑘�𝑟𝑥𝑘� 𝑙𝑧

�. 

 
(31)  

Based on the definition of 𝑘𝑗 in (25), with 𝑗 = {𝑙𝑥 𝑟𝑥 𝑙𝑧 𝑟𝑧} 
stand for a specific control gain, the  𝑘�𝑗 should be bounded as 

   0 < 𝜀 ≤ 𝑘�𝑗 ≤ �
�𝑙𝑠2+𝑙𝑓

2

𝑙𝑠
+ 1�𝑘𝑚𝑎𝑥 . 

(32)  

Similar to the adaption law modification as (22) shows, the 
adaption law for 𝑘�𝑗 shown in (28) can also be modified with 
the projection method to guarantee the control signals are 
bounded.  Note that the controller design for the vehicle 
running in a straight line is a special case of vehicle in 
turning.  Thus, this controller can also be used in the straight 

line driving situations.  Simulation results also echo this. 

IV. ACTIVE FAULT DIAGNOSIS DESIGN AND CONTROL 
EFFORT REDISTRIBUTION 

The passive FT controller designed in the previous section 
is not an ideal one as the torque demand on the faulty wheel is 
not specifically reduced.   It is better to actively adjust the 
weighting factor of the faulty motor in the cost function to 
discourage use of the faulty motor.  It can be seen from (9) or 
(24) that the two wheels on the same side have the same effect 
on the vehicle speed/yaw rate.  So, an active fault diagnosis 
method is proposed in this section to explicitly locate the 
faulty wheel and estimate its control gain to better allocate the 
control efforts.  

Suppose that the passive FT controller for the healthy 
vehicle can give a control signal 𝑈0 which can maintain the 
vehicle in the desired trajectory.   For the vehicle running in a 
straight line, one has the following holds 

�
𝑢𝑙�𝑘𝑓𝑙 + 𝑘𝑟𝑙� = 𝑢0𝑙�𝑘0𝑓𝑙 + 𝑘0𝑟𝑙�
𝑢𝑟�𝑘𝑓𝑟 + 𝑘𝑟𝑟� = 𝑢0𝑟�𝑘0𝑓𝑟 + 𝑘0𝑟𝑟�

�. 
(33)  

As 𝑘𝑖 ≠ 𝑘0𝑖 means a fault happens to a wheel, one has 

�
𝑢𝑗 = 𝑢0𝑗  𝑛𝑜 𝑓𝑎𝑢𝑙𝑡 ℎ𝑎𝑝𝑝𝑒𝑛𝑠
𝑢𝑗 ≠ 𝑢0𝑗  𝑎 𝑓𝑎𝑢𝑙𝑡 ℎ𝑎𝑝𝑝𝑒𝑛𝑠 

�, 
(34)  

with 𝑗 indicating the left or right side.  For the two wheels on 
the faulty side, the two motor control gains 𝑘1 and 𝑘2 satisfy  

 𝑘1 + 𝑘2 =
(𝑘01+𝑘02)𝑢0𝑓

𝑢𝑓
, (35)  

where 𝑢𝑓 is the control signal for the faulty side motors after 
the fault happens.  It can be seen that there are two unknown 
parameters, 𝑘1 and 𝑘2, in the above equation, which means 
the actual control gain of the faulty wheel cannot be solved 
from (35) alone.  So another equation should be used to 
calculate the two control gains on the faulty side.  As the 
motor control gain can be virtually changed by multiplying a 
positive value, 𝛼, to the control signal.  After this additional 
fault is introduced, one has  

 𝛼𝑘1 + 𝑘2 =
(𝑘01+𝑘02)𝑢0𝑓_𝑛𝑒𝑤

𝑢𝑓_𝑛𝑒𝑤
, (36)  

where 𝑢𝑓_𝑛𝑒𝑤 is the faulty side motor control signal after the 
introduction of this virtual fault.  Based on (35) and (36), one 
can solve for the two control gains 𝑘1  and 𝑘2  for the two 
motors on the faulty side, and the estimated faulty wheel 
control gain will be different from the nominal value.  Note 
that the FT controller designed in the previous section can 
still make the vehicle follow the references even this 
additional virtual fault is introduced.  Also this virtual fault 
should be introduced only after all the vehicle states have 
reached the references by the passive FT controller. 

Considering the cost function for the two wheels on the 
faulty side 

𝐽 = 𝑤0𝑢ℎ2 + 𝑤𝑓𝑢𝑓2, 
Subject to 𝑢ℎ𝑘0 + 𝑢𝑓𝑘𝑓 = 𝑇𝑑, 

(37)  

where 𝑇𝑑 is the desired motor total torque from this side.  𝑢ℎ 
and 𝑢𝑓  are the healthy motor and the faulty motor control 
gains on this side, 𝑤ℎ  and 𝑤𝑓  are the corresponding 
weighting factors for the two motors.  By Lagrange multiplier 
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method, one can see the cost function can be minimized if 𝑢ℎ 
and 𝑢𝑓 satisfy 

𝑢ℎ
𝑢𝑓

= 𝑤𝑓𝑘0
𝑤0𝑘𝑓

. (38)  

One possible weighting definition for the faulty wheel can be 
𝑤𝑓 = 𝑘0𝑤0

𝑘𝑓
. (39)  

Based on the above weighting definition, 𝑢ℎ and 𝑢𝑓 satisfy  
𝑢ℎ
𝑢𝑓

= 𝑘0
2

𝑘𝑓
2. 

(40)  

It can be seen that the weighting factors do not change when 
there is no fault.  However, if there is a fault, the faulty wheel 
control gain decreases and 𝑤𝑓 will increase.  If the loss of 
control gain is large, the associated component will be more 
heavily weighted.  And 𝑤𝑓 → ∞ if the actual control gain of 
the faulty wheel goes to 0, which means that the faulty wheel 
will not be used.  The estimated faulty wheel control gain will 
be used as 𝑘𝑓 in (40). 

For the turning case, (33) can be rewritten as,  

�
𝑢𝑙�𝑐𝑜𝑠 𝜎 𝑘𝑓𝑙 + 𝑘𝑟𝑙� = 𝑢0𝑙�𝑐𝑜𝑠 𝜎 𝑘0𝑓𝑙 + 𝑘0𝑟𝑙�
𝑢𝑟�𝑐𝑜𝑠 𝜎 𝑘𝑓𝑟 + 𝑘𝑟𝑟� = 𝑢0𝑟�𝑐𝑜𝑠 𝜎 𝑘0𝑓𝑟 + 𝑘0𝑟𝑟�

�. 
(41)  

In a similar way, the active diagnosis approach for the turning 
vehicle can be designed.   

V. SIMULATION STUDIES 
Two simulation cases based on a high-fidelity full-vehicle 

model constructed in CarSim were conducted. Vehicle 
parameters were taken from an actual prototyping 4WID 
electric vehicle [22].  A driver model was used to generate the 
reference signals. 
A. J-turn simulation 

In this simulation, the nominal control gain of each motor 
was set to 30, and a fault, reduced control gain, was 
introduced to the rear-left motor after 2s.  At 2.25s the FT 
controller had stabilized the vehicle, and the virtual fault was 
introduced to the front-left motor by multiplying the control 
signal to this motor with 𝛼 = 0.5. The faulty wheel control 
gain estimation is shown in Figure 2.  It can be seen that the 
estimated control gain of the faulty wheel is very close to the 
actual value.   Based on the estimated fault wheel control 
gain, the weighting factor for the fault wheel in the cost 
function was readjusted to better allocate the control efforts. 

 The torque values provided by all the motors are shown in 
Figure 3.  It can be seen that the two wheels on the healthy 
side always provided the same torque no matter whether there 
was a fault or not on the other side.   After 2s, the healthy 
motor on the faulty side increased the torque, as the passive 
FT controller increased more control effort to the faulty side 
to compensate the tracking error caused by the faulty motor.   
At 2.25s, the two motors on the faulty side started providing 
the same torque, this is because the same control signals were 
still sent to the two motors and the control gains of these two 
motors became the same due to the virtual fault introduced to 
the healthy motor.  At 2.6s, the active diagnosis period 
finished, and the healthy motor on the left side began to 
provide most of the torque required for this side as the control 

efforts were redistributed according to the change of the 
weight factor in the cost function.    

 
Figure 2.  Faulty wheel control gain estimation. 

  
Figure 3.  Motor torques in the J-turn simulation. 

To better show the effectiveness of the proposed controller, 
the performance of an uncontrolled vehicle with the same 
fault was also studied.  Figure 4 shows the longitudinal 
velocity and yaw rate under the proposed fault diagnosis and 
FT controller.  It can be seen from Figure 4 and Figure 5 that 
the controlled vehicle can follow the reference velocity and 
yaw rate well, while the uncontrolled vehicle failed to follow 
the references as the faulty wheel failed to provide the 
required torque. 
B. Single lane change 

In this simulation, the desired vehicle speed was 
accelerated from 60km/h to 86km/h in 12 seconds.  A 
counter-clockwise turn was introduced.  At 3s, a fault was 
added to the rear-left motor which made the control gain 
decrease to 30% of its nominal value.   Simulation results are 
shown in Figures 6 and 7. It can be seen again that the 
controlled vehicle can follow the expected trajectory, while 
the vehicle without control deviated from the reference as 
soon as the fault was introduced. 

VI. CONCLUSIONS 
A passive FT controller was designed to maintain the 

vehicle stability and desired performance when a fault 
happens.  An active fault diagnosis approach was proposed to 
isolate and evaluate the fault under the designed passive FTC.  
Based on an active in-wheel motor/motor driver fault 
detection mechanism, the control efforts among the wheels 
can be redistributed to minimize the cost function considering 
the fault. Simulations using a high-fidelity CarSim® 
full-vehicle model show the effectiveness of the proposed 
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fault diagnosis and fault-tolerant control approaches. 

 
Figure 4.  Longitudinal velocities and yaw rates in the J-turn 

simulation. 

 
Figure 5.  Vehicle trajectories in the J-turn simulation. 

 
Figure 6.  Longitudinal velocities and yaw rates in single lane 

change. 

 
Figure 7.  Vehicle trajectories in single lane change. 
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