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Abstract— This paper deals with fault-tolerant controller
design for linear time-invariant (LTI) systems with multiple
actuators. Given some critical subsets of the actuators, it is
assumed that every combination of actuators can fail as long
as the set of the remaining actuators includes one of these
subsets. Motivated by electric power systems and biological
systems, the goal is to design a controller so that the closed-loop
system satisfies two properties: (i) stability under all permissible
sets of faults and (ii) better performance after clearing every
subset of the existing faults in the system. It is shown that
a state-feedback controller satisfying these properties exists if
and only if a linear matrix inequality (LMI) problem is feasible.
This LMI condition is then transformed into an optimal-control
condition, which has a useful interpretation. The results are
also generalized to output-feedback and decentralized control
cases. The efficacy of this work is demonstrated by designing
fault-tolerant speed governors for a power system. The results
developed here can be extended to more general types of faults,
where each fault can possibly affect all state-space matrices of
the system.

I. INTRODUCTION

Modern control systems can malfunction due to possible
faults and failures in actuators, sensors or other components.
To deal with this issue, the fault-tolerant controller design has
been an active research area for several years, which aims to
design a controller guaranteeing a satisfactory performance
for a given system under both normal and fault conditions
[1], [2]. Early studies in this area were motivated by two air-
plane accidents in 1970s that could have been avoided using
a fault-tolerant controller with a self-repairing capability to
ensure safe landing in the event of severe faults [3]. Fault-
tolerant control design is particularly important for safety-
critical systems, such as aircraft, spacecraft, chemical plants
and power networks, where a series of minor faults in the
system can lead to a catastrophic failure [4], [5].

Fault-tolerant control systems can be classified as passive
or active [6]. In the passive case, the controller is designed
to be sufficiently robust to pre-specified faults so that no
modification in the control process is needed after experi-
encing a fault. In the active case, some preliminary actions
are first taken to detect and diagnose the fault [1], [7], and the
controller is then reconfigured based on an offline or online
strategy. For a more complete survey on passive and active
controller designs, see [4], [8], [9].

Motivated by power networks and biological systems
(see Subsection II-A for more details), the present paper
considers the case that every faulty part can be detected
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and subsequently isolated, but the controller parameters are
not updated to compensate for a fault. Several methods have
been proposed in the literature to study this problem. The
most classical technique is to regard a fault as an uncertainty
and design a robust controller. The uncertainty region can be
considered to be continuous (e.g. polytopic) or discrete; in
either case robust control and simultaneous control theories
provide useful tools to design a fault-tolerant controller
[10], [11], [12], [13]. Among other existing techniques,
the paper [14] designs a reliable controller for networked
control systems under stochastic sensor and actuator faults
and presents a sufficient condition to guarantee the expo-
nentially mean square stability. The work [12] shows that,
under mild detectability and stabilizability conditions, it is
always possible to design a dynamic controller stabilizing the
system under every single failure in the sensors or actuators.
Necessary conditions are derived in [15] for the stability of a
control system subject to any fixed number of sensor/actuator
faults. The works [16] and [17] consider the case when some
actuators are always functional, while every combination of
the remaining actuators are allowed to fail. They design
reliable controllers to guarantee satisfactory linear-quadratic
and H∞ performances under the failure of any subset of
susceptible actuators.

Many of the existing works, e.g. [12], [16], [17], assume
that either a few possible combinations or all possible
combinations of faults can occur. However, several practical
problems do not fit into this framework, such as a power
contingency problem that allows up to certain number of
faults, say 2 or 3, happen simultaneously. To allow a more
general setting, the present paper considers an m-actuator
control system where each combination of the actuators can
fail as long as the set of the remaining actuators includes
one of the pre-specified critical subsets of {1, 2, ...,m}. The
objective is to design a controller such that: (i) the closed-
loop system remains stable under every permissible combi-
nation of faults and (ii) the stability of the control system is
improved if any subset of faults is cleared in each possible
faulty closed-loop system. Although this paper mainly deals
with actuator faults, it can be easily generalized to other types
of faults. In this work, a necessary and sufficient condition
in the form of a linear matrix inequality (LMI) is derived for
the existence of a fault-tolerant state-feedback controller sat-
isfying the two above-mentioned properties. This condition
is later transformed into an optimal-control condition, which
has an interesting interpretation. The generalization to output
feedback and decentralized control cases are also discussed.

The rest of the paper is organized as follows. In Section II,
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the problem is motivated by power and biological systems,
and then some illustrative examples are provided. The main
results are given in Section III through four subsections. The
results are clarified on a power system in Section IV. Finally,
some concluding remarks are provided in Section V.

II. OBJECTIVE AND MOTIVATIONS

Consider a linear time-invariant (LTI) system S with the
state-space representation

ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t),

where x(t), u(t) and y(t) denote the state, input and output
of the system, respectively. The system S under a given
controller could malfunction in practice due to faults in the
sensors, actuators or some components of the system, in
which case the faulty part is often isolated from the control
system. To mathematically capture most of the common
faults, assume that the system S can be subject to m
independent faults {f1, f2, ..., fm}, where each fault changes
certain entries of A, B and C to zero. Multiple faults
can occur simultaneously, but we assume that pre-specified
combinations of faults cannot happen. The goal is to design
an LTI controller for the system S such that the following
two properties are satisfied:
P1) The closed-loop system remains stable under all per-

missible combinations of faults.
P2) The stability of the closed-loop system subject to every

permissible set of faults is improved if any arbitrary
subset of the existing faults is cleared.

A. Motivation

In this section, we motivate the above-mentioned problem
with some examples from power systems and biology.

Power grids: In a conventional power system, the required
amount of power is generated via large generators and then
delivered to consumers through transmission and distribution
networks. Since there are more than enough generators, a
unit commitment problem is solved periodically, on the order
of days, to decide what generation units should stay on at
any given time. Therefore, when a generator is determined
to be in operation, it works for several hours. However, the
current trend is to replace most of the conventional genera-
tors with small distributed generators relying on renewable
resources, such as wind and solar energies. Due to inevitable
environmental changes, these small generation units may not
be able to stay on for several hours, and hence, they should
be allowed to leave and join the network frequently. An
important control question is how to design a decentralized
controller—a local controller for each distributed generator—
such that

• The parameters of the power system (such as frequency,
bus voltages, etc.) remain stable if any combination of
generators leave/join the network, provided there are a
minimum number of generators online.

• The more generators are online, the better the power
quality is.

It is evident that if the leaving/joining property of a
generator is interpreted as experiencing/clearing a fault, the
above power problem can be cast as the control problem
under study here.

Biology: A biological system, at many levels of organiza-
tion, consists of numerous distributed parts that cooperatively
contribute to perform some function. Several interesting
observations have been made in the literature about the
robustness of biological systems, some of which are outlined
below [18], [19]:

• About only 18% of the yeast genome consists of es-
sential genes and the remaining ones are not required
for growth in rich media. This means that if any
unnecessary genes are deleted, the resulting strain is
still viable on rich media.

• Proteins can tolerate thousands of amino acid changes.
• Metabolic networks can continue to live after removal

of several chemical reactions or metabolic pathways.
• Gene regulation networks perform the same function

after altering many gene interactions.
These observations imply that biological systems are suffi-
ciently robust that they achieve their goals even after experi-
encing several faults/changes. In addition, it is known that the
larger the number of duplicates a yeast gene has, the faster
the gene evolves [19], which suggests that “the fewer faults,
the better performance”. As motivated by synthetic biology,
whose objective is to build artificial biological systems, it
is important to study how to design a control system with
two properties: (i) it survives under an unknown set of faults
with an exponential number of possibilities, (ii) it has a better
performance in presence of fewer faults.

B. Illustrative Examples

Two examples will be provided in the sequel, where Exam-
ple 1 deals with faults in the system itself and Example 2 is
concerned with faults in the actuators. These examples shed
light on the importance of the two (stability and performance)
properties P1 and P2 mentioned in the objective of this work.

Example 1: Consider the system ẋ(t) = Ax(t) + Bu(t),
where

• A is a 4 × 4 matrix whose entries are sampled from a
uniform distribution on the interval [0, 2].

• B is a 4×3 matrix whose entries are sampled from the
standard normal distribution.

• x(0) is a random variable with zero mean and the
identity covariance matrix.

Let G ∈ R3×4 be designed in such a way that the controller
u(t) = Gx(t) minimizes the performance index

E
{∫ ∞

0

(
x(t)Tx(t) + u(t)Tu(t)

)
dt

}
. (1)

(E{·} represents the mathematical expectation operator.) As-
sume that the system ẋ(t) = Ax(t)+Bu(t) can be subject to
a fault, which makes the (1, 1) and (1, 2) entries of the open-
loop matrix A change to zero. Apply the optimal controller
u(t) = Gx(t) to both of the faultless and faulty systems,
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and denote the resulting performance values as Jopt and
Jf , respectively. We generated 1000 systems in the form
of ẋ(t) = Ax(t) + Bu(t) by randomly choosing the pair
(A,B) and observed the following: for more than 60% of
the systems, the closed-loop system subject to the fault was
stable and, besides, the performance index Jf was less than
Jopt. This implies that although the controller u(t) = Gx(t)
is optimal for the healthy system, there is a high likelihood
that this controller works better for the faulty system. In
the same line, one can design a system subject to multiple
faults so that the control system has a better performance
in presence of more faults. This phenomenon can turn into
an undesirable property, because clearing a fault worsens
the performance. The next example demonstrates this fact
in more details.

Example 2: Consider the system ẋ(t) = Ax(t) + Bu(t)
with the state-space matrices

A =


2.0227 1.8592 5.0898 1.4987 3.5266
3.3674 1.1746 4.4604 5.7557 3.7338
4.2868 1.5336 5.1105 5.6965 5.1306
1.2209 5.6477 2.9707 4.5873 0.8194
3.9992 4.5601 2.8080 4.5864 3.9581

 ,

B =


0.8925 0.4626 0.1701 0.8925
0.5588 0.0205 0.1716 0.1335
0.7667 0.0685 0.8098 0.1701
0.1236 0.9371 0.1203 0.2527
0.7300 0.3687 0.3092 0.9688

 .

Note that these matrices are chosen at random. Design a
controller u(t) = Gx(t) for this system to minimize the
performance index

∫∞
0

(
x(t)Tx(t) + u(t)Tu(t)

)
dt. Denote

the ith row of G as Gi and the ith entry of u(t) as ui(t), for
every i ∈ {1, 2, 3, 4}. Regard the controller u(t) = Gx(t)
as the composition of four sub-controllers ui(t) = Gix(t),
i = 1, 2, 3, 4, where the output of each sub-controller is
applied to the system through an actuator that can fail
to work. Assume that whenever an actuator is faulty, the
corresponding sub-controller is isolated. Now, suppose that
the control system initially experiences two faults at the
third and forth actuators, and later the fault at the forth
actuator is cleared. Interestingly, the closed-loop system
maintains stability when both faults occur, but it becomes
unstable when one of the faults is cleared. To avoid this
undesirable behavior, the controller to be designed in this
work is required to satisfy the property P2 given earlier,
stating that the stability of the closed-loop system subject
to every permissible set of faults is improved if any subset
of the existing faults is cleared.

III. MAIN RESULTS

In the statement of the objective of this work, we assumed
that each fault changes certain entries of A,B,C to zero.
However, in order to simplify the presentation, we develop
the main results only for the specific case of actuator faults
where each fault converts some columns of B to zero. The
results being presented here can be easily extended to the
general case.

Assume that the system S is associated with m separate
actuators, implying that the input vector u(t) and the matrix
B are decomposable as

u(t) =
[
u1(t)

T u2(t)
T · · · um(t)T

]T
, (2a)

B =
[
B1 B2 · · · Bm

]
, (2b)

where ui(t) ∈ Rri and Bi ∈ Rn×ri , for every i ∈
{1, 2, ...,m}. With no loss of generality, suppose that m ≥ 2
and that B1, B2, ..., Bm all have full column rank. Given
some matrices Gi ∈ Rri×n, i = 1, 2, ...,m, consider the
sub-controllers

ui(t) = Gix(t), i = 1, 2, ...,m,

where the output of each sub-controller is applied to the sys-
tem via an actuator that can fail to work properly. In the next
two subsections, the goal is to design (G1, G2, ..., Gm) such
that the properties P1 and P2 are satisfied. The results will
be later extended to the output feedback and decentralized
cases.

A. Totally Fault-Tolerant Controllers

A controller (G1, G2, ..., Gm) satisfying the properties
P1 and P2 is said to be totally fault tolerant if the only
impermissible set of faults is the entire set {1, 2, ...,m}. In
other words, any combination of the sub-controllers can be
isolated as long as there is at least one sub-controller online
(operational). To formalize the objective precisely, we need
to define some notion of stability improvement.

Definition 1: Given two nth-order autonomous systems S1

and S2 described as ẋ(t) = A1x(t) and ẋ(t) = A2x(t),
respectively, it is said that S1 is more stable than S2 with
respect to a Lyapunov (symmetric, positive-definite) matrix
P ∈ Rn×n if

PA1 +AT
1 P ≤ PA2 +AT

2 P < 0.

In other words, S1 is more stable than S2 with respect to P
if the Lyapunov function x(t)TPx(t) decreases faster along
the trajectories of S1 than along the trajectories of S2.

Order (arbitrarily) all nonempty subsets of {1, 2, ...,m}
and denote them as I1, I2, ..., Ip, where p := 2m − 1. For
every i ∈ {1, 2, ...,m} and j ∈ {1, 2, ..., p}, define αj

i as 1
if i ∈ Ij and 0 otherwise. Given some matrices Gi ∈ Rri×n,
i = 1, 2, ...,m, define

G :=
[
G1 G2 · · · Gm

]
,

Gj :=
[
αj
1G1 αj

2G2 · · · αj
mGm

]
, j = 1, 2, ..., p.

Throughout this subsection, u(t) = Gx(t) is the ideal
controller designed for S, while u(t) = Gjx(t) is a faulty
controller obtained from u(t) = Gx(t) by zeroing all inputs
ui(t) such that i ̸∈ Ij . The objective is to address the
following problem.

Problem 1: Design a controller G and a Lyapunov matrix
P associated with it such that the two properties given below
are satisfied:

i) The system S is stable under all controllers u(t) =
Gjx(t), j = 1, 2, ..., p.
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ii) For every two distinct indices j1, j2 ∈ {1, 2, ..., p}, if
Ij2 is a subset of Ij1 , then the system S under u(t) =
Gj1x(t) is more stable than the system S under u(t) =
Gj2x(t) with respect to P .

Remark 1: To understand the usefulness of the properties
given in Problem 1, consider a solution (G1, ..., Gm) to this
problem and assume that the system S starts working under a
nonempty subset of the sub-controllers ui(t) = Gix(t), i =
1, 2, ...,m. Due to Properties (i) and (ii), the closed-loop
system is stable and, in addition, the signal x(t)TPx(t)
converges monotonically to zero. Now, if any combination
of offline (faulty) sub-controllers joins the control process,
the signal x(t)TPx(t) still continues decreasing (possibly
faster than before) without any transient overshoot. In other
words, letting more sub-controllers join the control system
asynchronously and at any given time does not slow down
the state regulation of the system.

In what follows, we provide a necessary and sufficient
condition under which Problem 1 has a solution.

Theorem 1: Problem 1 has a solution if and only if there
exist symmetric matrices Hi ∈ Rri×ri , i = 1, 2, ...,m, and
M ∈ Rn×n such that the LMI problem

AM +MAT < 2BiHiB
T
i , i = 1, 2, ...,m, (3a)

Hi ≥ 0, i = 1, 2, ...,m, (3b)
M > 0, (3c)

is feasible. Moreover, in the case when this LMI problem has
a feasible solution (H1, ...,Hm,M), a solution to Problem 1
is as follows:

P = M−1, Gi = −HiB
T
i M

−1, i = 1, 2, ...,m. (4)

Proof of Sufficiency: Take the Lyapunov matrix P as M−1

and the controller G as the one given in (4), for some
matrices Hi ∈ Rri×ri , i = 1, 2, ...,m, and M ∈ Rn×n

satisfying the LMI problem (3). In order to show that
Property (i) given in Problem 1 holds, consider an index
j ∈ {1, 2, ..., p} and write

(A+BGj)P
−1 + P−1(A+BGj)

T = AP−1 + P−1AT

+
m∑
i=1

αj
iBiGiP

−1 +
m∑
i=1

αj
i (BiGiP

−1)T

= AP−1 + P−1AT − 2
m∑
i=1

αj
iBiHiB

T
i

Since Ij is assumed to be nonempty, there exists an index
k ∈ {1, 2, ...,m} such that αj

k ̸= 0. Hence, (3a) and (3b)
yield that

(A+BGj)P
−1 + P−1(A+BGj)

T ≤ AP−1 + P−1AT

−2BkHkB
T
k < 0

The above inequality, together with the positive definiteness
of P , proves that S is stable under the controller u(t) =
Gjx(t). In order to show the validity of Property (ii) in
Problem 1, consider two distinct indices j1, j2 ∈ {1, 2, ..., p}
such that Ij2 is a subset of Ij1 . It can be easily justified that

it is enough to only study the case |Ij1 |− |Ij2 | = 1. Let l be
an index in the set {1, 2, ...,m} such that Ij1 = Ij2 ∪ {l}.
One can write:(

(A+BGj1)P
−1 + P−1(A+BGj1)

T

)
−(

(A+BGj2)P
−1 + P−1(A+BGj2)

T

)
=

BlGlP
−1 + (BlGlP

−1)T = −2BlHlB
T
l ≤ 0.

(5)

By Definition 1, this implies that the system S under u(t) =
Gj1x(t) is more stable than the system S under u(t) =
Gj2x(t) with respect to P .

Proof of Necessity: Assume that Problem 1 has a feasible
solution (G, P ). The goal is to show that the LMI prob-
lem (3) is feasible. To this end, consider an arbitrary number
i ∈ {1, 2, ...,m}. There exist three indices j1, j2, j3 such that

i ̸∈ Ij2 , Ij1 = Ij2 ∪ {i}, Ij3 = {i}. (6)

Property (ii) of Problem 1 yields that(
(A+BGj1)P

−1 + P−1(A+BGj1)
T

)
−(

(A+BGj2)P
−1 + P−1(A+BGj2)

T

)
=

BiGiP
−1 + (BiGiP

−1)T ≤ 0.

(7)

or equivalently

BiB
T
i + P−1GT

i GiP
−1 ≤

(
Bi − P−1GT

i

) (
Bi − P−1GT

i

)T
There exists a matrix E ∈ Rn×(n−ri) with orthogonal
columns such that

(
Bi − P−1GT

i

)T
E = 0. Pre-multiplying

and post-multiplying the above inequality by ET and E,
respectively, gives rise to

BT
i E = 0, GiP

−1E = 0.

Since Bi has full column rank, this simply implies that every
row of GiP

−1 is in the row space of BT
i . Hence, there exists

a matrix Yi such that GiP
−1 = −YiB

T
i . Now, it follows

from (7) that
−Bi(Yi + Y T

i )BT
i ≤ 0.

Due to the matrix Bi having full column rank, the above
inequality is tantamount to Hi := 1

2 (Yi + Y T
i ) ≥ 0 or

equation (3b). On the other hand, the stability of S under the
controller u(t) = Gj3x(t) (see Property (i) of Problem 1) can
be cast as the inequality (3a) for M := P−1. This completes
the proof of this part. �

Theorem 1 provides a necessary and sufficient LMI con-
dition for the solvability of Problem 1. It is noteworthy
that although there are an exponential number of fault
combinations, the size of the given LMI problem is a
polynomial in m and n. Whenever Problem 1 has at least
one solution, it must have an infinite number of solutions (see
Remark 2). However, the set of all solutions to Problem 1
can be characterized using the argument made in the proof
of necessity. This is carried out below.
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Corollary 1: A given pair (G, P ) is a solution to Prob-
lem 1 if and only if there exist matrices Y1, Y2, ..., Ym

and symmetric matrices H1, H2, ..., Hm of appropriate di-
mensions such that the LMI problem (3) is satisfied for
(H1,H2, ...,Hn,M), where M = P−1, Hi =

1
2 (Yi + Y T

i )
and Gi = −YiB

T
i M

−1, ∀i ∈ {1, 2, ...,m}.
Although the LMI condition given in Theorem 1 can be

efficiently handled numerically, its purely algebraic structure
is an obstacle to gaining insight into the solvability of
Problem 1 and the properties of the controller G. We provide
an equivalent condition below, which can be more easily
interpreted.

Theorem 2: Problem 1 has a solution if and only if there
exist positive definite matrices Q1, ..., Qm, R1, ..., Rm, P
such that for every initial state x0 ∈ Rn, the optimal control
problem

min
ui(t)

∫ ∞

0

(
x(t)TQix(t) + ui(t)Riui(t)

)
dt

subject to ẋ(t) = Ax(t) +Biui(t), x(0) = x0,

(8)

has the same optimal value xT
0 Px0 for all numbers i ∈

{1, 2, ...,m}.
Sketch of Proof: By Theorem 1, Problem 1 has a solution

if and only if the LMI problem (3) is feasible. On the other
hand, the inequality sign in the constraint (3b) of this LMI
can be replaced by the strict inequality sign. In fact, if
(H1, ...,Hm,M) is a feasible point of the LMI problem (3),
(H1+εI, ...,Hm+εI,M) is a strictly feasible solution of this
LMI for every ε > 0. As a result, Problem 1 has a solution if
and only if there exist matrices W1, ...,Wm,H1, ...,Hm,M
such that

AM +MAT +Wi = 2BiHiB
T
i , i = 1, 2, ...,m, (9a)

W1, ...,Wm, H1, ..., Hm,M > 0. (9b)

Given i ∈ {1, 2, ...,m}, the equality (9a) can be re-
arranged as

M−1A+ATM−1 +M−1WiM
−1

−M−1Bi(2Hi)B
T
i M

−1 = 0.

By regarding the above equation as an algebraic Riccati
equation, it can be argued that (M,Wi,Hi) satisfies this
equation if and only if the optimal control problem

min
ui(t)

∫ ∞

0

(
x(t)T (M−1WiM

−1)x(t) +
1

2
ui(t)H

−1
i ui(t)

)
dt

subject to ẋ(t) = Ax(t) +Biui(t), x(0) = x0,

has the optimal value xT
0 M

−1x0. To complete the proof
of Theorem 2, it is enough to define P := M−1, Qi :=
M−1WiM

−1 and Ri :=
1
2H

−1
i . �

Let ui(t) = −HiB
T
i M

−1x(t), i = 1, 2, ...,m, be a
totally fault-tolerant controller, where (H1, ..., Hm,M) satis-
fies the LMI problem of Theorem 1. Notice that the optimal
controller minimizing the performance index (8) is given
by ui(t) = −R−1

i BT
i Px(t) = −2HiB

T
i M

−1x(t), i =
1, 2, ...,m. It is a direct consequence of Remark 3 (given
later in the paper) that this set of optimal sub-controllers

also constitutes a totally fault-tolerant controller with respect
to P . In other words, there exists at least one totally fault-
tolerant controller if and only if there exists a set of sub-
controllers such that each sub-controller is optimal with
respect to some linear quadratic performance index and that
they all lead to the same optimal performance value.

We make some important remarks in the sequel.
Remark 2: Problem 1 is either infeasible or has an infinite

number of solutions. One can exploit this degree of freedom
(associated with the non-uniqueness of the solution) and
impose extra constraints to satisfy more specifications. For
instance, note that if (H1, ...,Hm,M) is a feasible solution
of the LMI problem (3), (H1 + µI, ...,Hm + µI,M) and
(µH1, ..., µHm, µM) are both solutions of the same LMI,
for every µ > 0. Now, notice that Gi = −(Hi+µI)BT

i M
−1,

i = 1, 2, ...,m, is also a totally fault-tolerant controller and
pushing µ towards infinity makes it high gain. One can
minimize

∑m
i=1 ∥Hi∥ subject to the LMI problem (3) as well

as the redundant constraint M ≽ I to avoid designing a high-
gain controller (due to the homogeneity of the LMI (3), the
new constraint M ≽ I does not affect the feasibility of the
problem).

Remark 3: Given an arbitrary feasible point
(H1, ...,Hm,M) of the LMI problem (3), it can be
verified that the infinite set{

(µH1, ..., µHm,M)
∣∣ µ ≥ 1

}
is contained in the feasibility region of this LMI problem. It
follows from this observation and Corollary 1 that if (G, P )
is a solution to Problem 1, then there are an infinite number
of totally fault-tolerant controllers with respect to P , which
are given by the set{

u(t) = µGx(t)
∣∣ µ ≥ 1

}
.

Remark 4: The stability improvement after clearing every
subset of faults is measured with respect to a Lyapunov
matrix P . However, an arbitrary feasible solution of the LMI
problem (3) might not lead to a desirable Lyapunov matrix
P = M−1 for performance evaluation. To remedy this issue,
one can either fix M (or P ) at the beginning or impose
certain constraints on its entries so that xTM−1x becomes
an acceptable measure of performance for the corresponding
application.

B. Partially Fault-Tolerant Controllers

In a totally fault-tolerant controller, every sub-controller
must be able to stabilize the system if all other sub-
controllers fail. This at least requires the stabilizability of
all pairs (A,B1), ..., (A,Bm). To make the problem more
pragmatic, consider some distinct sets Ig1 , Ig2 , ..., Igh &
{1, 2, ...,m}. We assume that every arbitrary combination
of faults can occur as long as the set of the healthy actuators
contains at least one of the sets Ig1 , Ig2 , ..., Igh . In other
words, these h sets determine some critical control configu-
rations such that at least one of them must be present in the
overall faulty control structure. If these sets are considered as
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{1}, {2, }, ..., {m}, the associated controller will be a totally
fault-tolerant controller; however, the controller correspond-
ing to some general sets Ig1 , Ig2 , ..., Igh can be regarded as a
partially fault-tolerant controller. To let every actuator have
the possibility of failure, assume that the intersection of the
sets Ig1 , Ig2 , ..., Igh is empty. The objective of this subsection
is to address a general version of Problem 1, as given below.

Problem 2: Design a controller G and a Lyapunov matrix
P associated with it such that the following two properties
are satisfied:

i) The system S is stable under the controller u(t) =
Gjx(t) for every j ∈ {1, 2, ..., p} such that Ij includes
at least one of the sets Ig1 , Ig2 , ..., Igh .

ii) For every two distinct indices j1, j2 ∈ {1, 2, ..., p},
if Ij2 ⊂ Ij1 and Ij2 includes at least one of the
sets Ig1 , Ig2 , ..., Igh , then the system S under u(t) =
Gj1x(t) is more stable than the system S under u(t) =
Gj2x(t) with respect to P .

Theorem 1, Corollary 1 and Theorem 2 that were derived
for Problem 1 can all be extended to tackle Problem 2. In the
sequel, we explain this generalization only for Theorem 1.

Theorem 3: Problem 2 has a feasible solution if and
only if there exist symmetric matrices Hi ∈ Rri×ri , i =
1, 2, ...,m, and M ∈ Rn×n such that the LMI problem

AM +MAT < 2

m∑
i=1

α
gj
i BiHiB

T
i , j = 1, 2, ..., h,

(10a)
Hi ≥ 0, i = 1, 2, ...,m, (10b)
M > 0, (10c)

is feasible. Moreover, in the case when this LMI problem has
a feasible solution (H1, ...,Hm,M), a solution to Problem 2
is as follows:

P = M−1, Gi = −HiB
T
i M

−1, i = 1, 2, ...,m. (11)
Sketch of Proof: Given an index i ∈ {1, 2, ...,m}, there

is a set Igk , k ∈ {1, 2, ..., h}, which does not contain
{i} (because the intersection of the sets Ig1 , Ig2 , ..., Igh is
empty). Now, one can follow the proof of necessity for
Theorem 1 with the only modification that the sets Ij1 , Ij2
and Ij3 should be taken as

Ij1 = Igk ∪ {i}, Ij2 = Igk , Ij3 = Igk ,

as opposed to the ones given in (6). �

C. Output-Feedback Fault-Tolerant Controllers

In this and the next subsections, we present some impor-
tant generalizations for designing only totally fault-tolerant
controllers, as partially fault-tolerant controllers can be tack-
led similarly. So far, it was assumed that the state of the
system S is available to all sub-controllers. Now, assume
that the sub-controllers have access to y(t) = Cx(t) rather
than x(t) directly. Given i ∈ {1, 2, ...,m}, let zi(t) =
fi(y(t), u(t); t) denote a Luenberger observer for the ith sub-
controller, meaning that zi(t)−x(t) → 0 as t goes to infinity.
Note that the observers f1(y(t), u(t); t), ..., fm(y(t), u(t); t)

may not be distinct, but each sub-controller can potentially
have its own observer to increase the redundancy in the
control mechanism.

Assume that (G1, G2, ..., Gm) and P is a solution to
Problem 1, and consider the output feedback controllers
ui(t) = Gifi(y(t), u(t); t), i = 1, 2, ...,m. Since the esti-
mation error of every observer only depends on the observer
gain as well as the parameters (A,C), it is easy to verify
that the separation principle holds as far as the stability
is concerned. Hence, every nonempty combination of these
output-feedback sub-controllers can stabilize the system. On
the other hand, if the observers are made sufficiently fast,
then the statement “the more sub-controllers online, the
better stability” will be mostly true.

D. Decentralized Fault-Tolerant Controllers

In this subsection, the objective is to design decentralized
fault-tolerant controllers for interconnected systems. As be-
fore, we only consider totally fault-tolerant controllers here
as the generalization to partially fault-tolerant controllers is
straightforward. To this end, assume that the LTI system
S is composed of m interacting subsystems S1, S2, ..., Sm.
Suppose that the dynamics of Si, i = 1, ...,m, is governed by

ẋi(t) =
m∑
j=1

Aijxj(t) +Biiui(t),

yi(t) = Cixi(t),

where xi(t) ∈ Rni , ui(t) ∈ Rri and yi(t) ∈ Rr̄i denote
the state, input and output of the ith subsystem, respectively.
Define A as a matrix whose (i, j) block entry is equal
to Aij for every i, j ∈ {1, 2, ...,m}. Moreover, define B
as a block diagonal matrix with the block diagonal entries
B11, ..., Bmm. Denote the ith block column of B as Bi ∈
Rn×ri for every i ∈ {1, 2, ...,m} (note that n = n1 + · · ·+
nm).

We aim to design m local controllers (sub-controllers)
ui(t) = Gixi(t) to achieve the stability and performance
goals stated in Section III-A. To address this problem,
consider the LMI condition (3) subject to the extra constraint
that M is a block diagonal matrix whose ith block entry is
of dimension ni × ni for every i ∈ {1, 2, ...,m}. This new
LMI condition is a sufficient condition for designing a totally
fault-tolerant decentralized controller with local controllers
ui(t) = Gixi(t), i = 1, ...,m. Note that the necessity of the
LMI condition breaks down in the decentralized case, which
is related to a well-known open problem in the decentralized
control theory: checking the existence of a stabilizing static
decentralized controller in polynomial time. In some special
cases, e.g. ri = ni and det{Gi} ̸= 0, ∀i ∈ {1, 2, ...,m}, the
proposed LMI condition turns into a necessary and sufficient
condition.

Now, assume that the local state xi(t) is not available for
use in the local controller ui(t) = Gixi(t). Notice that the
subsystem Si, i ∈ {1, 2, ...,m}, receives the aggregate signal∑

j∈{1,...,m}\{i}

Aijxj(t)
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Fig. 1. (a) The power system under an LQR optimal controller; (b) The power system under a totally fault-tolerant controller.

from the other subsystems of S. If this signal is measurable,
one can implement a local Luenberger observer for the ith

subsystem to estimate xi(t) (under the mild condition of the
observability of (Aii, Ci)). In this case, a totally/partially
fault-tolerant output-feedback decentralized controller can be
designed based on the discussion given in the preceding
subsection (in other words, a modified separation principle
holds).

IV. SIMULATION

It is known that the frequency of a power grid must
be kept constant, partially because synchronous generators,
induction motors and transformers could cause undesirable
behaviors under either a fluctuation or a drop in the frequency
[20]. This problem has long been studied in the context of
frequency synchronization, where the goal is to control the
rotor parts of a group of synchronous machines, connected
to each other via a network of transmission lines, so that the
network frequency reaches a constant value asymptotically.
To this end, one can write the swing equation for each
generator i ∈ {1, 2, ...,m} as follows:

γiδ̈i(t) = Pmi(t)− Pei(t), (12)

where
• γi is a constant coefficient,
• δi is the angular displacement of the ith generator’s

rotor.
• Pmi is the mechanical power applied to the ith genera-

tor’s rotor.
• Pei is the electrical power transferred from the ith

generator’s stator to the rest of the network.
For simplicity and with no loss of generality, we study the
swing equation (12) alone without considering the differen-
tial equations for other parameters of the network, such as
voltages. Assume that the goal is to design a sub-controller
for each generator i ∈ {1, 2, ...,m} to control Pmi in such a
way that the nonlinear swing equation becomes locally stable

around a given nominal frequency. For this purpose, a totally
fault-tolerant controller will be designed here.

As an example, consider a network of three generators,
where every two generators are connected to each other
via a transmission line. To design three speed governors
(sub-controllers) for the generators, we write the swing
equation for each rotor. The overall interconnected system,
after linearization and for a particular operating point, will
be  ẋ1(t)

ẋ2(t)
ẋ3(t)

 = A

 x1(t)
x2(t)
x3(t)

+B

 Pm1(t)
Pm2(t)
Pm3

(t)


where xi(t) =

[
δi(t) δ̇i(t)

]T
, i = 1, 2, 3,

A =


0 1 0 0 0 0
−5 −0.1 2 0 3 0
0 0 0 1 0 0
1 0 −3.5 −0.15 2.5 0
0 0 0 0 0 1
1 0 5

3 0 −8
3 − 5

3

 ,

and

B =


0 0 0
1 0 0
0 0 0
0 1 0
0 0 0
0 0 1

 , x(0) =


1
0
1
0
1
0

 .

Since the power system is observable from the output of
every generator, we design three full-state sub-controllers
with the understanding that their implementation in practice
is based on state observers, as explained in Section III-C
(see the recent work [20] for the possibility of reducing
the orders of the observers). By solving the LMI given
in Theorem 1, a solution to Problem 1 will be obtained
as the one given in (13). Let (Gopt

1 , Gopt
2 , Gopt

3 ) be an op-
timal controller obtained by minimizing the performance
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G1 =
[
−0.0053 −0.0991 −0.0183 −0.1327 −0.0366 −0.1999

]
,

G2 =
[
−0.0091 −0.1327 −0.0398 −0.3040 −0.0736 −0.4068

]
,

G3 =
[
−0.0140 −0.1999 −0.0572 −0.4068 −0.1133 −0.6465

]
,

P =


15.3622 0.5286 −5.5384 0.9051 −6.8092 1.4047
0.5286 9.9093 1.8267 13.2721 3.6618 19.9895
−5.5384 1.8267 13.1163 3.9809 −2.4162 5.7219
0.9051 13.2721 3.9809 30.4040 7.3622 40.6828
−6.8092 3.6618 −2.4162 7.3622 16.8408 11.3304
1.4047 19.9895 5.7219 40.6828 11.3304 64.6594

 .

(13)

index
∫∞
0

(
x(t)Tx(t) + u(t)Tu(t)

)
dt, associated with the

Lyapunov function P opt. To demonstrate the superior prop-
erties of the controller (G1, G2, G3), we analyze the perfor-
mance of the power system under both (G1, G2, G3) and
(Gopt

1 , Gopt
2 , Gopt

3 ) in the following “fault” situation:
• At time t = 0, all speed governors start working.
• At time t = 1, the speed governors of the second and

third generators both stop working.
• At time t = 4, the speed governor of the second

generator resumes its operation.
• At time t = 6, the speed governor of the third generator

resumes its operation.
The signal x(t)TP optx(t) (after normalizing its maximum
to 1) is plotted in Figure 1(a) for the power system under
(Gopt

1 , Gopt
2 , Gopt

3 ) in both “no fault” and “fault” situations. It
can be observed that although the norm of the state decreases
monotonically in the absence of faults, it has an unwanted
overshoot in presence of faults. On the other hand, the
signal x(t)TPx(t) (after a normalization) is plotted in Figure
1(b) for the power system under (G1, G2, G3). It can be
seen that when the first two faults occur simultaneously, the
state regulation rate decreases a little, but the convergence
to zero is still monotonic; besides, the rate increases after
clearing each fault, meaning that clearing faults improves
the performance.

V. CONCLUSIONS

This paper is concerned with the fault-tolerant control of
a multi-actuator linear time-invariant system, where multiple
independent faults can occur in the actuators. Motivated by
both biological and electric power systems, the objective is to
design a controller for the system such that the closed-loop
system satisfies two properties: (i) stability under all permis-
sible sets of faults (some combinations of faults are assumed
not to happen), (ii) better state regulation after clearing an
arbitrary subset of faults from every admissible set of faults.
It is shown that such a fault-tolerant state-feedback controller
exists if and only if a linear matrix inequality (LMI) problem
is feasible. An equivalent optimal-control condition is then
derived based on this LMI condition. The results are also
generalized to output-feedback and decentralized cases.
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