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ABSTRACT
This paper investigate fault tolerance for wireless ad hoc networks.
We consider a large-scale of wireless networks whose nodes are
distributed randomly in a unit-area square region. Given n wireless
nodes V , each with transmission range rn, the wireless networks
are often modeled by graph G(V, rn) in which two nodes are con-
nected if their Euclidean distance is no more than rn.

We first consider how the transmission range is related with the
number of nodes in a fixed area such that the resulted network can
sustain k fault nodes with high probability. We show that, for a
unit-area square region, the probability that the network G(V, rn)

is (k + 1)-connected is at least e−e−α

when the transmission ra-
dius rn satisfies nπr2

n ≥ ln n+(2k− 1) ln ln n− 2 ln k!+2α for
k > 0 and n sufficiently large. This result also applies to mobile
networks when the moving of wireless nodes always generates ran-
domly distributed positions. Our simulations show that n should
be larger than 500 if k = 2 or 3 and α = log n; and n should be
larger than 2500 if k = 2 or 3 and α = log log n.

We then present a localized method to control the network topol-
ogy given a (k+1)-faults tolerant deployment G(V, rn) of wireless
nodes such that the resulting topology is still (k+1)-faults tolerant
but with O(kn) communication links maintained. We show that
the constructed topology is also a length spanner. Here a subgraph
H is spanner of graph G, if for any two nodes, the length of the
shortest path connecting them in H is no more than a small con-
stant factor of the length of the shortest path connecting them in
G.

Finally, we conduct some simulations to study the practical trans-
mission range to achieve certain probability of k-connected when
n is not large enough.
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1. INTRODUCTION
Wireless ad hoc networks are also called packet radio networks

in the early 70’s. While many fundamental ideas existed about
twenty to thirty years ago, recent years we see tremendous research
activity in wireless ad hoc networks due to its applications in vari-
ous situations such as battlefield, emergency relief, and so on. Mo-
bile wireless networking enjoys a great advantage over the wired
networking counterpart because it can be formed in a spontaneous
way for various applications.

There are no wired infrastructures or cellular networks in wire-
less ad hoc network. Each mobile node 1 has an adjustable trans-
mission range. Node v can receive the signal from node u if node
v is within the transmission range of the sender u. Otherwise, two
nodes communicate through multi-hop ad hoc wireless links by us-
ing intermediate nodes to relay the message. Consequently, each
node in the wireless network also acts as a router, forwarding data
packets for other nodes. We consider that each wireless node has an
omni-directional antenna. This is attractive for a single transmis-
sion of a node can be received by many nodes within its vicinity
which, we assume, is a disk centered at the node.

Hundreds of protocols [5, 6, 12, 17, 24, 27, 28, 31] that take the
unique characteristics of wireless ad hoc networks have been devel-
oped. Among them energy efficiency, routing and MAC layer pro-
tocols have attracted most attention. One of the remaining funda-
mental and critical issues is to have fault-tolerant network deploy-
ment without sacrificing the spectrum reusing property. In other
words, the network should support multiple disjoint paths connect-
ing every pair of nodes. Obviously, we can increase the transmis-
sion range of all nodes to increase the fault-tolerance of the net-
work. However, increasing the transmission range will increase the
power consumption of every node. As power is a scarce resource
in wireless networks, it is important to save the power consumption
without losing the network connectivity. The universal minimum
power used by all wireless nodes such that the induced network
topology is connected is called the critical power.

Determining the critical power was studied by several researchers
[11, 18, 26, 29] recently when the wireless nodes are statically dis-
1In this paper the term node often represents a network device, ver-
tex is a graph term, and point is a geometry term. We often inter-
change them if no confusion is caused.
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tributed. Both [26] and [29] use the power assignment induced by
the longest incident edge of the Euclidean minimum spanning tree
over wireless nodes V . It was proved by Penrose [20] that, given
a set of points uniformly and randomly distributed in a unit-area
square, the longest edge of the minimum spanning tree asymptoti-
cally equals to the longest edge of the nearest neighbor graph. Since
the nearest neighbor can be found locally, we can determine the
critical power asymptotically using a localized method instead of
constructing the minimum spanning tree if the wireless devices are
randomly and uniformly distributed in a unit area square. Notice
that, to form the nearest neighbor graph, every node u selects the
nearest neighbor inside its maximal transmission range, and tells its
neighbors about the selection. This can be done locally. Recently,
Narayanaswamy et al. [18] proposed and implemented the first
power control protocol (COMPOW) which guarantees connectivity
of wireless ad hoc networks and has been tested on a real wireless
test-bed.

Although determining the critical power for static wireless ad
hoc networks is well-studied, it remains to study the critical power
for connectivity for mobile wireless networks. As the wireless
nodes move around, it is impossible to have a unanimous critical
power to guarantee the connectivity for all instances of the network
configuration. Thus, we need to find a critical power, if possible,
at which each node has to transmit to guarantee the connectivity
of the network almost surely, i.e., with high probability almost 1.
For simplicity, we assume that the wireless devices are distributed
in a unit area square (or disk) according to some distribution func-
tion, e.g., uniform distribution or Poisson process. Additionally,
assuming that the movement of wireless devices still keeps them
the same distribution (uniform or Poisson process). Gupta and Ku-
mar [11] showed that there is a critical power almost surely when
the wireless nodes are randomly and uniformly distributed in a unit
area disk. The result by Penrose [20] implies the same conclusion.
Moreover, Penrose [20] gave the probability of the network to be
connected if the transmission radius is set as a positive real number
r and n goes to infinity.

Let G(V, r) be the graph defined on V with edges uv ∈ E iff
‖uv‖ ≤ r. Here ‖uv‖ is the Euclidean distance between nodes
u and v. Let GΩ(Xn, rn) be the set of graphs G(V, rn) for n
nodes V that are uniformly and independently distributed in a two-
dimensional region Ω, which could be a unit-area disk D or a
unit square C with center at the origin. The problem considered
by Gupta and Kumar [11] is then to determine the value of rn

such that a random graph in GD(Xn, rn) is asymptotically con-
nected with probability one as n goes infinity. Let PΩ,k(Xn, rn)
be the probability that a graph in GΩ(Xn, rn) is k-connected. Then
Gupta and Kumar [11] showed that if nπ · r2

n = ln n + c(n), then
PΩ,1(n, rn) → 1 iff c(n) → +∞ as n goes infinity. The result by
Penrose [20] implies a stronger result: if nπ · r2

n = ln n + α, then

P1(n, rn) = e−e−α

as n goes infinity.
Fault tolerance is one of the central challenges in designing the

wireless ad hoc networks. To make fault tolerance possible, first
of all, the underlying network topology must have multiple disjoint
paths to connect any two given wireless devices. Here the path
could be vertex disjoint or edge disjoint. We use the vertex disjoint
multiple paths in this paper considering the communication nature
of the wireless networks. In this paper, we are interested in what
is the condition of rn such that the underlying network topology
G(V, rn) is k-connected almost surely when V is uniformly and
randomly distributed over a two-dimensional domain Ω. For sim-
plicity, we assume that the geometry domain Ω is a unit square C.
Gupta and Kumar [11] basically studied the connectivity problem
for k = 1 and Ω being a unit-area disk.

We show that, given n points randomly distributed in a unit
square C, if the transmission range rn satisfies nπ · r2

n ≥ ln n +
(2k−1) ln ln n−2 ln k!+α+2 ln 8k

2k
√

π
, then G(V, rn) is (k+1)-

connected with probability at least e−e−α

as n goes infinity. No-
tice that, this result is analogous to the corresponding result for
Bernoulli graphs G(n, p); See [4]. A similar result was presented
by Penrose [20, 22] for the toroidal model instead of the Euclidean
model. He showed that, the hitting radius rn such that the graph
G(V, rn) is (k + 1)-connected satisfies

lim
n→∞

Pr
(
nπr2

n ≤ ln n + k ln ln n − ln k! + α
)

= e−e−α

.

The toroidal metric is used to eliminate boundary effects. Recently,
Bettstetter [2] also investigated the minimum node degree and k-
connectivity and constructed various simulations to verify his an-
alytical expressions. However his theoretical result does not con-
sider the boundary effects, which is impossible in real networks.

Our theoretical value gives us insight on how to set the transmis-
sion radius to achieve the k-connectivity with certain probability
for a network of n devices; or how many devices are needed to
achieve the k-connectivity with certain probability when the trans-
mission range of each device is a fixed value. This result also ap-
plies to mobile networks when the moving of wireless nodes always
generate randomly (or Poisson process) distributed node positions.
Our result has applications in system design of large scale wireless
networks. For example, for setting up a sensor network monitoring
a certain region, we should deploy how many sensors to have a mul-
tiple connected network knowing each sensor can transmit a range
r0. Notice that our result holds only when the number of wireless
devices n goes to infinity, which is difficult to deploy practically.
We then conduct extensive simulations to study the transmission
radius achieving k-connectivity with certain probability for practi-
cal settings. The relation between the minimum node degree and
the connectivity of graph G(V, r) is also studied here.

After deciding the critical power for k-connectivity for mobile
wireless networks, another important issue is topology control. Due
to the nodes’ limited resource in wireless ad hoc networks, the scal-
ability is crucial for network operations. One effective approach is
to maintain only a linear number of links using a localized con-
struction method. However, this sparseness of the constructed net-
work topology should not compromise on the fault tolerance and
compromise too much on the power consumptions for both uni-
cast and broadcast/multicast communications. We then present a
localized method to control the network topology given a k-faults
tolerant deployment of wireless nodes such that the resulting topol-
ogy is still fault tolerant but with much fewer communication links
maintained. We show that the constructed topology has only linear
number of links and is a length spanner.

The remaining of the paper is organized as follows. In Section 2,
we review some previous results studying the transition phenomena
for wireless networks. Section 3 studies the critical transmission
range for k-connectivity of the wireless ad hoc networks when the
wireless nodes are randomly and uniformly distributed in a unit-
area square C. In Section 4, we present a localized method to con-
trol the network topology. The resulting topology can not only sus-
tain k node faults, but also approximates the original unit disk graph
well in terms of the energy consumption. Our experimental results
presented in 5 will verify our theoretical results. We conclude our
paper and discuss possible future research directions in Section 6.

2. PRELIMINARIES
Before reviewing previous results, we first recall some basic defi-

nition used in this paper. Given an event Y , let Pr (Y ) be the prob-
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ability of Y . We denote the expected value of a random variable X
by E[X], i.e., E[X] =

∑
x x ·Pr (X = x) for a discrete variable.

As standard, we write log for base-2 logarithm and ln for natural
logarithm. We say a function f(n) → a if limn→∞ f(n) = a.

2.1 Point Process
In this paper we use two different point processes: the random

point process and the homogeneous Poisson process of intensity.
A point process is said to be a uniform random point process,

denoted by Xn, in a region Ω if it consists of n independent points
each of which is uniformly and randomly distributed over Ω.

The standard probabilistic model of homogeneous Poisson pro-
cess is characterized by the property that the number of nodes in a
region is a random variable depending only on the area (or volume
in higher dimensions) of the region. In other words,

• The probability that there are exactly k nodes appearing in

any region Ψ of area A is (λA)k

k!
· e−λA.

• For any region Ψ, the conditional distribution of nodes in Ψ
given that exactly k nodes in the region is joint uniform.

• The numbers of nodes in disjoint sets are independent.

Here after, we let Pn be a homogeneous Poisson process of in-
tensity n on the unit square C = [−0.5, 0.5] × [−0.5, 0.5].

2.2 Connectivity and Minimum Degree
A graph is called k-vertex connected (k-connected for simplic-

ity) if, for each pair of vertices, there are k mutually vertex disjoint
paths (except end-vertices) connecting them. Equivalently, a graph
is k-connected if there is no a set of k − 1 nodes whose removal
will partition the network into at least two components. Thus, a k-
connected wireless network can sustain the failure of k − 1 nodes.
A graph is called k-edge connected if, for each pair of vertices,
there are k mutually edge disjoint paths connecting them. The ver-
tex connectivity, denoted by κ(G), of a graph G is the maximum k
such that G is k vertex connected. The edge connectivity, denoted
by ξ(G), of a graph G is the maximum k such that G is k edge con-
nected. The minimum degree of a graph G is denoted by δ(G) and
the maximum degree of a graph G is denoted by ∆(G). Clearly,
for any graph G, κ(G) ≤ ξ(G) ≤ δ(G) ≤ ∆(G). We will omit
the symbol G in the above notations if it is clear from the context.

A graph property is called monotone increasing if G has such
property then all graphs on the same vertex set containing G as
a subgraph have this property. Let Q be any monotone increas-
ing property of graphs, for example, the connectivity, the k-edge
connectivity, the k-vertex connectivity, the minimum node degree
at least k, and so on. The hitting radius �(V,Q) is the infimum
of all r such that graph G(V, r) has property Q. For example,
�(V, κ ≥ k) is the minimum radius r such that G(V, r) is at least
k vertex connected; �(V, δ ≥ k) is the minimum radius r at which
the graph G(V, r) has the minimum degree at least k. Obviously,
for any V ,

�(V, κ ≥ k) ≥ �(V, δ ≥ k).

Penrose [22] showed that these two hitting radii are asymptotically
same for n points V randomly and uniformly distributed in a unit
square and n goes infinity.

2.3 Literature Review
The connectivity of random graphs, especially the geometric graphs

and its variations, have been considered in the random graph the-
ory literature [4], in the stochastic geometry literature [7, 20, 21,

22, 23], and the wireless ad hoc network literature [2, 3, 9, 10, 11,
18, 19, 30, 33].

Let’s first consider the connectivity problem. Given n nodes
V randomly and independently distributed in a unit-area disk D,
Gupta and Kumar [11] showed that G(V, rn) is connected almost
surely if nπ · r2

n ≥ ln n + c(n) for any c(n) with c(n) → ∞ as
n goes infinity. Notice this bound is tight as they also proved that
G(Xn, rn) is asymptotically disconnected with positive probability
if nπ · r2

n = ln n + c(n) and lim supn c(n) < +∞.
Notice that, they actually derived their results for a homogeneous

Poisson process of points in D instead of the independent and uni-
form point process. They showed that the difference between them
is negligible. Additionally, it is easy to show that the same result
holds if the geometry domain in which the wireless nodes are dis-
tributed is a unit-area square C instead of the unit-area disk D.

Independently, Penrose [20] showed that the longest edge Mn

of the minimum spanning tree of n points randomly and uniformly
distributed in a unit area square C satisfies that

lim
n→∞

Pr
(
nπM2

n − ln n ≤ α
)

= e−e−α

,

for any real number α. Remember that, the longest edge of EMST
is always the critical power [26, 29]. Thus, the result in [20] is ac-
tually stronger than that in [11] since it will give the probability that
the network is connected. For example, if we set α = ln ln n, we
have Pr

(
nπM2

n ≤ ln n + ln ln n
)

= e−1/ ln n. It implies that the
network is connected with probability at least e−1/ ln n if the trans-
mission radius of each node rn satisfies nπr2

n = ln n + ln ln n.
Notice that e−1/ ln n > 1 − 1

ln n
from e−x > 1 − x for x > 0.

By setting α = ln n, the probability that the graph G(V, rn) is
connected is at least e−1/n > 1 − 1

n
, where nπr2

n = 2 ln n. No-
tice that the above probability is only true when n goes to infinity.
When n is a finite number, then the probability of the graph be-
ing connected is smaller. In this paper, we will present the first
experimental study of the probability of the graph G(V, rn) being
connected for finite number n.

We then review the results concerning the k-connectivity of a
random graph. It was proved by Penrose [22] that, given any metric
lp with 2 ≤ p ≤ ∞ and any positive integer k,

lim
n→∞

Pr (�(Xn, κ ≥ k) = �(Xn, δ ≥ k)) = 1.

This result is analogous to the well-known results in the random
graph theory [4] that graph becomes k vertex connected when it
achieves the minimum degree k if we add the edges randomly and
uniformly from

(
n
2

)
! possibilities. This result by Penrose [22] says

that a graph of G(Xn, r) becomes k-connected almost surely at the
moment it has minimum degree k by letting r go from 0 to ∞.
However, this result does not imply that, to guarantee a graph over
n points k-connected almost surely, we only have to connect every
node to its k nearest neighbors.

Recently, Bettstetter [2] investigated the minimum node degree
and k-connectivity when network is modeled by geometric random
graph. He also constructed various simulations to verify his ana-
lytical expressions. However, his analytical derivation assumed an
infinite large area (or toroidal model) to avoid the boundary effects,
which is impossible in real wireless systems.

Xue and Kumar [33] proved that, to guarantee a geometry graph
over V connected, the number of nearest neighbors that every node
has to connect is asymptotically Θ(ln n). We conjecture that, given
n random points V over a unit-area square, to guarantee a geometry
graph over V (k + 1)-connected, the number of nearest neighbors
that every node has to connect is asymptotically Θ(ln n + (2k −
1) ln ln n). We leave this as future work. Dette and Henze [7]
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studied the maximum length of the graph by connecting every node
to its k nearest neighbors asymptotically, for constant k.

Similarly, instead of considering Xn, Penrose also considered a
homogeneous Poisson point process with intensity n on the unit-
area square C. Penrose gave loose upper and lower bound on the
hitting radius rn = �(Pn, δ ≥ k) as ln n

2d+1 ≤ nrd
n ≤ d!2 ln n

for homogeneous Poisson point process on a d-dimensional unit
cube, This result is too loose. More importantly, the parameter k
does not appear in this estimation at all. In this paper, we derive
an exact bound on rn for two-dimensional n points V randomly
and uniformly distributed in C such that the graph G(V, rn) is k-
connected with high probability.

We also conduct experiments to study the probability that a graph
has minimum degree k and has vertex connectivity k simultane-
ously. Surprisingly, we found that, this probability is sufficiently
close to 1 even n is at the scale of 100. This observation implies a
simple method (by just computing the minimum vertex degree) to
approximate the connectivity of a random geometry graph.

Penrose [20, 22] also studied the k-connectivity problem for d-
dimensional points distributed in a unit-area cube using the toroidal
model instead of the Euclidean model as one way to eliminate the
boundary effects. He [22] showed that the hitting radius rn such
that the graph G(V, rn) is (k + 1)-connected satisfies

lim
n→∞

Pr
(
nπr2

n ≤ ln n + k ln ln n − ln k! + α
)

= e−e−α

.

Dette and Henze [7] studied the largest length, denoted by rn,k

here, of the kth nearest neighbor link for n points drawn indepen-
dently and uniformly from the d-dimensional unit-length cube or
the d-dimensional unit volume sphere. They gave asymptotic re-
sult of this length according as k < d, k = d, or k < d. For
unit volume cube, they use the norm l∞ instead of the Euclidean
norm l2. For the unit volume sphere, their result implies that, when
d = 2 and k > 2,

lim
n→∞

Pr(nπr2
n,k ≤ ln n + (2k − 3) ln ln n − 2 ln(k − 1)!

−2(k − 2) ln 2 + ln π + 2α) = e−e−α

.

Notice that, Penrose [22] had showed that when the domain is
a unit-area square, the probability that a random geometry graph
G(V, rn) is k-connected and has minimum vertex degree k goes
to 1 as n goes to infinity. Consequently, we can conjecture that the
transmission radius rn such that the graph G(V, rn) is k-connected
with high probability satisfies nπr2

n � ln n + (2k − 3) ln ln n −
2 ln(k − 1)! + 2α. We will prove this later.

Topology control for wireless ad hoc networks has draw consid-
erable attentions recently [1, 13, 14, 15, 25, 26, 32]. Topology con-
trol methods try to maintain a structure that can be used for efficient
routing or improving the overall networking performance. Li et al.
[14, 15, 32] had proposed to use the Yao structure [34] on the unit
disk graph for topology control without sacrificing too much on the
energy conservation. Yao structure does not provide fault tolerance.
Recently, Bahramgiri et al. [1] proposed a fault-tolerant topology
control algorithm which shows how to decide the minimum trans-
mission range of each node such that the resulted directed com-
munication graph is k-connected. However, their method does not
bound the node degree. Lukovszki [16] gave a method to construct
a spanner that can sustain k-nodes or links failures for complete
graph. In this paper, we present a localized method of fault-tolerant
topology control based on his method and Yao structure. We show
that the constructed topology is still fault tolerant but with much
fewer communication links maintained and is a length spanner. In
addition, we give an enhancement of Bahramgiri’s method to bound
the node degree for their protocol.

3. FAULT TOLERANT DEPLOYMENT
In this section we concentrate on the hitting radius for the k-

connectivity for n randomly and uniformly distributed points in
a unit-area square C. We build our result based on the result by
Penrose [22].

For convenience, instead of the random point process Xn, we
consider a homogeneous Poisson point process of rate n, denoted
by Pn, on a unit-area square C. Same as [22], we let E(k, n, r)
denote the expected number of points of Pn with degree k in a
graph of G(Pn, r). Let D(x, r) be the disk centered at x with
radius r. Given a point x, let vr(x) be the area of the intersection
of D(x, r) with the unit-area square C. Additionally, let

φn,r,k(x) = (n · vr(x))k · e−n·vr(x)

k!
.

Here φn,r,k(x) is the probability that point x has degree k. Then,
it was known [22] that

E(k, n, r) = n

∫
C

φn,r,k(x)dx.

Then Penrose [22] (Theorem 1.2) proved that:

THEOREM 1. Let α be any real number. Given any metric lp
on C with 1 < p ≤ ∞ and any integer k ≥ 0, and rn satisfying the
following condition

lim
n→∞

E(k, n, rn) = e−α,

then we have

lim
n→∞

Pr (�(Pn, δ ≥ k + 1) ≤ rn) = e−e−α

.

Notice that, the same theorem is true when the random point pro-
cess Pn is used instead of the homogeneous Poisson point pro-
cess. The remainder of this section is devoted to estimate the value
rn. Penrose [22] agreed that rn is not so easy to find because
of the dominance of complicated boundary effects. The estimated
radius rn also makes the graph G(Pn, rn) k-connected with prob-

ability e−e−α

when n goes to infinity since Penrose [22] proved
that it is almost surely that �(Xn, κ ≥ k) = �(Xn, δ ≥ k) and
�(Pn, κ ≥ k) = �(Pn, δ ≥ k) as n goes infinity.

3.1 Lower Bound
We first study the asymptotic lower bound for the hitting radius

rn for the (k + 1)-connectivity.
Obviously, vr(x) ≤ πr2 for any point x inside the unit-area

square C. Since φn,r,k(x) is a monotone increasing function of
vr(x),

φn,r,k(x) = (n · vr(x))k e−n·vr(x)

k!
< (n · πr2)k e−n·πr2

k!
.

We then bound E(k, n, r) as follows.

E(k, n, r) = n

∫
C

φn,r,k(x)dx < n(n · πr2)k e−n·πr2

k!
.

Notice that if we use πr2 for vr(x) instead of the actual area vr(x),
the computed radius r is less than the actual required radius. This is
because vr(x) < πr2 for point x near the boundary of the square.
Thus the probability that there is at least k neighbors within dis-
tance r of point x is increased when we use πr2 for vr(x) for point
x near the boundary. To remedy the approximated area πr2, the
actual value r should be larger than the computed one.
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We estimate r when vr(x) = πr2 is used as the area measure-
ment. Let y = πr2. From limn→∞ E(k, n, rn) = e−α, we have

e−α = limn→∞ n(n · y)k e−n·y
k!

. We will relax the condition by
ignoring the condition of n going infinity. In other words, we con-
sider that

e−α = n(n · y)k e−n·y

k!
.

It implies that, by taking ln on both sides,

−α = ln n + k ln n + k ln y − ny − ln(k!).

Thus, −k ln y + ny = (k + 1) ln n − ln(k!) + α. Dividing both
side by k, we have

n

k
y − ln y =

k + 1

k
ln n − 1

k
ln(k!) +

α

k
.

Let z = n
k
y. Then, ln y = ln z + ln k − ln n. Then

z − ln z = ln k − ln n +
k + 1

k
ln n − 1

k
ln(k!) +

α

k

=
1

k
ln n + ln k − 1

k
ln(k!) +

α

k
.

Notice that if z = ln z + t, then z > t + ln t, where t > 0. Thus,

z >
1

k
ln n + ln k − 1

k
ln(k!) +

α

k

+ ln

(
1

k
ln n + ln k − 1

k
ln(k!) +

α

k

)

>
1

k
ln n + ln k − 1

k
ln(k!) +

α

k
+ ln(

1

k
ln n).

Consequently, by substituting back z = n
k
πr2, we have

n

k
πr2 >

ln n

k
+ ln k − 1

k
ln(k!) +

α

k
− ln k + ln ln n,

which implies that

nπr2 > ln n + k ln ln n − ln k! + α.

Notice that the function (n ·y)k e−n·y
k!

achieves the maximum value
when y = k

n
. It is monotone decreasing for y > k

n
and monotone

increasing for y < k
n

. We always assume that k is a fixed constant
throughout this paper. Then we have the following theorem.

THEOREM 2. Given n wireless nodes V randomly and uniformly
distributed in a unit-area square. If we want the graph G(V, rn)

to be (k + 1)-connected with probability at least e−e−α

, the trans-
mission radius rn satisfies

nπr2 > ln n + k ln ln n − ln k! + α. (1)

Notice that, for the toroidal model, Penrose [22] gave the same
exact bound for rn such that the graph is guaranteed to be (k +
1)-connected asymptotically. Moreover, the result by Gupta and
Kumar [11] and the result by Penrose [20] is just a special case
when k = 0, if this bound is tight. Notice that, in our analysis, we
implicitly assume that k > 0.

3.2 Upper Bound
We showed that if we want the network G(V, rn) to be (k + 1)-

connected with probability at least e−e−α

, we have to set the trans-
mission radius rn satisfying inequality (1) for n points randomly
and uniformly distributed in a unit-area square. In this section, we
continue to study the upper bound of the transmission radius to

achieve the same (k + 1)-connectivity. The estimated upper bound
is different from the lower bound even asymptotically. Again, we
derive the upper bound from the equation n

∫
C φn,r,k(x)dx = e−α.
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Figure 1: The area vr(x) for a point x.

We partition the unit square to three regions: the region I is
[−0.5+ r, 0.5− r]× [−0.5+ r, 0.5− r], the region III is four cor-
ners, and the remaining is the region II. See Figure 1. We compute
the area vr(x) for point x located in these three regions separately.
Obviously, for any x in region I, vr(x) = πr2. For a point x in
region II, assume its distance to the boundary of C is x, then the
area

vr(x) = πr2 − r2 cos−1(
x

r
) + x

√
r2 − x2.

Here 0 ≤ x ≤ r. Assume x = r cos θ, where 0 ≤ θ ≤ π/2. Then
vr(x) = r2(π − θ + sin θ cos θ). It is easy to show that

πr2

2
(1 + cos θ) ≤ r2(π − θ + sin θ cos θ) ≤ πr2

2
+ 2r2 cos θ.

By substituting x = r cos θ, we bound vr(x) as follows

πr2

2
+

πr

2
· x ≤ vr(x) ≤ πr2

2
+ 2r · x.

Let r� be the solution of n
∫
C φn,r,k(x)dx = e−α. Let Ω be any

subregion of C. Let w(x) be any function such that w(x) ≤ v(x)
and is monotone increasing of r. Let ϕn,r,k(x) = (n · w(x))k ·
e−n·w(x)

k!
. Thus, ϕn,r,k(x) ≤ φn,r,k(x). Let r′ be the solution of

n
∫
Ω

ϕn,r,k(x)dx = e−α. Then r� ≤ r′. This is because w(x),

vr(x) are monotone increasing functions of r, and (ny)k e−ny

k!
is

monotone increasing function when y ≤ k/n. Thus, to bound
the transmission radius r from above so that the graph G(V, r) is
(k + 1)-connected, we use the lower bound of vr(x) and we also
only compute the integral for region I and region II. Notice,

∫
C
(nvr(x))k e−nvr(x)

k!
dx

>

∫
I

(nvr(x))k e−nvr(x)

k!
dx +

∫
II

(nvr(x))k e−nvr(x)

k!
dx

Obviously, for region I, we have

∫
I

(nvr(x))k e−nvr(x)

k!
dx = (n · πr2)k · e−n·πr2

k!
· (1 − 2r)2.

The integral over region II is 4 times of the integral over the rect-
angle region near the boundary, where the length of the rectangle
is 1 − 2r and the width is r. Let the distance of a point x to the
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boundary be x. Let y = πr2

2
+ πr

2
x. Notice vr(x) > y. We have

∫
II

(n · vr(x))k e−n·vr(x)

k!
dx

= 4(1 − 2r)

∫ r

x=0
(nvr(x))k e−nvr(x)

k!
dx

>
8(1 − 2r)

π · k! · r
∫ πr2

y= πr2
2

(ny)ke−nydy

=
8(1 − 2r)

nπr
(e−t/2

k∑
j=0

tj

j!2j
− e−t

k∑
j=0

tj

j!
).

Here t = nπr2. The last equation comes from
∫

zke−zdz =

−e−zk!
∑k

j=0
zj

j!
. Then the transmission radius �(Pn, κ ≥ k))

is bounded from above by the solution of the following equation.

e−α =n · tk e−t

k!
· (1 − 2r)2 +

8(1 − 2r)

πr
(e−t/2

k∑
j=0

(t/2)j

j!
− e−t

k∑
j=0

tj

j!
)

<n · tk e−t

k!
+

8

πr
k · e−t/2 (t/2)k

k!
.

The inequality comes from e−t/2 (t/2)j

j!
< e−t/2 (t/2)j+1

(j+1)!
for j <

t/2 assuming that k < t/2. From our lower bound analysis, t =
nπr2 ≥ ln n asymptotically. The rest of the section is then devoted
to approximate r.

Let A = n · tk e−t

k!
and B = 8

πr
k · e−t/2 (t/2)k

k!
. Thus, B

A
=

8ket/2

2knπr
= 8k√

π
et/2√

nt
. Then, by taking ln on both sides of the inequal-

ity, we have

−α < ln A + ln(1 +
B

A
)

= ln n + k ln t − t − ln k! + ln(1 +
8k

2k
√

π

et/2

√
nt

).

Thus, we have

t < ln n + k ln t − ln k! + α + ln(1 +
8ket/2

2k
√

πnt
). (2)

Notice that ln(1 + x) < x for any 1 > x > 0 and ln(1 + x) �
ln x for x sufficiently larger than one. We solve inequality (2) by
recursion as follows. First let t1 = ln n − ln k! + α as the initial
solution. It is easy to show that B

A
= 8k√

π
et1/2√

nt1
	 1. Thus, we can

estimate the solution by substituting t1 to inequality (2)

t2 < ln n + k ln t1 − ln k! + α + ln(1 +
8k

2k
√

π

et1/2

√
nt1

).

When n is large enough, we have t2 � ln n+k ln ln n− ln k!+α.

In this situation, however, we have B
A

= 8k
2k

√
π

et2/2√
nt2

= 8k
2k

√
π

√
(ln n)keα

k!·t2
goes to infinity when n goes to infinity. Thus, by substituting t2 =
ln n + k ln ln n − ln k! + α to inequality (2), we have the third
estimation of the solution as follows

t3 < ln n + k ln t2 − ln k! + α + ln(1 +
8ket2/2

2k
√

πnt2
)

� ln n + k ln t2 − ln k! + α + ln
8ket2/2

2k
√

πnt2

= ln n − 3

2
ln k! +

3

2
α +

1

2
k ln ln n + (k − 1

2
) ln t2 + ln

8k

2k
√

π
.

Notice that

ln t2 = ln(ln n + k ln ln n − ln k! + α)

= ln ln n + ln(1 +
k ln ln n − ln k! + α

ln n
)

< ln ln n +
k ln ln n − ln k! + α

ln n
.

Thus, we have the third estimation t3 as ln n+ 1
2
(3k−1) ln ln n−

3
2

ln k! + 3
2
α + ln 8k

2k
√

π
. We can continue to substitute t3 to get a

more accurate solution t4 and so on. It is easy to show that the final
solution of t is bounded by solution of the following equality when
n goes to infinity

t = ln n + k ln t − ln k! + α + ln(
8k

2k
√

π

et/2

√
nt

)

This implies that

t = ln n − 2 ln k! + 2α + 2 ln
8k√
π

+ (2k − 1) ln t.

Thus we can bound t by the following approximation, when n goes
to infinity

t = ln n + (2k − 1) ln ln n − 2 ln k! + 2α + 2 ln
8k

2k
√

π
.

Consequently, we have

THEOREM 3. Given n wireless nodes V randomly and uniformly
distributed in a unit-area square. If we set the transmission radius
rn to satisfy that

nπr2 > ln n + (2k − 1) ln ln n − 2 ln k! + 2α + 2 ln
8k

2k
√

π
,

then the graph G(V, rn) is (k + 1)-connected with probability at

least e−e−α

when n goes to infinity.

Obviously, if α → ∞, then e−e−α → 1. For example, if we set
α = ln ln n, i.e., want the graph G(V, rn) to be (k + 1)-connected
with probability at least e−1/ ln n > 1 − 1

ln n
, we have to set the

transmission radius rn that satisfies

nπr2 > ln n + (2k + 1) ln ln n − 2 ln k! + 2 ln
8k

2k
√

π
.

If we want to the graph G(V, rn) to be (k + 1)-connected with
probability at least e−1/n > 1− 1

n
, we have to set the transmission

radius rn satisfying

nπr2 > 3 ln n + (2k − 1) ln ln n − 2 ln k! + 2 ln
8k

2k
√

π
.

Additionally, if α → −∞, then e−e−α → 0. Then it implies
that the graph G(V, rn) will be (k + 1)-connected with very low
probability if this bound of the hitting radius is tight.

Notice that the above analysis of the asymptotic upper bound of
the transmission radius can also be used to derive a tighter lower
bound on the transmission radius. We use the fact that πr2

2
+ πr

2
·

x ≤ vr(x) to derive the upper bound of the transmission radius.
To analyze the lower bound, we have to use the fact that vr(x) ≤
πr2

2
+2r·x to estimate the area vr(x) for point x near the boundary.

In addition, we have to compute the integral in all three regions. To
simplify the analysis, for point x in region III, we also use vr(x) ≤
πr2

2
+ 2r · x to estimate the area vr(x). Then similar to the above
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analysis of upper bound, the lower bound on t is at least the solution
of the following equation

e−α = n · tk e−t

k!
· (1 − 2r)2 +

2

r
(e−

t
2

k∑
j=0

tj

2jj!
− e−t

k∑
j=0

tj

j!
).

By tedious computing, we get the asymptotic lower bound as

t > ln n + (2k − 1) ln ln n − 2 ln k! + 2α.

REMARK: Although we have computed the lower and upper
bounds for the transmission range rn such that the graph G(V, rn)

is (k + 1)-connected with probability at least e−e−α

, these bounds
hold only when n goes to infinity and k is assumed to be a con-
stant. Our simulations show that n should be larger than 500 if
k ≤ 2 and α = log n; and n should be larger than 2500 if k ≤ 2
and α = log log n. When n is a small number (especially when
n is comparable with k!), our bounds do not hold anymore. This
observation is witnessed by our experimental results (there is a con-
siderably large difference between theoretical bound and the actual
transmission range).

4. TOPOLOGY CONTROL FOR
FAULT TOLERANCE

In this section, we study how to control the network topology
given a n nodes network that is already k fault tolerant. After se-
lecting the hitting radius for the k-connectivity, we can model the
network topology as a unit disk graph (UDG) by scaling the radius
to one unit. A unit disk graph is the graph in which two nodes are
connected if their distance is not more than one unit.

Due to the nodes’ limited resource in wireless ad hoc networks,
the scalability is crucial for network operations. One effective ap-
proach is to maintain only a linear number of links using a localized
construction method. However, this sparseness of the constructed
network topology should not compromise on the fault tolerance and
compromise too much on the power consumptions for both unicast
and broadcast/multicast communications. We are interested in con-
structing a sparse network topology efficiently for a set of static
wireless nodes such that every unicast route in the constructed net-
work topology is power efficient, in addition to be k fault tolerant.
Here a route is power efficient for unicasting if its power consump-
tion is no more than a constant factor of the minimum power needed
to connect the source and the destination. A network topology is
said to be power efficient if there is a power efficient route to con-
nect any two nodes in this topology.

In the most common power-attenuation model, the signal power
falls as 1

rβ , where r is the distance from the transmitter antenna and
β is a constant between 2 and 5 dependent on the wireless trans-
mission environment. This is called path loss. For simplicity, we
only consider the path loss of the signal. Thus, the power needed to
support a link uv is ‖uv‖β , where ‖uv‖ is the Euclidean distance
between u and v.

Lukovszki [16] gave a method to construct a spanner that can
sustain k-nodes or links failures for complete graph. Our topol-
ogy control method is based on this method and the following Yao
structure [34]. The Yao graph over a (directed) graph G with an in-
teger parameter p ≥ 6, denoted by

−→
Y Gp(G), is defined as follows.

At each node u, any p equal-separated rays originated at u define
p equal cones. In each cone, choose the shortest (directed) edge
uv ∈ G, if there is any, and add a directed link −→uv. Ties are broken
arbitrarily. Let Y Gp(G) be the undirected graph by ignoring the

direction of each link in
−→
Y Gp(G). See Figure 2 for an illustration

of selecting edges incident on u in the Yao graph.

u

Figure 2: The narrow regions are defined by 8 equal cones. The
closest node in each cone is a neighbor of u.

Li et al. [14, 15, 32] had proposed to use the Yao structure on the
unit disk graph for topology control without sacrificing too much
on the energy conservation. Some researchers used a similar con-
struction named θ-graph [16]. The difference is that, in each cone,
it chooses the edge which has the shortest projection on the axis of
the cone instead of the shortest edge. Here the axis of a cone is the
angular bisector of the cone. For more detail, please refer to [16]. It
is obvious that the Yao structure does not sustain k faults in a neigh-
borhood of any node since each node only has at most p neighbors
and one neighbor selected in each cone at most. However, we can
modify the Yao structure as follows such that the structure is k-fault
tolerant.

Each node u defines any p equal-separated rays originated at u,
thus defines p equal cones, where p > 6. In each cone, node u
chooses the k+1 closest nodes in that cone, if there is any, and add
directed links from u to these nodes. Ties are broken arbitrarily.
Let Yp,k+1 be the final topology formed by all nodes.

THEOREM 4. The structure Yp,k+1 can sustain k nodes faults
if original unit disk graph is k node faults tolerant.

PROOF. For simplicity, assume that all k fault nodes v1, v2, · · · ,
vk are neighbors of a node u. We show that the remaining graph of
Yp,k+1 (removed of nodes v1, v2, · · · , vk and all links incident on
them) is still connected.

Notice that the original unit disk graph is k node faults tolerant.
Thus, the degree of each node is at least k + 1. Additionally, with
the k fault nodes v1, v2, · · · , vk removed, there is still a path in
UDG to connect any pair of remaining nodes. Assume that the
path uses node u and have a link uw. We will prove by induction
that there is a path in the remaining graph to connect u and w.

If uw has the smallest distance among all pair of nodes, then uw
must be in Yp,k+1, thus in the remaining graph.

Assume the statement is true for node pair whose distance is the
rth shortest. Consider uw with the (r + 1)th shortest length.

If w is one of the k + 1 closest nodes to u in some cone, then
link uw remains in the remaining graph. Otherwise, for the cone in
which node w resides, there must have other k+1 nodes which are
closer to u than w and they are connected by u in Yp,k+1. Since
we only have k failure nodes, at least one of the links of Yp,k+1 in
that cone will survive, say link ux. It is easy to show that ‖xw‖ <
‖uw‖ < 1. Then link uw can be replaced by link ux and a path
from x to w by induction. This finishes the proof.

Notice that for the case where the nodes removed are not all
neighbors of the same node, the induction proof also holds. In-
duction is based on all pair of nodes.

Our techniques of constructing k-connected subgraph of UDG
(assuming UDG is already k-connected here) can be applied to a
more general graph G if there is an embedding, denoted by E(G),
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of G in the plane such that there is an edge in E(G) iff their dis-
tance is not more than one unit. Notice that here an embedding of
G in the plane is to assign each vertex a two-dimensional position.

We then show that the above structure approximates the original
unit disk graph well. More specifically, we will show that it is a
spanner even with k fault nodes. Let ΠG(u, v) be the shortest path
connecting u and v in a weighted graph G, and ‖ΠG(u, v)‖ be
the length of ΠG(u, v). Then a graph G is a t-spanner of a graph
H if V (G) = V (H) and, for any two nodes u and v of V (H),
‖ΠG(u, v)‖ ≤ t‖ΠH(u, v)‖. With H understood, we also call t
the length stretch factor of the spanner G.

Let �G(u, v) be the path found by a unicasting routing method
� from node u to v in a weighted graph G, and ‖�G(u, v)‖ be the
length of the path. The spanning ratio achieved by a routing method
� is defined as maxu,v ‖�G(u, v)‖/‖uv‖. Notice that the spanning
ratio achieved by a specific routing method could be much larger
than the spanning ratio of the underlying structure. Nonetheless, a
structure with a small spanning ratio is necessary for some routing
method to possibly perform well.

THEOREM 5. The structure Yp,k+1 is a length spanner even
with k nodes faults.

PROOF. To prove the length spanner property, it is easy to show
that we only have to prove each pair of nodes u and w with ‖uw‖ ≤
1 is approximated by a path with length no more than a constant
factor, say β, of ‖uw‖. The proof is similar to Theorem 4: we
prove it by induction on the length of ‖uw‖. Follow the proof of
Theorem 4, we only have to show that

‖ux‖ + β‖xw‖ ≤ β‖uw‖
for any node x with ‖ux‖ < ‖uw‖ and x lies in the same cone as
w does. Obviously, we need to set

β = max
∀x,‖ux‖<‖uw‖

‖ux‖
‖uw‖ − ‖xw‖ .

Notice that α = ∠wux < 2π
p

. Then a simple geometry reveals that

β = max cos θ
cos(θ+α)

, where θ = 1
2
∠uwx ≤ π−α

2
. The minimum

value for β is 1
1−2 sin(π/p)

. In other words, the spanning ratio of
the remaining structure is at most β.

Due to limited power and resource of wireless nodes, wireless
topologies always prefer to have bounded node degree, such that
every wireless nodes only keep constant neighbors. The node de-
gree of the structure Yp,k+1 is at most p(k + 1), where p ≥ 6.
Recently, Bahramgiri et al. [1] showed how to decide the min-
imum transmission range of each node such that the resulted di-
rected communication graph is k-connected. We can prove that
their resulted graph is also a length spanner even with k nodes faults
(the proof is omitted here since it is similar to ours). However, their
method does not bound the node degree. Figure 3(a) shows an ex-
ample in which node u can have as many as neighbors even after
applying their method. Then we give a careful enhancement of
their protocol to bound the node degree. In Bahramgiri’s method,
they increase the power step by step until there is no gap greater
than α between the successive neighbors or the power reaches the
maximum power. They proved that if α ≤ 2π

3k
then the resulted

graph is k-connected. After applying their method, we can remove
some links by the following method. For a node u, we divide its
transmission range into 4π

α
equal cones (each cone have an angle

α/2). We select only one neighbor in each cone c if there is any,
delete all other links. However, if for a cone c, one of its adjacent
cones, say b, does not have any neighbors of u, we select the bound-
ary neighbor v such that vu forms the smallest angle with cone b;

u

α/2

u

α/2

α/2

α/2

α/2

α/2

(a) (b)

Figure 3: (a) node u does not have bounded degree in graph
generated by Bahramgiri’s protocol; (b) new method to bound
node degree for Bahramgiri’s protocol.

if both adjacent cones of c are empty, we select two neighbors in
c (close to the two boundary of cone c respectively); if c does not
have empty adjacent cones, we can select any one of the neighbors.
See Figure 3(b) for illustration. Since the gap between any two suc-
cessive remaining neighbors is still not greater than α (except the
empty cones), it is easy to show that the constructed graph is still
k-connected if α ≤ 2π

3k
. The node degree is bounded by 2π

α
2

= 4π
α

.

When α = 2π
3k

, the node degree is bounded by 6k, which is almost
the same as ours.

5. EXPERIMENTS
We had analyzed the theoretical condition for the transmission

radius rn such that the graph G(V, rn) is (k + 1)-connected with
high probability. To confirm our theoretical analysis, we conduct
simulations to see what is the practical value of rn such that the
wireless network G(V, rn) is (k + 1)-connected with high prob-
ability. Notice that Bettstetter [2] also conducted simulations re-
cently to study the k-connectivity, minimum degree being k, and
their relations. No explicit expression of r is given in [2].

5.1 System Model
The geometry domain, in which the wireless nodes are distributed,

is a unit square C = [−0.5, 0.5] × [−0.5, 0.5]. As shown by pre-
vious results, we know that the random point process Xn and the
homogeneous Poisson point process Pn will have the same con-
nectivity behavior asymptotically. For the simplicity of conducting
simulations, we choose n points that are randomly and uniformly
distributed in C. For each randomly generated point set V and a
transmission radius r, we construct the graph G(V, r) in a central-
ized manner. To speed up the construction of G(V, r) , we partition
the points into grids of size r. Thus, a point p can only connect with
points from at most 9 grids: one grid containing p and 8 adjacent
grids.

5.2 Computing the Connectivity
One of the major steps in conducting the simulations is to com-

pute the connectivity of an induced unit disk graph G(V, rn). It
is easy to test whether a graph is connected by simply checking
if a spanning tree contains all n nodes. To test whether the graph
G(V, rn) is k-connected, we use the following observation: it is
k-connected if and only if the minimum cut is at least k, which is
equivalent to that the flow between any pair of nodes is at least k.
So, given the graph G(V, rn), we compute the maximum flow be-
tween any pair of nodes by assigning each edge a weight one. A
simpler method by using BFS to compute how many disjoint paths
connecting a node v to a node u. The time complexity of this ap-
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proach is O(n2m), where m is the number of edges in G(V, r)
which could be as large as n2. For unit-capacity flow, there is an
O(min(m, n3/2)m1/2) time complexity algorithm [8].

5.3 Experimental Results
TRANSITION PHENOMENA: A graph property of G(V, r) is said

to satisfy a transition phenomena if there is a radius r0 such that
the graph G(V, r) almost surely does not have this property when
r < r0 and the graph G(V, r) almost surely has this property when
r > r0. It was already shown that the property that G(V, r) has
the minimum node degree k satisfies a transition phenomena; addi-
tionally, the graph G(V, r) is k-connected satisfies a transition phe-
nomena. Our simulations shown in Figures 4 and Figures 5 confirm
the theoretical results. We found that the transition becomes faster
when the number of nodes increases. For testing the transition phe-
nomena of the connectivity, we test n = 50 and n = 100 two
cases. We test 0.1 ≤ r ≤ 0.9 using interval 0.02, i.e., we test total
40 different transmission radii. Given a transmission radius r and
number of nodes n, we generate 500 sets of random n points in C.
We compute the connectivity of each graph G(V, r) and summa-
rize how many is k-connected for k = 1, 2, 3 and 4. For testing
the transition phenomena of the min-degree, we test n = 100, 200,
300, and 400. Other settings are same as the test for connectivity
transition.
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Figure 4: Transition phenomena of a graph being k-connected.
Up figure for n = 50 and lower figure for n = 100.

CONNECTIVITY AND MINIMUM DEGREE: Penrose [22] showed
that the hitting radius for k-connectivity and the hitting radius for
achieving minimum degree k are asymptotically same for points
randomly and uniformly distributed in a unit-area square as n goes
infinity. We conduct extensive simulations on various number of
points n = 50, 100, 200, 300, 400 and 500. Given n, k, and α, we
select r according to the bound given in Theorem 3. Here the con-
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Figure 5: Transition phenomena of a graph with min-degree k.
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nectivity k = 1, 2 and α ∈ {0, ln ln n, ln n}. Thus, there are total
36 cases. For each case, we generate 500 random point sets. Our
simulations illustrated by Figure 6 show that the probability that
G(V, r) is k-connected when its minimum degree is k is already
sufficiently close to one when n is at the order of 50, especially
when α is set as ln n. This surprising result implies a fast method
to approximate the connectivity of a graph by simply counting the
minimum node degree.

CONNECTIVITY FOR SMALL POINT SET: Theoretically, we
derived an asymptotic bound of the transmission range rn for n
points randomly and uniformly distributed in a unit-area square
such that the graph G(V, rn) is k-connected with certain proba-
bility. We have to admit that the result holds only when n is large
enough compared with k!. We first conduct simulations to mea-
sure the gap between the theoretical probability of graph G(V, r)
being k-connected and the actual statistical probability of it be-
ing k-connected for various radius r. Typically, we set nπr2 =
ln n + (2k − 1) ln ln n − 2 ln k! + 2α + 2 ln 8k

2k
√

π
. Then test all

54 cases of n = 50, 100, 200, 300, 400, and 500, k = 1, 2, 3,
and 4, α = 0, ln ln n, and ln. The corresponding theoretical k-
connectivity probabilities for them are 1

e
, 1− 1

ln n
, and 1− 1

n
when

α = 0, ln ln n, and ln n respectively. The probability is computed
over 500 different random point sets. Figure 7 illustrates our simu-
lation results.
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Figure 6: The probability of a graph with minimal degree k is
k-connected. Upper figure is for k = 1 and lower figure is for
k = 2.

It is not surprised that the probability found by simulations is
much lower than the theoretical analysis (denoted by the most up-
per curves). Notice that the theoretical range r is not always mono-
tone increasing of k when n is a small value. Figure 9 illustrates
our simulation results for the probability that G(V, r) has mini-

mum degree k compared with the theoretical analysis. Notice, as
expected, the probability gap for min-degree is smaller than that for
the k-connectivity.

PRACTICAL TRANSMISSION RANGES FOR k-CONNECTIVITY:
Since the asymptotic bound of the transmission range rn for n
points randomly and uniformly distributed in a unit-area square
such that the graph G(V, rn) is k-connected with certain probabil-
ity holds only when n is large enough compared with k!, we need
study what is the actual transmission range required to achieve the
k-connectivity with certain probability. It is possible to analyze
more accurately what is the theoretical requirement for rn when
n is not large enough. However, the analysis is much more com-
plicated as we cannot omit some “constant” terms in any formula
anymore. We leave this tight analysis as possible future work. Al-
ternatively, we conduct simulations to find that practical transmis-
sion ranges when n is not large enough. See Figure 8 and Figure
10. It is not surprise that the actual required range is larger than
the theoretical bound. However, we found that the actual trans-
mission range takes a similar decreasing pattern as the theoretical
result when n goes infinity.

6. CONCLUSION
We consider a large-scale of wireless ad hoc networks whose

nodes are distributed in a two-dimensional unit square region. As
fault-tolerance is imperative for wireless networks, we showed that,
if the transmission range rn satisfies nπ · r2

n ≥ ln n + (2k −
1) ln ln n− 2 ln k! + 2α, the graph G(V, rn) is (k + 1)-connected

with probability at least e−e−α

. When n is small (especially when
n is comparable with k!), our bounds do not hold anymore. Our
simulations showed that n should be larger than 500 if k ≤ 2
and α = log n; and n should be larger than 2500 if k ≤ 2 and
α = log log n. Our result holds also in mobile networks when the
movement of nodes are also random. We leave an accurate theo-
retical analysis of the transmission range to achieve k-connectivity,
minimum degree k when number of nodes n is small as open ques-
tions.

We then presented a localized method to control the network
topology given a (k + 1)-faults tolerant deployment G(V, rn) of
wireless nodes such that the resulting topology Yp,k+1 is still fault
tolerant but with much fewer communication links maintained. We
show that Yp,k+1 has only linear number of links and is a length
spanner. Finally, we conducted extensive simulations to study the
relations between the minimum node degree and the connectivity
of the induced unit disk graphs. Practical transmission ranges were
also studied by simulations when n is not a large integer. We found
that, although it is different from the theoretical analysis when n is
small, it has the same decreasing pattern as our theoretical analysis.

Notice that, we assumed that the wireless nodes are generated by
random point process, or Poisson point process. In practical appli-
cations, the wireless nodes could have some other estimated distri-
butions such as the inhomogeneous Poisson point process. This is
much more complicated than the cases studied by known previous
results. We leave this as possible future work.

Nodes in wireless ad hoc networks may become inactive or un-
available due to either internal breakdown or being in the sleeping
state. The inactive nodes cannot take part in routing/relaying and
thus may affect the connectivity. Recently, Yi et al. [35] mod-
eled the availability of the nodes by a Bernoulli model, in which
nodes are active (or available) independently with probability p
(0 < p ≤ 1). They showed that if all nodes have a maximum

transmission radius rn =
√

lnn+c
πpn

for some constant c, then the to-

tal number of isolated nodes is asymptotically Poisson with mean
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Figure 7: Probability that G(V, r) is k-connected for theoretical
r.
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Figure 8: Practical range that G(V, r) is k-connected with
probability 1/e.
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Figure 9: Probability that G(V, r) has min-degree k for theo-
retical r.

0 50 100 150 200 250 300 350 400 450 500
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
Transmission ranges when alpha = log n

number of points

T
ra

ns
m

is
si

on
 r

an
ge

s

k=1,Actual
k=2,Actual
k=3,Actual
k=4,Actual
k=1,Theory
k=2,Theory
k=3,Theory
k=4,Theory

Figure 10: Practical range that G(V, r) is k-connected with
probability 1 − n.
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e−c and the total number of isolated active nodes is also asymp-
totically Poisson with mean pe−c. It is interesting to consider the
k-connectivity under the Bernoulli model.
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