
 
 

 

  

Abstract—In this paper, fault-tolerant explicit MPC control 
of fuel cell systems is presented. MPC is one of the control 
methodologies that allows to introduce fault-tolerance more 
easily. Here, this capability is extended using recent explicit 
MPC control theory. Explicit MPC control allows to derive off-
line the control without using optimization. Moreover, it allows 
to introduce as additional parameters faults since it is based on 
parametric programming. This makes possible to change in 
real-time controller parameters without recomputing the MPC 
controller or having a bank of pre-computed MPC controllers. 
Finally, the proposed approach is assessed on a known test 
bench PEM fuel cell system. 

I. INTRODUCTION 
UEL cell systems have been developed considerably 
along the last years. Although they were invented more 
than a century ago, they have received much attention in 

the last decade as good candidates for clean electricity 
generation both in stationary and automotive applications. 
There are still many open issues related to fields such as 
materials, manufacturing or maintenance, being automatic 
control one of the most important. There exist many types of 
fuel cells [9], being this work devoted to PEM (Polymer 
Electrolyte Membrane) fuel cells, which run at low 
temperature and show fast dynamical response, which make 
them suitable for mobile applications. It is clear that good 
performance of these devices is closely related to the kind of 
control that is used, so a study of different control 
alternatives is justified [11]. A fuel cell system is not 
composed of the fuel cell alone but it integrates many 
components into a power system, which supplies electricity 
to an electric load or to the grid. Several devices such as 
DC/DC or DC/AC converters, batteries or ultracapacitors 
are included in the system and, in case the fuel cell is not fed 
directly with hydrogen, a reformer must also be used. 
Therefore, there are many control loops schemes depending 
on the devices that must be controlled. The lower control 
level takes care of the main control loops inside the fuel cell, 
which are basically fuel/air feeding, humidity, pressure and 
temperature. The upper control level is in charge of the 
whole system, integrating the electrical conditioning, storage 
and reformer (if necessary). Many control strategies have 
been proposed in literature, ranging from feedforward 
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control [11], LQR [12][15], Neural Networks [1], [7] or 
Model Predictive Control  [5][17].  
 This paper is focused on the control of fuel cell systems 
using explicit Model Predictive Control (MPC) [2][16].  
Explicit MPC control allows to derive off-line the control 
without need of using optimization, since it is based on 
parametric programming. The MPC controller has as a 
control objective “oxygen starvation” prevention and uses as 
manipulated variables air feeding through the compressor 
voltage. There are other variables such as output voltage and 
power, cell temperature, reactive pressures or humidity that 
can be easily included in the control strategy to improve 
performance. Notice that air feeding has crucial importance 
on fuel cell behaviour, as shown in [11]. However, due to a 
fuel cell system is very complex, it is prone to suffer from 
faults in its operation time. So, some fault tolerant 
capabilities should be added to the control system in order to 
maintain the fuel cell system under control even in the 
presence of faults. This paper explores the possibility of 
making using of the known inherent fault-tolerant 
capabilities of MPC control. Moreover, these capabilities are 
extended using explicit MPC control. The use of parametric 
programming allows to introduce as additional parameters 
faults what allow in real-time to change controller 
parameters without re-computing the MPC controller or 
having a bank of pre-computed MPC controllers.  Finally, 
the fault tolerant MPC controller is tested on a full nonlinear 
model of a PEM fuel cell, showing the usefulness the 
proposed approach. The remainder of paper is organized as 
follows: in Section II, constrained MPC principles are 
recalled and new results on explicit MPC are briefly 
summarized. In Section III, the inclusion of fault-tolerance 
in explicit MPC is discussed. Then, the MPC fault tolerant 
controller is implemented and tested using a non-linear 
model of the fuel cell system and showing the results in 
Section IV. Finally, the major conclusions are drawn in 
Section V. 

II. IMPLICIT AND EXPLICIT MPC CONTROL 

A. Implicit MPC law computation 
 Model Predictive Control (MPC) has become the 
accepted standard for complex constrained multivariable 
control problems in the process industry. At each sampling 
time, starting at the current state x(0), that either is 
considered measured or estimated, an open-loop optimal 
control problem is solved over a finite horizon N: 
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where u,u    and x,x    are the operating ranges of controls 

and states. Assuming that the optimization problem (1) is 
feasible, there exists an optimal solution given by the 
sequence of controls: * *(0), , ( 1)u u N −" . However, only 

the first control of this sequence *(0)u  is applied. Then, at 
the next time step, the computation is repeated starting from 
the new measured (or estimated) state and over a shifted 
horizon, leading to a moving horizon policy. The solution 
relies on a control law that respects all input and output 
constraints, and optimizes a quadratic performance index. 
Over the last decade, a solid theoretical foundation for MPC 
has emerged so that in real-life large-scale MIMO 
applications controllers with non-conservative stability 
guarantees can be designed routinely and with ease  
[14][13]. 
Implicit MPC is based on the solution of a quadratic 
program (QP) that allows to determine the optimal control 
action: 

T

T T

U

1V( x(0 )) x (0 )Yx(0 )
2

1min U HU x (0 )FU
2

subject to : GU W Sx(0 )

=

 + +  
≤ +

          (2) 

where:  
TT TU u (0 ), ,u ( N 1) = − "                       (3) 

is the optimizer vector and H, F, Y, G, W, S depend on 
weights Q, R, P, upper and lower bounds of u and y, and 
model restrictions A, B and C. Since QP optimization 
problem is convex there is no problem with local optimums 
(only an optimum exists). Additionally, efficient algorithms 
are available (active set and interior point methods) that 
allow to solve this problem very fast. Thus, the standard way 
of computing the MPC law, which is implemented in all 
commercial MPC packages, is to solve the QP problem (2) 
numerically on line at each time k [13]. The big drawback of 
implicit MPC is the on-line computational effort which may 
limit its applicability to relatively slow and/or small 
problems.  
 

B. Explicit MPC law computation 
    In [2], it has been shown how to move the computations 
necessary for the implementation of MPC off-line while 
preserving all its other characteristics. This should largely 

increase the range of applicability of MPC to other 
problems. Such an explicit form of the controller provides 
also additional insight for better understanding the control 
policy of MPC. In this paper, the explicit form will provide 
additional insight on how an MPC controller can manage 
faults. There are other advantages obtained by using explicit 
MPC controller. Since the resulting explicit control law 
allows implementation without real-time optimization 
software, it can be made on inexpensive hardware, using 
fixed point arithmetic instead of the floating point operations 
required by numerical optimization software. A software 
implementation would require only a few lines of code, 
which would simplify the verification of the implementation. 
Such solutions will be particularly well suited for safety-
critical applications (automotive, biomedical etc.), where the 
industry would not accept real-time numerical solvers due to 
software verification and software complexity issues. 
Another advantage is that the worst-case computation time 
for the control law can be clearly stated a priori, 
guaranteeing a solution to be computed within possibly tight 
hard real-time bounds. However, there are also some 
disadvantages of using MPC controllers compared to using 
the more conventional method with on-line solution of an 
optimization problem. The most obvious disadvantage is the 
rapid growth of size in the explicit solution as the problem 
size increases. This limits the use of these solutions to small 
problems. This limitation is primarily due to the on-line 
memory requirements becoming too high. In general one can 
say that using an explicit solution leads to lower 
requirements for CPU power, but higher memory 
requirements. 

Since linear MPC is based on the solution of a quadratic 
program (QP), whose coefficients of the linear term in the 
cost function and the right hand side of the constraints 
depend linearly on the current state, the quadratic program 
can be viewed as a multiparametric quadratic program (mp-
QP). Then, the QP program (2) can be converted into a 
multiparametric Quadratic Program (mp-QP) given by 

T T t

U

1V( x ) min U HU x F U
2

subject to : GU W Sx

 = +  
≤ +

                (4) 

that must be solved for all x. In [2],  properties of mp-QP are 
analyzed showing that the optimal solution is a piecewise 
affine function of the vector of parameters. As a 
consequence, the solution is an explicit MPC law  that is 
piecewise affine (PWA) with respect to states: 

1 1 1 1

m m m m

F x g if H x K
u( x )

F x g if H x K

+ ≤
= 
 + ≤

#                 (5) 

which not only ensures feasibility and stability, but is also 
optimal with respect to LQR performance. This allows to 
solve QP optimization problem associated to the MPC 
problem off-line. As in the case of implicit MPC, if not all 
states are measured, they should be estimated. An algorithm 
based on a geometric approach for solving mp-QP problems, 
and therefore obtain explicit MPC controllers, was proposed 
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in [2]. More recently, in [16], a faster algorithm based on an 
active-set approach is proposed. 
 

III. EXPLICIT FAULT-TOLERANT MPC CONTROL 

A. Introduction 
Fault-tolerant control is an incipient research area in the 

automatic control field [6]. One way of achieving fault-
tolerance, known as active, is to employ a fault detection 
and isolation (FDI) module on-line. The FDI module will 
generate a discrete event signal to a supervisor system when 
a fault is detected and isolated. The supervisor, in turn will 
activate some accommodation action in response, which can 
be pre-determined for each  fault or obtained from real-time 
analysis and optimization. Due to these discrete event nature 
of fault occurrence and the reconfiguration/accommodation, 
a FTC system is hybrid system by nature. Therefore, the 
analysis and design of FTC systems is not trivial. For design 
purposes, traditionally the hybrid nature of FTC has been 
neglected in order to facilitate a simple design, reliable 
implementation, and systematic testing. Then, the whole 
FTC scheme can be expressed using the three-level 
architecture for FTC systems proposed by Blanke [4] (see 
Fig. 1). 

Controlled 
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Fault 
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& Accomodation 

Accomodation 

 
Fig. 1 Fault-tolerant architecture 

 

B. Inclusion of fault tolerance in MPC 
Fault-tolerance against faults can be embedded in MPC is 

relatively easy [10]. This can be done in several ways:  
(a) Changing the constraints in order to represent 

certain kinds of fault, being specially “easy” to 
adapt the algorithms for faults in actuators, 
assuming that the fault can be located and may be 
their effects estimated using an FDI module. 

(b) Modifying the internal plant model used by the 
MPC in order to reflect the fault influence over the 
plant using the information provided by an FDI 
module. 

(c) Relaxing the initial control objectives in order to 
reflect the system limitations under fault 

conditions. 

C. Inclusion of fault tolerance in explicit MPC 
Easy reconfiguration is traditionally considered one of the 

advantages of MPC, but reconfiguring an explicit solution 
might seem at a first glance that will need considerable off-
line computation time. However, the use of parametric 
programming allows to express MPC control problems as 
parametric programs. This fact leads to introduce faults as 
extra parameters into the parametric program:  
 

f f f f

1 1 1 1

m n m n m n m n

x x
F g if H K

f f
u( x, f )

x x
F g if H K

f f+ + + +

    
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   = 
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#      (6) 

 
For example, in the case of faults affecting  actuator bounds, 
since the maximum control input from an actuator is often 
constrained in the optimization formulation, this constraint 
can be considered a parameter. Then, if, for instance, an 
actuator has failed, one can handle this by constraining the 
corresponding control input to be zero or to the range where 
the actuator is still operating. 
 

D. Motivational example of fault-tolerant explicit MPC 
An motivational example is used to show how an explicit 

MPC controller handles a fault situation. Let us consider a 
first-order continuous system described by the transfer 
function 

0.8( )
2 1

G s
s

=
+

                                    (7) 

whose equivalent discrete-time state-space description, 
using a sampling time 0.1t∆ = s,  is given by 
 

1 0.9512 0.0975
0.8

k k k

k k

x x u
y x

+ = +
=

                   (8) 

with the following constraints in the actuator: ku δ<  with 
1δ = , i.e., the actuator operating range is 

[ ], 1,1ku δ δ ∈ = −  . An MPC controller is used in the 
closed-loop system satisfying the associated control 
constraints and considering the cost function 

( )
1

2 2 2

0
( , )

p

p

H

k k H i i
i

J x u Px Qx Ru
−

=

= + +∑               (9) 

where 2pH =  and the terminal weight matrix P is 
determined using the Ricatti equation with 1Q =  and 

0.1R = . According to Theorem 6.2.1 in [8], since in this 
particular case the prediction horizon is 2, the explicit form 
of the optimal control law *

2 ( )ku x= K , which depends on 
the current system state 0x x= , is given by 
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where the saturation function ( )satδ i  is defined, for the 
saturation level δ, as 

( )
k

k k k

k

if u
sat u u if u

if u
δ

δ δ
δ

δ δ

>
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K and P are obtained by the algebraic Ricatti equation 

1

( )
( )

T T T

T T

P A PA Q K R B PB K
K R B PB B A−

= + − +

= +
                   (12) 

which gives P = 3.2419 and K = 2.2989 for the current 
example. Also from Theorem 6.2.1 in [8], the gain 1 nG ×∈R  
and the constant h ∈R  

2 2and
1 ( ) 1 ( )
K KBKA KBG h

KB KB
δ+

= =
+ +

         (13) 

which gives G = 2.6557 and h = 0.2135. The state space 
partitions for control law (10) are defined by 
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which determines in this particular case the sets 
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It can be noticed that control law (10) depends indirectly of 
the actuator limits given by δ, through expressions in (13) 
and (14). Therefore, it is clear how the effect of a fault over 
the actuator operating range can modify the expression of 
control law. This suggests that (10) can be parameterized in 
function of the actuator faults (limits). This parametrization 
is possible using results given in Section II.B, where state-
feedback explicit control law for the MPC controller, piece-
wise affine with respect to the states, can be derived using 
multiparametric quadratic programming (mpQP). Using this 
approach in the current example, the expression of 2 ( )iK  is 

given in function of the parameters 
T

xθ δ δ =   , which 

constitutes an extended system composed by the system 
state and the control input bounds of its operating range. 
Thus, expression 

[ ]

[ ]

[ ]

2
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0 1 1 0
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K

 

corresponds to the explicit PWA control law, which has 
been obtained and represented graphically (see Figure 2) 
using the mp-programming tools included in the Hybrid 

Toolbox  [3]. Comparing expressions (10) and (16), it can be 
seen that both control laws are equivalent. 

 
Fig. 2 Explicit controller as a function of state and actuator 

faults (limits) 

IV. APPLICATION EXAMPLE: A FUEL CELL SYSTEM 

A. Fuel-cell based system description 
 To test the proposed approach a known test-bench PEM 
fuel cell based on the model proposed by [12] will be used. 
This model is widely accepted nowadays in the control 
community as a good representation of the behaviour of an 
actual fuel cell system for control purposes. It is a lumped 
parameter model that describes quite well the system 
dynamics. This model considers that the operating 
temperature inside the cells and reactive humidity are 
controlled. So, these variables can be considered to be 
constant. Hydrogen supply is controlled using the inlet valve 
in such a way that hydrogen pressure in the anode tracks 
oxygen pressure in the cathode. This is done by a simple 
proportional controller in order to avoid high differential 
inlet pressure which could spoil the device. The main 
control action is therefore oxygen (or air) pressure, which is 
manipulated by acting on the compressor voltage, as shown 
in Figure 3. The control objective chosen is the oxygen 
excess ratio. This variable is used to avoid starvation 
phenomenon that can deteriorate or even spoil the fuel cell. 
The main characteristics of the fuel cell used in this work are 
[12]: Number of cells is 381, material of the membrane is 
Nafion 117, active area is 280 cm2, nominal stack voltage is 
45V, nominal stack current is 191A and maximum power is 
75kW. 

B. MPC control for the  fuel-cell based system 
 Model Predictive Control oxygen excess ratio control will 
be implemented using the Hybrid Toolbox [3]. The fuel cell 
system linear model used to implement the MPC is derived, 
through a linearization at operating point: Pnet=40kW, λO2=2 
and Vst=235V in measured variables; Ist=191A in measured 
input disturbances; and Vcm=164V in manipulated variable, 
as it is also suggested in [12]. MPC weights are tuned to 
achieve the desired control goal, i.e., to maintain the oxygen 
excess ratio. The weight associated this objective has of a 
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value of 10 for a good performance control, after some “trial 
and error” experimentation. The air compressor voltage is 
modeled as a constrained input due to physical limits 
(maximum compressor voltage cannot exceed 230V, and 
voltage value is never negative). The oxygen excess ratio is 
modeled using output constraint (the operating range is 
between 1.5 and 3)  in order to avoid starvation. Figure 4 
shows the evolution of the oxygen excess ratio when the 
designed MPC controller is used when a series of step 
changes in stack current are applied. This variable is 
considered as measured disturbance for MPC controller. The 
compressor voltage is the control action computed by MPC. 
Notice that the control goal is achieved, providing a 
maintained value (2.0) of oxygen excess ratio. 
 

 
Fig. 3 Schematic diagram of the fuel cell system 

 

C. Fault tolerant explicit MPC 
 As explained in previous sections, the MPC formulation 
allows to include easily fault tolerant control capabilities in 
the control law. In this paper, faults affecting the compressor 
range of operation are treated. According to Section III, the 
FDI module should provide the MPC controller the new 
limits of compressor voltage in every sample time, once the 
fault has been detected, isolated and estimated. A global 
structure is showed in Figure 5 where the limits for the 
actuator range are computed by FDI module. The FDI 
module (drawn in dashed line) is not implemented in this 
work, assuming it is available and works perfectly. In order 
to take into account changes in the compressor range 
(actuator limits), linear model for MPC design is modified 
by including the actuator limits as a new states that will be 
estimated by the FDI module: 
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where A, B, C, D are the original fuel system matrices. In 
(17), xn+1 corresponds to the current upper limit while xn+2 
corresponds to lower limit role. Moreover, additional output 
constraints have been added to the MPC controller: ym+1 ≥ 0 
and ym+2 ≤ 0, which ensures that the computed control 

variable u will be into the range estimated by  FDI module. 
Notice that from the controller point of view, ym+1= xn+1 and 
ym+2= xn+2. Thus, the only way to respect these constrains is 
by modifying the control variable u. Extended model (17) is 
used in order to parameterize the controller with respect to 
faults in actuator limits. The result is a PWA affine 
controller with 79 regions following the structure (6). In 
Figure 6, a projection of this PWA controller on two 
variables is presented: the Oxygen Excess Ratio (state 
variable) and the Upper Limit of the Compressor Operating 
Range (fault variable). This allows to visualize how the 
controller gain changes depending on the size of the fault in 
the actuator. Figures 7, 8 and 9 show the simulation results 
of FTC scheme considering several fault actuator scenarios. 
The current applied to the stack is the same than in the non-
faulty scenario presented in Figure 4. Dashed line represents 
the actuator limit that should have been estimated by the 
FDI module. The control action is showed in Figure 7 when 
the actuator  (air compressor) fault causes a limit range 
reduction to 0-75% of the original one. In this case, the 
control degradation is minimal as the fault does not affect 
the control action. In Figure 8, shows the case corresponding 
to the range is reduced to 0-50%. Now, the control 
degradation is visible when the values of stack current are 
high. Finally, in Figure 9 the limit range is reduced to 0-
25%. In this case, the control goal is not achieved once the 
actuator fault has appeared. 
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Fig. 4. Simulation results of the fuel cell system for the 

oxygen excess ratio control using implicit MPC (non-
faulty scenario) 

 

 
 
Fig. 5 Fault Tolerant MPC schema for air compressor faults. 
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Fig. 6. Projection of PWA explicit controller on output state 

variable (oxygen excess ratio) and fault variable (upper 
limit of the compressor operating range). 
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Fig. 7. Fault-tolerant implicit MPC results in case of an 

actuator fault that limits operating range to 0-75%. 
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Fig. 8.  Fault-tolerant implicit MPC results in case of an 

actuator fault that limits operating range to 0-50%. 
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Fig. 9. Fault-tolerant implicit MPC results in case of an 

actuator fault that limits operating range to 0-25%. 

V. CONCLUSIONS 
 In this paper, explicit MPC control of fuel cell systems has 
been presented. MPC is one of the control methodologies 
that can introduce more easily fault-tolerance. Here this 
capability has been extended using new results on explicit 
MPC control. Explicit MPC control allows to derive off-line 
the control law without having to solve an optimization 
problem on-line. Moreover, since explicit MPC is based on 
parametric programming allows to introduce as additional 
parameters faults what allow in real-time to change 
controller gains without re-computing the MPC controller or 
having a bank of pre-computed MPC controllers. Finally, 
the proposed approach has been assessed on a known test 
bench fuel cell obtaining very promising results. 
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