
Chapter 2
Fault Tolerant Flight Control - A Survey
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2.1 Why Fault Tolerant Control?

Nowadays, control systems are involved in nearly all aspects of our lives. They
are all around us, but their presence is not always really apparent. They are in our
kitchens, in our DVD-players, computers and our cars. They are found in elevators,
ships, aircraft and spacecraft. Control systems are present in every industry, they are
used to control chemical reactors, distillation columns, and nuclear power plants.
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They are constantly and inexhaustibly working, making our life more comfortable
and more efficient . . . until the system fails.

Faults in technological systems are events that happen rarely, and come mostly
unexpectedly. In [43] the following definition for a fault is made:

A fault is an unpermitted deviation of at least one charac-
teristic property or parameter of the system from the ac-
ceptable/usual/standard condition.

Faults are difficult to accurately predict in time, and to prevent. The impact of
a fault can be a small reduction in efficiency, but could also lead to overall system
failure. In safety critical systems this can lead to catastrophic events with significant
costs, both economically and in terms of human life. Several such examples are

• the explosion at the nuclear power plant at Chernobyl, Ukraine, on 26th April
1986 [67]. About 30 people were killed immediately, while another 15,000 were
killed and 50,000 left handicapped in the emergency clean-up after the accident.
It is estimated that five million people were exposed to radiation in Ukraine,
Belarus and Russia.

• the crash of the AMERICAN AIRLINES flight 191, a McDonnell-Douglas DC-10
aircraft, at Chicago O’Hare International Airport on 25 May 1979 (see Chap-
ter 1). In this incident 271 persons on board and 2 on the ground were killed
when the aircraft crashed into an open field [74, 75].

• the explosion of the Ariane 5 rocket on 4th June 1996, where the reason was
a fault in the Internal Reference Unit that had the task to provide the control
system with altitude and trajectory information. As a result, incorrect altitude
information was delivered to the control unit [67].

The question that immediately arises is “Could something have been done to
prevent these disasters?”. While in most situations the occurrences of faults in
the systems cannot be prevented, subsequent analysis often reveals that the con-
sequences of the faults could be avoided or, at least, that their severity (in terms of
economic losses, casualties, etc.) could be minimized. If faults could be detected
and diagnosed rapidly enough, then, in many cases, it is possible to subsequently
reconfigure the control system so that it can safely continue its operation (though
with degraded performance) until the time comes when it can be switched off to
allow repair. In order to minimize the chances for such catastrophic events as those
summarized above, safety-critical systems must possess the properties of increased
reliability and safety.

A way to offer increased reliability and safety is by means of a fault-tolerant
control (FTC) system design. An FTC system could have been designed to lead to
a safe shutdown of the Chernobyl reactor way before it exploded [67]. Subsequent
studies following the McDonnell-Douglas DC-10 crash showed that the crash could
have been avoided [75]. In the last minutes of the Ariane 5 crash the normal alti-
tude information had been replaced by some diagnostic information that the control
system was not designed to understand [67]. Fortunately, there are also examples,
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Fig. 2.1 According to their location, faults are classified into sensor, actuator and component
faults.

which show that taking appropriate measures can indeed prevent disasters (see also
Chapter 1):

1. A McDonnell-Douglas DC-10 aircraft executing flight 232 of UNITED AIR-
LINES from Denver to Minneapolis experienced a disastrous failure in the hy-
draulic lines that left the plane without any control surfaces at 37,000 ft. The
crew then improvised a control strategy that used only the throttles of the two
wing engines and managed to successfully crash-land the plane in Sioux City,
Iowa, saving the lives of 184 out of the 296 passengers on board [66].

2. In the DELTA AIRLINES flight 1080 an elevator became jammed at 19 degrees.
The pilot was not given any indication of what had actually occurred but still
was able to reconfigure the remaining lateral control elements to land the aircraft
safely [75].

All these examples clearly motivate the need for increased fault-tolerance in order
to improve to the maximum possible extent the safety, reliability and availability of
controlled systems. This is particularly true as modern systems become increasingly
complex. The examples above also explain the large amount of research in the field
of fault detection, diagnosis and fault-tolerant control. An overview of this research
is provided in this chapter.

2.2 Fault Classification

Faults are events that can take place in different parts of the controlled system. In
the FTC literature faults are classified according to their location of occurrence in
the system (see Figure 2.1).

Actuator faults: they represent partial or total (complete) loss of control action.
An example of a completely lost actuator is a “stuck” actuator that produces no
(controllable) actuation regardless of the input applied to it. Total actuator faults
can occur, for instance, as a result of a breakage, cut or burned wiring, short cir-
cuits, or the presence of a foreign body in the actuator. Partially failed actuators
produce only a part of the normal (i.e. under nominal operating conditions) actu-
ation. This can result from hydraulic or pneumatic leakage, increased resistance
or a fall in the supply voltage, etc. Duplicating the actuators in the system in
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order to achieve increased fault-tolerance is often not an option due to their high
prices and large size and mass.

Sensor faults: these faults represent incorrect readings from the sensors that the
system is equipped with. Sensor faults can also be subdivided into partial and
total. Total sensor faults produce information that is not related to the value of
the measured physical parameter. They can be due to broken wires, lost contact
with the surface, etc. Partial sensor faults produce readings that are related to the
measured signal in such a way that useful information could still be retrieved.
This can, for instance, be a gain reduction so that a scaled version of the signal
is measured, a biased measurement resulting in a (usually constant) offset in the
reading, or increased noise. Due to their smaller sizes sensors can be duplicated
in the system to increase fault tolerance. For instance, by using three sensors to
measure the same variable one may consider it reliable enough to compare the
readings from the sensors to detect faults in (one and only one) of them. The so-
called “majority voting” method can then be used to pinpoint the faulty sensor.
This approach usually implies significant increases in the related costs.

Component faults: these are faults in the components of the plant itself, i.e. all
faults that cannot be categorized as sensor or actuator faults will be referred to as
component faults. These faults represent changes in the physical parameters of
the system, e.g. mass, aerodynamic coefficients, damping constant, etc., that are
often due to structural damage. They often result in a change in the dynamical
behaviour of the controlled system. Due to their diversity, component faults cover
a very wide class of (unanticipated) situations, and as such are the most difficult
ones to deal with.

Further, with respect to the way faults are modelled, they are classified as ad-
ditive and multiplicative, as depicted in Figure 2.2. Additive faults are suitable for
representing component faults in the system, while sensor and actuator faults are in
practice most often multiplicative by nature.

Faults are also classified according to their time characteristics (see Figure 2.3)
as abrupt, incipient and intermittent. Abrupt faults occur instantaneously often as a
result of hardware damage. They can be very severe since, if they affect the perfor-
mance and/or the stability of the controlled system, prompt reaction from the FTC
system is required. Incipient faults represent slow parametric changes, often as a re-
sult of aging. They are more difficult to detect due to their slow time characteristics,
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Fig. 2.2 According to their representation, faults are divided into additive and multiplicative.
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Fig. 2.3 With respect to their time characteristics faults can be abrupt, incipient and
intermittent.

but are also less severe. Finally, intermittent faults are faults that appear and disap-
pear repeatedly, for instance due to partially damaged wiring.

2.3 Modelling Faults

As already mentioned in Section 2.2, faults are often represented as additive or mul-
tiplicative adjustments to the nominal behaviour. In this section we further concen-
trate on the mathematical representation of these faults and will provide a discussion
on when and why one representation is more appropriate than the other.

Throughout this chapter the state-space representation of dynamical systems is
used, so that the relation from the system inputs u ∈ R

m to the measured outputs
y ∈ R

p is written in the form

Snom :

{
xk+1 = Axk + Buk

yk = Cxk + Duk,
(2.1)

where xk ∈ R
n denotes the state of the system at time instance k, and A, B, C and D

are matrices (possibly time-varying) of appropriate dimension.

2.3.1 Multiplicative Faults

Multiplicative modelling is mostly used to represent sensor and actuator faults.
Actuator faults represent malfunctioning of the actuators of the system, for ex-

ample as a result of hydraulic leakages, broken wires, or stuck control surfaces in
an aircraft. Such faults can be modelled as an abrupt change of the nominal control
action from uk to

u f
k = uk +(I −ΣA)(ū− uk), (2.2)

where ū ∈ R
m is a (not necessarily constant) vector that cannot be manipulated, and

where
ΣA = diag{[σa

1 , σa
2 , . . . , σa

m

]}, σa
i ∈ R.

In this way σa
i = 0 represents a total fault (i.e a complete failure) of the i-th actuator

of the system so that the control action coming from this i-th actuator becomes
equal to the i-th element of the uncontrollable offset vector ū, i.e. u f

k (i) = ū(i). On
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the other hand, σa
i = 1 implies that the i-th actuator operates normally (u f

k (i) = u(i)).
The quantities σa

i , i = 1,2, . . . ,m can also take values in between 0 and 1, making it
possible to represent partial actuator faults. Substituting the nominal control action
uk in equation (2.1) with the faulty u f

k results in the following state-space model

Smult,a f :

{
xk+1 = Axk + BΣAuk + B(I −ΣA)ū

yk = Cxk + DΣAuk + D(I −ΣA)ū.
(2.3)

Models in the form (2.3) are referred to as multiplicative fault models and have been
widely used in the literature (see, for example [86, 73]).

It needs to be noted that while such multiplicative actuator faults do not directly
affect the dynamics of the controlled system itself, they can significantly affect the
dynamics of the closed-loop system, and may even affect the controllability of the
system. Figure 2.4 presents a simple example with a 50% actuator fault that results
in instability of the closed-loop system. In the example of Figure 2.4 a system con-
sisting of the transfer function S(s) = 1/(s−1) is controlled by a PI controller with
transfer function C(s) = 1.5 + 5

s , so that a sinusoidal reference signal is tracked un-
der normal operating conditions (i.e. during the first 20 seconds of the simulation).
At time instance t = 20 sec, a 50% loss of control effectiveness is introduced and
as a result the closed-loop system stability is lost. This example makes it clear that
even “seemingly simple” faults may significantly degrade the performance and can
even destabilize the system.

Similarly, sensor faults occurring in the system (2.1) represent incorrect reading
from the sensors, so that as a result the real output of the system yreal

k differs from
the variable being measured. Multiplicative sensor faults can be modelled in the
following way

y f
k = yk +(I −ΣS)(ȳ− yk), (2.4)

where ȳ ∈ R
p is an offset vector, and

ΣS = diag{[σ s
1, . . . , σ s

p

]}, σ s
i ∈ R,

so that σ s
j = 0 represents a total fault of the j-th sensor, and σ s

j = 1 models the
normal mode of operation of the j-th sensor. Partial faults are then modelled by tak-
ing σ s

j ∈ (0, 1). Substitution of the nominal measurement yk in (2.1) with its faulty

counterpart y f
k results in the following state-space model that represents multiplica-

tive sensor faults

Smult,s f :

{
xk+1 = Axk + Buk

yk = ΣSCxk +ΣSDuk +(I −ΣS)ȳ.
(2.5)

In this way, combinations of multiplicative sensor and actuator faults are represented
in the following way

Smult :

{
xk+1 = Axk + BΣAuk + b(ΣA, ū)

yk = ΣSCxk +ΣSDΣAuk + d(ΣA,ΣS, ū, ȳ), (2.6)
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Fig. 2.4 After a multiplicative fault the system may become unstable if no reconfiguration
takes place.

with
b(ΣA, ū) = B(I −ΣA)ū,
d(ΣA,ΣS, ū, ȳ) = ΣSD(I −ΣA)ū+(I −ΣS)ȳ.

The multiplicative model is thus a “natural” way to model a wide variety of sensor
and actuator faults, but cannot be used to represent more general component faults.
This fault model representation is most often used in the design of the controller
reconfiguration scheme of an active FTC system since for controller redesign one
usually needs the state-space matrices of the faulty system.

2.3.2 Additive Faults

The additive faults representation is more general than the multiplicative one. A
state-space model with additive faults has the form

Sadd :

{
xk+1 = Axk + Buk + F fk

yk = Cxk + Duk + E fk,
(2.7)

where fk ∈ R
n f is a signal describing the faults. This representation may, in prin-

ciple, be used to model a wide class of faults, including sensor, actuator, and



54 M. Verhaegen et al.

signal

fault

faulty

signal
+

additive fault

signal

constant

scaling

faulty

signal

multiplicative fault

x

f(x)

+

constant

offset

Fig. 2.5 Using additive fault representation to model total sensor (or actuator) faults results
in a fault signal that depends on yk (uk). This is not the case with the multiplicative model
where the fault magnitude and the offset are independent on the signals in the state-space
model.

component faults. Using model (2.7), however, often results in the signal fk becom-
ing related to one or more of the signals uk, yk and xk. For instance, when using this
additive fault representation to model a total fault in all actuators (ΣA = 0 and ū = 0
in equation (2.2)) then in order to make model (2.7) equivalent to model (2.3) one

needs to take a signal fk such that
[

F
E

]
fk = −

[
B
D

]
uk holds, making fk dependent

on uk. Clearly, the fault signal being a function of the control action is not desirable
for controller design. On the other hand, fk is independent of uk when multiplicative
representation is utilized. Figure 2.5 illustrates this.

Another disadvantage of the additive model when used to represent sensor and
actuator faults is that, in terms of input-output relationships, these two faults become
difficult to distinguish. Indeed, suppose that the model

xk+1 = Axk + Buk + f a
k

yk = Cxk + Duk + f s
k ,

is used to represent faults in the sensors and actuators. By writing the corresponding
transfer function

y(z) = (C(zI − A)−1B + D)uk +C(zI − A)−1 f a
k + f s

k ,

it becomes clear that the effect of an actuator fault on the output of the system can
be modelled not only by the signal f a

k , but also by f s
k .

An advantage is, as already mentioned, that the additive representation can be
used to model a more general class of faults than multiplicative ones. In addition, it
is more suitable for the design of FDD schemes because the faults are represented
by one signal rather than by changes in the state-space matrices of the system as is
the case with the multiplicative representation. For that reason the majority of FDD
methods are focused on additive faults [33, 3, 57].

2.3.3 Component Faults

The class of component faults was defined in Section 2.2 as the most general as it
includes faults that may bring changes in practically any element of the system. It
was defined as the class of all faults that cannot be classified as sensor or actuator
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faults. A component fault may introduce changes in each matrix of the state-space
representation of the system due to the fact they may all depend on the same physical
parameter that undergoes a change. Component faults are often modelled in the form
of a linear parameter-varying (LPV) system

xk+1 = A( f )xk + B( f )uk

yk = C( f )xk + D( f )uk,
(2.8)

where f ∈ R
n f is a parameter vector representing the component faults. It should be

noted that this model might also be used for modelling sensor and actuator faults.
Due to the fact the matrices may depend in a general, nonlinear, way on the fault
signal fk this model is less suitable for fault detection and diagnosis.

2.4 Main Components in an FTC System

FTC systems are generally divided into two classes: passive and active. Passive FTC
systems are based on robust controller design techniques and aim at synthesizing a
single, robust controller that makes the closed-loop system insensitive to anticipated
faults. This approach requires no online detection of the faults, and is therefore
computationally more attractive. Its applicability, however, is very restricted due to
its serious disadvantages:

• In order to achieve robustness to faults, usually a very restricted subset of the
possible faults can be considered; often only faults that have a “small effect” on
the behaviour of the system can be treated in this way.

• Achieving increased robustness to certain faults is only possible at the expense of
decreased nominal performance. Since faults are effects that happen very rarely it
is not reasonable to significantly degrade the fault-free performance of the system
only to achieve some insensitivity to a restricted class of faults.

However, using passive FTC systems can also have its advantages. One advantage
is that a fixed controller has relatively modest hardware and software requirements.
Another advantage is that passive FTC systems, due to their lower complexity com-
pared to active FTC systems, can be made more reliable according to classical reli-
ability theory [84]. Examples of passive FTC systems can be found in [61, 72, 97].

As opposed to passive methods, the active approach to the design of FTC systems
is based on controller redesign, or selection/mixing of predesigned controllers. This
technique usually requires a fault detection and diagnosis (FDD) scheme that has the
task of detecting and localizing the faults if they occur in the system. The structure
of an active FDD-based FTC system is presented in Figure 2.6. The FDD part uses
input-output measurement from the system to detect and localize the faults. The
estimated faults are subsequently passed to a reconfiguration mechanism (RM) that
changes the parameters and/or the structure of the controller in order to achieve an
acceptable post-fault system performance.

Depending on the way the post-fault controller is formed, active FTC methods
are further subdivided into projection-based methods and on-line redesign methods.
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Fig. 2.6 Main components of an active FTC system.

The projection based methods rely on the controller selection from a set of off-line
predesigned controllers. Usually each controller from the set is designed for a partic-
ular fault situation and is switched on by the RM whenever the corresponding fault
pattern has been diagnosed by the FDD scheme. In this way only a restricted, finite
class of faults can be treated. The on-line redesign methods involve on-line compu-
tation of the controller parameters, referred to as reconfigurable control, or recalcu-
lation of both the structure and the parameters of the controller, called restructurable
control. Comparing the achievable post-fault system performances, the on-line re-
design method is superior to the passive method and the off-line projection-based
method. However, it is computationally the most expensive method as it often boils
down to on-line optimization.

There are a number of important issues when designing active FTC systems.
Probably the most significant one is the integration between the FDD part and the
FTC part. The majority of approaches in the literature are focused on one of these
two parts by either considering the absence of the other or assuming that it is perfect.
To be more specific, many FDD algorithms do not consider the closed-loop oper-
ation of the system and, conversely, many FTC methods assume the availability of
perfect fault estimates from the FDD scheme. The interconnection of such methods
is potentially infeasible and there can be no guarantees that a satisfactory post-fault
performance, or even stability, can be maintained by such a scheme. It is therefore
very important that the designs of the FDD and FTC, when carried out separately,
are each performed bearing in mind the presence and imperfections of the other. For
making the interconnection possible, one should first investigate what information
from the FDD is needed by the FTC, as well as what information can actually be
provided by the FDD scheme. Imprecise information from the FDD that is incor-
rectly interpreted by the FTC scheme might lead to a complete loss of stability of
the system.

The usual situation in practice is that after the occurrence of a fault in the sys-
tem there is initially not enough information in terms of input/output measurements
from the system to make it possible for the FDD scheme to diagnose the fault. For
this reason, only after some time elapses and more information becomes available
can the FDD scheme detect that a fault has occurred. Even more time is required to
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localize the fault and its magnitude. As a result, the information that is provided
to the FTC part is initially more imprecise (i.e. with larger uncertainty), and it gets
more and more accurate (with less uncertainty) as more data becomes available from
the system. The FTC scheme should be able to deal with such situations. There-
fore, the FTC should necessarily be capable of dealing with uncertainty in the FDD
information/estimates, and should perform satisfactorily (guaranteeing at least the
stability) during the transition period that the FDD scheme needs to diagnose the
fault(s).

Very often the dynamics of real physical systems cannot be represented accu-
rately enough by linear dynamical models so that nonlinear models have to be used.
This necessitates the development of techniques for FTC system design that can
explicitly deal with nonlinearities in the mathematical representation of the system.
Nonlinearities are, in fact, very often encountered in the representations of complex
safety-critical controlled systems like aircraft and spacecraft. To reduce the inherent
complexity of the control design, it is usual that the lateral and longitudinal dy-
namics of an aircraft are decoupled so that they have no effect on each other. This
significantly simplifies the model of the aircraft and makes it possible to design the
corresponding controllers independently. This decoupling condition can approxi-
mately be achieved for a healthy aircraft, but certain faults can easily destroy it, so
that the two controllers could not be considered separately.

An important issue in FTC system design is that even for a fixed operating re-
gion, where a nonlinear system allows approximation by a linear model, it is very
difficult to obtain an accurate linear representation, either due to the fact that the
physical parameters in the nonlinear model are not exactly known or because they
vary with time. Even the nonlinear model is often derived after some simplifying
assumptions, so that it only approximates the behaviour of the system. Even more,
this uncertainty is further increased due to the linearization that basically consists
in truncating second and higher order terms in the Taylor series expansion of the
nonlinear function. As a result only a representation with uncertainty is available.
It is important that the FTC system is designed to be robust to such uncertainties
within the model.

Another very important issue is that every real-life controlled system has control
action saturation, i.e. the input and/or output signals cannot exceed certain values.
In the design phase of a control system usually the effect of the saturation is ac-
commodated by making sure that the control action will not get overly active and
will remain inside the saturation limits under normal operating conditions. Faults,
however, can have the effect that the control action stays at the saturation limit. For
instance, when a partial 50% loss of effectiveness in an actuator has been diagnosed,
a standard and easy way to accommodate the fault is to re-scale the control action
by two so that the resulting actuation approximates the fault-free actuation. As a
result the control action becomes twice as big and may go to the saturation lim-
its. Clearly, in such situations one should not try to completely accommodate the
fault but one should be willing to accept certain performance degradation imposed
by the saturation. In other words, a trade-off between achievable performance and
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available actuator capability might need to be made after the occurrence of a fault.
This situation is often referred to as graceful performance degradation [95].

2.5 FTC Problem Formulation

The dynamics of a real-life physical system can be represented in state-space in the
following general form

S(pk) :

⎧⎨
⎩

xk+1 = f (xk,uk, pk),
yk = h(xk,uk, pk),
x0 = x̂0,

(2.9)

where the vector xk ∈ X ⊆ R
n represents the state of the system S(pk), uk ∈ U ⊆

R
m+nξ represents the inputs to the system, yk ∈ R

p+nz denotes the outputs of the
system. At each time instance t the system S(pk) is parameterized by a (possibly
unknown) parameter vector pk ∈ P ⊆ R

np . The vector pk may represent uncertain
physical parameters in the system or system faults.

Nonlinear models of systems are in general inconvenient to work with due to their
complexity and due to the lack of a well-developed theory for analysis and synthe-
sis for general nonlinear models. The usual strategy to deal with them is either by
approximating them with more convenient models (e.g. by means of blending of a
set of local linear models as in the multi-model and in the Fuzzy control theories) or
by assuming certain structure (e.g. bilinear systems, Hammerstein-Wiener systems,
linearity in the input, etc.).

In the multiple model approach the state space X is divided into N represen-
tative and disjoint regions Xi, with

⋃N
i=1 Xi ≡ X , and in each region a point

(x(i),u(i)) ∈ Xi ×U is chosen around which the nonlinear system S(pk) is approx-
imated by a linear model. Under the assumption that f (·),g(·) ∈ C1, the local linear
approximation Mi(pk) of the system S(pk) within the open-ball neighbourhood

B(x(i),u(i)) =
{

(x,u) ∈ X ×U :

∥∥∥∥
[

x − x(i)

u − u(i)

]∥∥∥∥
2

< ε
}

,

is called the pk-parameterized local linear model

Mi(pk) :

⎧⎪⎨
⎪⎩

x(i)
k+1 = Ai(pk)x

(i)
k + Bi(pk)uk + bi(pk),

y(i)
k = Ci(pk)x

(i)
k + Di(pk)uk + ci(pk),

x(i)
0 = x̄0,

with
Ai(pk) = ∂x f (x(i),u(i), pk), Bi(pk) = ∂u f (x(i),u(i), pk)
Ci(pk) = ∂xh(x(i),u(i), pk), Di(pk) = ∂uh(x(i),u(i), pk)
bi(pk) = f (x(i),u(i), pk)− A(pk)x(i) − B(pk)u(i)

ci(pk) = h(x(i),u(i), pk)−C(pk)x(i) − D(pk)u(i),
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where ∂x f , ∂u f , ∂xh, and ∂uh represent the partial derivatives of the functions f (·)
and h(·) with respect to the vectors x and u.

Each local linear model Mi(pk) describes the behaviour of the nonlinear system
within one regime Xi. A global approximation can then be formed by interpolating
the local models using smooth interpolation functions φi(xk,uk, pk) > 0 that depend
on the operating point (xk,uk) as well as on the parameter vector pk, i.e.

ŷk =
N

∑
i=1

μ (i)
k y(i)

k , with μ (i)
k =

φi(xk,uk, pk)
∑N

i=1 φi(xk,uk, pk)
. (2.10)

Such approximations are widely used in the literature (see, for instance, [47]).
In fact it is shown in [46] that, under certain smoothness properties, the nonlinear
system S(pk) can be approximated to any desired accuracy on a compact subset of
the state and input spaces by means of the representation (2.10) for a sufficiently
large number of local models.

The multiple model representation (2.10) is both intuitive and attractive, and is

related to the Takagi-Sugeno fuzzy model, where the weights μ(i)
k in the linear com-

bination of the local outputs are called degrees of membership.
Suppose that the parameter vector pk is formed by two vectors, δk ∈ Δ ⊆ R

nδ and
fk ∈ F ⊆ R

n f , so that

pk =
[
δk

fk

]
, (2.11)

where the vector δk is used to represent unknown, time-varying physical parameters
of the system, and where the vector fk represents faults in the system. For consis-
tency in terms of dimensions nδ + n f = np. While both vectors are unknown, the
fault vector fk is assumed to be estimated by an FDD scheme, and its estimate is
denoted here as f̂k . Let δ0 ∈ Δ represent the nominal values of the uncertain param-
eters, and f0 ∈ F represent the fault-free mode of operation.

Collect all local models Mi(pk) into a model set

M (pk) = {M1(pk),M2(pk), . . . ,MN(pk)} , (2.12)

and consider only one element of the set M (pk) which, due to (2.11), is denoted as
M(δ , f ). For simplicity of notation, the time symbol is omitted in M(δ , f ).

The following objectives are considered:

• passive robust FTC: design one controller K that achieves some desired perfor-
mance for the model M(δ , f ) for all possible uncertainties δk ∈ Δ and faults
fk ∈ F ,

• active robust FTC: given an estimate f̂ of the fault vector f by some FDD
scheme, design a controller K( f̂ ) that achieves some desired performance for
the model M(δ , f ) for all possible uncertainties δk ∈ Δ and faults fk ∈ F ,

• active MM-based FTC: design a controller that achieves some desired perfor-
mance for the nonlinear system S(pk) for some fixed δk = δ0 ∈ Δ (i.e. in the case
of no uncertainty) and for all possible faults fk ∈ F .
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Fig. 2.7 Partitioning of the model M(δ , f ) and forming the closed-loop with the
controller K.

A natural continuation of this research activity is to combine the MM-based repre-
sentation of the nonlinear system with the passive and active approaches to FTC in
an attempt to deal with nonlinear systems with uncertainty as in (2.9).

We will next provide some technical insight into the above objectives. Suppose
that a continuous map, the performance index, is given by

J : Rnz×nξ �→ R
+,

such that J(M) = ∞ for any M �∈ RH ∞, where Rnz×nξ denotes the set of rational
transfer nz × nξ matrices, and RH ∞ denotes the set of stable real rational transfer

matrices. Let M(δ , f ) ∈ R(p+nz)×(m+nξ ) be partitioned as follows

M(δ , f ) =
[

M11(δ , f ) M12(δ , f )
M21(δ , f ) M22(δ , f )

]
,

where, as depicted in Figure 2.7, the subsystem M22(δ , f ) ∈ R p×m gives the re-
lationships between the control actions and the measured output signals, and the
subsystem M11(δ , f ) ∈ Rnz×nξ describes the relationships between all exogenous
inputs (such as noises, disturbances, reference signals) and the regulated (controlled)
outputs that are related to the performance of the system (e.g. tracking errors). The
feedback interconnection of the model M(δ , f ) with some controller K ∈ Rm×p is
represented by the lower linear fractional transformation

FL(M(δ , f ),K) = M11(δ , f )+ M12(δ , f )K(I − M22(δ , f )K)−1M21(δ , f ).

For a fixed controller K, the performance of the resulting closed-loop is therefore
represented by J(FL(M(δ , f ),K)).
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2.5.1 Passive Fault Tolerant Control

The passive robust FTC problem is then defined as the following optimization
problem

Passive FTC:
KP = argmin

K
sup
δ ∈ Δ
f ∈ F

J(FL(M(δ , f ),K)).
(2.13)

In this way a controller needs to be found that minimizes the worst-case performance
over all possible values for the uncertainty vector δ and the fault vector f . This
problem is considered in [51] where methods are developed for robust controller
design in the presence of structured uncertainty.

In practice, two main difficulties arise with the optimization problem (2.13), both
being related to convexity. In the case when the state vector xk is directly mea-
sured (or, equivalently, when yk = xk), the optimization problem (2.13) is convex in
the controller parameters for many standard performance indices (e.g. J(·) = ‖ · ‖2,
J(·) = ‖ ·‖∞, etc.) provided that the set {M(δ , f ) : δ ∈ Δ , f ∈ F} is a convex poly-
tope. In such cases (2.13) can be represented as a linear matrix inequality (LMI)
optimization problem, for which there exist very efficient and computationally fast
solvers. If M(δ , f ) is not a convex set, however, the original problem (2.13) is also
nonconvex and the LMI solvers cannot be used. A “brute force” way to deal with
this problem is to embed the set M(δ , f ) into a convex set. This, however, intro-
duces unnecessary conservatism that for some problems might be unacceptable or
undesirable.

In order to deal with such problems a probabilistic design approach is proposed
in [51] that is basically applicable for any bounded set M(δ , f ), as long as (2.13) can
be rewritten as a robust LMI optimization problem (as for most state-feedback con-
troller design problems). This method is basically an iterative algorithm that at each
iteration generates a random uncertainty sample for which an ellipsoid is computed
with the properties that (a) it contains the solution set (the set of all solutions to the
robust LMI problem), (b) it has a smaller volume than the ellipsoid at the previous
iteration. The approach is proved to converge to the solution set in a finite number
of iterations with probability one.

In the output-feedback case the probabilistic method described in [51] cannot be
directly applied because the optimization problem (2.13) cannot be rewritten as a
robust LMI optimization problem. The reason for that is that the output-feedback
problem in the presence of uncertainty is a bilinear matrix inequality (BMI) prob-
lem, and BMI problems are not convex. Actually, such problems have been shown
to be NP-hard meaning that they cannot be expected to have polynomial time com-
plexity. A local BMI optimization approach is developed in [51] that is guaranteed
to converge to a local optimum of the cost function J(FL(M(δ , f ),K)).
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2.5.2 Active Fault Tolerant Control

Whenever an estimate f̂ of the fault vector f is provided by some FDD scheme, and
if the imprecision in this estimate is described by an additional uncertainty Δ f ∈ Δ f

so that f = (I +Δ f ) f̂ , the active robust FTC can be defined as the problem:

given f = (I +Δ f ) f̂ , evaluate
K̃A( f̂ ) = argmin

K( f̂ )
sup
δ ∈ Δ
Δ f ∈ Δ f

J(FL(M(δ , f ),K( f̂ ))). (2.14)

The resulting controller would, in this way, be scheduled by the fault estimate f̂
and will be robust with respect to uncertainties both in the model M(δ , f ) and in
the estimate of f . Clearly, the way in which the scheduling parameter f̂ enters the
controller needs to be assumed before one could proceed with the optimization.

In the above, Δ f represents the FDD uncertainty that, as already discussed, usu-
ally increases after the occurrence of a fault. This will then subsequently decrease
as the FDD scheme refines the estimate based on the availability of more input-
output data from the impaired system. As a result the “maximal uncertainty” is only
active for some relatively short periods of time compared with the lifetime of the
system. Therefore, assuming a maximal uncertainty size during the complete op-
eration might be overly conservative since the robust controller effectively trades
off performance for increased robustness to uncertainties. Hence, it is interesting to
allow the controller to deal with an FDD uncertainty with time-varying size. To this
end, however, the FDD scheme should be capable of providing not only an estimate
of the fault but also an upper bound on the magnitude of the uncertainty on this
estimate. The size of the FDD uncertainty might, for instance, be represented by a
scalar γ f (k) such that fk = (I + γ f (k)Δ̄ f ) f̂k with ‖Δ̄ f ‖2 ≤ 1. In this way the size
of the uncertainty set is allowed to vary with time. In fact γ f (k) might be a vector
to make it possible to assign different uncertainty sizes on the different entries of
the fault vector fk. Therefore, provided that the FDD scheme produces ( f̂k,γ f (k)) at
each time instance, the achievable performance in (2.14) may further be improved
by computing the controller by solving the following optimization problem

Active FTC:
given f = (I + γ f Δ̄ f ) f̂ , evaluate
KA( f̂ ,γ f ) = arg min

K( f̂ ,γ f )
sup
δ ∈ Δ
Δ̄ f ∈ Δ̄ f

γ f ≤ γ f ≤ γ̄ f

J(FL(M(δ , f ),K( f̂ ,γ f ))), (2.15)

where Δ̄ f = {Δ ∈ Δ f : ‖Δ‖ ≤ 1}, and where the vectors {γ f , γ̄ f }, assumed known
a-priori, define a lower and an upper bound on the possible uncertainty sizes. In this
way methods can be developed for the design of robust active FTC for one uncertain
local model M(δ , f ). The robust active FTC design problem is considered in [51].
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Fig. 2.8 Classification of approaches to reconfigurable flight control.

2.6 State-of-the-Art in Fault Tolerant Flight Control

In this section an overview of the existing work in the area of fault tolerant control
is given, an area that has been gaining increasing attention in the aerospace com-
munity in recent years. Some overview books and papers in the field of FTC are
[36, 45, 5, 96].

Due to their improved performance and their ability to deal with a wider class of
faults, active FTC methods have gained much more attention in the literature than
the passive FTC methods. In the following, a survey is given focussed on current
active FTC methods of which several have been evaluated within this GARTEUR
action group. The survey starts with a classification of the described and evaluated
FTC methodologies to approach the problem of reconfigurable flight control.

2.6.1 Classification of Reconfigurable Control

Many methods have been proposed to solve the problem of fault tolerant control. As
shown in Figure 2.8 they fall into two main categories: active and passive.

Passive methods are essentially robust control techniques which are suitable
for certain types of structural failures that can be modelled as uncertainty regions
around a nominal model. Any failure which doesn’t push the system outside of the
stability radius given by the robust controller will still have satisfactory stability and
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performance guarantees. However, any controller with a large enough stability ra-
dius to encompass most failure situations will likely be unnecessarily conservative
and there is no guarantee that unanticipated or multiple failures could be handled
or even that such a controller exists. There are also many types of common fail-
ures, such as actuator or sensor faults, which cannot be adequately modelled as
uncertainty. These problems motivate the need for a controller which more directly
addresses the situation.

The active methods differentiate themselves from passive approaches in that they
take fault information explicitly into account and do not assume a static nominal
model. Reconfigurable flight control is for the most part still an academic notion.
Although there have been very few controllers implemented on physical systems
and none on commercial aircraft, over the last 20 years several research programs
have been formed to investigate their potential and as a result there are a variety of
active methods. The following sections give an overview of each approach.

2.6.2 Multiple Model Control

The multiple model (MM) method is an active approach to FTC that belongs to the
class of projection based methods rather than to the on-line re-design methods. The
MM method is frequently used for FDD/FTC purposes [92, 78, 27, 37]. The MM
method is based on a finite set of linear models Mi, i = 1,2, . . . ,N that describe the
system in different operating conditions, i.e. in the presence of different faults in the
system. For each such local model Mi a controller Ci is designed (off-line). The key
in the design is to develop an on-line procedure that determines the global control
action through a (probabilistically) weighted combination of the different control
actions that can be taken. The control action weighting is usually based on a bank
of Kalman filters, where each Kalman filter is designed for one of the local models
Mi. On the basis of the residuals of the Kalman filters, the probability 1 ≥ μi ≥ 0 of
each model to be in effect, is computed. The control action is then computed as the
weighted combination

u(k) =
N

∑
i=1

μi(k)ui(k),
N

∑
i=1

μi = 1, (2.16)

where ui(k) is the control action produced by a controller designed for the i-th local
model.

The multiple model method is a very attractive tool for modelling and control of
nonlinear systems. However, these approaches usually only consider a finite number
of anticipated faults and proceed by building one local model for each anticipated
fault. In this way, at each time instance only one model, say model Mi, is assumed to
be in effect, so that its corresponding weight μi is approximately equal to unity and
all the other weights μ j, j �= i are close to zero. In such cases at each time instance
one local controller is “active”, namely the one corresponding to the model Mi that is
in effect. The disadvantage here is that if the current model is not in the predesigned
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Fig. 2.9 Multiple Model Switching and Tuning

model set and is instead formed by some convex combination of the local models in
the model set (representing, for instance, unanticipated faults) then, in general, the
control action (2.16) is not the optimal one for this model. It can easily be shown
that forming the global control action as in (2.16) can even lead to instability of the
closed-loop system. In order to avoid that when dealing with unanticipated faults,
an approach is proposed in [51] that uses a bank of predictive controllers and forms
the global control action in an optimal way, so that the optimal control action for the
current model is used at each time instance instead of (2.16). Another disadvantage
of the MM approaches is that model uncertainties, as well as uncertainties in the
weights μi(k), cannot be considered.

There are three types of reconfigurable control that fall under the heading of
multiple model control: Multiple Model Switching and Tuning (MMST), Interact-
ing Multiple Model (IMM) and Propulsion Controlled Aircraft (PCA). In the first
two cases all expected failure scenarios are enumerated during a Failure Modes and
Effects Analysis (FMEA) and fault models constructed which cover each situation.
When a failure occurs, MMST switches to a pre-computed control law correspond-
ing to the current failure situation. Rather than using the model which is closest to
the current failure scenario, IMM computes a fault model as a convex combination
of all pre-computed fault models and then uses this new model to make control
decisions. PCA is a special case of MMST, where the only anticipated fault is a
total hydraulics failure, and in this case only the engines are used for control. The
following sections discuss these three approaches.
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Fig. 2.10 Single Model vs. Multiple Model Adaptation

2.6.2.1 Multiple Model Switching and Tuning (MMST)

Although the idea of multiple model control has been around for many years, it
has seen some interest in the reconfigurable control literature in the last few years
[13, 34, 14, 10, 11, 12, 53, 25]. In MMST, the dynamics of each fault scenario is
described by a different model. These models are referred to as the identification
models [13] and are setup in parallel, with each one having a corresponding con-
troller as shown in Figure 2.9. The problem then becomes one of choosing which
model/controller pair to switch to at each time instant.

Figure 2.10 helps to motivate the use of MMST in reconfigurable control systems.
During a failure the plant is assumed to move from some nominal model P0 to a
failure model Pf some distance away in parameter space. The top half of the figure
shows an adaptive control scheme which is using only a single model, and the lower
a MMST method. For certain plants, the MMST converges to the correct fault model
faster than a single model approach.

Consider a system of the form

P =
{

ẋ = A0(p(t))x + B0(p(t))u
y = C0(p(t))x (2.17)
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where x ∈ R
n, u ∈ R

m, y ∈ R
k, A0 ∈ R

n×n, B0 ∈ R
n×m, C0 ∈ R

k×n and p(t) ∈ S ⊆ R
l

are the plant parameters. The quantity p(t) varies in time in an abrupt fashion and
represents the various failure scenarios.

Definition 6.1 (Model Set). The model set M is a set of N linear models

M : {M1, . . . ,MN}

such that

Mi :

{
ẋi = Aixi + Biu
yi = Cixi

where model Mi corresponds to a particular set of parameters pi ∈ S .

A stabilizing controller Ki is designed for each model Mi ∈ M .
The control law proceeds as follows. At each time step, the model which is closest

to the current system is determined by computing a performance index Ji(t), which
is a function of the errors ei(t) between the estimated outputs of model Mi and the
measurements at time t. A commonly used index is [71]

Ji(t) = αe2
i (t)+β

∫ t
0 e−λ (t−τ)e2

i (τ)dτ
α ≥ 0,β > 0,λ > 0

where α and β are chosen to give a desired combination of instantaneous and long-
term accuracy measures. The forgetting factor λ ensures the boundedness of Ji(t)
for bounded ei. The model/controller, Mi/Ki with the smallest index is switched to
and a waiting period of Tmin > 0 is allowed to pass in order to prevent arbitrarily fast
switching. Most MMST algorithms include a ‘tuning’ part which occurs during the
period while a controller Ki is active, during which time the parameters of the cor-
responding model, and only the corresponding model Mi, are being updated using
an appropriate identification technique (e.g. [2]).

Recent interest in this approach arises from the following stability result:

Theorem 6.2 [71]. Consider the switching and tuning system described above,
where the N models are all fixed and the proposed switching scheme is used with β ,
λ , Tmin > 0, and α ≥ 0. Then, for each plant with parameter vector p ∈ S , there is
a positive number TS and a function μS (p,Tmin) > 0, such that if:

• the waiting time Tmin ∈ (0,TS )
• there is at least one model Mi with parameter error ||p̂i − p|| < μS (p,Tmin)

then all the signals in the overall system, as well as the performance indices {Ji(t)},
are uniformly bounded. Here TS depends only upon S , and μS also depends upon
α,β ,λ and S .

In essence, Theorem 6.2 states that the MMST system is stable if the set of models
Mi is dense enough in the parameter space S and the sampling rate Tmin is fast
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enough. How dense and how fast depend on the particular system and Theorem 6.2
gives no insight into the selection of M or Tmin.

Despite the limitations of Theorem 6.2, there are several papers which have ap-
plied these methods. In [13, 10, 11, 12] a MMST controller is developed for the
highly over-actuated tailless advanced fighter aircraft (TAFA). Eleven fault models
are required to cover the scenario of right wing damage ranging from 0% to 100%
and a switching interval of 25ms is needed for stability. Clearly, this approach will
not scale well to the situation where more than one failure, or multiple failures are
considered. Ref. [14] describes a MMST scheme which can handle locked, floating,
hard-over or loss of effectiveness actuator failures for an F-18 aircraft carrier land-
ing manoeuvre. Only five models are needed for satisfactory performance, but again,
multiple failures cannot be accommodated. Ref. [13] introduced a new method of
failure parameterizations for jammed actuators, enabling multiple complete failures
of control surfaces for an F-18 to be handled using a large number of simple models.

For systems with relatively few and well understood failure modes, multiple
model switching and tuning has advantages in being fast and provably stable. How-
ever, the main limitation is that there may be failure scenarios that were not mod-
elled, which would likely be the case for multiple or structural failures. A severe
limitation for larger systems is that the number of models required increases expo-
nentially with the number of simultaneous failures considered.

2.6.2.2 Interacting Multiple Models (IMM)

The method of interacting multiple models (IMM) attempts to deal with the key lim-
itation of MMST, namely that every fault scenario must be modelled, by considering
fault models which are convex combinations of models in a model set.

The primary assumption of IMM is that every possible failure can be modelled as
a convex combination of models in a pre-determined model set M as defined above
in Definition 6.1

Mf =
N

∑
i=1

μiMi = μT

⎡
⎢⎣

M1
...

MN

⎤
⎥⎦ , Mi ∈ M , μi > 0 ∈ R,

N

∑
i=1

μi = 1, (2.18)

Then Mf is the system:

Mf :

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ẋ =

⎡
⎢⎢⎢⎣

A1 0 . . . 0
0 A2 . . . 0
...

...
. . .

...
0 0 . . . An

⎤
⎥⎥⎥⎦x +

⎡
⎢⎢⎢⎣

B1

B2
...

BN

⎤
⎥⎥⎥⎦u

y =
[
μ1C1 μ2C2 . . . μNCN

]
x

(2.19)
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It is still an open question how to choose this model set or when the assumption that
the failure model can be written as a convex combination of the models in the set,
is valid.

Fault detection and modelling is then done online by identifying the variables
μi in Equation (2.18). Two proposed methods exist for computing the coefficients
μ . In the first, a Kalman filter is designed for each Mi ∈ M and all filters are run
in parallel. The probability that each of these models represents the true state of
the system can be computed and the coefficients μ are set to these probabilities.
This method is named Multiple Model Adaptive Estimation (MMAE) and is used
in [68, 93]. In the second approach, the previous k f time instants are considered and
the estimated output at each point is computed as a function of μ , which is then
selected to minimize this difference. This approach is advocated in [52, 54].

Once a fault model has been identified, there are a variety of methods for con-
trol law calculation. Refs. [52] and [54] suggest a Model Predictive Control (MPC)
scheme where the minimization of the past tracking error, and therefore of μ , is in-
cluded in the cost function. Ref. [93] proposes an Eigenstructure Assignment (EA)
(see Section 2.6.6) method and [68] uses a fixed controller, using the fault model
Mf only for state estimation.

IMM is attractive in its ability to handle multiple failure scenarios by combining
single failure models. However, the requirement of finding the coefficients μ after a
failure makes this an adaptive algorithm and not a model-switching one. As a result
it loses some of the speed of the MMST approach. The formulation of IMM as an
MPC problem given in [54] also offers the potential of handling actuator constraints
naturally.

2.6.2.3 Propulsion Controlled Aircraft (PCA)

After the possibility of control using only the engine throttles was demonstrated by
the Sioux City accident (see Chapter 1), and following a recommendation from the
National Transportation Safety Board of America, the PCA problem was taken up
by the NASA Dryden Flight Research Center [16, 17] in order to provide a backup in
case of total hydraulic failure. PCA is a specific instance of a multi-model approach
where the fault model is identical to the nominal one, but in which all control sur-
faces are free floating. In 1995, a demonstration was made during which a MD-11
(Figure 2.11) and a F-15 recovered from a complete hydraulic failure and landed
successfully under propulsion-only control [18]. PCA is a useful and important idea
and solves a very practical problem. However, it clearly is not sufficient to solve the
general reconfigurable control problem.

2.6.3 Control Allocation (CA)

Control allocation is the problem of producing a desired set of forces and moments
from a (usually large) set of actuators. For example, as shown in Figure 2.12, the
output of the control law can be a set of desired moments and the job of the control
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Fig. 2.11 Landing demonstration of MD-11 Propulsion Controlled Aircraft (PCA), NASA
Dryden, 2001 (copyright NASA)

Fig. 2.12 Control Allocation scheme

allocation block is then to select appropriate setpoints for the actuators which will
produce those moments.

The control allocation algorithm takes as inputs the desired moments and an es-
timation of the input derivatives (adaptive B f matrix) from either a FDI or a system
identification algorithm. The algorithm therefore has the ability to adapt the way
actuation forces are generated from the available actuators, to the faults that have
occurred. For example, if the effectiveness of a certain actuator becomes 0% due to
a fault, the corresponding column in B f will also become 0. This actuator is then
not considered anymore by the control allocation method. Instead, the remaining
actuators can be used to generate the desired actuation forces. The goal is then to
produce the desired moments ud by selecting the appropriate inputs to the system
u. Whether this can be done depends on the difference between the size of ud ∈ R

m

and the column rank of B f ∈ R
n×k. There are three cases to consider:

• If m < k the moments can be selected exactly and the remaining degrees of free-
dom can be used (for example) to drive the actuators towards a desired position
up by minimizing [90, 15, 20]:
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1
2 ||u − up||Wp = 1

2 (u − up)TWp(u − up) where Wp = W T
p > 0

subject to Bu = ud

where Wp is a weighting matrix prioritizing critical actuators.

• If m = k then there is only one solution which places the moments exactly

u = B−1ud

• In the case when m > k there are not enough degrees of freedom to achieve ud

and so a compromise must be made by (for example) minimizing the weighted
norm

1
2
||Bu − ud||Wd

Control allocation has been heavily studied in relation to over-actuated systems
(see [29] for a survey) and has received a great deal of attention in the literature for
reconfigurable systems as it allows actuator failures to be handled without the need
to modify the control law. However, there are two major limitations to this approach
to reconfiguration. Firstly, the system will not necessarily be stable, even with a
stabilizing control law, when m > k, as the input seen by the system may not be
equal to that intended by the controller. Secondly, the dynamics and limitations of
the actuators after a failure are not taken into account in the control law. This means
that the controller will still be attempting to achieve the original system performance
even though the actuators are not capable of achieving it.

Control allocation has received considerable attention from the field of aerospace
engineering. Extensions to the simple control allocation problem presented here
have been considered in the literature. In [9] and [28] the problem of control allo-
cation with magnitude and rate limits on the actuators is considered, [24] develops
a control allocation controller for the extremely over-actuated Innovative Control
Effector (ICE) aircraft and [98] looks at restoring as much of the performance of the
original B matrix as possible after an actuator failure. Other examples of work in the
area of control allocation for aerospace applications can be found in [7] and [38].

2.6.4 Adaptive Feedback Linearization via Artificial Neural
Network

This section examines a method primarily developed by Calise et al [42, 48, 41,
19, 21, 90, 20] involving a Model Reference Adaptive Control (MRAC) scheme
through adaptive feedback linearization augmented by an Artificial Neural Network
(ANN). This approach has been successfully demonstrated via simulation on the
Tailless Advanced Fighter Aircraft (TAFA) [90, 20] and the X-36 [21]. The approach
presented here splits the dynamics of the plane into three SISO subsystems, each of
which has a model reference adaptive controller: roll, pitch and yaw. The output of
each controller is a command specifying a desired roll, pitch or yaw moment and
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it is then the job of the Integrated Control Effector Management (ICEM) [15, 90],
a form of control allocation, to generate these moments using the available control
surfaces. In the next three sections, a brief overview of the principles of feedback
linearization on SISO systems will be given, review the particulars and benefits of
its use in reconfiguration and finally discuss the ICEM and its role in the proposed
method.

2.6.4.1 Single-Input Single-Output (SISO) Feedback Linearization

Consider the SISO nonlinear system

ẋ = f (x,u)
y = h(x) x ∈ R

n,u,y ∈ R (2.20)

In feedback linearization the goal is to design a control law for the SISO nonlinear
system given in Equation 2.20 such that the closed loop system is linear and con-
trollable. Assuming the relative degree of h is r = n, the rth derivative of the output
is the first derivative that is directly affected by the control. As a result, we can write
the system dynamics in the normal form ([44], Section 4.2):

Φ1(x) = h(x) = z1 = y

Φ2(x) = dh(x)
dt = ż1 = z2

Φ3(x) = d2h(x)
dt2 = ż2 = z3

...
...

...

Φr(x) = drh(x)
dtr = żr−1 = zr

żr = hr(z,u)

(2.21)

where Φ(x) = z = [z1, . . . ,zr]′.
We now define the ‘pseudo control signal’ ν

ν = ĥr(Φ(x),u)

where ĥr(Φ(x),u) is an invertible estimate of hr(z,u). Then the system dynamics
can be expressed as

żi = zi+1, 1 ≤ i ≤ r − 1
żr = ν +Δ
y = z1

(2.22)

where
Δ = Δ(z,u) = hr(z,u)− ĥr(y,u)

In effect, the transformation places r integrators between the pseudo control ν
and the system output y, with the error Δ acting as a disturbance signal. This is now
a linear and controllable system.
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Fig. 2.13 Nonlinear Adaptive Output Feedback Controller

2.6.4.2 Feedback Linearization for Reconfigurable Control

Feedback linearization can be used in a model-following configuration by choosing
the pseudo control to have the form [19]

ν = yr
c +νdc −νad,

where νdc is the output of a stabilizing linear compensator for the linearized system
given by Equation (2.22) with Δ = 0. The quantity νad is an adaptive signal designed
to cancel Δ and yr

c is the rth derivative of the signal to be tracked. The signal yr
c can

be obtained from an (at least) rth order reference model which defines the desired
dynamics.

If the model of the system is perfect, Δ = 0 and we could simply apply the input
u = ĥ−1

r (x,ν) = h−1
r (x,yr

c +νdc) and the system would track the reference trajectory.
However, as there will always be modelling errors, the error Δ needs to be compen-
sated online and for this an ANN can be used. Neural networks can be trained to
approximate any function with an arbitrary precision. As a result, the ANN can
estimate the modelling error and hence cancel it. The benefit of this approach is
that no model structure needs to be assumed in order to estimate the error. Figure
2.13 shows the structure of the full controller, and Figure 2.14 that of the linear
compensator.

This control technique was proposed as a method of reconfigurable control in
combination with Wise’s ICEM [15]. This scheme is suited to reconfigurable con-
trol, as the adaptation makes no assumptions about the structure of the system after
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Fig. 2.14 Block Diagram of the Error Dynamics

the failure. Since the ANN can approximate any nonlinear function, it can track
and cancel any structural failures which may occur under the assumption of suffi-
cient control authority and excitation for adaptation. The techniques presented in
this section have been developed and expanded upon in several publications: Single
Input Single Output (SISO) stability proofs [19], input saturation [48], combined
aero/engine control [42] and highly over-actuated systems [21].

2.6.5 Sliding Mode Control (SMC)

This section reviews the work in [82]. The proposed controller is setup in a two-loop
cascade configuration, with the ultimate goal of tracking a trajectory given by roll,
pitch and yaw angle setpoints. The outer-loop takes roll, pitch and yaw setpoints
and provides angular rate commands to the inner-loop, which is assumed to track
the commands using the inputs to the actuators.

The outer-loop is designed using standard robust SMC techniques. The inner-
loop is also a robust sliding mode controller but has an adaptive feature to handle
actuator magnitude and rate limitations. In [82] it is shown that modifying the size
of the boundary layer online can ensure that integrators do not wind up, as well as
ensuring that actuator magnitude and rate limits are satisfied. There is a direct trade-
off between the size of the boundary layer and tracking performance. Therefore,
this procedure provides an intuitive method of maximizing tracking while ensuring
actuator limits.

The benefits of this controller to reconfigurable control are two-fold. Firstly, be-
ing a robust control technique, it can handle all structural failures which modify
the dynamics of the plant less than the assumed uncertainty. Secondly, the online
adaptation of the boundary layer can handle partial loss of actuator surfaces, while
avoiding limits and integrator windup by reducing the tracking performance. Al-
though this technique provides benefits to aircraft control, there are limitations due
to the use of SMC when it is presented with the full reconfigurable problem.

1. There must be one and only one control surface for every controlled variable
and second, none of the control surfaces can ever be lost. This is handled in
[82] by only considering failures which cause a partial loss of effectiveness of
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the control surfaces, which is not realistic as floating or jammed actuators are
certainly possible failure scenarios. This problem could be addressed by placing
a control allocation algorithm (see Section 2.6.3) between the requested outputs
and the physical actuators.

2. The method proposes to use robust control to handle all structural failures. This
requires a de-tuning of the controller to the point that it can handle uncertainties
including all possible structural failures, which may well result in an excessively
conservative controller in the non-failure situation.

2.6.6 Eigenstructure Assignment (EA)

Eigenstructure Assignment (EA) was made popular in the 1980s primarily by
Andry, Shapiro and Chung in their paper [1] where the method of Direct Eigen-
structure Assignment (DEA) was introduced. The idea behind the method is to place
the eigenvalues of a linear system using state feedback and then use any remaining
degrees of freedom to align the eigenvectors as accurately as is possible. The eigen-
values determine the natural frequency and damping of each mode while the eigen-
vectors control how much each mode contributes to a given output. The following
sections first give a brief overview of the theory behind EA and then a review of its
use in reconfigurable control.

2.6.6.1 Introduction to Eigenstructure Assignment

The eigenstructure assignment (EA) method [63] to controller reconfiguration is a
more intuitive approach than the Pseudo Inverse method (Section 6.6.3). It aims at
matching the eigenstructures (i.e. the eigenvalues and the eigenvectors) of the A-
matrices of the nominal and the faulty closed-loop systems. The main idea is to
exactly assign some of the most dominant eigenvalues while at the same time min-
imizing the 2-norm of the difference between the corresponding eigenvectors. The
procedure has been developed both under constant state-feedback [89] and output-
feedback [26]. More specifically, in the state-feedback case, if λi, i = 1,2, . . . ,n are
the eigenvalues of the A-matrix of the nominal closed-loop system formed as the
interconnection of (2.25) with the constant state-feedback control action uk = Fxk,
and if vi are their corresponding eigenvectors, the EA method computes the state-
feedback gain FR for the faulty model (2.26) as the solution to the following problem

EA :

⎧⎪⎪⎨
⎪⎪⎩

Find FR

such that (A f + B f FR)v f
i = λiv

f
i , i = 1, . . . ,n,

and v f
i = argmin

v f
i

‖vi − v f
i ‖2

Wi
,

(2.23)

where ‖vi −v f
i ‖2

Wi
= (vi −v f

i )TWi(vi −v f
i ). In other words, the new gain FR needs to

be such that the poles of the resulting closed-loop system coincide with the poles of
the nominal closed-loop system and, in addition, the eigenvectors of the closed-loop
A-matrices are as close as possible. As both the eigenvectors and the eigenvalues
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determine the shape of the time response of the closed-loop system, this method can
be thought of as trying to preserve the nominal closed-loop system time-response
after the occurrence of faults. Thus, the objective of the EA method seems more
“natural” than that of the Pseudo Inverse Method (PIM) and, moreover, the stability
is guaranteed. The computational burden of the approach is not high since an ana-
lytic expression for the solution to (2.23) is available, i.e. no on-line optimization is
necessary. The disadvantage is that model and FDD uncertainties cannot be easily
incorporated in the optimization problem, and that only static controllers are consid-
ered. The references [22, 58] further describe the use of Eigenstructure Assignment.

2.6.6.2 Reconfigurable Eigenstructure Assignment

Although a method for choosing appropriate eigenvectors and eigenvalues is not
immediately obvious for aircraft, some studies have been made on the effects of
the eigenstructure (eigenvalues and eigenvectors) on flying qualities [23]. Methods
which propose EA for use in reconfigurable flight control systems [58, 4, 94] first
assume a linear fault model which has been given to the controller by a FDI system.

ẋ = A f x + B f u
y = Cf x

The goal is then to design a stabilizing output feedback law Kf

u = Kf Cf x (2.24)

such that the new eigenstructure closed-loop system A f + B f KfCf is as close as
possible to that of the original closed-loop system A + BKC.

The choice of Kf can be made in a variety of ways, but the placement of the
eigenspace is limited by Theorem 2.1. Generally the eigenvalues of the failed sys-
tem, λ f

i are ordered from most important to least and then the top max(m,k) are
made to exactly match those of the non-failed system λ , while the remainder are
kept stable. Similarly, the most important max(m,k) eigenvectors of the failed sys-
tem, v f

i , are made close to those of the original system vi in the least squares sense.

Theorem 2.1. [23] Consider a controllable and observable system with the output
feedback law of (2.24) and the assumption that the matrices B and C are full rank.
Then, there exists a matrix K ∈ R

m×k such that

1. max(m,k) closed-loop eigenvalues can be assigned
2. max(m,k) eigenvectors can be partially assigned with min(m,k) entries in each

vector arbitrarily chosen

There are several limitations to this approach when applied to reconfiguration.
Firstly, only linear systems have been considered and actuator limitations have not
been taken into account. Secondly, a perfect fault model is assumed and the effects
of uncertainty have not been extensively studied. Finally, the effect of the eigen-
vectors in the failed system not being exactly equal to those in the nominal system
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is not well understood. The result of these significant limitations is that only a few
researchers have proposed this approach.

2.6.6.3 Pseudo Inverse Method (PIM)

The pseudo-inverse method (PIM) [31] is one of the most cited active methods to
FTC due to its computational simplicity and its ability to handle a very large class
of system faults. The basic version of the PIM considers a nominal linear system

{
xk+1 = Axk + Bu

yk = Cxk,
(2.25)

with a linear state-feedback control law uk = Fxk, under the assumption that the
state vector is available for measurement. The method allows for a very general
post-fault system representation

{
x f

k+1 = A f x f
k + B f uR

k

y f
k = Cf x f

k ,
(2.26)

where the new, reconfigured control law is taken with the same structure, i.e. uR
k =

FRx f
k . The goal is then to find the new state-feedback gain matrix FR in such a way

that the “distance” (defined below) between the A-matrices of the nominal and the
post-fault closed-loop systems is minimized, i.e.

PIM :

{
FR = argmin

FR
‖(A + BF)− (A f + B f FR)‖F

= B†
f (A + BF − A f ),

(2.27)

where B†
f is the pseudo-inverse of the matrix B f . The advantages of this approach are

that it is very suitable for on-line implementation due to its simplicity, and moreover,
that it allows for changes in all state-space matrices of the system as a consequence
of the faults. A very strong disadvantage is, however, that the optimal control law
computed by equation (2.27) does not always stabilize the closed-loop system. Sim-
ple examples that confirm this fact can easily be generated, see for example [31].
To circumvent this problem, the modified pseudo-inverse method was developed in
[31] that basically solves the same problem under the additional constraint that the
resulting closed-loop system remains stable. This, however, results in a constrained
optimization problem that increases the computational burden. A similar approach
is also discussed in [77, 62], where the reconfigured control action uR

k is directly
computed from the nominal control uk as uR

k = B†
f Buk. Other modifications of this

approach that were proposed include the consideration of additive faults on the state
equation and additive terms on the control action to compensate for them in [73]
and static output-feedback in [59].
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Fig. 2.15 Model Reference Adaptive Control

2.6.7 Model Reference Adaptive Control (MRAC)

Aström defines an adaptive controller as “a controller with adjustable parameters
and a mechanism for adjusting those parameters” ([2], Page 1). Clearly, all meth-
ods presented in this survey are adaptive to some degree (save for robust control
techniques) as they require the identification of a fault model in order to compute a
control law. The approach we consider here is Model Reference Adaptive Control
(MRAC) which can be effective for many types of structural failures and is often
used as a final stage in other algorithms.

The goal of adaptive model-following is to force the plant output to track a refer-
ence model. We consider linear plants of the form

ẋ = Ax + Bu + d
y = Cx

(2.28)

where x ∈ R
n, u ∈ R

m, y ∈ R
k and a reference model of the form

ẏd = Adyd + Bdr (2.29)

where yd ∈ R
k and r ∈ R

k. Ad and Bd are arbitrary square matrices with Ad stable.
State feedback of the form shown in Figure 2.15 is considered.

u = C0r + G0x + v

where C0 ∈ R
k×k, G0 ∈ R

k×n and v ∈ R
k are free controller parameters. The closed

loop dynamics are then

ẏ = (CA +CBG0)x +CBC0r +CBv +Cd (2.30)

The goal is now to make the closed loop dynamics given by Equation (2.30)
match the desired dynamics of Equation (2.29). If the model shown in Equation
(2.28) was known exactly, the controller parameters C0,G0 and v could be computed
to achieve this. However, since post-failure the model in (2.28) is not known exactly,
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the controller parameters need to be adapted. There are two methods to achieve this:
direct and indirect adaptation.

2.6.7.1 Indirect Adaptation

There are two stages in indirect adaptive control. Firstly the matrices A,B and d are
estimated and then under the assumption that these estimates are correct the control
parameters G0,C0 and v are computed such that the closed-loop system matches the
desired dynamics.

A least squares algorithm can be used to compute the estimates Â, B̂ and d̂ ([2]),
which can then be used to compute the controller parameters such that the closed
loop dynamics (2.30) match the desired ones (2.29).

C0 = (CB̂)−1Bd

G0 = (CB̂)−1(AdC −CÂ)
v = (CB̂)−1(Cd)

where we must assume that det(CB̂) �= 0.
The idea of identifying the model online and then computing a control law under

the assumption that the estimated model is perfect is common in the reconfigurable
control literature. For example, the EA algorithms of Section 2.6.6 and the IMM
algorithms of Section 2.6.2.2 assume this type of structure.

2.6.7.2 Direct Adaptation

Direct adaptive control attempts to estimate the controller parameters G0,C0 and v
directly rather than first computing the model parameters. We define G�

0,C
�
0 and v� as

the ‘correct’ values of the controller parameters which will force the plant to track
the reference model. A problem can then be formulated such that a least squares
routine can be used to estimate the correct controller parameters [8]. The idea of
direct adaptation is seen in algorithms such as the adaptive feedback linearization
approach presented in Section 2.6.4.

The basic model-reference adaptive control techniques described here are not
by themselves suitable for reconfigurable control for two main reasons. Firstly, in
order for these approaches to work a model structure must be assumed. However,
the types of failures addressed in reconfigurable control may well cause the plant
structure to change drastically. Secondly, adaptive control requires the system pa-
rameters to change slowly enough for the estimation algorithm to track them. Faults
may well cause abrupt and drastic changes in the parameters moving the system
instantaneously to a new region of the parameter space. There is no guarantee that
the system will be stable during the transient period in which the adaptive algorithm
is identifying the faulty plant. Despite the limitations of adaptive control for recon-
figuration, some researchers have attempted to apply it in slightly modified forms
[6, 35, 8]. As a result adaptive control on its own is not enough to handle the general
problem, but may well be an important part of a reconfigurable algorithm.
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2.6.8 Model Predictive Control

After its introduction in the 1970s, model predictive control (MPC) has become a
popular strategy in the field of industrial process control. The main reasons for this
popularity are the abilities of MPC to control multivariable systems and to handle
constraints. Initially, MPC was primarily applied to relatively slow processes such
as the plants encountered in the process industry. The reason for this is that MPC can
require considerable computational effort to generate the control signals as a result
of an optimization that has to be performed at each time instance. This optimization
is based on matching a prediction of the system output to some desired reference
trajectory. The latter is assumed to be known in advance. For the relatively slow
plants in the process industry, the considerable computational effort of MPC was
not an issue because of the low sampling frequency of the controllers. However, for
faster systems, higher frequencies were required that prevented on-line implementa-
tion of MPC for such systems. More recently, MPC has become a viable alternative
for faster systems as a result of the increase in computational power that is available
in modern control systems. For example, in [79] MPC has been used for real-time
control of a miniature hovercraft. Another example is [56], in which MPC has been
used for real-time control of an unmanned aerial vehicle.

As discussed in [65], the MPC architecture allows fault-tolerance to be embedded
in a relatively easy way by: (a) redefining the constraints to represent certain faults
(usually actuator faults), (b) changing the internal model, (c) changing the control
objectives to reflect limitations due to the faulty mode of operation. In such a way
there is practically no additional optimization that needs to be executed on-line as a
consequence of a fault being diagnosed, so that this method can be viewed as having
an inherent self-reconfiguration property. However, if state-feedback MPC is used in
an interconnection with an observer one should also take care to also reconfigure the
observer appropriately in order to achieve fault-tolerant state estimation. Examples
of the application of MPC to FTC are numerous [66, 51, 76, 50, 56].

Model predictive control has been proposed as a method for reconfigurable flight
control due to its ability to handle constraints and changing model dynamics sys-
tematically. MPC relies on an internal model of the system and so, like many of the
approaches presented in this survey, a fault model is required. There are two gen-
eral classifications of aircraft faults: actuator and structural. As noted in [69], these
failures can be handled naturally in a MPC framework via changes in the input con-
straints and internal model. Actuator limit and rate constraints can be written as:

ul
i ≤ ui(t) ≤ uu

i
dul

i ≤ u̇i(t) ≤ duu
i

for actuator inputs u1 through um. If actuator i becomes jammed at position u�
i the

MPC controller can be made to compensate by simply changing the constraints on
input i to

u�
i ≤ ui(t) ≤ u�

i
0 ≤ u̇i(t) ≤ 0
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The result will be similar to the control allocation approach where other input chan-
nels are used to create the same effect. As noted in [64], an MPC controller can
be designed so that it has an intrinsic ability to handle jammed actuators without
the need to explicitly model the failure. Structural failures can also be handled in a
natural fashion by changing the internal model used to make prediction in either an
adaptive fashion [52], a multi-model switching scheme [13] or by assuming an FDI
scheme which provides a fault model [40, 39, 55, 66].

An important issue when using MPC is the robustness with respect to model
uncertainties. Since MPC heavily depends on how well the controlled system is rep-
resented by the model used, measures should be taken in case of model uncertainty.
One method to do so is to define an uncertainty region around the nominal model
and to ensure that the MPC algorithm achieves a certain minimum performance
level for the whole uncertainty region. MPC methods that take model uncertainty
explicitly into account are referred to as robust MPC methods. One of the first re-
search efforts that addresses the issue of robust MPC was performed by [60]. This
issue has been addressed in the context of FTC in [51].

Like most active FTC methods, MPC-based FTC requires availability of fault in-
formation to accommodate faults. This requirement limits the ability of MPC-based
FTC to deal with unanticipated fault conditions for which fault information cannot
be obtained most of the time. An FTC algorithm that has this ability is therefore
very desirable. Such an algorithm is subspace predictive control (SPC). This algo-
rithm consists of a predictor that is derived using subspace identification theory [87],
making it a data-driven control method. This subspace predictor is subsequently in-
tegrated into a predictive control objective function. The basic SPC algorithm was
introduced by [30] and has since been used by various researchers [91, 49, 88]. If the
subspace predictor is updated on-line with new input-output data when it becomes
available, then SPC has the ability to adapt to changing system conditions, which
can also include unanticipated faults. Besides having this ability, another important
advantage of the SPC algorithm is that the issue of robustness with respect to model
uncertainty is implicitly addressed because of the adaptation of the predictor. In [37]
the SPC algorithm is used for FTC of the GARTEUR benchmark model.

2.6.9 Model Following

The model following method is another approach to active FTC. Basically, the
method considers a reference model of the form

xM
k+1 = AMxM

k + BMrk,
yM

k = xM
k ,

where rk is a reference trajectory signal. The goal is to compute matrices Kr and
Kx such that the feedback interconnection of the open-loop system (2.25) and the
state-feedback control action

uk = Krrk + Kxxk
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matches the reference model. To this end the reference model and closed-loop sys-
tem are written in the form

yM
k+1 = AMxM

k + BMrk,
yk+1 = (CA +CBKx)xk +CBKrrk,

so that perfect model following (PMF) can be achieved by selecting

PMF:

{
Kx = (CB)−1(AM −CA),
Kr = (CB)−1BM,

(2.31)

provided that the system is square (i.e. dim(y) = dim(u)), and that the inverse of
the matrix CB exists. When the exact system matrices (A,B) in (2.31) are unknown,
they can be substituted by some estimated values (Â, B̂), resulting in the indirect
(explicit) method [8]. The indirect method provides no guarantees for closed-loop
stability, and in addition, the matrix (CB̂) may not be invertible. In order to avoid
the need for estimating the plant parameters, the direct (implicit) method of model
following can be used, which directly estimates the controller gain matrices Kr and
Kx by means of an adaptive scheme. Two approaches to direct model following exist,
the output error method and the input error method. Examples of the application of
the model following approach can be found in [8, 70, 85]. We note here, that the
direct model following method is based on adaptation rules and as such is also a
candidate for the group of adaptive control methods.

The model following methods have the advantage that they usually do not require
an FDD scheme. A strong drawback is, however, that they are not applicable to
sensor faults. In addition, these methods do not deal with model uncertainty.

2.6.10 Adaptive Control

Adaptive control methods form a class of methods that is very suitable for active
FTC. Due to their ability to automatically adapt to changes in the system parame-
ters, these methods could be called “self-reconfiguable”, i.e. they often don’t require
the “reconfiguration mechanism” and “FDD” components, as in Figure 2.6. This,
however is mostly true for component faults and actuator faults, but not for some
sensor faults. If one, for instance, makes use of an adaptive control scheme based on
output-feedback design to compensate for sensor faults it will make the faulty mea-
surement (rather than the true signal) track a desired reference signal, and this in turn
may even lead to instability. Indeed, in a case of a total sensor failure an adaptive
controller may try to increase the control action to make the faulty measured signal
equal to the desired value which will not be possible due to the complete failure of
the sensor. In such cases an FDD scheme is needed to detect the sensor failure, and
a reconfiguration mechanism would have to appropriately reconfigure the adaptive
controller. We note here that the direct model following and MM approaches, dis-
cussed above, also belong to the class of adaptive control algorithms. LPV control
methods for FTC design are also members of this class. In [51] LPV FTC methods
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are developed that deal with structured parametric and FDD uncertainty. Further-
more, these methods are applicable to a wide class of faults as the fault signal is
allowed to enter the state-space matrices of the system in any way as long as the
matrices remain bounded. Other applications of LPV control for FTC can be found,
for example in [80, 32].

2.7 Comparison of Fault Tolerant Flight Control Methods

The table on the next page presents a comparison of the fault tolerant control meth-
ods, applicable for reconfigurable flight control, considered in this survey. Filled
circles mean that the method has the indicated property while empty circles imply
that an author has suggested that the approach could be modified to incorporate the
property. The columns are explained as follows:

• Failures: Types of failures that the method can handle
• Robust: The method uses robust control techniques
• Adaptive: The method uses adaptive control techniques
• Fault Model:

– FDI: An FDI algorithm is incorporated into the method
– Assumed: The method assumes an algorithm which provides a fault model

• Constraints: The method can handle actuator constraints
• Model Type: The type of internal model used

The table also shows the fault tolerant control methodologies that have been se-
lected for further evaluation in this action group. Their application in the different
control designs using the GARTEUR FTFC benchmark and achieved real-time per-
formances are described in the subsequent chapters of this book.
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