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Abstract. We present two new results about vertex and edge fault-tolerant spanners in
Euclidean spaces.

We describe the first construction of vertex and edge fault-tolerant spanners having
optimal bounds for maximum degree and total cost. We present a greedy algorithm that for
any t > 1 and any non-negative integer k, constructs a k-fault-tolerant t-spanner in which
every vertex is of degreeO(k) and whose total cost isO(k2) times the cost of the minimum
spanning tree; these bounds are asymptotically optimal.

Our next contribution is an efficient algorithm for constructing good fault-tolerant span-
ners. We present a new, sufficient condition for a graph to be a k-fault-tolerant spanner.
Using this condition, we design an efficient algorithm that finds fault-tolerant spanners with
asymptotically optimal bound for the maximum degree and almost optimal bound for the
total cost.

1. Introduction

In this paper we consider a geometric optimization problem of connecting a collection
of sites by a “good” network. Problems of this type arise in applications in VLSI de-
sign, telecommunication, clustering, robotics, graph theory, and distributed systems. In
all these areas it is often important to construct high quality networks. Typical quality
measures of good networks include the cost of the network, its stretch factor (dilation),
connectivity (resistance to failures), minimum and maximum degree, and its diameter.
These networks and their quality can be modeled by geometric graphs. The sites corre-
spond to points in Euclidean space and the connections can be represented by edges (the
straight-line segments) connecting the endpoints.

In this paper we consider various classes of Euclidean graphs. Our main focus is on
spanners [4], [8], [15], [19] and fault-tolerant spanners [20]. Spanners are important
geometric structures that provides a sparse or economic representation of a given graph.



208 A. Czumaj and H. Zhao

They were introduced by Peleg and Schäffer [25] in the context of distributed computing
and, later, by Chew [8] in the context of computational geometry. Spanners have many
applications in robotics, graph theory, network topology design, distributed systems; the
recent O(n log n)-time PTAS for Euclidean TSP [27] is heavily based on the use of
spanners, and so is the recent PTAS for Euclidean biconnectivity [10]. Spanners are also
very extensively used in recent advances on topological issues in ad hoc networks (see,
e.g., [16], [17], [26], and the reference therein). Survey expositions [7], [15], [22], [24],
and [29] contain an extensive encounter on spanners and their applications.

We first introduce some notations and then give formal definitions of spanners and
fault-tolerant spanners. Let V be a set of n points in a Euclidean spaceRd . Let G = (V, E)
be a weighted (either undirected or directed) graph, where V is a vertex set, E is a subset
of the (unordered or ordered, respectively) pairs of points in V , and the length (cost) of
edge (p, q), denoted by |pq|, is equal to the Euclidean distance between points p and
q . Any such a graph G will be called a (Euclidean) graph on V . The cost of the graph is
the sum of the costs of its edges. Consistent with our definition, the edges of a Euclidean
graph G = (V, E) are in one-to-one correspondence with the straight-line segments (in
R

d ) connecting the incident vertices.
For a point set V in Rd , we denote by KV the complete Euclidean graph on V . A

graph G on a set of points V is called a (Euclidean) minimum spanning tree (MST) of V
if it is a minimum-cost spanning tree of KV . For any pair of vertices v and u in a graph,
any path between v and u is called a vu-path.

Definition 1.1 (Spanners). Let G = (V, E) be a Euclidean graph and let t ≥ 1. Graph
G is called a t-spanner for V if for every pair of vertices v, u ∈ V there is a vu-path in
G of length upper bounded by t · |vu|.

A path in a Euclidean graph G between two vertices v and u is said to be a t-spanner
path if its length is at most t · |vu|. We next define fault-tolerant spanners, which is a
class of Euclidean graphs where one requires the existence of short paths between all
pairs of vertices even if some vertices or edges of the graph are deleted.

Definition 1.2 (Vertex Fault-Tolerant Spanners [20]). Let V be a set of n points in a
metric space, let t ≥ 1 be a real, and let k be a non-negative integer. A graph G = (V, E)
is called a k-vertex fault-tolerant t-spanner for V , denoted by (k, t)-VFTS, if for any
subset V ′ of V of size at most k, the graph G\V ′ is a t-spanner for the point set V \V ′.

Definition 1.3 (Edge Fault-Tolerant Spanners [20]). Let V be a set of n points in a
metric space, let t ≥ 1, and let k be an integer. A graph G = (V, E) is called a k-edge
fault-tolerant t-spanner for V , denoted by (k, t)-EFTS, if for any subset E ′ of E of size
at most k and for any pair of points p and q in V , the graph G\E ′ contains a pq-path of
total length at most t times the length of a shortest path between p and q in the graph
KV \E ′.

One can show (see [20] and [21]) that a (k, t)-VFTS is also a (k, t)-EFTS. Therefore,
from now on we focus our attention mostly on vertex fault-tolerant spanners.
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1.1. Previous Works on Spanners and Fault-Tolerant Spanners

Traditionally, the main measures of the quality of spanners are their number of edges,
maximum degree, and the total cost. In this context, in any Euclidean space Rd with
constant d, for every positive constant ε, one can construct in timeO(n log n) a (1+ ε)-
spanner in which every vertex has constant degree and whose total cost is of order of
the cost of the MST for the input point set [2], [18]; all these bounds are asymptotically
optimal. (See also [1], [3], [7], [12]–[14], and [19] for other related results on spanners.)

The problem of constructing efficient fault-tolerant spanners in Euclidean spaces
has been proposed recently by Levcopoulos et al. [20]. They presented in [20] three
algorithms constructing k-vertex fault-tolerant spanners. Their first algorithm is based
on the observation that the (k + 1)-power of a t-spanner is a (k, t)-VFTS (an s-power
of a graph G is a graph with the same vertex set as G and it contains an edge between
any pair of vertices that are connected by a path in G with at most s edges). Therefore, if
one starts with the spanner construction from [18], then in timeO(n log n)+ n2O(k) one
can obtain a (k, t)-VFTS of maximum degree 2O(k) and the total cost of 2O(k) times the
cost of an MST. For a constant k, this construction leads to a fault-tolerant spanner with
asymptotically optimal parameters. The other two algorithms described by Levcopoulos
et al. [20] use the well-separated pair decomposition [6]. It is shown that a k-vertex fault-
tolerant spanner can be constructed (i) in O(n log n + k2n) time with O(k2n) edges, or
(ii) in O(nk log n) time with O(nk log n) edges. Neither the maximum degree nor the
total cost of the fault-tolerant spanner is bounded in these two algorithms.

In a follow-up paper, Lukovszki [21] gave a construction of (k, t)-VFTSs with the
optimal number of edges O(nk); the running time of this algorithm is O(n logd−1 n +
nk log log n). Lukovszki also presented a construction of (k, t)-VFTSs with maximum
degreeO(k2) and investigated fault-tolerant spanners that allow the use of Steiner points.

1.2. New Contributions

The main open problem left in [20] and [21] is whether there exist fault-tolerant spanners
having good bounds for the maximum degree and the total cost. The best bounds obtained
in the prior constructions were the k-fault-tolerant spanners having maximum degree
O(k2) by Lukovszki [21], and one having the total cost 2O(k) times the cost of an MST

by Levcopoulos et al. [20].
Our first result resolves that problem and gives a construction of optimal (k, t)-VFTSs.

Theorem 1. Let V be a set of points in Rd . Let t > 1 and let k be a positive integer.
Then one can construct a (k, t)-VFTS for V that has maximum degree O(k) and whose
total cost is O(k2 · WMST), where WMST denotes the cost an MST of V . The constants
implicit in the O-notation depend on t and d .

Notice that by our arguments above this result implies the identical result for k-edge
fault-tolerant spanners.

It is not difficult to see that the spanner promised in Theorem 1 has asymptotically
optimal bounds both for the maximum degree and the total cost. Indeed, since a (k, t)-
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Fig. 1. Any VFTS for points in B1 and B2 must have weight at least�(k2), while the MST has weightO(1).

VFTS ((k, t)-EFTS) has to be (k + 1)-edge connected, every vertex must have degree
�(k). To see that the total cost must be �(k2 · WMST) in the worst-case, we consider
the following construction (see also [20]), see Fig. 1. Suppose that k is even. Let c1 and
c2 be two points with |c1c2| = 1 and let r � 1/n. We consider n points such that k/2
of them are contained in a ball B1 of radius r centered at c1 and the remaining n − k/2
points are contained in another ball B2 of radius r with the center at c2. Since any MST

of these n points has only a single edge between B1 and B2, WMST = O(1). However,
since the minimum degree of any k-vertex (or k-edge) fault-tolerant spanner is k + 1,
every vertex in B1 has to be connected to at least k/2+ 2 vertices contained in ball B2.
Therefore, there are �(k2) edges between B1 and B2, and the cost of any k-vertex (or
k-edge) fault-tolerant spanner is �(k2 ·WMST).

Our construction in Theorem 1 is a generalization of the greedy algorithm (which
is our algorithm with k = 0) that has been used before to construct spanners [1], [2],
[7], [13], [18]. Our main contribution in this context is the first, precise analysis of the
fault-tolerant spanners obtained in that construction.

Our next contribution gives an efficient construction of good fault-tolerant spanners.
The construction from Theorem 1 gives fault-tolerant spanners having optimal param-
eters, but it does not lead to an efficient algorithm for constructing the spanners. The
following theorem shows that we can construct very efficiently a fault-tolerant spanner
whose total cost is just slightly larger than optimal (and the maximum degree remains
optimal).

Theorem 2. Let V be a set of n points in Rd . Let t > 1 and let k be a positive integer.
Then, in time O(nk logd n + nk2 log k), one can construct a directed (k, t)-VFTS that
has maximum degree O(k) and whose total cost is O(k2 · log n · WMST), where WMST
denotes the cost of an MST of V . The constants implicit in the O-notation depend on t
and d .

Our efficient algorithm from Theorem 2 is based on a new, interesting property of
Euclidean graphs that gives a sufficient condition (characterization) for graphs to be
(k, t)-VFTSs.

2. Preliminaries

In this paper many algorithms investigated consider pairs of points (edges) in some
sequential order. Therefore, we slightly abuse the notation and introduce the total order
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on the costs of the edges in E , such that for two edges (x, x ′), (y, y′) ∈ E , edge (x, x ′)
is shorter than edge (y, y′) if either |xx ′| < |yy′| or |xx ′| = |yy′| and edge (x, x ′) is
taken by the algorithm before edge (y, y′).

As we mentioned before, we consider both directed and undirected Euclidean graphs.
Throughout the paper we abuse notation and denote both an undirected and a directed
edge from x to y by (x, y). In the first part of the paper, in Section 3, we analyze
undirected graphs and undirected fault-tolerant spanners, while in the second part of the
paper, in Section 4, for convenience, we consider directed graphs and their spanners.
Notice, however, that this distinction is really for convenience only, since any undirected
spanner can be converted to a directed one by replacing each edge with two directed
edges; similarly, any directed spanner can be transformed to be undirected by making
every edge undirected and then removing the parallel edges between all pairs of vertices.

2.1. Menger’s Theorem and Its Consequences—as Needed in Some Proofs

We use the following lemma that follows easily from Menger’s theorem (see Theorem 5
in Chapter III of [5]).

Lemma 2.1. Let G = (V, E) be an undirected graph. Let v, u ∈ V . Let X ⊆
(V \{v, u}) be a set of s vertices such that for each x ∈ X ,

• either (v, x) ∈ E or there are s internally vertex-disjoint vx-paths in G, and
• either (x, u) ∈ E or there are s internally vertex-disjoint xu-paths in G.

Then, there are s internally vertex-disjoint vu-paths in G. In particular, if one removes
any s − 1 vertices in V \{v, u} from G, then the obtained graph still contains a vu-path.

One can easily extend the above lemma to obtain the following.

Lemma 2.2. Let G = (V, E) be an undirected graph. Let v, u ∈ V . Let E+ =
{(v1, u1), . . . , (vs, us)} be such that

• for every i , 1 ≤ i ≤ s, either (vi , ui ) ∈ E or vi = ui and vi �= v, u,
• all ui and vi that are neither u nor v are pairwise distinct,
• for every i , 1 ≤ i ≤ s, either (v, vi ) ∈ E or there are s internally vertex-disjoint
vvi -paths in G, and
• for every i , 1 ≤ i ≤ s, either (ui , u) ∈ E or there are s internally vertex-disjoint

ui u-paths in G.

Then there are s internally vertex-disjoint vu-paths in G. In particular, if one removes
any s − 1 vertices in V \{v, u} from G, then the obtained graph still contains a vu-path.

3. k-Vertex Fault-Tolerant Spanners of Low Degree and Low Cost

In this section we analyze the following algorithm and show it constructs (k, t)-VFTSs
of both low degree and low cost:
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k-Greedy Algorithm

Input: A complete undirected Euclidean graph G = (V, E), integer k ≥ 0,
real t > 1

Output: A (k, t)-VFTS G ′ = (V, E ′) for V

E ′ = ∅
G ′ = (V, E ′)
for each edge (u, v) ∈ E taken in nondecreasing order by length do

if G ′ = (V, E ′) does not have k + 1 internally vertex-disjoint t-spanner
uv-paths
then E ′ = E ′ ∪ {(u, v)}

G ′ = (V, E ′)
output G ′ = (V, E ′)

We begin with the following claim.

Claim 3.1. The k-Greedy Algorithm constructs a (k, t)-VFTS.

Proof. Let V ′ be any subset of V having size at most k. We prove that G ′\V ′ is a
t-spanner for V \V ′.

We pick any pair of points u, v in V \V ′. We have to show that G ′\V ′ has a t-spanner
uv-path. Clearly, if (u, v) ∈ E ′, then this is true. So we suppose that (u, v) /∈ E ′. Then,
according to the algorithm, the only reason for not including edge (u, v) in E ′ is that there
are k + 1 internally vertex-disjoint t-spanner uv-paths in G ′. Therefore, since |V ′| ≤ k,
there is at least one such path in G ′\V ′.

Remark 3.2. Notice that Claim 3.1 holds even if the edges are taken in an arbitrary
order (that is, not necessarily nondecreasing). Furthermore, this claim holds for general,
not only for Euclidean graphs and the assumption that G is a complete graph can be
weakened. For general graphs, we say a graph G∗ = (V ∗, E∗) is a (k∗, t∗)-VFTS of a
weighted graph G = (V, E) if V ∗ = V , E∗ ⊆ E , and for any V ′ ⊆ V with |V ′| ≤ k∗,
for any pair of vertices v, u ∈ V \V ′, the graph G∗\V ′ contains a vu-path of total length
at most t∗ times the length of the shortest vu-path in G\V ′. The proof of Claim 3.1
implies that if we begin the k-Greedy Algorithm with an arbitrary (k + 1)-connected
weighted graph G = (V, E), then the obtained graph G ′ will be a (k, t)-VFTS of G.

3.1. Analyzing the Maximum Degree

In this section we prove that the (k, t)-VFTS constructed by the k-Greedy Algorithm has
maximum degree �(k). Our analysis is in a similar spirit to the analysis of the greedy
algorithm for normal spanners, see, e.g., [1] and [7].

We begin with an auxiliary claim.

Claim 3.3. Let 0 < θ < π/4 and suppose that t is chosen such that t ≥ 1/(cos θ−
sin θ). Let G ′ = (V, E ′). Let u, v, x be any three points in V with (u, v), (u, x) ∈ E ′ and
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�(vux) ≤ θ . Suppose further that |uv| ≤ |ux |. Then, for each t-spanner vx-path p in
G ′, the path consisting of the edge (u, v) followed by the path p is a t-spanner ux-path.

Proof. Let p be any t-spanner vx-path in G ′. Let q be the ux-path obtained by taking
the edge (u, v) followed by p. Then we have

length(q) = |uv| + length(p) ≤ |uv| + t · |vx |. (1)

Furthermore, if we denote by z the point on the segment ux such that�(uzv) = �(vzx) =
π/2, then we have

|vx | ≤ |vz| + |zx | = |ux | + (|vz| − |uz|). (2)

Next, we observe that |vz| = |uv| · sin(�(zuv)) ≤ |uv| · sin θ and |uz| = |uv| ·
cos(�(zuv)) ≥ |uv| · cos θ . Therefore, combining these two identities with (1) and (2),
we obtain

length(q) ≤ |uv| + t · |vx | ≤ |uv| + t · (|ux | + |uv| · (sin θ − cos θ))

= t · |ux | + |uv| · (1− t (cos θ − sin θ)).

Hence, by the assumption that t ≥ 1/(cos θ − sin θ), we can conclude the claim that
length(q) ≤ t · |ux |.

This claim can be used to prove the following result.

Claim 3.4. Let 0 < θ < π/4 and t ≥ 1/(cos θ − sin θ). Let G ′ = (V, E ′) be the
output of the k-Greedy Algorithm for V . For any u ∈ V , let Cu be any cone in Rd with
the apex at u and the angular diameter1 at most θ . Then G ′ has at most k + 1 edges
incident to u that are contained in the cone Cu .

Proof. Let E ′Cu
be the set of edges in G ′ incident to u that are contained in the cone

Cu . Let (u, v) be the longest edge in E ′Cu
. We prove that if there are more than k edges

in E ′Cu
that are shorter than (u, v), then there are k + 1 t-spanner uv-paths in G ′, each

using only edges shorter than |uv|. This implies that the k-Greedy Algorithm would not
add edge (u, v) to E ′, which contradicts the fact that (u, v) is an edge of G ′.

Suppose there are k+1 edges in E ′Cu
that are shorter than (u, v). We prove the existence

of k + 1 internally vertex-disjoint uv-paths such that each path uses edges in G ′ that are
shorter than (u, v). We consider first any edge (u, z) ∈ E ′Cu

such that (v, z) ∈ E ′. By
Claim 3.3, the uv-path consisting of the edges (u, z), (z, v) is of length upper bounded
by t · |uv|.

Next, we consider any edge (u, z) ∈ E ′Cu
such that (v, z) /∈ E ′. Then, since the

k-Greedy Algorithm has not taken edge (v, z) to E ′, there must exist k + 1 internally
vertex-disjoint t-spanner vz-paths, and each edge on these paths is shorter than (v, z),

1 The angular diameter of a cone C inRd having its apex at point p ∈ Rd is defined as the maximum angle
between any two vectors −→px and −→py , x, y ∈ C .
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which is less than (u, v). Therefore, by Claim 3.3, there exist k + 1 t-spanner uv-paths
between u and v such that all paths begin with edge (u, z) and then are internally vertex-
disjoint.

Summarizing, there are k + 1 vertices z1, z2, . . . , zk+1 such that for each i , 1 ≤ i ≤
k + 1, (i) (u, zi ) ∈ E ′Cu

and (ii) either (zi , v) ∈ E ′ and |uzi | + |ziv| ≤ t · |uv|, or G ′

contains k + 1 t-spanner uv-paths between u and v such that all paths begin with edge
(u, zi ) and then are internally vertex-disjoint, and each edge on each path is shorter than
(u, v). Therefore, we can apply Lemma 2.1 to conclude that G ′ contains at least k + 1
internally vertex-disjoint t-spanner uv-paths, each path using only edges shorter than
(u, v). This, however, contradicts the fact that (u, v) is an edge of G ′, and hence, this
completes the proof of the claim.

In [30] it was shown that there is a constant c > 0 such that for any point p ∈ Rd

and any angle θ , 0 < θ < π , there is always a collection C of O((c/θ)d−1) cones in
R

d having the apex at point p such that (i)
⋃

C∈C C = Rd , and (ii) each cone C ∈ C
has angular diameter at most θ . We can incorporate this upper bound for the number of
cones in C with Claims 3.1 and 3.4 to obtain the following lemma.

Lemma 3.5. Let V be any point set in a Euclidean spaceRd . Let k be any non-negative
integer and let t be any real number, t > 1. Then the k-Greedy Algorithm returns a
(k, t)-VFTS for V having maximum degree O((c/θ)d−1 k), where cos θ − sin θ ≥ 1/t .
In particular, if the dimension d and t are constant, then the maximum degree is �(k).

3.2. Upper Bound for the Cost of Spanners Generated by the k-Greedy
Algorithm

The most difficult and challenging part of the proof of Theorem 1 is the analysis of the
total cost of the spanner generated by the k-Greedy Algorithm. In order to bound the
cost of that spanner, we first introduce the concept of “leapfrog property” [12], which
yields a bound for the total cost of a set of edges in terms of the relative position of these
edges in Euclidean space.

Definition 3.6 (Leapfrog Property [12]). Let t ≥ 1. Let G = (V, E) be a Euclidean
graph. A set E∗ ⊆ E satisfies the t-leapfrog property if, for every s ≥ 2, for every subset
E+ = {(p1, q1), . . . , (ps, qs)} ⊆ E∗ it holds that

t · |p1q1| <
s∑

i=2

|pi qi | + t ·
(
|qs p1| +

s−1∑
i=1

|qi pi+1|
)
.

The following result is shown in [12] and [14] (see also Theorem 3 of [13]).

Claim 3.7. Let t be a constant greater than 1. Let G = (V, E) be a Euclidean graph.
If a set E∗ ⊆ E satisfies the t-leapfrog property, then the total cost of the edges in E∗

is O(M STE∗), where M STE∗ is the cost of an MST connecting the endpoints of E∗. The
constant implicit in the O-notation depends on t and d .
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The following result gives a tight upper bound for the cost of (k, t)-VFTSs generated
by the k-Greedy Algorithm. This is one of the main results of this paper; together with
Lemma 3.5, it directly yields Theorem 1.

Lemma 3.8. Let G = (V, E) be a (k, t)-VFTS of a point set V generated by the k-
Greedy Algorithm. Then the cost of G is at mostO(k2 ·WMST). The constant implicit in
the O-notation depends on t and d .

Proof. The idea of the proof is to partition the edges of G into O(k2) groups and then
show that the cost of edges in each group is upper bounded by O(WMST).

We first partition E into disjoint sets E1, E2, . . . such that each Ei is a maximal set of
edges and any two edges in the set have an angle at most θ . We will require that θ satisfies
t ≥ 1/(cos θ − sin θ). By our discussion before (see also [30]), there are O((c/θ)d−1)

such disjoint sets E1, E2, . . . .

Next, we partition each Ei into sets Ei1, Ei2, . . . such that each Ei j satisfies the t-
leapfrog property. For each edge e = (v, u) ∈ E , let Ve ⊆ V be a minimum vertex
set such that after removal of all vertices of Ve from G, there will be no t-spanner vu-
paths consisting only of edges shorter than e. Since G is a (k, t)-VFTS generated by
the k-Greedy Algorithm, besides e itself, there are at most k internally vertex-disjoint
t-spanner vu-paths having all edges shorter than e. Therefore, by Menger’s theorem we
have |Ve| ≤ k.

Fix a set Ei . Let Se be a subset of Ei containing edges that are shorter than e and that
are incident to a vertex in Ve. Then we define the sets Ei1, Ei2, . . . by picking the edges
e ∈ Ei one by one and adding e to any set Ei j that does not contain any edge in Se. We
claim thatO(k2) sets Ei j are sufficient in our construction and that each set Ei j satisfies
the t-leapfrog property. Indeed, by Claim 3.4, each vertex is incident to at most k + 1
edges in Ei . Therefore, since |Ve| ≤ k, we have |Se| ≤ k(k+ 1). Thus, k(k+ 1)+ 1 sets
Ei j are sufficient for each i .

We fix a set Ei j . Now we prove that Ei j satisfies the t-leapfrog property. Let E ′ =
{(u0, v0), (u1, v1), . . . , (um, vm)} be any subset of Ei j . Our goal is to show that

t · |u0v0| <
m∑

s=1

|usvs | + t ·
(
|vmu0| +

m−1∑
s=0

|vsus+1|
)
.

Observe first that this inequality is trivial if either |u0v0| ≤ |vmu0| or |u0v0| ≤ |vsus+1|
for certain s, 0 ≤ s ≤ m−1. Furthermore, it is enough to consider the case when (u0, v0)

is the longest edge in E ′. Therefore, from now on, we assume that (u0, v0) is the longest
edge in E ′ ∪ {{v0, u1}, {v1, u2}, . . . , {vm−1, um}, {vm, u0}}.

For convenience, let e = (u0, v0). Let Ge be the graph obtained from G after removing
all vertices in Ve together with their incident edges and then by removing all edges not
shorter than (u0, v0). By our discussion above and by Menger’s theorem, any u0v0-
path in Ge must have a total length greater than t · |u0v0|. Our goal is to show that∑m

s=1 |usvs | + t · (|vmu0| +
∑m−1

s=0 |vsus+1|) is at least the length of certain u0v0-path
in Ge.

For each {x, y} in {{v0, u1}, {v1, u2}, . . . , {vm−1, um}, {vm, u0}}, either (x, y) ∈ E
or there are k + 1 internally vertex-disjoint t-spanner xy-paths in G consisting only of
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edges shorter than (x, y), which is shorter than (u0, v0) by our assumption. Furthermore,
none of the points u0, u1, . . . , um, v0, v1, . . . , vm is in Ve. (Indeed, if, for example,
us ∈ Ve, then by our assumption no edge incident to us should be included in Ei j , but
this contradicts the fact that (us, vs) ∈ Ei j .)

Therefore, by Menger’s theorem there must be a t-spanner xy-path in Ge. Hence,
we can create a u0v0-path π in Ge as follows: π starts with a t-spanner v0u1-path, then
uses edge (u1, v1), then uses a t-spanner v1u2-path, then uses edge (u2, v2), . . . , then
uses edge (um, vm), and finally terminates with a t-spanner vmu0-path. By our discussion
above, π is a u0v0-path in Ge. Moreover, we have

length(π) ≤ t · |v0u1| + |u1v1| + t · |v1u2| + |u2v2| + · · · + |umvm | + t · |vmu0|

=
m∑

s=1

|usvs | + t ·
(
|vmu0| +

m−1∑
s=0

|vsus+1|
)
.

However, by our arguments above, we know that Ge contains no t-spanner u0v0-path.
Therefore,

t · |u0v0| < length(π) ≤
m∑

s=1

|usvs | + t ·
(
|vmu0| +

m−1∑
s=0

|vsus+1|
)
,

which implies the t-leapfrog property of set Ei j .
Now we can summarize our discussion. We can partition the set of edges of G into

O((c/θ)d−1 · k2) sets of edges, each set satisfying the t-leapfrog property. Therefore, by
Claim 3.7, we can conclude the proof.

4. Efficient Construction of Fault-Tolerant Spanners

In the previous section we proved that the k-Greedy Algorithm generates (k, t)-VFTSs
with low maximum degree and low total cost. The disadvantage of this algorithm, how-
ever, is that we do not know how to implement it efficiently. In this section we discuss an
alternative approach to construct fault-tolerant spanners. For convenience, in this section
we consider directed graphs and their spanners.

We first introduce the notion of gap property and near parallel edges, and then present
a new sufficient property for graphs to be (k, t)-VFTSs. Then we use this characterization
to design a simple algorithm that generates good (k, t)-VFTSs in polynomial time. Fi-
nally, we tune that algorithm to decrease the running time toO((nk logd n+nk2 log k)).

4.1. Basic Auxiliary Properties

We first present two important notions on directed edges that are heavily used in the
paper.
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Definition 4.1 (Near Parallel Edges). Two directed edges (p, q) and (x, y) are called
α-near parallel2 if after translating vector−→xy such that x coincides with p, that is, to the
vector−→pz with z = y− (x − p), the angle between vectors−→pq and−→pz is upper bounded
by α.

Definition 4.2 (Gap Property). Let ω ≥ 0. Let G = (V, E) be a directed Euclidean
graph. A set of edges E∗ ⊆ E satisfies the ω-gap property if for any two edges
(v1, u1), (v2, u2) ∈ E∗ the distance between the heads and the tails of (v1, u1) and
(v2, u2) is greater than ω times the length of the shorter of the two edges, that is,

min{|v1v2|, |u1u2|} > ω ·min{|v1u1|, |v2u2|}.

The following result is shown in [7]. (The constant implicit in the O-notation does
not depend on d .)

Claim 4.3 [7] (see also Lemma 1 of [3]). Let ω > 0. Let G = (V, E) be a directed
Euclidean graph. If a set E∗ ⊆ E satisfies the ω-gap property, then the total cost of
the edges in E∗ is O((1/ω) · log |E∗| · M STE∗), where M STE∗ is the cost of an MST

connecting the endpoints of the edges in E∗.

Our next claim states, informally, that if two edges in a directed Euclidean graph
are near parallel and close to each other, then one can form a spanner path between the
endpoints of the “longer” edge by concatenating the “shorter” edge and the spanner paths
between endpoints of the two edges. This claim is essentially proven in Lemma 2 of [3].

Claim 4.4. Let t , α, ω be real numbers such that 0 < α < π/4, 0 ≤ ω ≤ 1
2 (cosα −

sinα− 1/t). Let G be a directed Euclidean graph. Let (u, v) and (x, z) be two edges in
G that are α-near parallel to each other. Suppose |uv| ≤ |xz|/cosα, and |ux | ≤ |vz|. If
|ux | ≤ ω · |uv|, then (i) |vz| < |xz| and (ii) t · |xu| + |uv| + t · |vz| ≤ t · |xz|.

Remark 4.5. We emphasize that Claim 4.4 holds not only when the length of edge
(u, v) is less than or equal to the length of edge (x, z), but it also holds when |xz| <
|uv| ≤ |xz|/cosα. Furthermore, notice that Claim 4.4 still holds if we change the
assumption |ux | ≤ ω · |uv| to |ux | ≤ ω · min{|uv|, |xz|} since the latter assumption is
stronger. Therefore, this claim is true when edges (u, v) and (x, z) do not satisfy the ω-
gap property. These two observations are important for our efficient algorithm described
in Section 4.3.

4.2. Sufficient Conditions for Being a k-Vertex Fault-Tolerant Spanner

In this section we present a new sufficient condition for a Euclidean graph to be a (k, t)-
VFTS. Later we show how this condition can be used to obtain an efficient algorithm

2 pairs of α-near parallel edges are called “similar directional” in [7].
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for constructing (k, t)-VFTSs. Our approach is motivated by a similar characterization
of spanners developed by Arya and Smid in [3].

Lemma 4.6. Let t , α, ω be real numbers such that 0 < α < π/4 and 0 ≤ ω ≤
1
2 (cosα − sinα − 1/t). Let G = (V, E) be a directed Euclidean graph. Suppose that
for any two vertices u and v in V ,

1. either (u, v) ∈ E or
2. there are k + 1 edges {(u1, v1), . . . , (uk+1, vk+1)} ⊆ E such that

– for each 1 ≤ i ≤ k + 1, |uivi | ≤ |uv|/cosα,
– all ui and vi that are neither u nor v are pairwise distinct,
– for each 1 ≤ i ≤ k + 1, edge (ui , vi ) is α-near parallel to (u, v), and
– for each 1 ≤ i ≤ k + 1, min{|uui |, |viv|} ≤ ω · |uivi |.

Then G is a (k, t)-VFTS for V .

We emphasize that in Lemma 4.6 we allow some of the ui ’s and vi ’s to be equal to u
or v, but, otherwise, all other endpoints of the edges in {(u1, v1), . . . , (uk+1, vk+1)}must
be pairwise distinct.

Proof. In order to prove that G is a (k, t)-VFTS, we show that for any two vertices
u, v ∈ V , either (u, v) ∈ E or G contains k+1 disjoint t-spanner uv-paths, each uv-path
having all edges shorter than |uv|/cosα. Our proof is by induction on the rank of the
distances between the pairs of points in V .

If |uv| has the minimum distance among all pairs of vertices, then (u, v) must be
an edge of E , and hence the claim holds for u, v. Next, we proceed by induction. We
consider a pair of vertices u, v ∈ V . By induction, for all ordered pairs of vertices
x, y ∈ V with |xy| < |uv|, either (x, y) ∈ E or G contains k + 1 disjoint t-spanner
xy-paths, each having all edges shorter than |xy|/cosα. Our goal is to prove that either
(u, v) ∈ E or G contains k + 1 disjoint t-spanner uv-paths in G, each having all edges
shorter than |uv|/cosα.

We only have to consider the case when (u, v) /∈ E . Then, by the lemma’s assumption,
we know that there exist k + 1 edges (u1, v1), (u2, v2), . . . , (uk+1, vk+1) in E such that

(i) for each 1 ≤ i ≤ k + 1, edge (ui , vi ) is shorter than |uv|/cosα,
(ii) all ui and vi that are neither u nor v are pairwise distinct,

(iii) for each 1 ≤ i ≤ k + 1, edges (ui , vi ) and (u, v) are α-near parallel, and
(iv) for each 1 ≤ i ≤ k + 1, min{|uui |, |viv|} ≤ ω · |uivi |.
We pick any edge (ui , vi ) and assume, without loss of generality, that |uui | =

min{|uui |, |viv|}. Since, (ui , vi ) and (u, v) areα-near parallel by (iii), |uivi | ≤ |uv|/cosα
by (i), and |uui | ≤ ω · |uivi | by (iv), Claim 4.4(i) implies that |viv| < |uv|. Hence, by
induction, either (vi , v) ∈ E or there are k + 1 disjoint t-spanner viv-paths in G, all
using only edges shorter than |viv|/cosα. Similarly, since |uui | ≤ |viv| < |uv|, either
(u, ui ) ∈ E or G contains k + 1 disjoint t-spanner uui -paths that use only edges shorter
than |uui |/cosα. Furthermore, by Claim 4.4(ii), each uv-path consisting of a t-spanner
uui -path (or edge (u, ui )), edge (ui , vi ), and a t-spanner viv-path (or edge (vi , v)) is a
t-spanner uv-path.
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So far we have proven that there are k + 1 edges (u1, v1), (u2, v2), . . . , (uk+1, vk+1)

such that for each i , 1 ≤ i ≤ k + 1, (i) either (u, ui ) ∈ E or G contains k + 1
disjoint t-spanner uui -paths that use only edges shorter than |uui |/cosα, and (ii) either
(vi , v) ∈ E or there are k + 1 disjoint t-spanner viv-paths in G that use only edges
shorter than |vvi |/cosα. Now, the claim follows directly from Menger’s theorem (for
more details, see Lemma 2.2).

Essentially identical arguments can be used to prove the following characterization
for edge fault-tolerant spanners.

Lemma 4.7. Let t , α, ω be real numbers such that 0 < α < π/4, 0 ≤ ω ≤ 1
2 (cosα −

sinα− 1/t). Let G = (V, E) be a Euclidean graph. Suppose that for any two vertices u
and v of V , either (u, v) ∈ E or there are k + 1 edges {(u1, v1), . . . , (uk+1, vk+1)} ⊆ E
such that

• for 1 ≤ i ≤ k + 1, |uivi | ≤ |uv|/cosα,
• each edge (ui , vi ) is α-near parallel to (u, v), and
• for each 1 ≤ i ≤ k + 1, min{|uui |, |viv|} ≤ ω · |uivi |.

Then G is a (k, t)-EFTS for V .

The characterization of (k, t)-VFTSs in Lemma 4.6 almost immediately implies a
simple polynomial-time algorithm for constructing such spanners, which we call the
k-Gap-Greedy Algorithm and describe in the form of a meta-algorithm in Fig. 2.

The following central lemma describes the main properties of the k-Gap-Greedy
Algorithm.

Lemma 4.8. The k-Gap-Greedy Algorithm outputs a directed (k, t)-VFTS for t =
1/(cosα − sinα − 2ω) with maximum in-degree and out-degree O(k) and whose total

k-Gap-Greedy Algorithm

Input: A directed complete Euclidean graph G = (V, E), α and ω, and integer k such
that k ≥ 0, 0 < α < π/4, and 0 < ω < 1

2 (cosα − sinα)
Output: A (k, t)-VFTS G ′ = (V, E ′) for V , where t = 1/(cosα − sinα − 2ω).

E ′ = ∅
for each edge (u, v) ∈ E taken in nondecreasing order by length do

Let E∗ be a maximal (in the sense of inclusion) subset of E ′ such that:
1. all edges in E ′ beginning at u or ending at v are contained in E∗,
2. for every (x, y) ∈ E∗, (x, y) is α-near parallel to (u, v),
3. for every (x, y) ∈ E∗, min{|ux |, |yv|} ≤ ω · |xy|,
4. for any pair of distinct edges (x, y), (z, w) ∈ E∗, if x �= u and y �= v, then

x �= z and y �= w.
if |E∗| < k + 1 then E ′ = E ′ ∪ {(u, v)}

output G ′ = (V, E ′)

Fig. 2. The k-Gap-Greedy Algorithm.
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cost is O((1/ω) · k2 log n) times the cost of an MST for V . The constant implicit in the
O-notation depends on t and d .

Proof. We first prove that G ′ is a (k, t)-VFTS by showing that for any ordered pair of
vertices u, v, one of the two conditions of Lemma 4.6 is satisfied. If (u, v) ∈ E ′, then
the first condition is obviously true. Otherwise, (u, v) /∈ E ′ and we consider the iteration
of the algorithm when (u, v) is chosen. The only reason that (u, v) is not added to E ′

is that |E∗| ≥ k + 1. However, this implies that the second condition of Lemma 4.6 is
satisfied for (u, v). Therefore, G ′ is a (k, t)-VFTS by Lemma 4.6.

Next, we prove that the maximum out-degree and the maximum in-degree of each
vertex is O(k). Let u be any vertex. We first prove the out-degree of u is O(k). Let Cu

be any cone in Rd with the apex at u and the angular diameter at most α. Let E ′Cu
be

the set of edges in G ′ beginning at u that are contained in the cone Cu . We prove that
|E ′Cu
| ≤ k + 1, which immediately implies that the out-degree of u isO(k). We analyze

the behavior of the algorithm at the moment when |E ′Cu
| = k + 1 and the algorithm

considers a new edge (u, v) with v ∈ Cu . We observe that in that case we will have
E ′Cu
⊆ E∗, and, hence, E∗ will be of size at least k + 1. Therefore, the algorithm will

not add the edge (u, v) to the spanner. This implies that |E ′Cu
| ≤ k + 1, and, hence,

the out-degree of u is O(k). One can use essentially identical arguments to prove the
in-degree of u is O(k). (Similar arguments show that u is the head/tail of at most k + 1
pairwise α-near parallel edges.)

Finally, we prove that G ′ has small cost. We proceed similarly as in the proof of
Lemma 3.8 and first partition E ′ into disjoint sets E ′1, E ′2, . . . such that each E ′i is
a maximal set of edges which are α-near parallel. By our discussion in the proof of
Lemma 3.8, there are O((c/α)d−1) such disjoint sets E ′1, E ′2, . . .. We fix one set E ′i and
divide the edges in E ′i into a minimal number of groups such that the edges in the same
group satisfy the ω-gap property. We prove thatO(k2) groups are sufficient. It is enough
to show that for any edge e ∈ E ′i there are at most O(k2) edges e′ ∈ E ′i shorter than e
such that {e, e′} does not satisfy the ω-gap property.

We fix an edge (u, v) ∈ E ′i . Let V
u
(u,v) = {p ∈ V : ∃(p, q) ∈ E ′i , |pq| ≤ |uv|, 0 ≤

|up| ≤ ω · |pq|} and let E
u
(u,v) be the set of edges in E ′i that (i) begin at vertices in V

u
(u,v),

and (ii) are shorter than |uv|. Note that since E
u
(u,v) ⊆ E ′i , all edges in E

u
(u,v) are pairwise

α-near parallel. We show that |Eu
(u,v)| < 2(k + 1)2 by contradiction. We suppose that

|Eu
(u,v)| ≥ 2(k + 1)2 and consider the iteration in which the edge (u, v) is picked by

the algorithm. Let E∗ be the set taken by the k-Gap-Greedy Algorithm when the edge
(u, v) is considered. We prove that |E∗| ≥ k + 1, which contradicts the assumption
that (u, v) ∈ E ′. Let E be the set of all edges in E ′ shorter than (u, v) such that for
every edge e ∈ E , (i) e is α-near parallel to (u, v) and (ii) {e, (u, v)} does not satisfy
the ω-gap property. Note that because the algorithm picks edges in nondecreasing order,
condition 3 of the algorithm implies that none of the edges in E∗ satisfies the ω-gap
property with (u, v). Thus, E∗ can be defined as the sum of certain maximal matching in
E and the set of all edges in E that either begin at u or end at v. Therefore, to prove that
|E∗| ≥ k + 1 it is sufficient to show that every maximal matching in E contains at least
k + 1 edges. Furthermore, because of the well known relation between the cardinality
of the maximum matching and the minimum cardinality of a maximal matching, it is
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enough to show that the maximum matching in E contains at least 2(k + 1) edges. We
prove this property by considering the edges in E

u
(u,v). We first observe that by definition

we have E
u
(u,v) ⊆ E . Therefore, we only must show that E

u
(u,v) has a matching of size

at least 2(k + 1). Note that there are at most k + 1 edges in E ′i starting at each vertex
as we proved above. Since we assumed that |Eu

(u,v)| ≥ 2(k + 1)2, we conclude that set

E
u
(u,v) must contain at least 2(k + 1) disjoint edges. Therefore, there is a matching of

size at least 2(k + 1) in E . However, this leads to a contradiction, and hence we proved
that |Eu

(u,v)| < 2(k + 1)2.

Symmetrically, we can define E
v

(u,v), and prove that |Ev

(u,v)| < 2(k + 1)2. Therefore,

|Eu
(u,v)∪E

v

(u,v)| < 4(k+1)2. Hence we can conclude that we need at most 4(k+1)2 groups
of edges from E ′i such that the edges in each group satisfy the ω-gap property. Thus, we
proved that we can partition the edges in E ′ into O((c/α)d−1 k2) groups such that the
edges in each group satisfy theω-gap property. To conclude the proof we apply Claim 4.3
to obtain an upper bound for the total cost of E ′ to beO((c/α)d−1 k2 (1/ω) log n) times
the cost of an MST of V .

4.3. Efficient Construction of a k-Fault-Tolerant Spanner

It is easy to implement the k-Gap-Greedy Algorithm in polynomial time, however, direct
implementations lead to a running time of �(n2). In this section we discuss how that
algorithm can be modified to achieve a running time ofO(nk logd n+ nk2 log k) while
still returning a spanner having the parameters promised in Lemma 4.8. Our approach is
similar to the one developed by Arya and Smid [3] to construct spanners with bounded
degree and low cost.

The main idea behind our approach is not to consider all the �(n2) edges but to
have an efficient procedure that will “forbid” certain edges without considering them
explicitly during the run of the algorithm. Since every vertex is of degreeO(k), our goal
is to ensure that onlyO(k) edges incident to any vertex are considered by the algorithm.
We relax the rules of inserting an edge in the k-Gap-Greedy Algorithm in order to obtain
a more efficient implementation. On one hand, we want to maintain the properties of
the output spanner required by Lemma 4.6 and, on the other hand, we aim at outputting
a spanner having properties described in Lemma 4.8. Below we describe the main idea
behind that relaxation, and the algorithm itself is described in Section 4.3.2.

4.3.1. Main Idea Behind the Modified Algorithm. We use the collection of cones of
angular diameter α (see Section 3.1) to test whether two edges are α-near parallel to
each other. That is, we assume that we are given a collection C of cones with apexes at
the origin and angular diameter α, so that the cones in C cover Rd . Then we say an edge
(u, v) is in a cone C if the vector v− u ∈ C . Using this notion, each time we consider a
pair of points u, v with (u, v) ∈ C , we only look at those edges (x, y) ∈ E ′ that are in
C . Since if (u, v) and (x, y) are in the same cone, then they are α-near parallel to each
other, this notion allows us to relax the testing of α-near parallel edges.

Once we fix the collection C of cones, we consider all cones from C separately. We
build the spanner by defining the edge set E ′ which will be the union of the edge sets
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constructed for each cone separately. We use E ′C to denote all those edges of E ′ inside
the cone C ∈ C.

In the k-Gap-Greedy Algorithm, one analyzes the edges in order of their increasing
lengths. This is more complicated (in the sense of efficiency) if we want to consider the
edges in different cones separately. Therefore, following the approach from [28] (see
also [3]), we approximate the distance between the points in a cone. For each cone C ,
we consider any fixed ray �C incident to the apex of C and that is included in the cone
C . Then the idea of approximating the distance between pairs of points is to use the
distance between the projections of the points on the ray �C . To make this notion more
formal, we first need a few definitions. For any cone C ∈ C and any point x ∈ Rd ,
let Cx be the translation of C so that the apex of Cx is at x , that is, Cx = {y ∈ Rd :
y − x ∈ C}. Similarly, for the ray �C , let �C,x = {y ∈ Rd : y − x ∈ �C}. Then we
approximate the distance between the points in the cone C using the following function
distC :

distC(x, y)=
{|x Ry | if y ∈ Cx and Ry is the orthogonal projection of y onto �C,x ,

∞ if y /∈ Cx .

The main reason for using this approximation of the distances between pairs of points
inside a cone is that it can be efficiently maintained by a dynamic algorithm (see also
[3] and [28]). Furthermore, it is easy to show that if distC(x, y) ≤ distC(u, v), then
|xy| ≤ |uv|/ cosα. Therefore, by Claim 4.4 and Lemma 4.6, the algorithm remains
correct (in the sense that it satisfies the properties from Lemma 4.6) even if edge (x, y)
is considered before edge (u, v).

Summarizing, our algorithm considers the edges inside each cone in nondecreasing
order of their distC length.

Consider an edge (x, y) that is to be taken by the algorithm and let (x, y) be in a cone
C ∈ C. Observe that if there are already at least k+ 1 edges in C with the head at x , then
we know that the edge (x, y) will not be taken by the algorithm. Therefore, whenever
we have a vertex x already having k + 1 outgoing edges in C , then we do not have to
consider any further edge starting at x in C . Symmetrically, we only consider at most
k + 1 incoming edges for any point y.

The other reason for rejecting edge (x, y) is that there are many disjoint edges in
C which are shorter than (x, y) with respect to the distC length and are very close
to either x or y. Let x ∈ V be any input point. We keep two special data structures
to maintain a maximal set of disjoint edges in C that have starting or ending points
close to x , respectively. We modify these two data structures not when an edge in C
incident to x is considered, but, instead, they are updated each time an edge close
to x is inserted into E ′C . To be more precise, at each moment of the algorithm, we
maintain a set FC(x) for each x ∈ V which contains a set of disjoint edges in E ′C such
that for any (u, v) ∈ FC(x) we have |xu| ≤ ω · |uv|. Similarly, we maintain HC(x)
which contains a set of disjoint edges in E ′C such that for any (u, v) ∈ HC(x) we have
|vx | ≤ ω · |uv|.

Now, suppose an edge (u, v) is inserted to E ′C . Let N u
(u,v) and N v

(u,v) be the set of points
that are at distance at most ω · |uv| from u and v, respectively. By our definitions of
FC(x) and HC(x), we need to update those points in N u

(u,v) and N v
(u,v) that are “affected”

by the edge (u, v). That is, for every point x ∈ N u
(u,v), if FC(x) contains no edge incident
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to either u or v, then we can update FC(x) by inserting (u, v) to it. Similarly, we update
HC(y) for every point y ∈ N v

(u,v).
Notice that the operation of updating the sets FC(x) and HC(x) may be very expen-

sive, because both the vertex sets N u
(u,v), N v

(u,v) and the edge sets FC(x), HC(x) may be
very large. Therefore, we relax the definition of the sets FC(x) and HC(x) by observing
that once FC(x) or HC(x) is of size larger than or equal to k+1, by Lemma 4.6, we know
that no new edge in C beginning or ending at x , respectively, will have to be added to
E ′C . Therefore, we maintain two sets of points from V : V 1

C containing all points that can
still be the heads of new edges in E ′C and V 2

C containing points that can still be the tails of
new edges in E ′C . Each time the size of a certain FC(x) is greater than or equal to k + 1,
we delete x from V 1

C ; we do not consider any further edges in C that begin at x , we do
not update FC(x) anymore, nor do we consider x in any further sets N u

(u,v). Similarly, if
HC(x) ≥ k+1, we delete x from V 2

C , we do not consider any further edges in C ending at
x , we do not update HC(x) or consider x in any further sets N v

(u,v). In this way, since both
FC(x) and HC(x)have a size between 0 and k+1, the total number of operations for updat-
ing the sets FC(x) and HC(x) in the entire algorithm (for a given cone C) will beO(k n).

Observe that once a vertex x has been reported 2(k+1)2 times in the sets N u
(u,v), then

we know that there are 2(k+1)2 edges (u, v) such that |ux | ≤ ω · |uv|. Since each vertex
is the head of at most k + 1 edges in C , there must be 2(k + 1) disjoint edges among all
these edges. Therefore, in this case, the size of FC(x) must be greater than or equal to
k + 1 (see Lemma 4.8 for a more detailed discussion on similar arguments). Hence, at
this moment x will be deleted and will not be reported in N u

(u,v) for any u ∈ V any more.
For the same reason x will be reported in N v

(u,v) at most 2(k + 1)2 times. This allows us
to conclude that the total size of N u

(u,v) and N v
(u,v) for all vertices u and v in the entire

algorithm (for a given cone C) is 4n(k + 1)2.
To define sets N u

(u,v) we need to find all points that are at a distance at most ω · |uv|
from u. However, since it is difficult to maintain dynamic data structures to find N u

(u,v)
in the Euclidean metric, in the definition of N u

(u,v) we assume the distances between
points according to the L∞ metric. That is, we redefine N u

(u,v) to be the set of all points

x with |ux |∞ ≤ (ω/
√

d) |uv|. (Here, we need to output only the points that have not
been deleted, that is, those x for which |FC(x)| < k + 1.) Since |ux |∞ ≤ (ω/

√
d) |uv|

implies that |ux | ≤ ω · |uv|, the new definition of N u
(u,v) gives a subset of the set N u

(u,v)
defined above. Set N v

(u,v) is redefined symmetrically.

4.3.2. Improved k-Gap-Greedy Algorithm. In the previous subsection we presented
the main ideas behind our modifications of the k-Gap-Greedy Algorithm that allow us to
design a new algorithm that finds good fault-tolerant spanners efficiently. A more formal
description of our algorithm is presented on p. 224. We begin with a formal proof of
its correctness and then a discussion about its efficient implementation.

Properties of the Improved k-Gap-Greedy Algorithm. This section is devoted to a
formal proof of the following lemma.

Lemma 4.9. Let V be a set of n points in Rd . Let α, ω be real numbers such that
0 < α < π/4 and 0 < ω < 1

2 (cosα − sinα). Let t = 1/(cosα − sinα − 2ω).
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Improved k-Gap-Greedy Algorithm

Input: Set V of n points inRd , an integer k ≥ 0, and positive α, ω with α < π/4
and ω < 1

2 (cosα − sinα)
Output: A (k, t)-VFTS G ′ = (V, E ′) for V , where t = 1/(cosα− sinα− 2ω).

let C be any collection of cones with angular diameter α that cover Rd

for each cone C ∈ C do
EC = {(u, v) : distC(u, v) <∞} {EC contains all edges (u, v) such

that v − u ∈ C}
E ′C = ∅ {E ′C collects the edges in EC that

are to be included in the spanner}
for each x ∈ V do FC(x) = ∅ {FC(x) is a set of disjoint edges in

E ′C that begin at points near to x}
for each x ∈ V do HC(x) = ∅ {HC(x) is a set of disjoint edges in

E ′C that end at points near to x}
V 1

C = V {V 1
C contains all points u in V such

that |FC(x)| < k + 1}
V 2

C = V {V 2
C contains all points v in V such

that |HC(x)| < k + 1}
while EC �= ∅ do

let (u, v) ∈ EC be such that distC(u, v) is minimal
if the number of edges beginning at u in E ′C is at least k + 1 then

delete u from V 1
C and delete from EC all edges beginning at u

if the number of edges ending at v in E ′C is at least k + 1 then
delete v from V 2

C and delete from EC all edges ending at v
if (u, v) is still in EC then {edge (u, v) will be in the spanner}

EC = EC\{(u, v)}
E ′C = E ′C ∪ {(u, v)}
let N u

(u,v) be the set of points x ∈ V 1
C with |ux |∞ ≤ (ω/

√
d) |uv|

let N v
(u,v) be the set of points y ∈ V 2

C with |vy|∞ ≤ (ω/
√

d) |uv|
for each x ∈ N u

(u,v) do
if (u, v) is disjoint with all edges in FC(x) then

FC(x) = FC(x) ∪ {(u, v)}
if |FC(x)| ≥ k + 1 then

delete x from V 1
C and delete from EC all edges beginning at x

for each y ∈ N v
(u,v) do

if (u, v) is disjoint with all edges in HC(y) then
HC(y) = HC(y) ∪ {(u, v)}
if |HC(y)| ≥ k + 1 then

delete y from V 2
C and delete from EC all edges ending at y

E ′ =⋃C∈C E ′C
output G ′ = (V, E ′)



Fault-Tolerant Geometric Spanners 225

There is a constant c such that the Improved k-Gap-Greedy Algorithm outputs a di-
rected (k, t)-VFTS with maximum in-degree and out-degree O(k) and whose total cost
is O((c/α)d−1 (

√
d/ω)k2 log n) times the cost of an MST for V .

Proof. We need to prove that the output of the Improved k-Gap-Greedy Algorithm has
the same properties as the output of the k-Gap-Greedy Algorithm after we relax some
conditions. The proof is similar to that of Lemma 4.8.

Let G ′ be the output of the Improved k-Gap-Greedy Algorithm. First, we prove that
G ′ is a (k, t)-VFTS by showing that G ′ satisfies the conditions of Lemma 4.6. Let u, v
be any ordered pair of vertices, and v − u ∈ C for some C ∈ C. If (u, v) ∈ E ′C , then
the first condition is obviously true. Otherwise, (u, v) /∈ E ′C and there are two possible
reasons why (u, v) was not inserted to E ′C :

(i) (u, v) is considered explicitly in the “while” loop but is not inserted to E ′C .
In this case distC(u, v) is minimum at the beginning of a certain iteration. Since
(u, v) is not added to E ′C , there must exist either k + 1 edges with heads at u or
k + 1 edges with tails at u which are already inserted to E ′C . These edges have
length at most |uv|/cosα, areα-near parallel to (u, v), and they have one common
endpoint with (u, v). Therefore, the second condition of Lemma 4.6 is satisfied.

(ii) (u, v) is deleted when some other pair (x, y) is picked and added to E ′C in the
“while” loop.
In this case the only reason that (u, v) is deleted from EC is either |FC(u)| =
k + 1 or |HC(v)| = k + 1 after (x, y) is inserted to FC(u) or HC(u), respec-
tively. Suppose that |FC(u)| = k + 1 and consider the edges in FC(u) =
{(x1, y1), . . . , (xk+1, yk+1)}. By the Improved k-Gap-Greedy Algorithm, edge
(xi , yi ), 1 ≤ i ≤ k + 1, can be inserted to FC(u) only if: (a) |uxi |∞ ≤
(ω/
√

d) |xi yi |, which implies that |uxi | ≤ ω · |xi yi |, and (b) (xi , yi ) is dis-
joint with all other edges in FC(u). Furthmore, since (xi , yi ) is considered before
(u, v) by the algorithm, we must have distC(xi , yi ) ≤ distC(u, v), which means
|xi yi | ≤ |uv|/cosα. Therefore, we can combine this with (a) and (b) to see that
the second condition of Lemma 4.6 is satisfied.

To summarize, we proved, for each pair (x, y), either (x, y) is an edge in G ′ or there
are k + 1 edges in G ′ satisfying the second condition of Lemma 4.6. Therefore, G ′ is a
(k, t)-VFTS.

Next, we prove that the maximum in-degree and out-degree of each vertex isO(k). The
proof is basically the same as the proof of Lemma 4.8. Let u be any vertex. According to
the Improved k-Gap-Greedy Algorithm it is easy to see that at most k+1 edges beginning
at u can be added to the E ′C for any given cone C ∈ C. Therefore the out-degree of u in
G ′ is O(k). Similarly, we can show that the in-degree is O(k).

Finally, we prove that G ′ has small cost. We fix a cone C and divide the edges in
E ′C into a minimal number of groups such that the edges in the same group satisfy the
(ω/
√

d)-gap property. We prove that O(k2) groups suffice. To prove this claim it is
enough to show that for any edge e ∈ E ′C there are at most O(k2) edges e′ ∈ E ′C that
are “shorter” than e in terms of the distC length and such that {e, e′} does not satisfy the
(ω/
√

d)-gap property.
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Fix an edge (u, v) ∈ E ′C . Let Eu
(u,v) = {(x, y) ∈ E ′C : distC(x, y) < distC(u, v) and

|ux | ≤ ω/√d · |xy|} and Ev
(u,v) = {(x, y) ∈ E ′C : distC(x, y) < distC(u, v)and |vy| ≤

(ω/
√

d) · |xy|}. Observe that if an edge (x, y) is “shorter” than (u, v)with respect to the
distC length and it fails to satisfy the (ω/

√
d)-gap property with (u, v), then (x, y) ∈

Eu
(u,v)∪Ev

(u,v). Therefore, to prove the claim it is sufficient to show that |Eu
(u,v)∪Ev

(u,v)| =
O(k2).

We first prove that |Eu
(u,v)| = O(k2). Let Eu

(u,v) = {(x, y) ∈ E ′C : distC(x, y) <

distC(u, v)and |ux |∞ ≤ (ω/
√

d) · |xy|}. Note that since |ux |∞ ≤ |ux |, we have Eu
(u,v) ⊆

Eu
(u,v). In the following we show that |Eu

(u,v)| = O(k2) which directly implies that
|Eu

(u,v)| = O(k2).
We have two observations. First, because all edges in Eu

(u,v) are “shorter” than (u, v)
with respect to distC , all these edges are picked and inserted to E ′C by the algorithm
before (u, v). Secondly, each time after one of these edges (x, y) is inserted to E ′C , the
algorithm inserts (x, y) to FC(u) if (x, y) is disjoint with edges already in FC(u). In
other words, at the end of each iteration of the Improved k-Gap-Greedy Algorithm FC(u)
keeps a maximal matching of the edges in Eu

(u,v) that have been inserted to E ′C so far.
Now we prove by contradiction that |Eu

(u,v)| < 2(k + 1)2. Suppose that |Eu
(u,v)| ≥

2(k + 1)2. We have already shown that each vertex has out-degree (in-degree) in E ′C of
at most k+ 1. Therefore, the maximum matching of Eu

(u,v) must contain at least 2(k+ 1)
edges and thus any maximal matching of Eu

(u,v) must have at least k + 1 edges. Since
FC(u) is a maximal matching of Eu

(u,v), we have |FC(u)| ≥ k + 1. Then there must
exist an edge (x, y) ∈ Eu

(u,v) such that during the iteration when (x, y) is inserted to E ′C ,
(x, y) is also inserted to FC(u), and |FC(u)| becomes k + 1. However, the Improved
k-Gap-Greedy Algorithm is designed such that in that moment u must have been deleted
from V 1

C and all edges with the head at u including (u, v) are also deleted from EC and
will not be inserted to E ′C . This contradicts the fact that (u, v) ∈ E ′C . Thus, we proved
|Eu

(u,v)| ≤ |Eu
(u,v)| < 2(k + 1)2.

In a similar way, we can prove that |Ev
(u,v)| < 2(k+1)2. Therefore, |Eu

(u,v)∪ Ev
(u,v)| <

4(k+ 1)2. Hence, we can partition the edges from E ′i into at most 4(k+ 1)2 groups such
that the edges in each group satisfy the (ω/

√
d)-gap property. Thus, the edges in E ′

can be partitioned into O((c/α)d−1k2) groups such that the edges in each group satisfy
the (ω/

√
d)-gap property. To conclude the proof we apply Claim 4.3 to obtain an upper

bound for a total cost of E ′, which is O((c/α)d−1k2(
√

d/ω) log n) times the cost of an
MST of V .

Details of the implementation of the Improved k-Gap-Greedy Algorithm. Our descrip-
tion of the Improved k-Gap-Greedy Algorithm is on a high level and now we discuss
how one can implement that algorithm efficiently. In order to obtain an efficient imple-
mentation we must provide efficient data structures that allow us to query for (i) an edge
(u, v) ∈ EC with minimum distC , (ii) the number of edges in E ′C beginning or ending at
u, (iii) reporting all points in N u

(u,v) and N v
(u,v), and (iv) for verifying if an edge (u, v) is

disjoint to all edges in FC(x) or HC(x).
It is easy to see that one can maintain the data structure (ii) reporting the number of

edges in E ′C beginning or ending at a given vertex with constant query time and update
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time. Similarly, one can easily maintain the data structure (iv) verifying if an edge (u, v)
is disjoint to all edges in FC(x) or HC(x) with O(log k) query time and update time.
(The bound for the query time follows immediately from the fact that FC(x) or HC(x)
containsO(k) edges and one can use a balanced binary search tree to store the endpoints
of these edges.)

Arya and Smid [3] gave an efficient data structure supporting query (i) for an edge
in EC with minimum distC . As is demonstrated (and discussed in detail) in [3], the total
running time needed to perform all these operations is in our case O(nk logd n). (This
bound follows from the fact that we use query (i) O(kn) times, and, as shown in [3], an
efficient data structure can be built in timeO(n logd n) that has constant query time and
O(logd n) amortized update time per edge.)

To report all points in N u
(u,v) and N v

(u,v) efficiently we use a dynamic data structure for
orthogonal range queries (see [23]). In our algorithm we only delete points and therefore
the amortized deletion time isO(logd−1 n) and the query time isO(logd−1 n) time plus the
number of reported points [23]. Since each point is deleted at most once, the total deletion
time isO(n logd−1 n). We perform query operations on the dynamic data structure each
time after an edge is inserted, so the total time is O(nk logd−1 n) for O(nk) edges.
Each vertex is reported at most O(k2) times; when reported, we verify whether FC(x)
or HC(x) can be enhanced by adding an edge; the verification and update takes time
O(log k); thus the total time for reporting, verification, and updating is O(nk2 log k).

In summary, we can conclude the discussion in this section with the following lemma.

Lemma 4.10. Let V be a set of n points in Rd . Let α, ω be real numbers such that
0 < α < π/4 and 0 < ω < 1

2 (cosα − sinα). Let t = 1/(cosα − sinα − 2ω). There
is a constant c such that the Improved k-Gap-Greedy Algorithm can be implemented to
run in time O((c/α)d−1(nk logd n + nk2 log k)).

We can conclude the discussion in this section with the following main theorem that
follows immediately from Lemmas 4.9 and 4.10.

Theorem 3. Let α, ω be real numbers such that 0 < α < π/4, 0 < ω < 1
2 (cosα −

sinα). Let V be a set of n points inRd . Let t = 1/(cosα−sinα−2ω). There is a constant
c such that in O((c/α)d−1(nk logd n + nk2 log k)) time the Improved k-Gap-Greedy
Algorithm computes a directed (k, t)-VFTS having maximum degreeO((c/α)d−1 k) and
total cost O((c/α)d−1k2(

√
d/ω) log nWMST).

To conclude this section, we notice that Theorem 3 directly implies Theorem 2.

5. Conclusions and Final Remarks

It is tempting (and very interesting) to try to extend our results to non-Euclidean graphs.
One could extend Claim 3.1 to hold for arbitrary graphs, that is, to show that the graph
obtained in the k-Greedy Algorithm is a (k, t)-VFTS for arbitrary (i.e., also for non-
Euclidean) graphs (see Remark 3.2). Furthermore, since our k-Greedy Algorithm is
an extension of the classical greedy algorithm that has been used extensively in the
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construction of t-spanners, see, e.g., [1], it is plausible to ask if it produces good quality
spanners for arbitrary graphs or for planar graphs. For example, it follows from [1] that if
the k-Greedy Algorithm with k = 0 is run on a planar graph, then it produces a t-spanner
whose total cost is upper bounded by O(1/(t − 1)) times the MST cost. However, this
result cannot be generalized to larger k, as we show below.

We consider the k-Greedy Algorithm for k = 1 and t = 1+ε for a positive real number
ε. Let G = (V, E) be a planar, weighted graph on n vertices with V = {v1, v2, . . . vn}
and E = E1 ∪ E2 ∪ {(vn, v1)}, where E1 = {(v1, v2), (v2, v3), . . . , (vn−1, vn)} and
E2 = {(v1, v3), (v2, v4), . . . , (vn−2, vn)}. Let cost(e) denote the cost of edge (u, v). We
define the edge costs as follows:

cost(e) =


10 if e = (vn, v1),

ε/n if e ∈ E1,

10− ε if e ∈ E2.

It is easy to see that the minimum-cost 2-vertex connected subgraph of G is G ′ = (V, E ′)
with E ′ = E1∪{(vn, v1)}, which is also an optimal (1, 1+ε)-VFTS (or (1, 1+ε)-EFTS).
However, if we run the greedy algorithm on G, it will output G itself. Therefore, the
optimal cost of a (1, 1+ ε)-VFTS (or (1, 1+ ε)-EFTS) is 10+ (n− 1) · ε/n, which for
very small ε is about 10, while the cost of the graph obtained by the greedy algorithm is
10+ (n− 2) · (10− ε)+ (n− 1) · ε/n, which for small ε is about 10 · (n− 1). Figure 3
gives an example for n = 8.

An obvious open question that is left after our paper is whether one can design an
efficient algorithm that outputs fault-tolerant spanners having properties from Theo-
rem 1. We believe that it should be possible to design an Õ(nk)-time (O(nk polylog n))
algorithm for that problem.

There are many algorithmic applications of spanners, perhaps the most appealing
being the recent application in an O(n log n)-time approximation algorithm for the Eu-
clidean TSP [27]. On the other hand, we do not know of many applications of fault-
tolerant spanners. Actually, even in the most natural application to the k-connectivity

ε/8 ε/8 ε/8 ε/8 ε/8ε/8 ε/8

10

10−ε

10−ε 10−ε 10−ε

10−ε 10−ε

(a)

(b)

(c)

Fig. 3. (a) A weighted planar graph G, (b) (1, 1 + ε)-VFTS (or (1, 1 + ε)-EFTS) of G generated by the
greedy algorithm with t = 1+ ε, and (c) minimum (1, 1+ ε)-VFTS (or (1, 1+ ε)-EFTS) of G.
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problem, the fastest approximation algorithms do not use fault-tolerant spanners [9]–
[11]. Therefore, in near future we intend to investigate the relationship between the
connectivity problems in Euclidean graphs and the notion of fault-tolerant spanners.
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appeared in M. M. Halldórsson, editor, Proceedings of the 7th Scandinavian Workshop on Algorithm
Theory, Bergen, Norway, July 5–7, 2000, pages 314–327. Volume 1851 of Lecture Notes in Computer
Science. Springer-Verlag, Berlin.

19. C. Levcopoulos and A. Lingas. There are planar graphs almost as good as the complete graphs and almost
as cheap as minimum spanning trees. Algorithmica, 8:251–256, 1992. A preliminary version appeared in
H. Djidjev, editor, Proceedings of the International Symposium on Optimal Algorithms, Varna, Bulgaria,
1989, pages 9–13. Volume 401 of Lecture Notes in Computer Science. Springer-Verlag, Berlin.

20. C. Levcopoulos, G. Narasimhan, and M. H. M. Smid. Improved algorithms for constructing fault-tolerant
spanners. Algorithmica, 32(1):144–156, 2002. A preliminary version appeared in Proceedings of the 30th
Annual ACM Symposium on Theory of Computing, Dallas, TX, May 23–26, 1998, pages 186–195, ACM
Press, New York.

21. T. Lukovszki. New results on fault tolerant geometric spanners. In F. Dehne, A. Gupta, J.-R. Sack, and
R. Tamassia, editors, Proceedings of the 6th Workshop on Algorithms and Data Structures, Vancouver,
Canada, August 11–14, 1999, pages 193–204. Volume 1663 of Lecture Notes in Computer Science.
Springer-Verlag, Berlin.

22. T. Lukovszki. New Results on Geometric Spanners and Their Applications. Ph.D. thesis, University of
Paderborn, 1999.
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