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Abstract

Fault-tolerant quantumerror correction is a necessity for anyquantumarchitecture destined to tackle

interesting, large-scale problems. Its theoretical formalismhasbeenwell founded for nearly twodecades.

However,we still donothave an appropriate compiler to produce a fault-tolerant, error-corrected

description fromahigher-level quantumcircuit for state-of the-art hardwaremodels. There aremany

technical hurdles, includingdynamic circuit constructions that occurwhenconstructing fault-tolerant

circuitswith commonlyused error correcting codes.We introduce apackage that converts high-level

quantumcircuits consisting of commonlyusedgates into a formemploying all decompositions and

ancillaryprotocols needed for fault-tolerant error correction.We call this form the (I)initialisation,

(C)NOT, (M)measurement form (ICM) andconsists of an initialisation layer of qubits intooneof four

distinct states, amassive, deterministic arrayofCNOToperations and a series of time-orderedX- or

Z-basismeasurements. The formallows amoreflexible approach towards circuit optimisation.At the

same time, the package outputs a standard circuit or a canonical geometric descriptionwhich is anecessity

for operating current state-of-the-art hardware architectures using topological quantumcodes.

The construction and compilation of quantum algorithms has long been an active area of research [1–10]. Since

thefirst work on designing circuits from abstract quantumalgorithms [11–18], research has been centred on

many different aspects of compilation and optimisation. These techniques have focused on aspects such as

minimising the total number of qubits [19–22], the depth of quantum circuits [23–26], constraints related to

hardware [21, 27–32] and theminimisation of certain quantum gates that are resource intensivewhen

implemented in error-corrected hardware [33–38]. However, despite the significant quantity of research in this

area,much of the early work omitted details of fault-tolerant error correction protocols. These protocols are not

only instrumental in implementing any quantumalgorithm, beyond a handful of qubits, but place constraints

on the costmetrics usedwhen assessing optimal circuit constructions for a higher-level algorithm [39].

In recent years, theoretical researchhas begun to take into account the considerations of error-corrected

computation. Both high-level quantumprogramming languages and efforts inoptimisation have attempted to re-

engineer circuits undermore appropriate constraints.Most notably is the increased number of papers recognising

that in fault-tolerant quantumcomputation aClifford+Tuniversal gate set is generally used and the resource

penalty associatedwith the single qubitT e0 0 1 1i 4= ñá + ñáp∣ ∣ ∣ ∣gate requires theminimisationof both the

number of such gates and the correspondingT-depth (the number of sequential applications ofT-gates in a circuit)

[33–38].However,muchof thiswork still abstracts out concrete choices of quantumerror correction (QEC)

coding and/or specific hardware implementationswhen compiling andoptimising quantumcircuits.

From ahardware perspective, topological codes have emerged as the preferredmethod for achieving a

scalable design. Themajority of scalable architectures proposed either use the two-dimensional (2D) surface

code [40–42], or the 3-dimensional (3D)Raussendorfmodel [43, 44] as the underlying error correctionmethod.
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Thesemodels are preferred as they can be defined on a 2Dor 3Dnearest neighbour array of qubits, facilitating

experimental fabrication, and have one of the highest fault-tolerant thresholds of any error correction scheme

(approaching 1%under certain circuit assumptions) [45, 46]. Additionally, realisation of error-corrected

algorithms is a function of how the array of qubits ismeasured, rather than how it is constructed (i.e. the actual

choice of algorithmonly dictates the physical size of the lattice needed at the hardware level, nothingmore)

[39, 47, 48], with error correction decoding and correction occurring concurrently with algorithmic

implementation [49, 50]. In recent years, numerous results have been published demonstrating hardware

accuracy sufficient for this codingmodel in both ion traps and superconducting systems [51–55].

These topological codes also have theproperty, alongwithmore traditional concatenatedCSS codes, that a

universal, error-corrected gate set is built using theClifford+T library. The inherent fault-tolerant operations

allowed in thesemodels are initialisations/measurements in theZ- andX-bases and a two-qubitCNOTgate.

Hadamard (H X Z 2= +( ) ) andPhase (P Z= ) gates canbe realised inmultipleways [56–59], to complete

theClifford set, while theT-gate is realised through state injection, purification protocols and teleportations [56].

State distillation protocols, necessary for theT gate and some realisations of theH- andP-gates, dominate the

resources required for a large-scale computation [39, 42].

1. Results

In this work, we present a decomposition and compilation package that can be the starting point for global

optimisation of a fault-tolerant, error-corrected circuit in either the topologicalmodels or any othermodel of

error correctionwhere aClifford+T library is used. This is enabled by bringing high-level quantum circuits

consisting of commonly used gates into the ICM form,which employs all decompositions and ancillary

protocols needed for fault-tolerant error correction.

The compiler outputs a circuit description necessary for the execution of the high-level circuit on a large-

scale quantum computer using topological QECs. The source code for this compiler can be found at https://

github.com/alexandrupaler/icmconvert.

In the appendix, we provide detailed explanations about a formalism for time-optimal computation that

allows dynamic quantum circuit corrections to be converted into a deterministic circuit [57], each stage of the

compilation process, including standard circuit identities used [12], gate approximations based on the results

fromRoss and Selinger [35], and fault-tolerant ancillary protocols such as state injection and distillation [56].

2. Fault-tolerant quantumcircuit form

The formof fault-tolerant quantum circuits, whichwe call the (I)nitialisation, (C)not, (M)easurement form

[61], is the result of converting a high-level quantum circuit. A high-level circuit description is the equivalent of

an abstract high-level quantum algorithm converted into a standard quantum circuit representation utilising a

well-defined universal gate set. The quantum algorithm, described usingQuipper [8] or Liquid [9], is output into

a circuit using those tools and languages, and compiled into an ICMhigh-level fault-tolerant quantum circuit

using the herein presented framework. The ICM form is presented by employing the formalism of time-optimal

quantum computation [60] and recent advances inClifford+T gate decompositions [35].

This structure of the form consists of three layers. Thefirst is a series of qubit initialisations in either the 0ñ∣

state, the +ñ∣ state or the ancillary states A e0 1i 4ñ = ñ + ñp∣ ∣ ∣ , Y i0 1ñ = ñ + ñ∣ ∣ ∣ . The Añ∣ and Yñ∣ states are

used to implement teleported P Z= andT P= gates. The second layer is amassive array of purely CNOT

gates, which implement both the high-level decomposed algorithm and all ancillary protocols for fault-tolerant

computation. Thefinal layer is a time-ordered series ofX- andZ-basismeasurements.

Unlike standardmeasurement based computation, the ICMrepresentationonly chooses betweenX- andZ-basis

measurements.This is an important distinction, becausenon-Cliffordbasismeasurements require an extensive

ancillary overheaddue to fault-tolerant error correction requirements.

ICMallows for a deterministic array of qubit initialisations andCNOTgates to describe any high-level

quantumalgorithm, incorporating all necessary fault-tolerant protocols. The standard implementation of

Clifford+T circuits involves activeP-gate corrections thatmust be adaptively patched into the quantum circuit

as it is executed. A correction is required 50%of the time for eachT gate.

Optimising circuits beyond individualT gates is problematic aswe either need to reserve resources for

possible corrections or attempt to optimise the exponential number of possibilities for circuits containingmany

T-gates. The time-optimal approach toClifford+T circuits folds this indeterminism intowhether certain

qubits aremeasured in theX- orZ-basis. The approach provides a deterministic initialisation andCNOT

structure for an arbitrary large circuit.
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Hence from this formalism, it is nowpossible to optimise circuits starting from any point, from individual

T-gates with required ancillary protocols up to the entire high-level circuit.

3. Compilation

The ICM formof arbitrary high-level quantum circuits is obtained by using an ICMcompiler. This takes an

arbitrary quantum circuit as input. It outputs a standard circuit description and a canonical geometric structure,

also called geometric description, that represents its implementation for topological QEC codes. Figure 1

illustrates the compiler workflow. The followingwill detail the steps utilised in the compiler to allow for a fault-

tolerant compatible description (quantum circuit or geometric) of the higher-level circuit.

It should be noted that this compiler is acting at the encoded level, i.e. each qubit in the circuit description is

encodedwith an appropriateQEC. The physical details of how individual qubits aremanipulated are assumed to

be compatible with theQEC implementation (i.e. physical gate can be switched on or off and have error rates low

enough to satisfy the fault-tolerant threshold of theQEC code).

The arbitrary circuit input to this workflow is a quantumalgorithm that is already decomposed into a

standard circuit gate set consisting of gates such as Toffoli, arbitrary single qubit rotations andCNOTgates. This

circuitmay be optimised for qubits and/or computational time before further decompositions. This work does

not address this level of circuit-level optimisation. Once a circuit has been specified (under whatever

constraints), it is input into this workflowwhichwill apply further decompositions to ultimately reach a fault-

tolerant, error-corrected compatible representation.

The input circuit is specified as a list of non-ICMgates (the arbitrary circuit infigure 1) and the ICM form is

algorithmically constructed by replacing all non-ICMgates with their corresponding fault-tolerant ICM

implementations. Arbitrary non-ICMcircuits include gates from a previously chosen universal gate set. There

are two possible situations: either the universal gate set isfinite (e.g. Clifford+T decompositions of a Toffoli

gate) or infinite (Arbitrary single qubit rotations are approximated up to a residual error rate).

As a consequence, compiling an ICMcircuit defined over an infinite gate set is a two-step process. First, our

software uses in the approximation step (thefirst layer infigure 1) as detailed in [35] and outputs an intermediate

circuit composed of gates from the finite (approximate) universal gate set Q H P T1 , ,= { }. Second, during the

compilation step, the intermediate circuit is further decomposed into the ICMrepresentation (second layer in

figure 1). For example, after decomposing an arbitraryZ-rotational gate into a gate sequence fromQ1, theH,P,

T Q1Î gates are compiled into ICM.

For the compilation step, we chose to use the H T T P P CNOT, , , , ,{ }† † finite gate set (Clifford+T, where

T† and P† are realised by re-interpretingmeasurement results of an ICMcircuit), but treat the decomposition of

the Toffoli, CPHASE, Controlled-V, Controlled-V† gates as belonging to the approximation step. Although

these gates have exact decompositions, their optimality in terms ofT count is still researched (e.g. the Toffoli gate

[62, 63]). The controlled-V gate, whereV X= is afinite controlled rotation as it does not require

approximating arbitrary rotations and is heavily utilised in reversible circuit construction. Arbitrary controlled

rotations can also be converted into ICM formby using the identities shown in the appendix and then

performing an approximation to arbitrary single qubit rotations using the algorithmof Ross and Selinger [35].

Figure 1mentions a decomposition databasewhich includes known gate decompositions. The database

stores the corresponding circuit representing thematching gate to be decomposed. For example, the Toffoli gate

decomposition is loaded from the database during the approximation step. TheT gate ICMdecomposition is

Figure 1. ICMcompiler workflow.

3

QuantumSci. Technol. 2 (2017) 025003 APaler et al



loaded during the compilation step. The current version of our compiler uses a text based human readable

databasefile format.

The resulting ICMcircuit description includes a qubit initialisation list, a CNOTgate list and ameasurement

list (see output of second layer infigure 1). In general, a circuit’s qubit initialisations andmeasurements are

configurable because practical circuits are designed to supportmultiple input-output transformations.

Exceptions exist for qubits used in specific protocols (e.g. distillation, teleportation) or ancillary workbench

qubits (e.g. in adders). For example, as shown in the code segment below, in the circuit description of aT gate

(see figure 8(f) for the teleportedT gate in the appendix), the first line specifies the initialisation basis of the

second qubit, the second line specifies aCNOTcontrolled by the second qubit and targeting the first qubit. The

third line indicates that the first qubit ismeasured in theZ basis. The initialisation of the first qubit is not

specified, because it is an input and thus configurable. At the same time, themeasurement of the second qubit is

not specified.Note: for a circuit that represents an entire algorithm, there are no input or output qubits. Every

qubit is initialised and eventuallymeasured. Certain techniques in topological optimisation, specifically bridging

[64], has significant powerwhenwe do not have to consider inputs/outputs which restrict which qubits can be

bridged andwhich cannot.

init2A

cnot21

measure1Z

For input circuits usingfinite sets, the complexity of the ICM transformation algorithm is linear in the

number of gates in the input circuit. However, because gates from an infinite gate set have tofirst be

approximated, the complexity of this procedure is a function of the chosen approximationmethod. In the

specific case of this software, the number of gates needed scales logarithmically with the approximation error

[35]. The overhead associatedwith the ICM representation depends on the ICMcompilation step, because the

optimality of approximating arbitrary quantumgates is a function of the resultingT gate count, which in turn is

algorithm specific. For example, Ross and Selinger’s algorithm achieves aT count bounded by

4 log 1 log log 12 e e+( ) ( ( ( ))) for an approximation precision ε [35].
For a q-qubit non-ICMcircuit consisting of n gates chosen from thefinite universal gate set, the resulting

ICMcircuit description (not including distillation protocols)will require q( ) qubits and n( ) gates, because

the fault-tolerant teleportation-based gate constructions introduce a constant number of ancillary qubits

(maximum5 for theT gate) and of gates (maximum6 for theT gate). Including distillation protocols into the

ICMdescription introduces a polynomially bounded overhead of additional resources (qubits and gates).

4.Geometric description

Topologically error-corrected computations have a visual representation. The canonical geometric description

is a 3Dbijectivemapping of the circuit description. Bijectivity is the property of each circuit description element

to have a single corresponding structure in the geometric description, and vice versa. The geometric description

can be optimised [48, 59, 64, 65], but its canonicity and bijectivity would be difficult to regain. Similarly to the

circuit description, the geometric description consists of three geometric regions: initialisation, CNOT and

measurement. The bijective relation is recognised also in terms of the temporal axis: because the geometry

occupies a cuboid region of the 3D space, the inputs are on the left of the cuboid, the outputs on the right, and

CNOTs are ordered inside from left to right. This is exactly the quantum circuit formalism convention.

From a geometrical point of view, qubits are defined as pairs of strands (markedwhite infigure 2). There are

two possible types of strands: primal and dual. These two types are a function of how the surface and

Raussendorf codes work and are necessary to achieve topological braided logic [42, 43]. Consequently, two types

of qubits can be defined: primal and dual. For example, a primal qubit is determined by a pair of primal strands.

Due to themanner how strands are constructed in the surface code, they are also commonly called defects [42].

The difference between primal and dual defects corresponds to regions of the physical quantumhardware that is

‘switched off’ in order to create them. Restricting the discussion to the surface code [42], a primal defect is

createdwhen plaquette stabilisers are switched off and dual defects when vertex stabilisers are switched off.

TheCNOTgate is implemented, both in the surface code (2D) andRaussendorf code (3D), by braiding a

primal strand (corresponding to the target qubit) around a dual strand (corresponding to the control qubit).

This represents a primal-dual CNOTgate implementation, and can be extended to a primal-primal CNOTby

using the circuit identity from figure 3(a). The qubits labelledwith ciñ∣ , coñ∣ , tiñ∣ and toñ∣ will bemapped to

primals, and the ancillary qubit (initialised into +ñ∣ andmeasured in theZ basis) is going to be dual in the

geometric description. The ancillary is the control for the three CNOTs, while the other qubits are targets. The

4
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resulting geometric representation of the dual qubit (figure 3(b)) hints at the vertical representation of the

CNOTgate in the circuit formalism.

Strands are composed ofmultiple segments parallel to either the x, y or z axis [43, 44]. Three-dimensional

coordinates are sufficient to describe computations protected using the 2Dor 3D codes. The properties of the

coordinates are dictated by the structure of the surface codes: primal segment end-point coordinates consist

entirely of odd integer values, and dual segment end points of even integer values.

The generated circuit geometric description references qubit initialisations,measurements and the structure

of the strands (list of segments). The braids do not have to be explicitly described because, using geometric

algorithms, it is possible to efficiently infer the braids (CNOTs) existing in a geometric description consisting of

segments specified using their end-point coordinates [66].

Geometrically described qubit initialisations are illustrated infigure 2. Themeasurement geometries are

similar, butmirrored along the time axis (the x-axis for eachfigure). The interpretation of the geometries is

interchanged between qubit types. For example, initialising a primal qubit into theX basis uses the same

geometry as dual qubitZ initialisation. The primalX initialisation (figure 2(a)) requires, from a geometrical

perspective, to keep the strands separated, whereas aZ initialisation requires connecting the strands into an

U-shaped structure (figure 2(b)).Measuring a primal qubit into the previous two bases uses the same geometric

structures, but vertically flipped due to the time axis assumed in the canonical representation. ICMcircuit qubits

can also be initialised into the Añ∣ or Yñ∣ states. The initialisation geometries are similar to primalZ-basis

initialisation. Themajor difference is that instead of a single connecting strand, there is a point (injection point)

fromwhich two disjoint strands are defined (figure 2(c)). Between a qubit’s strand end points there could be

either no connecting strand, a connecting strand, or two disjoint strands intersecting at a point. The previous

three options are valid for qubit initialisation and formeasurements only the first options are valid in the context

of this work.

Similar to the quantum circuit description, the geometric description is configurable at circuit inputs and

outputs, too.We achieved this by introducing a configuration point at the geometricmiddle of an imaginary

segment connecting the qubit’s strands end points (figure 4(a)). The point corresponds to a possible injection

point (comparefigures 4(a) and 2(c)). Configuring an ICMcircuit to perform anXmeasurement on a specific

primal qubit is equivalent to deleting the corresponding point and the incident segments (figure 4(b)), whileZ

measurement requires joining the incident segments and deleting the point (figure 4(c)). The same scenarios can

be applied forX orZ initialisation, but the point and its incident segments are kept into the geometry for

ancillary state initialisation (figure 4(d)).

The generated geometric description includes a list of 3D end-point coordinates and a list of segments

existing between the end points. Furthermore, the initialisation andmeasurement points aremarked

accordingly: Añ∣ initialisation points, Yñ∣ initialisation points and ICMcircuit inputs and outputs (configurable

Figure 2. Initialisation geometries for a primal qubit (twowhite strands): (a)X-basis initialisation; (b)Z-basis initialisation; (c)
initialisation into Añ∣ or Yñ∣ , depending on the state of the injected qubit whose existence is abstracted at the tip of the two pyramids.

Figure 3.Aprimal-primal CNOT: (a)The circuit identity; (b)Primal strands are red and the duals are blue. The control qubit is
represented in the upper region of the geometry, and the target qubit in the lower. By comparing the geometry withfigure 3(a), the
dual strand is identified as the ancillary initialised into +ñ∣ andmeasured in theX basis. Each of the three braids between the blue dual
and the red primal strands has a corresponding CNOT.
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geometry). Table 1 contains the description, split into five columns, of the geometry from figure 3. Thefirst value

(4) indicates the number of configuration points. The following two lines indicate the number of 3D coordinates

(23) and segments (23). The coordinates, enumerated in the second and third columns, are of the formid,x,

y,z, whereid is a running index. In the first column, the line3,10,13,16 lists the coordinate indices

representing the four initialisation andmeasurement points.

The remaining entries in the first column and the entire second column are index pairs indicating end points

of geometric segments. The coordinates of primal configuration points contain an odd integer value, due to their

definition at themiddle of primal segments. For example, point3 is themiddle of segment1,2, the sumof

segments1,3 and2,3.

Finally, the fourth column specifies the configuration point types. The third (control) and tenth (target)

points are inputs, while the thirteenth (control) and sixteenth (target) are corresponding to outputs (compare

withfigures 3(a) and (b)).

5. Example ICMcircuits

Diagrammatically, even comparatively small quantum circuits (such as a single Toffoli gate) are extremely large,

especially when state distillation protocols for Añ∣ and Yñ∣ states are introduced. The previously presented

compiler can operate on arbitrary sized circuits and outputs tomultiple formats (e.g. the geometric description).

Due to the size restrictions, we illustrate two specific examples: aT and a controlled-V gate. Figure 5

illustrates the canonical geometric form for a topological circuit derived from the deterministicT gate described

in appendix, which is shown in ICM form). In this circuit, input 3 and output 60 represent the actual input/

outputs for the circuit while the remaining numbered nodes correspond to ancilla initialisations ( 0ñ∣ , +ñ∣ , Añ∣

and Yñ∣ ) and possibleX- andZ-basismeasurements to enact the teleportedT-gate and possibleP-gate

correction.

We also illustrate the series of decomposition steps to convert a controlled-V gate over two qubits into ICM

formwithout including distillation protocols. At the input level, a controlled-V gate is a single two-qubit

operation as illustrated infigure 6(a). This gate can be expressed exactly in theClifford+T form (whichmay or

may not have already been performed before being compiled into ICM form) (figure 6(b)). Compilation

converts this circuit into the one shown infigure 6(c), whereT-gates are compiled into teleportation circuits

Figure 4.The qubits represented by a canonical geometric description can be configured, similar to a circuit description, to be
initialised ormeasured intomultiple bases. The procedure requires a configuration point (red) and two segments (green) that connect
to the end points (grey) of the qubit segments (black).

Table 1.The geometric description of the primal-primal CNOT fromfigure 3.Due
to its length, the description is split intofive columns.

4 11,13 1,0,0,0 14,2,12,0 3,i

23 12,13 2,0,0,2 15,2,12,2 10,i

23 14,16 3,0,0,1 16,2,12,1 13,o

3,10,13,16 15,16 4,0,6,0 17,−1,9,1 16,o

1,3 11,14 5,0,6,2 18,−1,5,1

2,3 12,15 6,0,8,0 19,1,5,1

4,5 17,18 7,0,8,2 20,1,5,−1

1,4 18,19 8,0,12,0 21,3,5,−1

2,5 19,2 9,0,12,2 22,3,5,1

6,7 20,21 10,0,12,1 23,3,9,1

8,1 21,22 11,2,0,0

9,1 22,23 12,2,0,2

6,8 17,23 13,2,0,1

7,9
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with both Añ∣ and Yñ∣ ancillary states and eachHadamard gate is decomposed into three teleportations, each

requiring a Yñ∣ ancilla.

The pair of dottedmeasurement boxes represents bases choices for qubitmeasurement that are predicated

on the logicalmeasurement results fromprevious teleportations (the classical control dependence is indicated).

Temporal ordering is indicated by staggering eachT-gate subcircuitsmeasurements. This staggering is required

in case classicalX-corrections are requiredwhich can convert subsequentT-gates toT†-gates and vice versa.

This ensures that theT-depth of the ICMcircuit is identical to the higher-level Clifford+T description.

6.Discussion

The ICM form allows for an arbitrary high-level circuit, obtained fromhigh-level quantum languages like e.g.

Quipper, to be decomposed into a time-optimal, deterministic form.Deterministic form implies that the array

of CNOTs arefixed and the only probabilistic elements in the circuit are theX/Z basis choices formeasurements

that occur through the decomposition ofT-gates. This form is, at least at the circuit description level,

Figure 5.Example: the canonical geometry of theT gate circuit (see the appendix).

Figure 6.Controlled-V gate into ICM form. (a)Decomposition of a controlled-V gate in terms of Clifford+T gates. (b) Set of
decompositions for a controlled-V gate, without the inclusion of state distillation circuits. It is visible that, circuits expand significantly
when placed into ICM form. The circuit has aT-count of three and aT-depth of two, the twomiddleT-gates in the decomposition can
be applied in parallel.
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deliberately wasteful.We intentionally introduce a large number of ancillary qubits in order to have a

deterministic array of qubit initialisations andCNOTswhich can then be converted to a geometric structure (for

topological codes) or to another output format if different error correction codes are used. This provides uswith

a starting point for further optimisation at any level. Individual high-level gates (Toffoli gates or arbitrary logical

rotations) could be optimised or the entire high-level quantum circuit, if desired.

7.Optimal geometrical descriptions

Restricting the discussion to topological quantum codes, namely the surface code and the Raussendorf code, it

has been shown that various topological techniques can be used to significantly reduce the space/time volume of

a quantum circuit [48, 59, 64, 65, 72]. Figure 7 illustrates what has been derived previously for a distillation

circuit for Yñ∣ states. In this example, the space/time volume of a topological circuit was reduced by a factor of 11

from the original, canonical, ICMcircuit. This space/time optimisation relates directly to the number of

physical qubits and computational time required to implement a circuit and is a purely classical problem [39].

Compression of topological circuits result in structures that bare very little resemblance to the original circuit

specification and consists of topological structures that no longer directly relate to individual qubits andCNOT

gates in the original circuit [48]. Therefore, the fan-out of ancillary qubits in the ICM representationmay not be

detrimental to a compressed and optimised topological structure. A formal solution to the compression of

topological circuits has still not been developed and therefore the degree inwhich resources from the ICM

conversion can be recovered is still unclear. However, the ICM representation allows us to have an appropriate

circuit to start the optimisation procedure.Without the ICM form, the initial topological circuit would be

undefined (as everyT-gate requires a quantum correction 50%of the time, and one cannot predict which

correctionswill be necessary before computation begins). Therefore circuit compressionwould be restricted to

individualT-gates or be deliberately wasteful (by including space/time regions in the computation for

corrections regardless of whether or not they are needed) or attempt to optimise asmany of the 2 T gates# -

combinations of circuits as possible. Neither of these options is desirable.

8. Time-ordered ICMoperations

A second significant issue that needs to be consideredwhen determining at what level quantum circuits are

converted into ICM form and optimised is related to the classical information required in the circuit andwhen

that information becomes available. As described in the previous sections, variousmeasurement results in the

ICMrepresentation dictate which basis subsequentmeasurements are performed in. These basismeasurements

are always in either theX orZ-basis and are therefore related through aHadamard operation that can be

implemented using code deformation [57] rather than additional teleportations, without destroying the ICM

structure. However, when optimising a circuit globally, extraordinary caremust be taken to ensure that classical

Figure 7.Example of resource optimisation for a topological quantum circuit [64]. (a)An ICM formof a state distillation circuit is
converted to a geometrical representation for topological codes. (b)Compression techniques are then used to reduce the space/time
volume of the geometric structurewhich reduces physical resources for computation. In this example, the space/time volumewas
reduced by a factor of 11.
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information from thesemeasurements is obtained as soon as possible andwithout disrupting the time-ordering

required from the ICM representation.

Rules for topological compression do not take into account the aspects of time ordering. The example shown

infigure 7 does not have time ordering (as the entire circuit is based onClifford elements), so no further

constraints need to be imposedwhen performing optimisation.However, for general circuits, this will not be the

case and further constraints need to be placed on any optimisation technique.

Aswe are still developing compression techniques and optimisation software for topological quantum

circuits, it remains unclear how these constraints will effect the level towhich circuits can be optimised.Manual

techniqueswere used in benchmarking Shor’s algorithm [39], where circuits were optimised at the level of

individual state distillation circuits andT-gates [48, 64]. The ICM form allows a circuit or topological structure

to be defined for an arbitrarily large circuit, but itmay be inefficient or undesirable to compress and optimise

extremely large circuits. Instead itmay bemore preferable to optimise individual compound gates, or small

subroutines that are routinely used. Until we have amore concrete formalism for optimisation, particularly for

the case of topological circuits, the level towhich the ICM form is used for the high-level algorithm remains an

open question.

9. Conclusion

In this paper we introduced software to convert a high-level quantum algorithm into a fault-tolerant

representations that consists of a set of qubit initialisations, a large CNOTarray andmeasurements in theX- and

Z-basis. This allows us to design a circuit compatible with all fault-tolerant protocols for a large range of error

correcting codes whose only non-deterministic element is the basis choices formeasurement. The ICM

representation allows us to generate a canonical geometric description that fully describes the implementation of

the algorithmusing topological codes that forms the basis of all current hardwaremodels. The ICM

representation for quantum circuits is directly related to algorithmically specific graph states that can be

produced bymapping a quantum circuit to a standard 2D cluster state and performing all Clifford basis

measurements in the algorithmic specification prior to computation.Ourwork extends this to fully error-

corrected circuits, their necessary decomposition and ancillary protocols; it also can be used to connect work in

higher-level circuit synthesis and optimisation to the reality of implementing and optimising these algorithms

on actual physical hardwaremodels.
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Appendix

A.1. Gate primitives and decompositions

Webeginwith a set of circuit decompositions fromhigher-level circuit primitives into an appropriate Clifford+

T set of gates, compatible with fault-tolerant error correction. Our compiler uses the following high-level circuit

primitives: CNOT, Toffoli, Controlled-V (†) (V X= ), Hadamard and other arbitrary single qubit gates. The

Toffoli andControlled-V (†) gates are replacedwith standard decompositions in terms of theClifford+T library

as shown infigures 8(a) and (b). For the Toffoli gate, we use the original decomposition containing sevenT-gates

[12], and the software will be periodically updatedwith other decompositions with reducedT-counts andT-

depths [62, 63].

Hadamard gates are decomposed in terms of teleportation circuits using the ancilla state Yñ∣ , as shown in

figure 8(d). For topological implementations there aremethods of applying theHadamard using code

deformation [57], which allow for the ancilla state Yñ∣ to be repeatedly used. Otherwise it needs to be distilled

each time such a state is required [59].We choose not to utilise this technique because the code deformation

protocol acts somewhat like a black box, and optimisation has to occur around these objects.While utilising a

teleportedHadamard requiresmore resources (as Yñ∣ states can no longer be recycled), thismaintains the ICM

form for the entire circuit. Adding in black box elements (such as code-deformedHadamards or other circuit

substructures)may prove to be beneficial in future optimisation algorithms.However, at this stage a global ICM

representation is a good starting point.

For arbitrary singlequbit rotations,weutilise the algorithmofRoss and Selinger [35]. This algorithmcomes

close to achieving the theoretical lower bound for approximating arbitraryZ-rotations in termsofClifford+T gates
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up to a specified error, ò [67]. Recent techniques in probabilistic circuits have demonstrated a scaling for

approximatingZ-axis rotations better than this lower bound, but they reintroduce probabilistic corrections that this

work is attempting to eliminate [68, 69]. Arbitrary axis rotations are then achieved via a standardEuler angle

decomposition,withX-axis rotations approximated viaZ-axis rotations andHadamard

gates, R R HR HRn z z zw a b g= ( ) ( ) ( ) ( ).

A.2. Selective source and destination teleportation: eliminating dynamic corrections

Inmany fault-tolerant, error-correctedmodels, P- andT-gates are achieved via the teleportation circuits shown
infigures 8(e) and (f). These gates are intrinsically probabilistic, andwith 50%probabilitymay apply the gates P†

orT† instead. For the P-gate, this indeterminism is not a problem, as theZ gate is used as a correction
(ZP P=† ); this can be tracked by updating the Pauli frame [70]. However, the correction for theT-gate is aP-
gate (PT T=† ), which cannot be classically tracked and thereforemust be applied using active quantum

circuitry. As this correction occurs with a probability of 50%, the initial quantum circuit (consisting ofmany

T-gates when fully decomposed) cannot be assumed and optimised prior to computation.

In a result fromFowler [60], the following trick can be used to construct deterministic circuitry regardless of

this probabilistic teleportation and transfer the indeterminismof the global circuit to basis choices for qubit

measurements after the deterministic circuit is executed. This is similar tomeasurement based quantum

computation [71], where a universal, algorithmically independent, resource state is constructed and

measurement outcomes informbasis choices for subsequentmeasurements.

The two relevant circuits are known as selective source and selective destination teleportation, illustrated in

figures 9(a) and (b).

The circuit infigure 9(a) allows us to selectively teleport a state to a qubit linewhere aP-gate is waiting to

perform a correction or not, depending on the pattern (Z/X) or (X/Z) of the chosenmeasurements. Once such a

choice ismade, the circuit infigure 9(b) allows us to selectively choose one of two source qubits to teleport to the

output. These two circuits, combined, and commuting theP-gate correction through the control line in

figure 9(a) allows us to perform aT-gate with deterministic circuitry (figure 9(c)). The originalZ-measurement

Figure 8. Circuit decompositions. (a)Toffoli gate usingCNOT,T, T † andH gates [12]. (b)Controlled-V gate. (c)Arbitrary Rz q( ) gate
decomposed in terms ofH- andT-gates. The length of the sequence, L, is related to the approximation error of the gate, ò,
L O log 1 = ( ( )). (d)Hadamard gate usingP-gates. TheX-basismeasurement determines aY=XZPauli correction. (e) and (f)
Teleported rotational gates using themagic states Añ∣ and Yñ∣ . These ancillary states are injected at high error, encoded and then
purified using ancillary protocols [56]. The correction for theP-gate is a PauliY-gate and can be tracked, while the correction for the
T-gate requires a subsequent P-gate thatmust be applied to the actual quantumdata. (g) is the decomposition of an arbitrary
controlled unitary, where the single qubit gates,A,B andC are further decomposed intoClifford+T gates.
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for theT-gate teleportation is nowused to classically control a set ofX- andZ-basismeasurements on the other

qubits (the dotted boxes represent the two basis choices). TheP-gate correction can be commuted through the

control of a CNOT gate and rotates one of the +ñ∣ qubits to the Y Pñ = + ñ∣ ∣ state.

This basic element represents the building block of the ICM representation for an an arbitrary, high-level,

quantum circuit. The structure is such that we have a vertical line of qubit initialisations (I), followed by an array

of only CNOTgates (C) and then by a time-ordered series of eitherX- orZ-measurements (M).

TheHadamard gate, using Yñ∣ state resources, as shown infigure 8(b), can also be expressed in terms of

teleportation circuits and hence be put into ICM form [12]. Infigure 9(d), there are classical corrections based

on the threeX-basismeasurements. However, these corrections are all Pauli corrections and can be classically

tracked.

A.3. Adding in fault-tolerant Protocols

Based on the circuit decompositions shown so far, we take a high-level quantum circuit, thatmay already be

optimisedwith respect to a certain set ofmetrics. Additionally, we assume a universal gate set that is not

automatically compatible with fault-tolerant error correction andwe first convert it into aClifford+T

representation, useful for both standard topological encoding andCSS concatenated encoding. Once this

decomposition is done, we introduce selective source and destination circuits to place the entire circuit into an

ICM form. This formof the higher-level circuit is time optimal, given the details of the decomposition to the

Clifford+T level (i.e. theT-depth before introducing selective source and destination circuits determines the

run-time of the computation, reducingT-depth at this level will reduce computation time [60]).We do not

consider optimisation at this higher-level, as we do not focus on determining the best structure of the high-level

circuit in terms of reducedT-depths.

At the initialisation layer, we have a selection of four basis states, Y A0 , , ,ñ + ñ ñ ñ{∣ ∣ ∣ ∣ }. The 0ñ∣ and +ñ∣ states

can be initialised fault-tolerantly, intrinsically, with all relevantQEC codes for large-scale hardware

architectures. The states Añ∣ and Yñ∣ , in general, cannot be. This is particularly true forQECmodels currently

considered for large-scale hardware architectures, the topological surface andRaussendorf codes. These states

Figure 9.Teleportations: (a) Selective destination; (b) Selective source [60] and the combination of the two (c), with the teleportation
circuit (figure 8(d)) to produce deterministic circuitry for aT-gate. (d)Hadamard gate converted to ICM form.Note that there are
Pauli corrections based on all threeX-measurements which are classically tracked. Dotted boxes represent possible basis choices that
chooses the target qubit (source qubits) for teleportation and infigure (d) is the controlled based on thefirstZ-basismeasurement.
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must be injected into the computer at high error and then recursively distilled. For the Añ∣ state, we utilise 15

low-fidelity states and then run a distillation circuit based on the [15,1,3]Reed-Muller code. This, when

successful, will reduce the error fromO(p) to O p ;3( ) if this is still not sufficient, the process is concatenated, and

15 of these output states are used in a further distillation circuit. For the Yñ∣ state, a similar procedure is

performed, this time utilising seven resource states and the [7,1,3] Steane code. For states with input error rates

of p, each of these circuits fail with probabilityO(p) [56].

Examples of these circuits are shown infigures 10(a) and (b), which arewell known in the literature. In

figures 10(c) and (d)we convert both of them into their own ICM representations.

These structures are in the ICM form, and can be used to replace any Añ∣ or Yñ∣ state in the initialisation stage

for a higher-level circuit. A single level of state distillation is illustrated, being intended to take the error

associatedwith the output state from an initialO(p) to O p3( ). If this is not sufficient, then each Añ∣ or Yñ∣ state in

these circuits are themselves replacedwith identical structures. Thus the ICM form ismaintained and takes the

error rate of eachO(p) injected state, to an O p9( ) distilled output. This recursion can continue asmuch as

required (but often two levels are sufficient for large-scale algorithms) [39, 42]. State distillation only succeeds

when no errors are detected by thefinalX-basismeasurements. Hence, for states injectedwith an error rate p, the

circuit will fail with probabilityO(p). Tomaintain a deterministic array of CNOT gates in the ICM

representation, we use the same trickwith selective source and destination teleportation and duplicate the

distillation circuits. This is illustrated infigure 11.

Figure 10.Distillation circuits and their ICM representations. State distillation circuits for the (a) Yñ∣ and (b) Añ∣ states.When allX-
measurements produce a trivial syndrome, the output decreases infidelity fromO(p) to O p3( ), for an infidelity of p for each of the P
gates. S ICM representations for the (c) Yñ∣ and (d) Añ∣ states in time-optimal format. For Añ∣ state distillationwe only illustrate the
replacement for thefirst twoT-gates to save space. There is no time-ordered sequence ofmeasurement for Yñ∣ state distillation, while
the time sequencing for Añ∣ state distillation is independent for eachT-gate, indicative of a circuit withT-depth one.
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Toprotect against failures of a distillation circuit, we utilise selective source teleportation onmultiple copies.

TheX- andZ-basismeasurements on the teleportation circuits are predicated on theX-measurements returning

a trivial syndrome on at least one of the distillation circuits. As a consequence, the probability of not producing a

distilled Yñ∣ state is reduced fromO(p) to O p2( ). This procedure can be repeated to reduce the probability of

failure arbitrarily. To reduce resources, ifmultiple distillation circuits succeed, outputs can be routed using

selective source and destination teleportations to other regions of the computer where distillation has failed.

The initial decomposed ICM form, combinedwith these distillation structures for Añ∣ and Yñ∣ states now

allows to represent an arbitrary high-level algorithm into an ICMrepresentation, incorporating all necessary

fault-tolerant ancillary protocols.

Figure 11. Selective source teleportation is used to chose one of the distilled Yñ∣ states in the event that a distillation circuit fails. The
last bank ofX- orZ-basismeasurements is determined by theX-measurements of each distillation circuit. For injected states with
error p, this circuitwill not produce a valid output with probability O p2( ), this can be decreased arbitrarily by includingmore
distillation circuits and selective source teleportations.
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Compiler code

The compiler source code is released under theMicrosoft Reference Source License (Ms-RSL, http://

referencesource.microsoft.com/license.html) at https://github.com/alexandrupaler/icmconvert. Afirst

application of the compiler exists at https://github.com/alexandrupaler/tqec, which is gradually updatedwith

respect to ICMcompilation [72], too.

The ICMcompiler consists of three componentswhose interactionwill be explained and exemplified in the

following.Converting anarbitrary circuit into ICMrequires thedecompositionof thenon-ICMquantumgates, and

there are twopossibilities: either a gate canbe exactly decomposed into ICM (first component: theconvertft tool),

or it needs tobe approximatedfirst into gates that are easily ICMrepresentable (secondcomponent: thedecompose

andprocessraw tools). Irrespectiveof the chosenmethod, thedecompositions are stored into and retrieved froma

text database accessedusing themethodsof thedatabasereader class (third component).

The database contains three types of decompositions. Theicmdist decomposition refers to subcircuits

used to replace state injections in an ICMcircuit. Thenicm decomposition, used for example for Toffoli gates,

represents the decomposition of a (non-)ICMgate into non-ICMelements (gates,measurements). Finally,icm

stands for ICMdecompositions of non-ICMgates.

From an arbitrary quantum circuit towards an ICMone, the database plays a central role. In general, each

quantumgate is expressed as a unitarymatrix and has a name, such that a quantum circuit is a list of quantum

gate names and the qubits operated on. The nicmdecompositions are obtained by thedecompose tool, and

undecomposed quantumgates are specified in a text file, where the complexmatrix entries are written in polar

form. For example, theHadamard gate (although a direct ICM representation is known) is

1

Hadamard

0.707106781180

0.707106781180

—0.707106781180

Thefirst line of the file indicates the number of specified gates (e.g. 1). Each gate specification consists of

name (e.g. Hadamard) and four lines for the complex numbers of the unitarymatrix (e.g. radius 0.70710678118

and angle 0). Thedecompose tool reads such afile and outputs corresponding nicmdatabase entries.

After decomposing single qubit unitaries and storing their nicmdecompositions into the database, the

processraw tool takes the input circuit and replaces all occurrences of nicm gates (e.g. Toffoli)with their

corresponding database entries. Thus, if in the input circuit appears the nametoffoli, its occurrence is

replaced by the decomposition stored into the database. For example, the nicmToffoli gate decomposition is

=toffoli

nicm

0

WIREWIREWIRECTRLWIREWIREWIRECTRLWIRECTRLWIRECTRLTGATE

WIRECTRLWIREWIREWIRECTRLWIREWIRETGATETGTTGATETGTPGATE

HGATETGTTGATETGTTGATETGTTGATETGTTGATEHGATEWIREWIREWIRE

The name of the decomposed gate is specified on thefirst line after the ‘=’ character. The second line (e.g.

nicm) indicates the decomposition type, and the third line the number of required ancillae (e.g. zero). The

convention is that for a controlled gate, as the Toffoli, the first qubits are the controls and the last ones are the

targets. Thefinal three lines represent the Toffoli decomposition. For each database entry the decomposition

elements (e.g.WIRE, TGATE) are encoded as strings defined ingatenumbers.h.

The intermediate circuit obtainedafter executingprocessraw isfinally processedbyconvertft. The tool

outputs the ICMcircuit description (.circfile), a geometrical description (.geomfile) andaPostscript

representationof the ICMcircuit (.psfile). Furthermore,convertft takes as aparameter thenumberof

distillation rounds tobe included into the ICMcircuit. The functionality of this tool is illustratedusing the icm

decompostionof theT gate.

=TGATE

icm

1

EMPTYAA

c21

MZEMPTY
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TheT gate requires a single ancilla, and because of its ICM form the decomposition consists of the same

three regions. The fourth line in the listing indicates the initialisations of the qubits: the initialisation of the first

qubit is left unchanged (EMPTY) and the second qubit is initialised into Añ∣ (AA). The lines startingwith the

characterc represent CNOTs (e.g.c21 is a CNOT controlled by the second qubit and targeting the first qubit).

The last decomposition line specifiesmeasurement types: thefirst qubit ismeasured inZ (MZ), and the second

qubit is left unmeasured (EMPTY).

After replacing in the intermediate circuit each occurrence of TGATEwith the icmdecomposition,

convertft can include distillation subcircuits into the ICMoutput. For example, the Añ∣ state distillation

circuit is specified as (⧹indicates a continuation of the same text line)

=AA

icmdist

15PLUSPLUSZEROPLUSZEROZEROZEROPLUS⧹

ZEROZEROZEROZEROZEROZEROZEROPLUSEMPTY

c1615

c13579111315

c236710111415

c456712131415

c89101112131415

c1535691012

MAMAMAMAMAMAMAMAMAMAMAMAMAMAMAEMPTY

Distillations are included by replacing each occurrence of the AA initialisationwith the above specified

circuit. Themeasurements in the Añ∣ basis (MA) are not corresponding to the ICMdefinition offered in the

introduction in themain text, and in a second step eachMAoccurrence is replaced by aT gate applied before an

X-basismeasurement. Finally, theT gates are ICMdecomposed.

=MA

nicm

0

TGATEMX

The aboveT gate decompositions did not include the selective source and destination teleportations, but

these can be easily included by augmenting the TGATEdatabase entry. In this case, the variable ancillae

measurement types (effect of probabilistic corrections) are specified using the operationsMXZ andMZXalso

defined ingatenumbers.h.

=TGATE

icm

5

EMPTYAAZEROYYPLUSZERO

c21

c23

c42

c53

c46

c56

MZMZXMXZMXZMZXEMPTY

The circuit description presented in the results section of themain text is a reformulation of the database

entry format. The initialisation andmeasurement lines in the circuit description are compressed to a single line

in the database entries, and instead of thecnot command, the database uses thec command. This fact shows

that, once a circuit is ICM transformed, it can be easily stored into the database for future transformations to use

it as a sub circuit (e.g.modular adders used inmodularmultiplications).
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