
Fault Tolerant ICAP Controller for High-Reliable 
Internal Scrubbing

Jonathan Heiner, Nathan Collins, & Michael Wirthlin

This work was supported by Lockheed Martin under a grant from the University Projects program with 
collaboration by Tim Gallagher and Jon Wilson.



Brigham Young University

Outline

• FPGA Scrubbing Overview

• Internal Configuration Access Port (ICAP)

• Internal ICAP Architecture

• High Reliability Scrubber

• Radiation Test & Results

• Future Work & Summary



Brigham Young University

FPGA Fault Tolerant Strategy

• FPGAs provide SEU mitigation 
through redundancy and 
scrubbing

• Triple Modular Redundancy 
(TMR)

– Triplicate module to introduce 
redundancy

– Vote on outputs of triplicated 
module

– Use greatest common result

• Configuration Scrubbing

– Readback frame data

– Compare frame to original

– Correct erroneous bits in frame

– Writeback frame to FPGA
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Continuous Time Reliability
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Configuration Scrubbing Example
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Configuration Scrubbing Example
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• External Components

– RadHard Memory

– Configuration Controller

– Dedicated IO

Traditional Scrubbing

• External Scrubbers

– Blind Scrubbing

– Read-back Scrubbing
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Traditional Scrubbing Process

• Read-back Scrubbing Process

– Reads each frame sequentially

– CRC or original frame comparison is performed on 
read frame for detection/correction

– Corrected frame data is written back to 
configuration memory through SelectMap 
Interface

• Blind Scrubbing Process

– Reads original frame data from memory

– Writes frame to configuration memory through 
SelectMap Interface
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Internal Scrubbing

• Described in XAPP714 Architecture

• Based on ICAP configuration port

• Internal Scrubbing Architecture
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Internal Scrubbing Strategy

• Internal Scrubbing Process

– Perform readback of each frame via ICAP interface

– Use FrameECC to detect errors

– Correct errors based on FrameECC syndrome value

– Write corrected frame back via ICAP interface

• Advantages

– No external memory, external controller, or external IO pins

• Disadvantages

– Additional circuit area required for scrubbing circuit

– Reliability of scrubber
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Internal Configuration Access Port (ICAP)

• Internal interface to configuration port

• Active readback and re-configuration

• Similar to SelectMap (separate I/Out data bus)

• Hard-wired Logic

• Current application usage
– Dynamic Partial Reconfiguration

– Encryption

– Fault Tolerance/Injection
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Detailed Architecture Overview

Frame ECC

• Hard-wired internal 
component

• Performs SECDED 
algorithm on frame

• Provides syndrome 
word and error bit 
values

• Directly connected 
to read-port of ICAP 
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Detailed Architecture Overview

Control Logic
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ICAP DMA

• Provides ICAP with 
data every clock 
cycle

• Stores ICAP output 
to DMA BRAM

• Transmits BRAM 
content to control 
logic
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PicoBlaze Processor

• 8-bit programmable 
µController

• Performs scrubbing 
logic

• BRAM contains pre-
compiled scrubbing 
program

• Software used for 
ease of modifying 
logic

Detailed Architecture Overview
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Control Logic

• Synchronize data 
transfer between 
picoblaze and ICAP 
DMA

• Maintains timing and 
data requirements

Detailed Architecture Overview
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Scrubber Program

• Initializes devices

• “Walk” – slow scan

– Approx. 24ms to 278ms @ 100Mhz

– Actual Detection

• “Run” – fast scan

– Approx. 1.2ms to 14.6ms @ 
100Mhz

– Quick Detection (is there an error 
somewhere)

• Patch – Ignore SEU by 
modifying parity bits

• Correction – Correct SEU

Initialization and 
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High Reliability Scrubber

Internal Scrubber is susceptible to configuration upsets

• Logic used to implement scrubber may be affected by 
SEUs

• Upsets within the scrubber logic may limit the ability 
of the scrubber to repair the fault

SEU mitigation technique needed to insure reliable 
scrubbing
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High Reliable ICAP Scrubber
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Triple Modular Redundancy (TMR)

• Mitigates all single bit 
upsets

• Allows scrubber to 
operate in presence of 
upsets
– Scrubber will repair upset

• BL-TMR tool applied to 
circuit for selective 
mitigation
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BRAM Scrubber

• Specialized BRAM 
scrubber for Picoblaze
memory

• Continuously read and 
repair upsets within the 
memory
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Scrubber Design Utilization
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Radiation Test

• Determine the reliability of ICAP scrubber

– Measure reliability of non-TMR scrubber

– Measure reliability of TMR scrubber

• Test limitations

– Operated behind another test

– Did not have control over beam flux

– Had to reconfigure with beam on
Picture of test
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Radiation Test

• Board

– Avnet Virtex-4 LX-25 
Evaluation Board

– 100Mhz Clock (50Mhz 
used)

– RS232 port

• Shielding

– 1” Aluminum Shield w/ 1”x1” 
Perforated Hole to expose 
FPGA

• Designs

– Internal ICAP based 
Scrubber w/out TMR

– Internal ICAP based 
Scrubber w/ TMR
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Radiation Test Design

• ICAP controller

– TMR design

– Non TMR design

• No other FPGA circuitry

– FPGA mostly empty

• Detect and repair 
upsets in all areas of 
FPGA

– Unused logic

– ICAP controller logic

Empty Logic Fabric

ICAP Controller
(both TMR and non TMR)
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Data Collection and Monitoring

• UART

– Transmit SEU data to PC

– Provide status messages

• Watchdog timers

– Identify picoblaze failure

• External PC

– Log data
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Configuration Upsets between Failure
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Multiple Bit Upsets

• FRAME ECC does not identify location of failure with 
multiple upsets within frame

– Single Error Correction, Double Error Detection

– Syndrome can not locate failures

• MBUs were detected but could not be corrected

– MBUs accumulated during the test

– Failures often occurred due to MBU accumulation

• Presence of MBU significantly slowed down 
scrubbing

– Performed configuration “walk” with MBU

• 1.7% of upsets were intra-frame MBUs
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Multiple Bit Upsets Between Failure
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Failure Modes

• Single Point Failures (were not isolated during test)
– UART I/O

– ICAP

– Frame ECC

• Failure Modes (isolated during test)
– Program crash

– Invalid response from UART

– Repeat FAR & syndrome values

– Repeat FAR but different syndrome values

– Repeat sets of FAR & syndrome values

– FAR increments till end of FPGA row

– Errors detected after test finished

– Failed during reconfiguration
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Conclusions

• ICAP scrubber worked correctly as expected

– Detected upsets within FPGA fabric during operation

– Repaired SEUs within the device

• Hi-Rel scrubber provided improved reliability

– 5.4x higher SEU to failure than non-TMR

– 1.4x higher MBU to failure than non-TMR

• ICAP hi-rel scrubber reliability limited by MBUs

– Cannot remove MBUs

– Failure due to accumulation of MBUs
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Future Work

• MBU Detection & Correction

– Investigate techniques for MBU correction

• VHDL Scrubber

– Increased speed & possibly smaller circuit

• Dynamic Partial Reconfiguration

• Future uses of ICAP

– Dynamic Partial Reconfiguration (bitstream compression)

– Low cost Fault Injection


