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Abstract
IoT services are the basic building blocks of smart cities, and some of such crucial services are provided by smart buildings. 
Most of the services like smart meters, indoor navigation, lighting control, etc., which contribute to smart buildings, need 
the locations of people or objects within the building. This gave rise to Indoor Localization, where only the infrastructure of 
the building has to be used for localization as accessing the Global Positioning System is difficult in indoor environments. 
Many approaches have been proposed to predict locations based on the infrastructure available indoors, and some of such 
techniques use Wi-Fi access points. Still, unfortunately, very few studies have concentrated on tolerating faults while being 
cost-effective. This work discusses hardware implementation of indoor localization. It then proposes a learning algorithm 
SRNN (Speed Conscious Recurrent Neural Network) that uses the RSSI (Received Signal Strength Indicator) values of 
available Wi-Fi access points in the building and predicts the location. Also, fault-tolerant approaches termed nearest RSSI 
and the most recent RSSI using Kullback–Leibler Divergence have been proposed to improve the location accuracy when 
access points go down and are prone to faults. Both the proposed approaches nearest RSSI and most recent RSSI along with 
SRNN improve the location accuracy by 4% and 2.1%, respectively, over existing techniques and contribute to optimizing 
predicted location's accuracy in Indoor Localization an IoT service for smart buildings.

Keywords Speed conscious recurrent neural network · Received signal strength indicator · Indoor localization · Smart 
buildings · Kullback–Leibler divergence

1 Introduction

Smart cities contribute to the quality of residents' lives by 
providing advanced services like intelligent transport, affec-
tive health monitoring, connecting people via information 
networks, waste collection management, promoting sustain-
able development, optimizing resources, intelligent parking 
slots, etc. Without having a specific target population, smart 
cities provide services to everyone, including children, older 
people, working women, sanitation staff, security officials, 
etc.

One of the major components that influence the growth 
of smart cities is smart buildings, as people spend most of 

their time indoors and the Internet of Things plays a crucial 
role in developing smart building applications. Smart Build-
ings can connect and automatically control various build-
ing operations through the Internet of Things like lighting 
control, regulating electrical usage, occupancy, efficient use 
of resources, intelligent security monitoring, location-based 
marketing services. They play a vital role in emergencies 
like dynamic routing to a safe exit in case of fire, smart 
navigation like locating the required store in a large shop-
ping mall. Consider a situation where a five floored shopping 
mall contains around 100 stalls on each floor; no one can 
remember the locations of each stall and guide the visitors to 
the stall they want to go to, even if employees were recruited 
for such purposes, a machine easily outperforms them in 
such activities.

Location-based services are a primary asset for any 
smart building. Almost all of these mentioned operations 
require the location of people indoors, but accessing GPS 
(Global Positioning System) is difficult within indoor envi-
ronments. Such difficulties gave rise to indoor localization 
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techniques where the infrastructure of the building has to 
be used to provide localization. The fundamental challenge 
in such services is the accuracy of location.

The relationship between the RSSI (Received Signal 
Strength Indicator) and the device location is utilized as 
discussed in [1]. Different techniques, wireless technolo-
gies, architectures, and mechanisms used to achieve indoor 
localization were studied and described in [2, 3]. Figure 1 
presents the basic architecture for indoor localization used 
in our proposal.

The mobile device which is connected to Wi-Fi pro-
vided by the smart building, reads the signal strength of 
each access point in the form of RSSI(Received Signal 
Strength Indicator) values; the RSSI values generally 
range from -100 to 0, the closer it is to 0, higher the signal 
strength. This list of RSSI values is sent to the server to 
predict the mobile device's location.

The predicted location can be sent to the mobile  
device for navigation purposes and stored in a database 
for specific application usage and analysis purposes later 
on. The terms access points "or "anchor nodes" are used 
commonly to indicate the Wi-Fi devices that are fixed in 
the building from which the mobile device scans RSSI 
values. An RSSI fingerprint is defined as a vector of signal 
strengths from the visible anchor nodes to describe the 
radio signal characteristics at a specific location.

For predicting the location based on the list of RSSI 
values, a machine learning algorithm SCRNN is proposed, 
which gets trained when already collected data of RSSI 
values and locations are given to it and then can be used 
for testing where only RSSI values are given as input, and 
the locations are to be predicted. This approach has been 
discussed in Sect. 3.

One more challenge in indoor localization is that the 
mobile device may skip reading the RSSI values of one 
or more access points depending on its location. This may 
be due to temporary or permanent failure of a particular 
access point.

Figure 2 shows a scenario where RSSI values are received 
only from 3 access points, and the other one fails. Now only 
a list of 3 RSSI values is received by the server, and the chal-
lenge is it has to predict the location based on an algorithm 
that has already been trained with RSSI values of 4 access 
points. So definitely, location accuracy gets compromised 
because of such real-time issues. To handle such faults, 
‘most recent RSSI’ and ‘nearest RSSI’ techniques are pro-
posed, which are explained in Sect. 3.

Fingerprints are collected at a grid of known locations. 
These known locations are called reference points (RPs). 
Then the fingerprints and corresponding known location 
labels are stored in a database called a fingerprint database 
or radio map. The manual site survey is used to construct the 
fingerprint database, presented in Fig. 3.

A signal map (also known as a fingerprint database) is 
constructed by associating the collected fingerprints with 
physical locations.

The signal map that is already built is compared with the 
newly observed fingerprint for location determination. The 
approach to signal map construction—manual site survey 
– requires comprehensively exploring the whole area of interest 
and collecting fingerprints at a regular grid of survey points with 
known locations usually obtained with a physical floor plan [4].

1.1  Measurement techniques

1.1.1  Pedestrian dead reckoning

Pedestrian Dead Reckoning [5] is one of the solutions that can be 
used for indoor navigation. The term dead reckoning means the 
process of updating the value of any variable quantity by using 
an earlier value and adding whatever changes have occurred in 
the meantime. Analogous to this, the current position is com-
puted using the previously determined position. Advancement 
of a position is done based on the known or estimated speeds 
over elapsed time and course.

Fig. 1  Basic architecture of indoor localization Fig. 2  Access point failure in indoor localization
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Inertial measurement sensors like accelerometers, gyro-
scopes, and magnetometers in mobile devices provide 
directional acceleration information and are widely used 
for dead reckoning.

Next position  Pn(xn,  yn) from initial position  Pi(xi,  yi) 
can be determined using (1) and (2).

�c and �c are the angle of orientation and step length 
obtained from inertial measurement units.

1.1.2  Wi‑Fi access points

Wi-Fi technology determines user position based on the 
Received Signal Strength Indication information. A wire-
less local area network consisting of Wireless Access 
Points enables location computation in complex environ-
ments. RSSI collected from a group of access points at an 
instance forms a fingerprint. Distance  (Dpq) between two 
fingerprints  Rp =  [Rp1,  Rp2, …,  Rpj] and  Rq =  [Rq1,  Rq2, ….., 
 Rqj] is defined in (3).

(1)xn = xi +

n∑
c=1

�ccos�c

(2)yn = yi +

n∑
c=1

�csin�c

(3)Dpq =

√√√√ j∑
i=1

|Rpi − Rqi|2

To address heterogeneity, adjustments can be made 
among two devices, P and Q using (4).

α1 is close to 1, and α2 is the adjusted value. Therefore 
optimal RSSI offset  (Opq) during heterogeneity can be cal-
culated through (5) and (6).

1.1.3  Bluetooth beacons

Bluetooth Low Energy is a form of wireless communication 
explicitly designed for short-distance transmission. More 
recently, researchers started to use BLE based positioning 
method in indoor environments [6]. Indoor localization can 
be tracked by fusing the information from RSSI analysis 
from multiple BLE beacons.

The mobile device detects the signal from the beacon and 
can roughly calculate the distance from the beacon to esti-
mate the location. The distance (D) can be computed using 
(7), where RSSI represents the signal strength received from 
the Bluetooth device.

(4)RSSIQ = �1RSSIP + �2

(5)Opq = arg min
�2

Dpq

(6)Dpq =

√√√√ j∑
i=1

|||Rpi − Rqi − Opq
|||
2

(7)D ≈ 10
(MP−RSSI)

(10∗n)

Fig. 3  Data set generation 
process through a manual site 
survey
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where MP (Measured Power) is the industry calibrated read-
only value, which generally indicates the RSSI reading at 
1 m distance. N is a constant within the range 2–4, which 
depends on the environmental changes.

Still, there are more technologies like visible light informa-
tion, Radio Frequency Identification Devices, etc., that can be 
used for estimating indoor location where as the three most 
widely used technologies have been discussed. In this proposal, 
Wi-Fi access points were used to perform localization.

2  Related work

Significant research has been done to optimize location 
accuracy in indoor localization, and quite a few techniques 
were proposed to handle faults. Some of such essential and 
recent works were reviewed and mentioned as follows.

For Modelling RSS deviations more realistically, non-
Gaussian probability density functions were proposed in [7] 
and Dempster-Shafer's theory for combining and represent-
ing individual pieces of information provided by different 
RSS sources regarding target node position. Prediction based 
on CLTA (cooperative localization and tracking algorithm) 
[8] is developed to improve position accuracy, [9] discusses 
a weighted average filter method and using different types of 
recurrent neural networks to enhance accuracy when tempo-
ral fluctuations of RSSI are encountered.

Mini-batch Singular Value Decomposition is used in [10] 
to detect the target in case of sensor location uncertainty, 
[11] has proposed multiple machine learning algorithms 
to construct space of candidate labels, and user's loca-
tion is estimated by label credibility. An array calibration 
method [12] and Angle of Arrival estimation algorithm 
were designed to achieve flexible orientation using limited 
resources. TILoc (Torus Intersection Localization) [13] aims 
to improve accuracy and robustness by mitigating noise 
problems and positioning a target. A lightweight privacy-
preserving scheme  (LWP2) [14] protects data privacy and 
location privacy at a lower cost by minimizing the least 
square error for an over-determined linear formulation.

A scalable Deep Neural Network Architecture [15]  
with denoising autoencoder is proposed to achieve good 
location performance, and high scalability, [6] uses two 
methods –fingerprinting-based method and trilateration-
based method to accurately track human location in home 
environments using Bluetooth Low Energy (BLE) devices. 
CollabLoc [16] achieves cross-building localization and 
privacy by collaborating signals from Wi-Fi and Cellular 
RSSI, geomagnetic levels, light, and sound. SAWKNN 
(Self Adaptive Weighted K Nearest Neighbors) technique 
is proposed in [17] to achieve higher accuracy than normal  
KNN, [18] uses Naive Bayes classifier and Channel State 
Information to improve localization accuracy. Median  

localization accuracy of 1 m is achieved in [19], where new 
hardware is designed for an IoT device with a BLE interface, 
accelerometer, and magnetometer sensors.

A fault-tolerant localization algorithm was developed in 
[20] using K-means clustering and majority voting methods  
[21] also proposed a fault-tolerant recurrent neural network  
approach to improvise location accuracy. Outstanding 
improvements in location accuracy were achieved. This  
is one of the latest and efficient researches in indoor  
localization. But during momentary failure, when a base 
station fails, location is predicted only based on remaining 
active base stations by ignoring the failed base station.

Work [22] proposes a fault-tolerant area division strat-
egy. The anchor deployment technique was used to generate 
various shapes of sub-areas. The shipboard RSSI signals 
were investigated by conducting experiments in a real-world 
shipboard environment, and good results were achieved [23]. 
focused on minimizing the number of required anchor nodes 
for prediction, which works even during a node failure. This 
is achieved using the Integer Linear Programming formu-
lation, which solved localization's anchor node placement 
problem based on trilateration. Better results were shown 
optimizing the number of nodes, but results regarding loca-
tion accuracy were not presented [22, 23]. Focus more on 
deploying the nodes at correct positions or minimizing the 
required nodes rather than dealing with faults after they are 
generated.

The Truncated Mean method pre-processes the data in 
[24] to eliminate outliers on the valid data. The basic idea 
is to eliminate the segments of minimum valued end and 
maximum valued ends and then perform the mean of the 
remaining data. After sorting the data collected in increasing 
order, five percent of both minimum and maximum values 
are removed.

A hierarchical framework using the K-means cluster-
ing algorithm and class-specific cost regulation extreme 
machine classifier (CCR-ELM) [25] is proposed for large-
scale device-free localization. Another proposal, CRISloc 
[26], uses Channel State Information as fingerprints and 
(EEKNN) edge enhanced k nearest neighbors to automati-
cally adjust the value of k and weights.

Also, some optimization techniques like EOMR [27], par-
ticle swarm optimization [28], and mathematical models of 
[29–32] were studied to gain an understanding of how they 
optimize in various networking scenarios and whether they 
can be applied to maximize localization strategies.

A two-layered Indoor Localization System architecture by 
considering the General Data Protection Regulation (GDPR) 
as the grounding framework for preserving privacy through a 
compliant Access Control (AC) system was proposed in [33] 
to preserve social distance among people in indoor environ-
ments as prevention for covid-19 [34]. also uses a two-phase 
online localization process using MDT (Minimization of 
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Drive-Tests) data and a Bayesian classifier to reduce main-
tenance costs and manual collection.

The proposed method in [51] uses Channel State Informa-
tion phases and amplitudes of various communication links 
for fingerprint construction to achieve Device-Free Localiza-
tion (DFL). The probability of testing fingerprint belonging 
to each reference point is computed through a probabilistic 
approach that depends on Kullback–Leibler divergence. 
Then the resulting probabilities are used as weights for 
averaging the reference points for target localization. Least 
SquaresVariance based Radio Tomography (LSVRT) is pro-
posed in [52], which attempts to reduce the discrepancies 
generated by intrinsic motion, which may become noise to 
the localization model and increase the measured RSS vari-
ance. Instead of using offline calibration, a new online cali-
bration technique is proposed to use online real-time meas-
urements. The Kalman filter is used for tracking estimation 
on the proposed models.

Even though indoor localization can deliver timely infor-
mation, the models proposed to perform localization still 
suffer from specific difficulties and pose challenges con-
cerning fault tolerance, usability, and accuracy. The signal 
strengths get faded because of attenuation, and they are vul-
nerable to interference. Such noise reduces the accuracy of 
localization systems.

In terms of fault tolerance, there hasn't been much 
research, and very few techniques were proposed to deal 
with faults. Moreover, the existing methods use additional 
hardware to improve location prediction accuracy during 
faulty conditions, which results in more installation and 
maintenance costs.

Alternate Deep Learning models were already proposed 
for the same problem scope but do not consider the speed 
consciousness, which surely assists in reducing localization 
error during faults. Alternate deep learning models include 
Convolutional Neural Networks and several variations of 
Recurrent Neural Networks like simple RNN, Long Short-
Term Memory, and Gated Recurrent Unit [21]. A scalable 
Deep Neural Network Architecture achieves good location 
performance and high scalability by using autoencoder 
denoising [15]. Quite a few deep learning models already 
exist in indoor localization. However, our approach encour-
ages further improvement in the scope of fault tolerance 
without additional costs.

Various notations used in the proposed model sec-
tion are described in Table 1. A summary of some of the 
essential works is presented in Tables 2 and 3. Based on all 
this knowledge and also after reviewing a few more works 
[35–50], it was found that there has not been more research 
work that focused on detecting an invalid predicted location 
based on the speed of the pedestrians in an indoor environ-
ment. So, a model that depends on Recurrent Neural Net-
work and uses the speed of pedestrian navigation to adjust 

the predicted location label is proposed, which is discussed 
in Sect. 3.

3  Proposed model

3.1  Localization based on speed conscious 
recurrent neural network

The proposed localization model constitutes of 3 phases 
(i) Generating the data set through manual site survey, (ii) 
Training phase where both vectors of RSSI values and actual 
locations are fed to the proposed algorithm, and (iii) The 
proposed SRNN predicts the locations when vectors contain-
ing only RSSI values are given.

The proposed Speed Conscious Recurrent Neural Net-
work has inputs R(T) = R(1), R(2), … R(t), where T repre-
sents time ranging from 1 to t. R(t) is given as the input to 
RNN at the time ‘t’. PL(T) gets used as a memory for the 
network (hidden state), representing the Previous Location 
in our implementation. The previously hidden form and pre-
sent input are used to calculate the PL(T).

tanh non linear transformation is used as function f:

Table 3 presents the parameters considered for optimi-
zation as mentioned in each research work.

The immediate last state in the recurrent neuron is 
considered; multiple such states can be used for longer 

(8)PL(T) = f (U.R(T) +W.PL(T − 1))

(9)PLt = tanh
(
WpPLt−1 +WRRt

)

Table 1  Description for various notations used

Symbol Description

T Time ranging from 1 to t
RNN Recurrent Neural Network
R(t) RSSI given as input to RNN at time ‘t’
PL(t) Previous Location at time t, used as the hidden state in 

RNN
F(t) Output of the Neural Network at time ‘t’
M Loss function
W Weight matrices of the Neural Network
γ Learning rate to update the weight matrices
nbr(Ft) Function to check if predicted location is present in 

neighbors of  Ft or not
b Number of neighbors returned from nbr()
D Data set
d Number of data points in the data set
x Total number of class labels
KLD Kullback–Leibler Divergence
NA RSSI value is not available
SRNN Speed Conscious Recurrent Neural Network
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sequences. Output can be produced once the final state is 
determined.

For Loss Function M, gradients of weight matrices need 
to be updated using learning rate(γ).

Weights are updated so that the loss function is 
minimized.

The probability vector of outputs can be obtained using 
the softmax function in (12), where each neuron output is 
used as an argument.

(10)Ft = WfPLt

(11)W = W − �
�M

�W

(12)(Δf (t)M)i =
�M

�f
(t)

i

=
�M

�f (t)
�Mt

�f
(t)

i

RNN's can use internal or hidden states to process the 
RSSI input sequences, as shown in Fig. 4. The speed con-
sciousness is fed into the neural network by (13) that uses 
the current and previous output states to check the validity 
of prediction:

If ‘invalid’ is returned, then  Ft is updated to the neigh-
bor of  Ft-1.

3.1.1  Kullback–Leibler divergence

Kullback–Leibler divergence provides relative entropy, 
which can identify the deviation of the faulty data with 
actual data and vice versa. Entropy can be used to measure 
the disorder of a data set which usually ranges between 0 
and 1. Still, sometimes it can also be greater than 1, which 

(13)
∀i ∈ {1, ...., b}if (Ftinnbr(F(t−1))) → valid;else → invalid

Table 2  The table represents the summary of the latest related works

Authors Objectives Proposed methods Gap identified

Barsocchi et al. (2021) [33] To preserve social distance in indoor 
environments

Privacy through a compliant Access 
Control (AC) system

Improvement in localization results to 
be compared with the state-of-the-
art techniques

Achour et al. (2019) [7] Location Accuracy, Computation 
time

Non-Gaussian probability density 
function

Noticeable costs due to specific 
hardware

Kumar and Das (2020) [10] Target detection accuracy Mini-batch Singular Value  
Decomposition

Focus only on sensor location  
uncertainty

Li et al. (2020) [11] Construct space of candidate labels Multiple Machine Learning  
Algorithms

A probabilistic model to estimate 
user's location

Sheng et al. (2020) [12] Achieve flexible array orientation 
and receiver positions

Array calibration, AoA estimation 
algorithm

Dynamic array arrangement might not 
be feasible in all environments

Li et al. (2020) [13] Mitigate noise problem Torus Intersection localization 
(TILoc)

Not accurate during slight noise

Zhang et al. (2020) [14] Lightweight privacy-preserving 
scheme  (LPW2)

Minimizing least square error for 
overdetermined linear formulation

More importance to privacy rather 
than location accuracy

Liu et al. (2020) [15] Low cost, low power, and scalable 
localization

DNN along with de-noising  
autoencoder

Performance is evaluated by analyzing 
only runtime and noise

Bai et al. (2020) [6] Low energy, accurate human  
location in home environments

Trilateration and fingerprint-based 
methods

Additional hardware might be 
required as wearables are used

Sadhu et al. (2019) [16] Cross building localization, privacy, 
and latency

onion routing and perturbation/ 
randomization techniques

Need to collaborate signals from 
Wi-Fi, Cellular RSSI, light, sound, 
geo-magnetic

Nieminen and Jrvinen 
(2020) [37]

privacy-preserving indoor  
localization scheme

Cryptographic primitives—Paillier 
encryption and garbled circuits

Costs of privacy increase noticeably

Zhao et al. (2020) [38] Lightweight privacy-preserving 
localization

Location Preservation Algorithm 
with Plausible Dummies

Attacks are still possible due to 
Spatio-temporal correlations among 
locations

Kwak et al. (2018) [19] low computational complexity, 
energy efficiency

BLE interface and two sensors—
magnetometer and accelerometer

Issues using a magnetic field, costs of 
specific hardware

Bhat and Santhosh (2020) 
[20]

Stable localization under faulty 
conditions

K-means clustering and majority 
voting methods

Conventional methods like K-means 
clustering were used

Carvalho et al. (2019) [21] localization accuracy during faults Recurrent Neural Network Failed base station is ignored  
completely during faults

1375Peer-to-Peer Networking and Applications  (2022) 15:1370–1384

1 3



indicates that there is a considerable amount of disorder, 
entropy can be defined as in (14):

where  qj represents the probability of occurrence of a class 
'j' in the given data set and x is the total number of classes. 
But this entropy can be used to compute the disorder of data 
sets individually and cannot relate one data set with another; 
Kullback–Leibler divergence (15) comes in handy for meas-
uring the deviation in features before after faults.

Operator '||' represents A's divergence from B, and 'y' is 
the total number of probability events. A and B are the prob-
ability distributions. Standard deviation can be computed 
by (16):

(14)Entropy(D) =

x∑
j=1

−qj log2 qj

(15)KLD(A||B) = −
∑y

k=1
A(k) ∗ log

(
B(k)

A(k)

)

(16)� =

√
1

G

∑G

i=1

(
xi − �

)2

where 'G' is the total size of the population, 'µ' represents the 
mean and xi is each value of the data.

The advantage of using Kullback—Leibler divergence is 
unlike other divergences; it does not compute divergence sym-
metrically, i.e.,

(17)KLD(A||B) ≠ KLD(B||A)

Table 3  Table representing the parameters optimized in each work

Authors Location 
Accuracy

Cost-effective Energy efficient Fault-tolerant Privacy- 
preserving

Low latency

Fang et al. (2021) [34] ✓ ✓ X X X X
Zhang et al. (2021) [25] ✓ ✓ X X X X
Barsocchi et al. (2021) [33] ✓ X X X ✓ X
Achroufene et al. (2018) [7] ✓ X X X X ✓
Luo et al. (2018) [8] ✓ X X X X X
Hoang  et al. (2019) [9] ✓ X X X X X
Kumar and Das (2020) [10] ✓ ✓ X X X X
Li et al. (2020) [11] ✓ X X X X ✓
Sheng et al. (2020) [12] ✓ ✓ X X X X
Li et al. (2020) [13] ✓ ✓ X X X ✓
Zhang et al.(2020) [14] ✓ ✓ X X ✓ ✓
Liu et al. (2020) [15] ✓ ✓ ✓ X X ✓
Bai et al. (2020) [6] ✓ X ✓ X X X
Sadhu et al. (2019) [16] ✓ X ✓ X ✓ ✓
Nieminen and Jrvinen (2020) 

[37]
✓ X X X ✓ X

Zhao et al. (2020) [38] ✓ ✓ ✓ X ✓ X
Kwak et al. (2018) [19] ✓ X ✓ X X ✓
Bhat and Santhosh (2020) [20] ✓ X X ✓ X X
Carvallo et al. (2019) [21] ✓ X X ✓ X X
Salazar et al. (2019) [39] ✓ ✓ ✓ X X X
Guidara et al. (2019) [40] ✓ X ✓ X X ✓
Zhao et al. (2018) [41] ✓ ✓ X X ✓  X
Tiku and Pasricha (2019) [42] ✓ X X X ✓ X

Fig. 4  An unfolded Recurrent Neural Network was used for Localiza-
tion
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3.1.2  Fault tolerance

Any access point can be prone to faults during the localiza-
tion procedure. An efficient data pre-processing technique 
before passing data to the prediction algorithm can reduce 
the localization error up to a certain extent. Let the data set 
be represented as shown in (18).

Rij represents the RSSI value of  ith data point for the  jth 
anchor node.  Ck is the class label associated with the RSSI 
vector. Whenever an access point is faulty, consider  2nd in 
this case. Then its reading can fluctuate, as shown in (19).

NA indicates RSSI reading is not available. The proposed 
most recent RSSI fills the missing values by considering the 
RSSI value from its previous RSSI reading, as shown in 
(20).

For nearest RSSI,  Ri-1j in (20) is replaced with  Ri nr, where 
 Ri nr represents the RSSI value of the nearest access point 
within the same data point.

'd' is the total No. of data points, and 'z' is the total num-
ber of access points. Using the weighted average method, 
pre-processing the data set can be done using (21).

The weights of each RSSI value can be computed using 
(22). If the pre-processing is done through simple average or 
mean of remaining access points without considering their 
weights, these Weights  (Wij) of (15) can be assigned to 1.

3.1.3  Environment and dataset description

Experiments through hardware implementation were carried 
out in 34 feet long × 22 feet wide indoor environment, whose 
layout is shown in Fig. 5. Four mobile hotspots were used as 

(18)

⎡⎢⎢⎢⎢⎢⎣

R11 R12 .. .. R1j Ck

R21 R22 .. .. R2j Ck

∶ ∶ ∶ ∶ ∶ ∶

∶ ∶ ∶ ∶ ∶ ∶

Ri1 Ri1 .. .. Rij Ck

⎤
⎥⎥⎥⎥⎥⎦

(19)
[
R12 NA R32 NA NA R62 NA … . Ri2

]

(20)
∀i ∈ {1, ...., d}

∀j ∈ {1, ...., z}
( if (Rij = NA)) then R

ij
← Ri−1j

(21)

∀i ∈ {1,… ., d}

∀j ∈ {1,… ., z}
( if (Rij = NA)) then R

ij
←

∀(k ≠ j)

�
z∑

k=1

wikRik

�

z − 1

(22)
∀i ∈ {1,… ., d}

∀j ∈ {1,… ., z}
Wij =

Rij

z∑
k=1

Rik

access points (AP1, AP2, AP3, AP4), and another mobile 
device is used as the navigating device, scans the RSSI val-
ues from these 4 access points, and sends them to the server. 
An android application is developed to scan these RSSI 
values, which uses android.net.wifi.WifiManager class and 
sends them through URL to a computer having flask server 
implemented using python. The proposed algorithms were 
implemented in python, predicting location labels based on 
the RSSI values received.

The entire layout is divided into a grid of 16 locations, 
as shown in Fig. 5. Each row in the data set contains sig-
nal strengths (RSSI values ranging from -100 to 0) from 4 
Wi-Fi access points and a location label (ranging from 1 to 
16). 4000 such rows (data points) are present in the data set, 
out of which 3200 are used for training, and 800 are used 
for testing.

So the responsibility of the proposed approach is to 
predict one class label from 1 to 16 when readings from 
4 access points are given as input. But during the testing 
phase, there might be faults. There is no guarantee that all 
4 access points work as expected in real-time. So failures of 
each access point were also considered. While testing for 
fault tolerance, 400 data points from test data were supposed 
to be having such faults for experiment purposes.

To maintain speed consciousness in the proposed model, 
the nbr() function checks whether the current predicted loca-
tion is a neighbor of the previous location or not. As it can be 
observed from Fig. 6, the distance between two neighboring 

Fig. 5  Layout of the indoor environment

1377Peer-to-Peer Networking and Applications  (2022) 15:1370–1384

1 3



locations, 4 and 9, is 5.4 feet, and that of non-neighboring 
nodes 4 and 10 is 10.8 feet. So the nbr() function uses this 
distance metric to check whether a person can travel from 
one location to the other within 1500 ms (the time interval 
between two data points). Obviously, at average walking 
speed, a person does not travel 10.8 feet/1500 ms. So this 
distance threshold is used to test whether the predicted loca-
tion is valid or not compared to its previous location.

Apart from the generated data set, another data set from 
[35, 36] is also used for experimentation. According to [35], 
the environment is set up at an office location in Pittsburgh, 
USA. This office has seven Wi-Fi routers, and the signal 
strengths received from these routers categorize the user's 
location in various office rooms.

An android device has been considered for capturing 
wireless signals, and these signal strengths were tabulated. 
The decision variable is one of the four rooms. It has 2000 
data points which are now divided into 1500 training and 
500 test data points. In this proposal, to test for fault tol-
erance, 400 data points out of 500 test points were made 
prone to faults where one RSSI value in each data point is 
randomly removed.

4  Results and discussion

The environment and the data set used to conduct experi-
ments were already discussed in Sect. 3.1.3. The proposed 
algorithms were implemented in python using the scikit 
learn library. To compare the results of each approach, 
a data set is used that consists of 800 test data points in 
Sect. 4.1 and 500 test data points in Sect. 4.2. Each method 
uses each data point, predicts a location (or class label), and 
then compares whether this predicted location matches the 
actual location.

So finally, the number of locations "matched" and the 
number of locations "unmatched" out of total predicted loca-
tions are considered. An approach that generates less number 

of “unmatched” predicted locations and more number of 
“matched” predicted locations is said to be more efficient. 
The following terms will be used:

• Matched—predicted location is same as actual location.
• Unmatched—predicted location differs from the actual 

location (wrong or incorrect prediction).
• Location—one out of sixteen locations {1, 2, 3,…,16}.
• Datapoint number—each data point from the test data set.

The proposed algorithm is compared with machine learn-
ing algorithms used for localization like KNN (K- Nearest 
Neighbors), NB (Naïve Bayes), SV (Support Vector), and 
RNN (Recurrent Neural Network) algorithms.

4.1  Results using the generated data set 
through hardware implementation

Figure 7 presents a point graph of only unmatched predicted 
locations (in red-colored star-shaped marker) vs. actual room 
locations (in blue colored circle-shaped marker) of the test 
data for the proposed SRNN method, which resulted in 673 
matched and 127 unmatched predictions, respectively.

It isn't easy to study a graph if all the 800 test data points 
are presented, and in such cases, the markers used for pre-
dicted and actual locations appear to be at the same points 
for the human eye. It is almost impossible to find out where 
the unmatched locations are. So, only data points that gener-
ated unmatched predicted locations will be marked on the 
plot to make it easier to differentiate the actual and predicted 
location markers.

Figure 8 presents the number of unmatched locations 
individually at each location using SRNN. 0 (minimum) for 
location 12 and 22 data points (maximum) for location 9 
were observed to be incorrect predictions.

Fig. 6  Part of indoor environment layout Fig. 7  Unmatched locations using SRNN
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Fig. 8  No. of wrong predictions at each location with SRNN

Fig. 9  No. of matched locations for each algorithm

Fig. 10  Plot for No. of matched locations during faults

Fig. 11  Comparison of results before and after faults

Fig. 12  Bar Graph presenting the improvement while using a fault-
tolerant approach

Fig. 13  without faults vs. with faults vs. fault-tolerant approach
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Figure 9 presents the results of SRNN compared to vari-
ous algorithms, and the proposed SRNN algorithm has an 
improvement of 13 data points over the RNN method.

The grey colored lines in Fig. 10 indicate the same lines 
of Fig. 9, which are now compared to matched data points 
during faults (colored lines in Fig. 10).

Figures 10 and 11 show how the matched locations get 
reduced when nodes become faulty. The prediction becomes 
less efficient by around 37% (average for all the algorithms).

The nearest RSSI fault-tolerant technique fills the missing 
values before passing data to the algorithm. The improve-
ment in prediction is shown in Fig. 12. The Number of 
matched locations improved by 28% (average for all the 
algorithms) compared to the data with faults.

The overall change in the number of correct predictions 
before and after faults and when using the proposed fault-
tolerant approach can be observed in Fig. 13.

It can be observed from Fig. 13 how the number of wrong 
predictions changes before and after faults. Initially, there 
are 127 wrong predictions; faults increase to 376. However, 
they decrease to 267 when the fault-tolerant approach is 
used.

As presented in Fig. 14, the proposed fault-tolerant 
approaches nearest RSSI and most recent RSSI and 
SRNN improve the location accuracy by 4% and 2.1%, 
respectively.

Kullback–Leibler Divergence as in Fig. 15 becomes 
more (6.06) when the data is prone to faults; later, when 
the data is pre-processed, the divergence reduces to 
3.29. location prediction improves with the reduction in 
divergence.

It can be observed from Table 4 that Standard Devia-
tion does not show much deviation between original data 
(11.27) and fault-tolerant data (11.70). However, KLD 
shows a divergence of 3.29 units, which means there can 
still be differences between original and fault-tolerant data 
predictions.

Fig. 14  Using SRNN before faults, after faults, and with fault tolerance

Fig. 15  The efficiency of various fault-tolerant approaches
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Results were also compared with KLDPA (Kullback–Leibler 
Divergence-based Probabilistic Approach) and LSVT (Least 
Squares Variance based Technique), presented in Figs. 16 
and 17, respectively. KLDPA produces 608 matched locations, 
and LSVT generates 629 matched locations which are less effi-
cient when compared to RNN and SRNN, as shown in Fig. 18.

4.2  Results using the available data set [35, 36]:

Graphs in this section are results of experiments conducted 
through the already available data set [35, 36], which has 
RSSI readings of 7 devices.

Figure 19 shows how the matched locations get reduced 
when a node becomes faulty. The prediction becomes less 
efficient by around 27% (average for all the algorithms).

The results of already existing fault-tolerant tech-
niques along with the proposed schemes are presented in 
Figs. 20 and 21, which includes the Weighted Average 
method and Truncated Mean method. Truncated Mean out-
performs the Weighted Average method, and the proposed 
nearest RSSI method and the Speed Conscious Recurrent 
Neural Network predict 5% better than the Truncated Mean 
method.

Table 4  Divergence values for various data used

Data Standard
Deviation

Data Kullback–
Leibler 
Divergence

Original 11.27 Original vs. Faulty 6.06
Faulty 14.87 Fault-Tolerant vs. Faulty 4.88
Fault-Tolerant 11.70 Original vs. Fault  

Tolerant
3.29

Fig. 16  Kullback–Leibler Divergences at various stages of data pre-
processing

Fig. 17  Unmatched locations using KLDPA

Fig. 18  Unmatched locations using LSVT

Fig. 19  Unmatched locations using LSVT
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The improvement in results while using SRNN with fault 
tolerance can be observed in Fig. 22.

In terms of running time, SRNN has taken approximately 
740 ms more time than RNN for predicting 500 data points 
which can be negligible.

5  Conclusion

This paper describes the real-time implementation of 
indoor localization using minimum hardware possi-
ble, then proposes a Speed Conscious Recurrent Neural 
Network that monitors pedestrians' navigation speed to 
adjust the predicted location. Experiments reveal that the 
proposed SRNN algorithm has improved location accu-
racy over the conventional Recurrent Neural Network 
technique.

The most recent RSSI method and nearest RSSI pro-
posed for tolerating faults work by filling missing values 
intelligently, making the proposal cost-effective, unlike the 
traditional fault tolerating methods that use specific hard-
ware. The most recent RSSI technique optimizes the loca-
tion accuracy by 2.1%, and it can be implemented when 
temporary fluctuations occur for multiple access points. 
Whereas the nearest RSSI technique optimizes the loca-
tion accuracy by 4% and can be implemented in situations 
where one access point fails continuously. The experi-
ments were conducted in python using scikit learn and 
Keras libraries with Spyder tool; flask server is used to 
communicate with navigating mobile and the server.

There is still scope for further research that can con-
centrate on the deployment of access points and automatic 
adjustment of access point positions through mathemati-
cal models to ensure more signal coverage. Considering 
the problem scope and the research applied here, focus can 
also be made on regulating the frequency of RSSI scans 
and server communication to improve energy efficiency. 
More research opportunities regarding privacy and security 
emerge with the wide use of localization to ensure user loca-
tion is not disclosed to unauthorized persons.
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Fig. 20  Comparison of results before and after faults

Fig. 21  The efficiency of various fault-tolerant approaches
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