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Fault-tolerant operation of a logical qubit in 
a diamond quantum processor

M. H. Abobeih1,2, Y. Wang1, J. Randall1,2, S. J. H. Loenen1,2, C. E. Bradley1,2, M. Markham3, 
D. J. Twitchen3, B. M. Terhal1,4 & T. H. Taminiau1,2 ✉

Solid-state spin qubits is a promising platform for quantum computation and 
quantum networks1,2. Recent experiments have demonstrated high-quality control 
over multi-qubit systems3–8, elementary quantum algorithms8–11 and 
non-fault-tolerant error correction12–14. Large-scale systems will require using 
error-corrected logical qubits that are operated fault tolerantly, so that reliable 
computation becomes possible despite noisy operations15–18. Overcoming 
imperfections in this way remains an important outstanding challenge for quantum 
science15,19–27. Here, we demonstrate fault-tolerant operations on a logical qubit using 
spin qubits in diamond. Our approach is based on the five-qubit code with a recently 
discovered flag protocol that enables fault tolerance using a total of seven qubits28–30. 
We encode the logical qubit using a new protocol based on repeated multi-qubit 
measurements and show that it outperforms non-fault-tolerant encoding schemes. 
We then fault-tolerantly manipulate the logical qubit through a complete set of 
single-qubit Clifford gates. Finally, we demonstrate flagged stabilizer measurements 
with real-time processing of the outcomes. Such measurements are a primitive for 
fault-tolerant quantum error correction. Although future improvements in fidelity 
and the number of qubits will be required to suppress logical error rates below the 
physical error rates, our realization of fault-tolerant protocols on the logical-qubit 
level is a key step towards quantum information processing based on solid-state spins.

Large-scale quantum computers and quantum networks will require quan-
tum error correction to overcome inevitable imperfections15–19. The central 
idea is to encode each logical qubit of information into several physical 
data qubits. Non-destructive multi-qubit measurements, called stabilizer 
measurements, can then be used to identify and correct errors15–18. If the 
error rates of all the components are below a certain threshold, it becomes 
possible to perform arbitrarily large quantum computations by encoding 
into increasingly more physical qubits15,17,18. A crucial requirement is that 
all logical building blocks, including the error-syndrome measurement, 
must be implemented fault tolerantly. At the lowest level, this implies that 
any single physical error should not cause a logical error.

Over the past several years, steps towards fault-tolerant quantum 
error correction have been made using spin qubits in silicon6–8 and 
in diamond13,14, as well as in various other hardware platforms, such 
as superconducting qubits23–27 and trapped-ion qubits20,21,31,32. Pio-
neering experiments have demonstrated codes that can detect but 
not correct errors22,25,26,33, quantum error-correction protocols that 
can correct only one type of error13,14,34, as well as non-fault-tolerant 
quantum error-correction protocols20,24,34,35. A recent experiment with 
trapped-ion qubits has demonstrated the fault-tolerant operation of an 
error-correction code, albeit through destructive stabilizer measure-
ments and post-processing21.

In this work, we realize fault-tolerant encoding, gate operations 
and non-destructive stabilizer measurements for a logical qubit of 

a quantum error-correction code. Our logical qubit is based on the 
five-qubit code and we use a total of seven spin qubits in a diamond 
quantum processor (Fig. 1). Fault tolerance is made possible through the 
recently discovered paradigm of flag qubits28–30. First, we demonstrate 
a new fault-tolerant encoding protocol based on repeated multi-qubit 
measurements, which herald the successful preparation of the logical 
state. Then, we realize the (non-universal) set of transversal single-qubit 
Clifford gates. Finally, we demonstrate stabilizer measurements on 
the logical qubit and include a flag qubit to ensure compatibility with 
fault tolerance. Our stabilizer measurements are non-destructive, the 
post-measurement state is available in real time and we use feedfor-
ward based on the measurement outcomes. Although the logical qubit 
fidelities do not yet outperform the constituent physical qubits, these 
results demonstrate the key components of fault-tolerant quantum 
error correction in a solid-state spin-qubit processor.

The logical qubit
Stabilizer error-correction codes use auxiliary qubits to perform 
repeated stabilizer measurements that identify errors. A key require-
ment for fault tolerance is to prevent errors on the auxiliary qubits 
from spreading to the data qubits and causing logical errors18,28 
(Fig. 1b). The paradigm of flag fault tolerance provides a solution 
with minimal qubit overhead28–30. Auxiliary qubit errors that would 
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cause logical errors are detected using extra flag qubits, so that they 
can be subsequently corrected (Fig. 1b).

Our logical qubit is based on the five-qubit code, the smallest 
distance-3 code which can correct any single-qubit error35,36. Any 
logical state is a simultaneous +1 eigenstate of the four stabilizers 
s1 = XXYIY, s2 = YXXYI, s3 = IYXXY and s4 = YIYXX, and the logical opera-
tors are XL = XXXXX and ZL = ZZZZZ. Because any error on a single data 
qubit corresponds to a unique 4-bit syndrome, given as the eigen-
values of the stabilizers, arbitrary single-qubit errors can be identi-
fied and corrected. Combined with an auxiliary qubit for stabilizer 
measurements and a flag qubit to capture harmful auxiliary qubit 
errors, this makes fault-tolerant error correction possible using seven 
qubits in total28.

System: spin qubits in diamond
Our processor consists of a single nitrogen-vacancy (NV) centre and 
its surrounding nuclear-spin environment at 4 K (Fig. 1a). These spins 
are high-quality qubits with coherence times up to seconds for the NV 
electron spin37 and minutes for the nuclear spins3. The NV electron spin 
can be read out optically, couples strongly to all other spins and is used 
as an auxiliary qubit for stabilizer measurements3,14 (Methods). We use 
the intrinsic 14N nuclear spin as the flag qubit. Unlike the other qubits, 
the flag qubit does not need to maintain coherence during the optical 
readout. In this device, 27 13C nuclear-spin qubits and their lattice posi-
tions have been characterized, so that the 406 qubit–qubit interactions 
are known38. Each 13C qubit can be controlled individually owing to their 
distinct couplings to the NV electron spin (Methods). Here we use five 
of the 13C spin qubits as the data qubits to encode the logical qubit.

A challenge for controlling such a quantum processor is that the 
spins continuously couple to each other. We realize selective control 
gates through various echo sequences that isolate interactions between 
the targeted spins, while also protecting them from environmental 
decoherence. For all two-qubit gates, we use previously developed 
electron–nuclear gates, which are based on decoupling sequences on 
the electron spin3 (Methods). Furthermore, we introduce interleaved 
and asynchronous echo stages that cancel unwanted couplings between 
the data qubits (Methods). These extra echo stages are essential for the 
relatively long gate sequences realized here.
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Fig. 1 | Diamond quantum processor, logical qubit and fault tolerance.  
a, Our processor consists of a single NV centre and 27 13C nuclear-spin qubits, 
for which the lattice sites and qubit–qubit interactions are known38. We select 
five 13C qubits as data qubits that encode the logical state (yellow). The other 
qubits (grey) are not used here. We use the NV electron spin (purple) as an 
auxiliary qubit for stabilizer measurements and the NV 14N nuclear spin (green) 
as a flag qubit to ensure fault tolerance. Purple lines indicate the electron–
nuclear two-qubit gates used here (Methods). Grey lines indicate dipolar 

nuclear–nuclear couplings greater than 6 Hz. b, Illustration of the main 
components of the experiment. We realize fault-tolerant encoding, gates and 
stabilizer measurements with real-time processing on a logical qubit of the 
five-qubit quantum error-correction code. To ensure that any single fault does 
not cause a logical error, an extra flag qubit is used to identify errors that would 
propagate to multi-qubit errors and corrupt the logical state28. An illustration 
of such an error E is shown in red.
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Fig. 2 | Non-destructive stabilizer measurements with real-time 
feedforward. a, Circuit diagram for the deterministic preparation of a 
four-qubit GHZ entangled state ( ψ⟩ = ( 0000⟩ + 1111⟩)/ 2 )+  using a 
measurement of the stabilizer XXXX. b, Measured expectation values of the 15 
operators that define the ideal state. The obtained fidelity with the target state 
is 0.86(1), confirming genuine multipartite entanglement. Grey bars show the 
ideal expectation values. Error bars are one standard deviation.



886 | Nature | Vol 606 | 30 June 2022

Article

Non-destructive stabilizer measurements
We start by demonstrating non-destructive four-qubit stabilizer meas-
urements with real-time feedforward operations based on the measure-
ment outcomes (Fig. 2). Despite the central role of such measurements 
in many error-correction codes, including the five-qubit code, the 
Steane code and the surface code15–18, experimental implementations 
with feedforward have remained an outstanding challenge.

We benchmark the measurement by using it to deterministically 
create a four-qubit entangled state. We prepare the state 0000⟩  
and measure the operator XXXX. This projects the qubits into the Green-
berger–Horne–Zeilinger (GHZ) state ( ψ⟩ = ( 0000⟩ ± 1111⟩)/ 2 ),±   
with the sign determined by the measurement outcome. We process 
the measurement outcomes in real time using a microprocessor and 
apply the required correction to deterministically output the state 
( ψ⟩ )+  with a fidelity of 0.86(1). Because this result is obtained without 
any post-selection, it highlights that the post-measurement state is 
available for all measurement outcomes, satisfying one of the key 
requirements for error correction.

Fault-tolerant encoding
To prepare the logical qubit, we introduce a new scheme that uses 
repeated stabilizer measurements and a flag qubit to herald successful 
preparation (Fig. 3a). In contrast to the scheme introduced by Chao 

and Reichardt28, no direct two-qubit gates between the data qubits are 
required (fifth section of the Supplementary Information). We dem-
onstrate the preparation of the logical state (| − ⟩ = (|0⟩ − |1⟩ )L

1

2 L L . This 
state is the unique +1 eigenstate of five independent weight-3 logical 
-X operators, namely, p1 = IZXZI, p2 = ZIIZX, p3 = XZIIZ, p4 = ZXZII and 
p5 = IIZXZ. Therefore, one can prepare − ⟩L by initializing the data qubits 
into the product state 00 + 0+⟩, which is an eigenstate of p1 and p2, and 
subsequently measuring p3 to p5 (Fig. 3a). This preparation scheme is 
not fault tolerant because faults involving the auxiliary qubit can cause 
weight-2 errors, which can result in logical errors (Fig. 3a). We refer to 
these steps as the non-FT encoding scheme.

We make the preparation circuit fault tolerant by adding two stabi-
lizer measurements, T1 = p2·p4·p5 = IXIYY and T2 = p1·p3·p5 = XIYYI with a 
flag qubit (Fig. 3a). Successful preparation is heralded by the following 
conditions: (1) the measurement outcomes of T1 and T2 are compatible 
with the measurement outcomes mi of the logical operators pi, that is, 
m m m m= × ×T 2 4 51

 and m m m m= × ×T 1 3 52
; (2) the flag is not raised (that 

is, the flag qubit is measured to be in 0⟩). Otherwise, the state is rejected. 
The order of two-qubit gates is carefully chosen to ensure fault toler-
ance while minimizing the number of operations. Further details and 
a proof of the fault tolerance of this scheme are given in the sixth section 
of the Supplementary Information. We refer to this preparation as the 
FT encoding scheme.

To reduce the impact of auxiliary qubit measurement errors10,14, we 
also require all stabilizer measurement outcomes to be +1 (that is, the 
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Fig. 3 | Fault-tolerant encoding of the logical qubit. a, Encoding circuit. The 
first stage prepares − ⟩L non-fault-tolerantly (‘non-FT preparation’) by starting 
with |00+0+〉 (an eigenstate of p1, p2) and measuring the logical operators p3 to 
p5. The second ‘FT verification’ stage consists of two stabilizer measurements, 
T1 = p2·p4·p5, T2 = p1·p3·p5, and a flag qubit measurement. Echo sequences are 
inserted between the measurements to decouple the qubits (not shown, see 
Supplementary Figs. 8 and 9). Successful preparation is heralded by satisfying 
a set of conditions for the measurement outcomes (see main text). Red 
indicates an example of an auxiliary qubit fault (an XY error in a two-qubit gate) 

that would propagate to a logical error but is detected by the T1 verification 
step. Orange indicates an example of a single fault in the verification stage  
that would propagate into a logical error but is detected by the flag qubit.  
b,c, Probabilities to obtain the desired logical state − L without error (P0,−) or 
with a single-qubit Pauli error (P1,−), and the probabilities to obtain the opposite 
logical state + L with zero error (P0,+) or with a single-qubit Pauli error (P1,+). 
Note that P1,± are summed over all 15 possible errors. These 32 states are 
orthogonal and span the full five-qubit Hilbert space.
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NV electron spin is measured to be in 0⟩). These outcomes are more 
reliable3 (Methods), increasing the fidelity of the state preparation, at 
the cost of a lower success probability (Supplementary Table 1).

We compare the non-FT and FT encoding schemes. We define the 
logical state fidelity FL as (Methods)

∑F E Eρ= Tr( − ⟩ ⟨ − ), (1)
E ε

L
∈

L L

in which ρ is the prepared state and ε I X Y Z i= { , , , , = 1,2, …, 5}i i i  is the  
set of all single-qubit Pauli errors. The fidelity FL gives the probability 
that there is at most a single-qubit error in the prepared state, that is, 
there is no logical error. We characterize the prepared state by measur-
ing the 31 operators that define the target state (Extended Data Fig. 2 
and Methods). We find that the FT encoding scheme (FL = 95(2)%) out-
performs the non-FT scheme (FL = 81(2)%).

To understand this improvement, we analyse the underlying error 
probability distributions (Figs. 3b,c). For the five-qubit code, the − ⟩L 
state plus any number of Pauli errors is equivalent to either − ⟩L with 
at most one Pauli error (no logical error) or to + ⟩L with at most one 
Pauli error (a logical error). We calculate the overlaps between the 
prepared state and those states. The results show that the FT scheme 
suppresses logical errors, consistent with fault tolerance preventing 
single faults propagating to multi-qubit errors. The overall logical state 
fidelity FL is improved, despite the higher probability of single-qubit 
errors owing to the increased complexity of the sequence.

Fault-tolerant logical gates
The five-qubit code supports a complete set of transversal single-qubit 
Clifford gates, which are naturally fault tolerant16,39. We apply four 
transversal logical gates to − ⟩L (Fig. 4): XL = X1X2X3X4X5, YL = Y1Y2Y3Y4Y5, 
the Hadamard gate HL = Pπ H1H2H3H4H5 and the phase gate SL = Pπ 
S1S2S3S4S5, in which Pπ is a permutation of the data qubits16,39 (Fig. 4b). 
These permutations are fault tolerant because we realize them by rela-
belling the qubits rather than by using SWAP gates39. For completeness, 
we note that universal computation requires further non-transversal 
gates, constructed—for example—with auxiliary logical qubits, which 
are not pursued here18.

Our control system performs the underlying single-qubit gates by 
tracking basis rotations and compiling them with subsequent gates or 
measurements (Methods). In the sequence considered here (Fig. 4a), 
such compilation does not increase the physical operation count and 
there is no reduction of fidelity (Fig. 4c). For comparison, we also imple-
ment the ‘worst-case’ scenario, in which the logical gates are applied 
physically (Fig. 4c). This includes five single-qubit gates and the cor-
responding extra echo sequences between the state preparation and 
the measurement stage. Together, the demonstrated transversal logical 
gates enable the fault-tolerant preparation of all six eigenstates of the 
logical Pauli operators.

Fault-tolerant stabilizer measurements
Finally, we demonstrate and characterize a flagged stabilizer measure-
ment on the encoded state (Fig. 5a). Such measurements are a primitive 
for fault-tolerant quantum error-correction protocols28. To ensure that 
the measurement is compatible with fault tolerance, the two-qubit 
gates are carefully ordered and a flag qubit is added to capture the 
auxiliary qubit errors that can propagate to logical errors28.

We prepare the logical state − ⟩L and measure the stabilizer s1 = XXYIY 
(Fig. 5a). The resulting output consists of the post-measurement state 
and two classical bits of information from the measurements of the aux-
iliary and flag qubits (Fig. 5b). The logical state fidelity FL is given by the 
probability that the logical information can be correctly extracted  
(no logical error) when taking into account the flag measurement 

outcome. The interpretation of the error syndrome changes if the flag 
is raised (Methods). We find FL = 0.77(4) for the post-measurement state 
without any post-selection. Higher logical state fidelities can be obtained 
by post-selecting on favourable outcomes, but this is incompatible with 
error correction.

To illustrate the benefit of the flag qubit, we compare the logical 
state fidelities with and without taking the flag measurement outcome 
into account. Because auxiliary qubit errors that propagate to logical 
errors are naturally rare, no marked difference is observed (Fig. 5c). 
Therefore, we introduce a Pauli Y error on the auxiliary qubit (Fig. 5a). 
This error propagates to the two-qubit error Y3Y5. For the case without 
flag information, this error causes a logical flip ZL (Methods) and the 
logical state fidelity drops below 0.5. By contrast, with the flag qubit, 
this non-trivial error is detected (Fig. 5b) and remains correctable, so 
that the logical state fidelity is partly recovered (Fig. 5c).

Conclusion
In conclusion, we have demonstrated encoding, gates and 
non-destructive stabilizer measurements for a logical qubit of an 
error-correction code in a fault-tolerant way. Our results advance 
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solid-state spin qubits from the physical-qubit level to the logical-qubit 
level, at which fault-tolerant operations become possible. Such fault 
tolerance is a necessity for large-scale quantum computation, in which 
error rates must ultimately be suppressed to extremely low levels.

Future challenges are to perform complete quantum error-correction 
cycles, encode several logical qubits, realize universal fault-tolerant 
gates and—ultimately—suppress logical error rates exponentially below 

physical error rates. Although the demonstrated operations are of high 
fidelity—the experiments consist of up to 40 two-qubit gates and eight 
mid-circuit auxiliary qubit readouts (Fig. 5a)—improvements in both 
the fidelities and the number of qubits will be required.

Improved gates might be realized through tailored optimal con-
trol schemes that leverage the precise knowledge of the system and 
its environment40 (Fig. 1a). Coupling to optical cavities can further 
improve readout fidelities1,41. Scaling to large code distances and 
several logical qubits can be realized through already-demonstrated 
magnetic40 and optical42 NV–NV connections that enable modular, 
distributed, quantum computation based on the surface code and 
other error-correction codes19. Therefore, our demonstration of the 
building blocks of fault-tolerant quantum error correction is a key 
step towards quantum information processing based on solid-state 
spin qubits.
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Fig. 5 | Fault-tolerant stabilizer measurement. a, Circuit diagram to measure 
the stabilizer XXYIY on the encoded state. As an example to illustrate the 
compatibility with fault tolerance, we insert a Y error on the auxiliary qubit. 
This error will propagate to the two-qubit error Y3Y5 on the data qubits, which 
leads to a logical Z error. However, because the error also triggers the flag 
qubit, it can be accounted for (Methods). b, Probability of the measurement 
outcomes of the auxiliary (ma) and flag (mf) qubits when inserting (pe = 1) or not 
inserting (pe = 0) the Y error on the auxiliary qubit. The results show that the 
flag qubit successfully detects this error. c, Logical state fidelity FL after the 
stabilizer measurement as a function of the error probability pe. The non-FT 
case does not take the flag outcome into account. Values between pe = 0 and 
pe = 1 are calculated as weighted sums (Methods).
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Methods

Sample
We use a naturally occurring NV centre in a homo-epitaxially chemical- 
vapour-deposition-grown diamond with a 1.1% natural abundance of 
13C and a ⟨111⟩ crystal orientation (grown by Element Six). A solid- 
immersion lens is used to enhance the photon-collection efficiency43. 
The NV centre has been selected for the absence of 13C spins with hyper-
fine couplings >500 kHz. These experiments are performed at a  
temperature of 4 K, at which the electron-spin relaxation is negligible 
(T1 = 3.6(3) × 103 s)37.

Qubits and coherence times
The NV electron-spin auxiliary qubit is defined between the states 
ms = 0 ( 0⟩) and ms = −1 ( 1⟩). The NV electron-spin coherence times are 
T * = 4.9(2) μs2 , T2 = 1.182(5) ms and up to seconds under dynamical 
decoupling37. The 14N nuclear-spin flag qubit is defined between the 
states mI = 0 ( 0⟩) and mI = −1 ( 1⟩). The 13C nuclear-spin data qubits in 
this device have been characterized in detail in previous work3,38,44 
(Fig. 1a). See Supplementary Tables 2–5 for the hyperfine parameters, 
coherence times and qubit–qubit interactions for the qubits used here.

Magnetic field
A magnetic field of about 403 G is applied using a room-temperature 
permanent magnet on a XYZ translation stage. This applied field lifts 
the degeneracy of the ms = ±1 states owing to the Zeeman term (first 
section of the Supplementary Information). We stabilize the magnetic 
field to <3 mG using temperature stabilization and an automatic recali-
bration procedure (every few hours). We align the magnetic field along 
the NV axis using thermal echo sequences with an uncertainty of 0.07° 
in the alignment38.

Single-qubit and two-qubit gates
Single-qubit gates and echo pulses are applied using microwave pulses 
for the NV electron spin (ms = 0 ↔ ms = −1 transition, Hermite pulse 
shapes37,45, Rabi frequency of about 15 MHz) and using radio-frequency 
(RF) pulses for the 13C spin qubits (error function pulse shapes3, typical 
Rabi frequency of about 500 Hz) and the 14N spin qubit (error function 
pulse shapes, Rabi frequency of about 2 kHz).

The Hermite pulse envelopes of the microwave pulses are defined as
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in which c = 0.956 for π pulses and c = 0.667 for π/2 pulses, μ = 0.5tpulse, 
T = 0.1667tpulse, tpulse is the microwave pulse length and A is the pulse 
amplitude, which is experimentally calibrated to achieve a π or π/2 
rotation. For this work, we use tpulse = 168 ns for π pulses and tpulse = 100 ns 
for π/2 pulses. The envelope of the RF pulses is defined as
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in which Δt is the rise time, t0 is the start time of the pulse, tpulse is the 
pulse length and erf(x) is the error function3. We ensure that the RF 
pulses consisted of an integer number of periods of the RF waveform, 
that is, we ensure that ωtpulse = 2πn for integer n. This ensures that any 
phase picked up on the electron spin owing to the RF pulse is cancelled. 
Note that the 13C spin qubits (data qubits) are distinguishable in fre-
quency owing to their hyperfine coupling to the NV electron spin (Sup-
plementary Table 2).

Electron–nuclear two-qubit gates are realized using two different 
gate designs, depending on the properties of the targeted nuclear 
spin. For data qubits 1, 2, 4 and 5, two-qubit gates are realized through 
dynamical decoupling sequences of N equally spaced π-pulses on the 

electron spin of the form3,46 (τr − π − τr)
N. This design requires a notable 

hyperfine component perpendicular to the applied magnetic field46. 
For data qubit 3 and the flag qubit (the 14N spin), the perpendicular 
hyperfine coupling is small and we perform two-qubit gates by inter-
leaving the dynamical decoupling sequence with RF pulses3. Both gate 
designs simultaneously decouple the NV electron spin from the other 
qubits and the environment3. The parameters and fidelities for the 
two-qubit gates are given in Supplementary Table 4. Note that direct 
nuclear–nuclear two-qubit gates can also be constructed47, but because 
the natural interaction is much weaker than the electron–nuclear inter-
action, we don't use such gates here and designed the FT encoding 
circuit based on electron–nuclear gates only.

Compilation of gate sequences
Our native two-qubit gates are electron-controlled nuclear-spin rota-
tions and are equivalent to the CNOT gate up to single-qubit rotations 
(Supplementary Fig. 4). To implement the sequences shown in the 
figures, we first translate all gates into these native gates and compile 
the resulting sequence. Afterwards, the circuit is translated into the 
actual pulse sequence. At the core of this compilation process is the 
tracking and synchronization of the qubit phases and the correspond-
ing pulse timings. See Supplementary Information for the details of this 
compilation process (Supplementary Figs. 4–9 and pseudocode 1–8).

Echo sequences for the data qubits
To mitigate decoherence of the data qubits owing to their spin environ-
ment, we use echo sequences that are interleaved throughout the experi-
ments. These echo sequences ensure that the data qubits rephase each 
time they are operated on. Furthermore, the sequence design minimizes 
the time that the auxiliary electron-spin qubit is idling in superposition 
states, which are prone to dephasing. We use two echo stages between 
stabilizer measurements, as well as before and after the logical gates of 
Fig. 4, which provides a general and scalable solution for the timing of 
all gates and echoes (third section of the Supplementary Information).

An extra challenge is that, owing to the length of the sequences 
(up to 100 ms), we need to account for the small unwanted interac-
tions between the nuclear-spin data qubits. The measured coupling 
strengths show that the strongest couplings are between qubits 3 and 
2 (16.90(4) Hz) and between qubits 3 and 5 (12.96(4) Hz)38 (Supplemen-
tary Table 5). Such interactions can introduce correlated two-qubit 
errors that are not correctable in the distance-3 code considered here, 
which can only handle single-qubit errors in the code block.

To mitigate these qubit–qubit couplings, we decouple qubit 3 asyn-
chronously from the other qubits (Supplementary Fig. 8). Ultimately, 
such local correlated errors can be suppressed entirely by larger dis-
tance codes.

Real-time control and feedforward operations
Real-time control and feedforward operations are implemented 
through a programmable microprocessor ( Jaeger ADwin Pro II) oper-
ating on microsecond timescales. The microprocessor detects photon 
events coming from the detectors, infers the measurement outcomes 
and controls both the subsequent sequences in the arbitrary waveform 
generator (Tektronix AWG 5014c) and the lasers for the auxiliary qubit 
readout. The precise timing for quantum gates (1-ns precision) is based 
on the clock of the arbitrary waveform generator. Furthermore, the 
microprocessor operates various control loops that prepare the NV 
centre in the negative charge state, on resonance with the lasers and in 
the focus of the laser beam (see second and third sections of the Sup-
plementary Information).

Readout of the auxiliary qubit
The electron spin (auxiliary qubit) is read out by resonantly exciting 
the ms = 0 to Ex optical transition43. For one or more photons detected, 
we assign the ms = 0 outcome; for zero photons, we assign ms = ±1. The 



single-shot readout fidelities are F0 = 90.5(2)% and F1 = 98.6(2)% for 
ms = 0 and ms = −1, respectively (average fidelity 94.6(1)%).

Uncontrolled electron-spin flips in the excited state cause dephasing 
of the nuclear spins through the hyperfine interaction. To minimize 
such spin flips, we avoid unnecessary excitations by using weak laser 
pulses, so that a feedback signal can be used to rapidly turn off the 
laser on detection of a photon (within 2 μs). The resulting probability 
that the electron spin is in state ms = 0 after correctly assigning ms = 0 
in the measurement is 0.992 (ref. 14).

For measurements that are used for heralded state preparation, that 
is, for which we only continue on a ms = 0 outcome (see, for example, 
Fig. 3), we use shorter readout pulses. This improves the probability 
that a ms = 0 outcome correctly heralds the ms = 0 state, at the cost of 
reduced success probability (Supplementary Table 1).

System preparation and qubit initialization
At the start of the experiments, we first prepare the NV centre in its 
negative charge state and on resonance with the lasers. We then initial-
ize the NV electron spin in the ms = 0 state through a spin pumping 
process (fidelity > 99.7%)43. We define the electron-spin qubit between 
the states ms = 0 ( 0⟩) and ms = −1 ( 1⟩). We initialize the data qubits 
through SWAP sequences (Supplementary Fig.  6) into 0⟩ and  
subsequent optical reset of the auxiliary qubit (initialization fidelities 
96.5–98.5%; see Supplementary Table 4). The flag qubit is initialized 
through a projective measurement that heralds preparation in 0⟩  
(initialization fidelity 99.7%). Other product states are prepared by 
subsequent single-qubit gates.

Final readout of the data qubits
Measuring single-qubit and multi-qubit operators of the data qubits is 
performed by mapping the required correlation to the auxiliary qubit 
(through controlled rotations) and then reading out the auxiliary qubit14. 
To provide best estimates for the measurements, we correct the measured 
expectation values (Fig. 2 and Extended Data Figs. 1 and 2) for infidelities 
in the readout sequence; see Bradley et al.3 for the correction procedure.

Fidelity of the GHZ state
The fidelity of the prepared state ρ (in Fig. 2 and Extended Data Fig. 1) 
with respect to the target GHZ state ( )ψ +  is obtained as

( )F ρ
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Assessing the logical state fidelity
The logical state fidelity FL is defined in equation (1) and gives the prob-
ability that the state is free of logical errors. Said differently, FL is the 
fidelity with respect to the ideal five-qubit state after a round of perfect 
error correction, or the probability to obtain the correct outcome in a 
perfect fault-tolerant logical measurement. Although fault-tolerant 
circuits for logical measurement exist28, we do not experimentally 
implement these here. Instead, we extract FL from a set of measure-
ments, as described in the following using − ⟩L as an example.

The logical state − ⟩L is the unique simultaneous eigenstate of the 
five weight-3 operators pi with eigenvalue +1. Thus, we can describe 
the state E − ⟩L (with E a Pauli error) as the projector

∏E E
m p

− ⟩ ⟨ − =
(1 + )

2
,i

i i
L L =1

5

in which mi = ±1 is the measurement outcome of pi and mi = −1 when E 
anticommutes with pi. This projector can be expanded as a summation 

of 31 multi-qubit Pauli operators (including a constant), which are listed 
in Extended Data Fig. 2. The logical state fidelity pi in equation (1) can 
then be written as
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Here ε I X Y Z i= { , , , , = 1,2, …, 5}i i i  is the set of correctable errors for 
the five-qubit code. To obtain FL experimentally, we measure this set 
of expectation values.

Logical state fidelity with flag
If the flag in the circuit in Fig. 5a is not raised, then a cycle of error cor-
rection would correct any single-qubit error on a logical state. The 
logical state fidelity is then given by equation (1), which we now refer 
to as FL

not raised. A raised flag leads to a different interpretation of the 
error syndrome28 (Supplementary Table 7).

For example, the Y error on the auxiliary qubit in Fig. 5a leads to the 
output state Y Y − ⟩3 5 L, for which the eigenvalues of s1 = XXYIY, s2 = YXXYI, 
s3 = IYXXY and s4 = YIYXX give the syndrome [+1, −1, −1, −1]. Without flag, 
the corresponding single-qubit recovery is Z4, which changes the syn-
drome back to all +1 (Supplementary Table 7). This recovery leads to 
the remaining error Y3Z4Y5, which is a logical Z error. However, taking 
the flag measurement outcome into account, the syndrome is inter-
preted differently and the recovery is Y3Y5, so that no error is left (Sup-
plementary Table 7).

For the cases in which the flag is raised, the logical state fidelity with 
respect to − L is now given by:
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with ε′ being another set of correctable errors

I X X Y Z X Y Z Y X Y Y Z X Y Y Y X Y X Zε′ = { , , , , , , , , , , , , , , , }. (7)1 3 5 1 2 2 3 5 1 2 3 3 4 4 3 5 5 5 1 2

A detailed derivation for this set of errors and their corresponding syn-
dromes are given in the fifth section of the Supplementary Information.

The logical state fidelity after the stabilizer measurement (Fig. 5) 
is calculated as the weighted sum of the fidelities conditioned on the 
two flag outcomes:

F p F p F= ⋅ + (1 − ) ⋅ , (8)L f L
raised

f L
not raised

with pf being the probability that the flag is raised and FL
raised and 

FL
not raised are as defined above.

Finally, to construct the logical state fidelity as a function of pe 
(Fig. 5c), we measure FL with (pe = 0) and without (pe = 1) the auxiliary 
qubit error and calculate the outcomes for other error probabilities 
pe from their weighted sum:

F p p F p p F p( ) = (1 − )⋅ ( = 0) + ⋅ ( = 1) (9)L e e L e e L e

Error distribution in the prepared state
The overlaps between the prepared state ρ and the state E − L with  
E identity or a single-qubit error are written as P0,− and P1,−, respectively. 
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These correspond to the cases that there is no logical error. The over-
laps between the prepared state ρ and the state E + �L with E identity 
or a single-qubit error are written as P0,+ and P1,+, respectively. In these 
cases, there is a logical error. These overlaps are shown in Fig. 3b,c and 
calculated as (α = ±)

P ρ= Tr( α� �α ), (10)0,α L L

∑P E Eρ= Tr( α� �α ). (11)
E ε

1,α
∈

L L

These overlaps can be explicitly expressed in terms of the 31 meas-
ured expectation values (see seventh section of the Supplementary 
Information).

Error analysis
The uncertainties in the measured fidelities, logical state fidelities and 
probabilities (P0/1,±) are obtained from the uncertainties in the measured 
expectation values using error propagation. For example, the logical 
state fidelity FL is calculated as
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in which Ai are the 16 expectation values shown in equation (5). Assum-
ing that the errors in the measured expectation values are independent, 
the standard deviation in FL is:
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in which σ Ai
 is the standard deviation of the expectation value Ai and 

is given by a binomial distribution42. Note that σ Ai
 is also corrected 

for the readout correction process described in Bradley et al.3.

Note added
While finalizing this manuscript, two related preprints appeared that 
demonstrate destructive stabilizer measurements with a flag qubit48 
and flag fault-tolerant quantum error correction49 with trapped-ion 
qubits. Furthermore, during the revision process, three related pre-
prints appeared that demonstrate quantum error correction on a sur-
face code using superconducting qubits50,51 and realize a flag-based 
universal fault-tolerant gate set using trapped ions52.

Data availability
The underlying data and software code for generating the plots pre-
sented in the main text and Supplementary Information are available 
at Zenodo https://doi.org/10.5281/zenodo.6461872.
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Extended Data Fig. 1 | Non-destructive stabilizer measurements with a flag 
and real-time feedforward. a, Circuit diagram for the deterministic 
preparation of a four-qubit GHZ entangled state ( )ψ = ( 0000 + 1111 )/ 2+  
using a flagged measurement of the stabilizer XXXX. b, Measured expectation 
values of the 15 operators that define the ideal state. The average obtained 
fidelity is 0.79(1). c, Data post-selected on the flag not being raised. The 
obtained fidelity with the target state is 0.82(1). d, When the flag is raised, the 
obtained fidelity is 0.47(5). Grey bars show the ideal expectation values. Note 
that we perform this measurement as a test of the circuit, but that the flag 
information in this case does not carry any specific significance.
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Extended Data Fig. 2 | Measured expectation values for the encoded state. Measured expectation values of the 31 operators that define the encoded state (for 
the circuit in Fig. 3). Grey bars show the ideal expectation values.
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