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Küçükdemiral1

1Department of Applied Science, School of Computing, Engineering and Built
Environment, Glasgow Caledonian University, Glasgow G4 0BA, UK

Abstract

With steadily increasing interest in utilizing wind turbine (WT) sys-
tems as primary electrical energy generators, fault-tolerance has been con-
sidered decisive to enhance their efficiency and reliability. In this work, an
optimal fault-tolerant pitch control (FTPC) strategy is addressed to ad-
just the pitch angle of WT blades in the presence of sensor, actuator, and
system faults. The proposed scheme incorporates a fractional-calculus
based extended memory (EM) of pitch angles along with a fractional-
order proportional-integral-derivative (FOPID) controller to enhance the
performance of the WT. A dynamic weighted parallel firefly algorithm
(DWPFA) is also proposed to tune the controller parameters. The effi-
ciency of the proposed algorithm is evaluated on the test functions adopted
from 2017 IEEE congress on evolutionary computation (CEC2017). The
merits of the proposed fault-tolerant approach are tested on a 4.8-MW WT
benchmark model and compared to conventional PI and optimal FOPID
approaches. Corresponding comparative simulation results validate the ef-
fectiveness and fault-tolerant capability of the proposed control paradigm,
where it is observed that the proposed control scheme tends to be more
consistent in the power generated at a given wind speed.

Keywords: Fault-tolerant control, Wind turbine, Pitch control, Optimiza-
tion, Firefly algorithm, Fractional calculus.

1 Introduction

Renewable energy, especially wind turbine (WT) systems, have gained consid-
erable attention during the past decade due to the energy shortage and environ-
mental issues [36, 32, 37]. Since WTs have contributed a considerable portion of
the world’s power production, demands on the development of reliable control
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Figure 1: Wind turbine operational regions.

approaches that guarantee the power generation and reduce the operational and
maintenance costs have increased substantially.

Variable-speed WT systems operate in four regions, which are related to
wind speed [37]. Figure 1 demonstrates the operating regions, where Vcut−in and
Vcut−out stand for the wind speed at which the blades start and stop rotating,
respectively. Also, Vrated denotes the wind speed that the blades reach the
maximum speed, where the maximum power (Pg,rated) is generated. In regions
I and IV, the wind speed is respectively, too low and too high, so that the WT
does not operate. In region II (i.e. the partial-load region), the wind speed is
lower than the rated wind speed. At the rated wind speed, the turbine is capable
of generating electricity at its maximum capacity. Therefore, in this region, a
generator torque controller is used to maximize the power capture. On the other
hand, in region III (i.e. the full-load region), the wind speed exceeds the rated
value. In this region, pitch actuation is critical for limiting the power capture
in high wind speed situations. Hence, pitch control (PC) strategies are used to
control the pitch angle and keep the WT operating at its rated power. Numerous
studies in the literature have dealt with the PC problem in order to limit the
aerodynamic power captured by the WT. For instance, in [50], the authors
investigated the PC based on a nonlinear proportional-integral (PI) controller
together with a state and perturbation observer. In [64], a PC scheme consisting
of the conventional PI and two resonant compensators was developed. Authors
in [56] proposed an advanced PC strategy based on fuzzy logic control (FLC),
while in [57, 7] fuzzy proportional-integral-derivative (PID) and fractional-order
fuzzy PID controllers were investigated to improve PC performance.

The aforementioned studies consider the ideal situation, where the varia-
tions in the actuator dynamics and sensor faults are assumed to be negligible.
However, in real operations, WTs are prone to different sets of sensor, actua-
tor, and system faults, which degrade the WT stability and power production
performance and impose maintenance costs. Accordingly, various fault-tolerant
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pitch control (FTPC) approaches have been investigated to compensate the
fault effects in WT systems and achieve a robust system performance. To this
end, in [12], a FTPC scheme is investigated based on an adaptive PI controller
augmented with a fault detection strategy, while authors in [26] developed an
adaptive PID. Although compared to other classical approaches, the controller
demonstrated more acceptable performance in terms of handling non-linear dy-
namics, further improvements are required to mitigate the fault effects when
unexpected actuator faults and wind speed fluctuations happen. Authors in
[30] incorporated a conventional PI along with a sliding mode observer to com-
pensate for faults. According to the authors, the proposed control strategy is
capable of recovering the nominal pitch actuation; however, only the case of
low pressure actuator fault occurrence is considered in the study, where the
controller’s performance in more harsh situations is yet to be investigated. A
Kalman filter was used to assess the blade pitch angle of the WT, together
with a PI to deal with the FTPC problem in [20]. Authors in [11] investigated
the FTPC based on the incorporation of FLC and PI in the presence of sensor
faults. An important issue in designing and evaluating the performance of con-
trollers for WT systems is the fact that, WTs are not exposed to only one type
of fault at a time, and concurrent faults occurrences are inevitable. Thus, it
is important to evaluate the controller’s proficiency in the presence of different
fault scenarios, which is not considered in the aforementioned studies.

During the past decade, the concept and applications of fractional calcu-
lus have attracted growing interests of scholars in various engineering fields
[42, 9, 40]. Fractional order (FO) derivatives induce an infinite series, present-
ing a long memory of the past [39], whereas integer-order derivatives are local
operators that imply a finite number of terms. Since wind energy and direction
have chaotic behavior, the pitch actuation system needs to provide an imme-
diate precise response, which in practice, leads to some slight errors. Thus,
it is desirable to preserve all the past effective pitch angles, representing the
memory of the pitch system characteristics. Therefore, WT systems are quite
suitable processes to be used with FO controllers. Similar to PID controllers,
fractional-order PID (FOPID) controllers have been extensively implemented in
many applications [5, 49, 44]. FOPID controllers not only inherit the advan-
tages of conventional PIDs such as simple structure and strong robustness but
also expand the control range by adding more flexibility to the control system
[9, 5]; however, the existence of two more tunable parameters has made the de-
sign problem more complicated. A variety of tuning rules and design methods
have been investigated in the literature [9, 4], while most of them suffer from
the unavailability of the exact dynamic model in Laplace domain representa-
tion, especially for complex nonlinear systems [5]. As an alternative solution,
evolutionary algorithms (EAs) have been playing a crucial role in determining
FOPID parameters [38, 31]. A gain-scheduling FOPID was proposed in [6] to
alleviate mechanical loads and improve pitch angle adjustment performance.
The controller’s parameters were chosen using radial basis function neural net-
work (RBFNN), where a chaotic differential evolution algorithm was used to
create the database to train the RBFNN. The authors have also used the same
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method to design a PID controller, where as reported, the FOPID has out-
performed the PID and the conventional gain-scheduling baseline PI controller
in terms of load mitigation. In another study [7], an optimal fractional-order
fuzzy PID controller was developed for pitch control of WTs. The controller’s
parameters were optimized taking advantage of chaotic optimization algorithms.
As reported by the authors, compared with the gain-scheduling PID, the pro-
posed controller demonstrated better performance with fewer fatigue damages
in different wind speeds; however, the system was assumed to be fault-free. In
this paper, a fractional-calculus based extended memory of pitch angles is aug-
mented with the controller to enhance its performance for adjusting the desired
pitch angle of WT blades and improving the power generation of the WT in the
presence of faults.

Metaheuristic optimization algorithms have been extensively employed to
optimally tune the controllers’ parameters for WT control systems. Authors
in [29] investigated the application of whale optimization algorithm for optimal
design of PI controller in a WT pitch control system, aiming at alleviating the
low-frequency torsional oscillations. A modified root tree optimization algo-
rithm was proposed in [14] to adjust the PI controller parameters to minimize
the chattering phenomenon in the active and reactive powers of WT. Authors in
[61] developed two gravitational search algorithm (GSA) -optimized fractional-
order sliding mode controllers (SMC) for PMSG to enhance its output power
quality. One was proposed to control the rotor-side dq axis currents in the
machine side converter, and the other one was proposed to regulate the output
voltage of the GSC. According to the comparison results provided, the proposed
control strategy demonstrated more tracking precision and stronger robustness
against parametric disturbances over conventional SMC and PI control. An
optimal fuzzy SMC was proposed in [17] for maximum power extraction of WT
with zero stator reactive power regulation. Accordingly, a combination of par-
ticle swarm optimization (PSO) and GSA was proposed to tune the control
parameters optimally. Firefly algorithm (FA), as one of the recently introduced
EAs [63], has been effectively solved many optimization problems in recent years
[35, 45, 23]. Authors in [53] developed a distributed parallel FA for parameter
tuning of a variable pitch WT, where according to the authors, the proposed
control scheme reduced the power fluctuation and improved the safety and re-
liability of WT. FA has certain superiorities over some of the most used EAs.
To name a few, a) FA is able to tune its scaling parameter and hence adapt
to problem landscape, b) FA can be counted as a generalization of PSO, differ-
ential evolution (DE), and simulated annealing (SA) [63], which takes all the
three algorithms’ advantages, c) unlike PSO, FA does not use velocities, and
thus, can avoid the drawbacks associated with the velocity initialization [23],
d) since the fireflies aggregate more closely around each optimum, it has shown
superior performance over genetic algorithm (GA) that jumps around randomly,
and e) since local attraction is more substantial than long-distance attraction,
FA can automatically subdivide its population into subgroups, which makes it
a suitable method to efficiently tackle nonlinear and multimodal problems [63].
However, the success of the search procedure in FA depends on a suitable trade-
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off between global search (exploration) and local search (exploitation) abilities,
which corresponds to the attractiveness formulation and variation of light in-
tensity. Both factors allow significant scope for the algorithm’s improvements.
Thus, investigations have been performed to enhance its performance taking
advantage of other search methodologies in order to achieve even better per-
formance [59, 48, 3]. In this study, an enhanced FA is developed that explores
the search space with a well-connected weighted parallel strategy that enriches
the population diversity and increases the information exchange between the
fireflies. The proposed strategy not only expedites the convergence speed of FA,
but also reduces the possibility of getting trapped in local optima. A dynamic
switching coefficient is also implemented that lets the algorithm perform more
accurate exploitations. The switching coefficient makes the algorithm work more
precisely and finds more reasonable solutions.

Even though various advanced control strategies have been developed for
WTs such as sliding mode control, model predictive control, FLC-based control,
etc. [27, 62, 41], PI/PID method is still the preferred approach in real-world
applications with some improvements [30, 2] due to its simplicity. In this regard,
many researchers have utilized a simple PI controller through the pitch angle
regulation process in region III [26, 30, 20], and some studies have focused on
applying rotor speed limitations [54, 33]. However, due to the existence of only
two tuning parameters in PI controllers, the strategy of utilizing a simple PI does
not guarantee the minimum steady-state error, especially when faults occur in
the system [12, 11]. Besides, although PI/PID control has attracted a wide range
of attention in WT control systems, a significant limitation still remains; how to
determine the controller’s gains. Accordingly, despite the existence of various
methods for tuning PID gains [2, 15, 26], there is no specific way to determine
such gains for WT control, as they need be chosen by the designer which is
neither a straightforward task nor optimal. This has motivated our attempts to
construct an optimal controller for WT control. Hence, to effectively maintain
constant power generation, an optimized FOPID controller augmented with
extended memory of the pitch angles is developed to regulate the pitch angle
and prevent the WT from over-speeding.

In this paper, several performance evaluations of the proposed dynamic
weighted parallel FA (DWPFA) in comparison to other conventional and mod-
ified EAs are investigated through solving well-defined 2017 IEEE congress on
evolutionary computation (CEC2017) mathematical benchmark functions [8].
Non-parametric Friedman and Friedman Aligned statistical tests are also pro-
vided to statistically analyze the quality of the solution [24]. The proposed
memory extension of pitch angles is incorporated in the FOPID controller (called
EM-FOPID) to generate the desired WT pitch angle reference in the presence of
sensor, actuator, and system faults, where the controller parameters are tuned
using the proposed DWPFA algorithm. This study contributes the literature as
follows:

1. Using the concept of fractional calculus, a fault-tolerant pitch control
strategy with extended memory of pitch angles (EM-FOPID) is devel-
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oped that improves the power generation of the WT, where the controller
parameters are tuned using the proposed DWPFA.

2. A modified FA (DWPFA) is proposed that increases the convergence speed
of the conventional FA, reduces the possibility of getting trapped in local
optima, and increases the exploitation accuracy.

3. Comparative simulations are provided that reveal the remarkable perfor-
mance of proposed optimal EM-FOPID with respect to optimal FOPID
and conventional PI.

The paper is organized as follows. The problem statement, including the
WT modeling, control objective, and fault scenarios, are described in Section 2.
The proposed DWPFA algorithm is explored in Section 3. Section 4 presents
the proposed EM-FOPID control strategy. The performance of DWPFA is eval-
uated, and the EM-FOPID design is verified in Section 5. Finally, Section 6
concludes the paper.

2 Problem Statement

In this section, first, the model of a three-bladed variable speed WT is inves-
tigated, and then, the control objective of the study is described. The last
subsection is devoted to introducing the different sensor, actuator, and system
fault scenarios with various levels of severity, which are considered to occur to
the WT.

2.1 Wind Turbine Modeling

In this work, a 4.8 MW three-bladed variable speed horizontal axis wind tur-
bine (HAWT) is considered [47]. The system consists of three main units: the
generator-converter, drive-train, and the blade and pitch model. The aerody-
namic and pitch system models are combined to form the blade and pitch model,
where the former denotes the transformation of wind power to rotational energy,
and the latter rotates the blades around their longitude axis. The drive-train
provides the required rotational speed of the generator. To convert the mechan-
ical wind energy to electrical energy, the coupled converter-generator system
is utilized. Owing to the controlled pitching of the blades changing the aero-
dynamic efficiency of the WT, aerodynamic wind energy is transformed into
effective mechanical energy. Thus, the captured power significantly depends
on the available wind energy and the geometry of the blade aerofoils and their
pitch, which thus affect the responding capability of the machine to wind fluc-
tuations. The extracted aerodynamic power can be represented as follows [28].

Pa (t) =
1

2
ρπR2υw (t)

3 CP (λ (t) , β (t)) , (1)

where R represents the rotor radius in [m], ρ denotes the air density in
[kg/m3], and υw (t) is the effective modeled wind speed at the rotor plane. CP
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stands for the power coefficient, λ = Rωr/υw stands for the tip-speed ratio,
where β denotes the pitch angle and ωr represents the rotational speed of the
rotor in [rad/s]. Finally, t is time in [s].

Remark 1. The dimensionless parameter CP is an experimental coefficient,
which is generally adopted from a look-up table in terms of (λ,β). However,
taking advantage of some curve-fitting techniques [1, 21, 43], it can be approxi-
mated as follows [13].

CP (λ, β) = C1
(
C2
Λ
− C3β − C4

)
e−C5/Λ + C6λ, (2)

where C1 = 0.5176, C2 = 116, C3 = 0.4, C4 = 5, C5 = 21, C6 = 0.0068, and

Λ =

[
1

λ+ 0.08β
− 0.035

β3 + 1

]−1

. (3)

To maximize the power captured from the wind, the pitch angle and tip-
speed ratio should be controlled to optimize the power coefficient CP i.e. CP,max ,
CP (βopt, λopt), where CP,max is the maximum power coefficient. Thus, consid-
ering ωr = ηgωg, where ηg represents the generator’s efficiency, and ωg and ωr
define the generator and rotor rotational speed, respectively, the optimal rotor
speed ωr,opt can be achieved as ωr,opt = λoptυw/R.

Figure 2 demonstrates the variations of power coefficient CP for different
values of λ and β. According to Fig. 2 it can be observed that the WT has
a maximum efficiency of approximately CP,max = 0.4797 for a tip speed ratio
λopt = 8.2.

On the other hand, the aerodynamic torque produced by the WT can be
expressed by Ta = Pa/ωr. Besides, the pitch actuator model consists of a
hydraulic and a mechanical machinery, and can be expressed as the following
second-order system [47]:

β (s)

βr (s)
=

ω2
n

s2 + 2ξωns+ ω2
n

, (4)

where βr denotes the command signal for the pitch angle being produced by the
WT controller, β stands for the actual pitch angle produced by the actuator, ξ
denotes the damping factor, and ωn represents the natural frequency in [rad/s].

Remark 2. In a pitch actuator, the pitch actuator constraints play a critical
role. In this regard, the pitch rate constraints are considered between −8◦/s and
8◦/s, while the operational range of the pitch angle is considered as −3◦ ≤ β ≤
90◦ [10].

The mechanical part of WT, namely the drive-train, is a rather complex
system which consists of a gearbox, low-speed shaft, and high-speed shaft that
converts the low-speed torque of the rotor-side shaft to a high-speed torque of
the generator-side shaft. Since the WT is coupled to the generator through a
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Figure 2: The power coefficient curve based on the optimal tip-speed ratio for
different pitch angles.

gearbox, the generator torque Tg can regulate the rotor speed. The rotor inertia
Jr [kg m2] is driven at speed ωr by the aerodynamic torque Ta [N m], and the
generator inertia Jg [kg m2] is driven by high-speed torque of the generator-side
shaft at speed ωg and is braked by the generator torque Tg. This study considers
the following dynamic model of a two-mass drive-train model [54]: ω̇r

ω̇g
θ̇∆

 =

 ϑ11 ϑ12 ϑ13

ϑ21 ϑ22 ϑ23

ϑ31 ϑ32 ϑ33

 ωr
ωg
θ∆

+

 ψ1

0
0

Ta +

 0
ψ2

0

Tg, (5)

where ϑ11 = −Ddt +Br/Jr, ϑ12 = Ddt/JrNg, ϑ13 = −Kdt/Jr, ϑ21 = ηdtDdt/JgNg,
ϑ22 = −ηdtDdt/JgN

2
g − Bg/Jg, ϑ23 = ηdtKdt/JgNg, ϑ31 = 1, ϑ32 = −1/Ng,

ϑ33 = 0, ψ1 = 1/Jr, ψ2 = −1/Jg. Kdt [Nm/rad] and Ddt [Nms/rad] denote
the low-speed shaft stiffness and damping coefficient, respectively. Bg stands
for the viscous friction of the high-speed shaft in [Nms/rad], Ng denotes the
gearbox ratio, and ηdt and θ∆ represent the drive-train efficiency and torsion
angle, respectively.

The generator is responsible for converting the shaft kinetic energy into
electrical energy. Since compared to the WT dynamics, the dynamics of the
electrical system are noticeably faster, the following first-order model with fast
dynamics can be used to model the generator and converter dynamics [47].

Tg (s)

Tg,ref (s)
=

αgc
s+ αgc

, (6)

where Tg,ref stands for the torque reference to the generator, and αgc = 1/τgc
denotes the generator and converter unit coefficient, with τgc representing the
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time constant. The generated power by the generator can be achieved by Pg =
ηgTgωg.

2.2 Control Objectives

The baseline control system in WTs consists of two individual control sections
to regulate the generator torque and the pitch angle of the blades, where the
overall performance of the WT directly depends on the performance of both
controllers.

The wind energy is not always constant, and it holds different flow profiles
(laminar, turbulent, etc.), and gusts, which can result in deceleration of the
rotor speed to a critical speed, which brings instability and damage to the
WT. Besides, as the power generated depends on the generator torque, it is
evident from (6) that any change (due to faults or uncertainties) in the generator
would directly affect the rated power. Thus, generator faults can impose severe
problems in tracking the maximum power point and rated power in regions
II and III, respectively. In this regard, in region II, the power reference Pref
tracking is switched to maximum power point tracking (MPPT) to stabilize the
WT while maximizing the power capture [54]. The switch works with respect
to the wind speed, as in Fig. 3, the dotted arrow from the Wind Profile block
to the switch block shows its dependency on wind speed. Accordingly, reference
torque to the converter can be represented as Tg,ref = Koptω

2
r , where Kopt =

1/2(ρπR5CP,max/λ
3
opt). Figure 3 depicts the block diagram of the proposed WT

control scheme, which comprises three main blocks: (a) the WT model which
is prone to actuator, system, and sensor faults, (b) the proposed DWPFA-
based pitch control block, and (c) the generator torque assignment block, which
includes the power reference tracking (Pref/ωr) and MPPT (Koptω

2
r).

2.3 Fault Scenarios

Faults occurring in a WT can affect the system characteristics or lead to inop-
erable conditions. Wind turbine faults may be classified in terms of those that
are highly serious, where the WT needs to be shut-down in order to prevent
irreparable damage, and those faults that can be accommodated by suitable
controllers, leading the WT to stay operational with some possible performance
detriment. The faults modeled in this work include sensor (F1-F4), actuator
(F5,F6), and system (F7) faults with various levels of severity, as summarized
in Table 1; where each one can cause performance degradation or slight damage
to the WT. The development time for F1-F5 is considered medium, while it is
slow and very slow for F6 and F7, respectively.

Sensor faults mainly originate from mechanical or electrical faults in the
sensors, due to drift, noise, and external factors such as lightning, heavy rain,
moisture, storms, and corrosion; and also misalignment of one or more blades at
the installation step or blade imbalancement during operation [25]. Considering
the fact that the pitch position measurements act as a reference for the internal
pitch system controller, sensor faults can negatively affect the pitch positions if
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Table 1: Sensor, actuator, and system fault scenarios considered.

Fault Faulted (Occurrence time (s)) Severity

F1 β1,m1 = 5◦ (2000-2100), β1,m1 = 5◦ (2700-2900) low
F2 β2,m2 = 1.2◦ (2400-2500) low
F3 β3,m2 = 5◦ (2600-2700) low
F4 ωr,m2 = 1.1 (3805-4400), ωg,m1 = 0.9 (3805-4400) low
F5 Hydraulic pressure drop (2900-3000) high
F6 Air content increment in the oil (3500-3600) medium
F7 Friction changes in the drive-train (4100-4300) medium

the control system fails to handle them properly, which leads to performance
degradation of WT [20]. Additionally, since the generator and rotor speed mea-
surements are carried out utilizing encoders, and due to possible malfunctions
of the electrical components of the encoders, they can be faulty as well. The
faults can be in the form of a fixed value that prevents the encoder from being
updated with new values, or a changed gain factor on the measurements which
causes the encoder to read more marks on the rotating part than are actually
present [25].

At a basic level, in a WT system, faults can occur on the converter and
the pitch actuator system. Faults in the pitch actuator cause changes in the
dynamics due to three factors; a hydraulic leakage, a drop pressure in the pump
wear, or a high air content in the hydraulic oil, where the latter may happen in
various levels due to compressible nature of the air [51]. The source of converter
faults is either in changed dynamics of the converter arising from an internal
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fault in the converter’s electronic components, or an offset in the converter
torque estimation, which is more severe. The converter controller can deal with
the faults in the electronic components, and since the torque balance in the WT
power train is changed by torque offset, it is possible to detect and accommodate
them [47]. System faults result in changes in the dynamic of parts of the system,
which mainly happen in the drive-train. Although compared to the system
dynamics, the drive-train friction coefficient changes more slowly with respect
to time, it could be detected by observing the changes in the frequency spectrum
of the vibration measurements. In this work, this fault is considered as a small
change of the friction coefficient.

2.4 Fault Injection

This section briefly explains the type of changes happening in the fault-free
model as each fault occurs. According to Table 1, faults F1, F2, and F3 corre-
spond to fixed values on β1,m1, β2,m2, and β3,m2, respectively. Each fault occurs
in a certain time interval, as shown in Table 1. The fault F4 happens in the
time interval of 3805-4400 seconds by changing the gain factors on ωr,m2 and
ωg,m1 to 1.1 and 0.9, respectively. As two of the main pitch actuator faults, the
hydraulic pressure drop (F5) and high air content in the oil (F6) are considered
in this work. The effects of these faults are reflected in the damping ratio and
natural frequency of the pitch system, where each one influences the system
dynamics differently. A drop in the hydraulic pressure changes ωn and ξ from
their nominal values ωn,0 and ξ0 to their low pressure values ωn,f and ξf , which
influences the pitch system dynamics. Under this gradual low-pressure fault,
ω2
n and ξωn in (4) can be modeled as follows [26]:

ω2
n = ω2

n,0 + f.
(
ω2
n,f − ω2

n,0

)
, (7a)

ξωn = ξ0ωn,0 + f. (ξfωn,f − ξ0ωn,0) , (7b)

where f ∈ [0, 1] represents the fault indicator at which f = 0 and f = 1
correspond to the normal pressure and low pressure up to 50% pressure drop,
respectively.

Changing the fault indicator corresponds to changes in the natural frequency
and the damping ratio, where Table 2 presents the effects of their changes on
the hydraulic pressure drop (F5) and the air content in the oil (F6). For a
better demonstration of hydraulic pressure drop, the fault indicator is changed
gradually, which corresponds to different values for ωn and ξ, where in each
step, the percentage of change in hydraulic pressure drop is given. Besides,
ωn = 5.73 and ξ = 0.45 correspond to the maximum percentage of 15% change
for the air content in the oil occurring during the time period of 3500-3600
seconds. Another considered fault is the friction changes in the drive-train (F7)
which will be investigated in Section 5 with different levels of severity with 5%,
10%, 50%, and 100% increase in the coefficient.
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Table 2: Different faults effect on the pitch system dynamics.

Faults Fault indicator ωn (change %) ξ (change %) Fault (%)

Fault free 0.0 11.1100 0.600 0.0 %
Hydraulic pressure drop (HPD) 0.1 10.5952 (-4.63 %) 0.5953 (-0.78 %) 5 %

0.2 10.0541 (-9.50 %) 0.5916 (-1.40 %) 10 %
0.3 9.4822 (-14.65 %) 0.5895 (-1.75 %) 15 %
0.4 8.8734 (-20.13 %) 0.5895 (-1.75 %) 20 %
0.5 8.2197 (-26.01 %) 0.5927 (-1.21 %) 25 %
0.6 7.5094 (-32.40 %) 0.6010 (+0.16 %) 30 %
0.7 6.7244 (-39.47 %) 0.6178 (+2.96 %) 35 %
0.8 5.8347 (-47.48 %) 0.6505 (+8.41 %) 40 %
0.9 4.7823 (-56.95 %) 0.7187 (+19.78 %) 45 %
1.0 3.4200 (-69.21 %) 0.9000 (+50.00 %) 50 %

High air content in the oil (HAC) – 5.7300 (-48.42 %) 0.4500 (-25.00 %) 15 %

Figure 4 depicts the step responses of the pitch system to different fault
situations. Accordingly, as the hydraulic pressure drops, it slows the pitch
actuator dynamics, resulting in the degradation of pitching performance.

Remark 3. The effects of pitch actuator faults on the pitch system are reflected
in ωn and ξ from their nominal values to faulty values by changing the fault
indicator f , as expressed in (7). Accordingly, fault-free and faulty situations are
being considered in the design process of the developed controller (16).

3 Proposed Dynamic Weighted Parallel Firefly
Algorithm

In this section, the conventional FA is first introduced, and then, the proposed
dynamic weighted parallel FA will be investigated in detail.

3.1 Basic Principles of FA

FA is an optimization algorithm that mimes the social behavior of fireflies and
their flashing light patterns [63]. The swarm of fireflies is randomly located in
the search space, where each one represents a possible solution to the problem.
Fireflies with better solutions acquire more light intensity, while other swarm
members update their positions by moving toward brighter and more attractive
fireflies. For simplicity of development, the FA utilizes the three rules: (a) the
fireflies are unisex; thus, they only get drawn to brighter ones, (b) attractiveness
corresponds to brightness. The less bright ones always move toward the brighter
fireflies, and if no brighter one is left, it moves randomly, and (c) the analyti-
cal form of the problem affects the brightness of a firefly, where, brightness is
proportional to the value of the objective function.

In the firefly algorithm, attractiveness is proportional to the light intensity
seen by adjoining fireflies. Accordingly, since decreasing the distance from the
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Figure 4: Step response of the pitch system under various fault conditions.

source leads to increment of light intensity, attractiveness increases as the dis-
tance between any two fireflies decreases. Two critical issues to be considered
in FA are the attractiveness formulization and the light intensity variation. The
light intensity I = I0e

−γr2 alters with the distance r, where γ and I0 represent
the light absorption coefficient and the initial light intensity, respectively. The
firefly’s attractiveness χ is defined as χr = χ0e

−γr2 , where χ0 denotes the at-
tractiveness at r = 0. The Euclidian distance rij = ‖Xi − Xj‖2 or `2 norm can
express the distance rij between any two fireflies i and j at Xi and Xj .

Remark 4. Considering the attractiveness χr = χ0e
−γr2 , it can be seen that

there are two limiting cases with firefly algorithm related to small and large
values of γ (i.e. γ → 0 and γ → ∞). When γ tends to zero, the brightness
and attractiveness become constant; in other words, a firefly is visible to all
other fireflies. In contrast, when γ is very large, the attractiveness considerably
decreases, and the fireflies are short-sighted or equivalently fly in a dense foggy
environment. Large values of γ imply an almost randomly movement of fireflies,
that refers to a random search procedure. As a result, the FA usually performs
between these two cases, where the attractiveness coefficient plays a critical role
in fireflies’ movements.

According to Remark 4, firefly i moves toward a more attractive (brighter)
one as follows [63],

Xi (t+ 1) = Xi (t) + χr (Xj (t)− Xi (t)) + η · (ψ − 0.5), (8)

where randomization is performed with η and ψ being random numbers within
the interval [0,1].
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It is worth noting that, the case γ → 0 corresponds to a special case of PSO
with χ0 ≈ 2 [63]. However, although according to [63], χ0 = 1 is considered in
the standard FA for most cases, other ranges of χ0 are reported and used in the
literature, where 0 < χ0 < 2 has found to deliver the best performance [39, 35,
45, 23, 59, 53, 55]. Hence, initializing χ0 within the interval (0, 2) (corresponding
to |1− χr| < 1) is a reasonable choice to achieve better performances from the
firefly algorithm. However, other values of χ0 ≥ 2 can also be set for the
algorithm.

3.2 Proposed Dynamic Weighted Parallel FA

Although the conventional FA has its advantages, it also has some shortcomings,
such as premature convergence leading to being trapped in local minima and
lack of a suitable trade-off between exploitation and exploration abilities [23].
Besides, in FA, the brightest member always moves randomly in the search area
which tends to decrease its intensity, especially at high dimensions. In this
regard, many studies have incorporated external global/local search procedures
(algorithms) into the FA, in order to enhance its search abilities and performance
[46, 48, 3].

This study proposes a modified version of FA that explores the search space
with a well-connected weighted parallel strategy, which effectively accelerates
the convergence speed of the conventional FA while reducing the possibility of
becoming trapped in local optima. In addition, taking advantage of a dynamic
switching coefficient, as the damping coefficient decreases, the switching coeffi-
cient increases to let the algorithm to perform more accurate exploitations.

A population of randomly generated fireflies is firstly initialized, where
each individual stands for a possible solution. The damping coefficient R =
2 (1− nit/nit,max) is incorporated into (8) to improve the movement pattern of
individuals in the exploration process as they move towards the brightest one,
as follows:

Xi (t+ 1) = Xi (t) +Rχr (Xj (t)− Xi (t)) + η · (ψ − 0.5), (9)

where nit and nit,max denote the number of the current iteration and max iter-
ation, respectively, and R linearly decreases from two to zero over the number
of iterations.

The objective value of each individual is evaluated to determine the best
solution. In the exploitation process, the population can be divided into n
number of semi-independent subgroups with equal number of members, where
within each subgroup, the individuals are updated in parallel aiming at finding
better solutions. The weighting coefficient associated with each subgroup can
be calculated by wsg =

2.5×nsg

nsg+1 , where nsg denotes the number of predefined
groups.

Remark 5. It should be noted that for each individual, the weighting coeffi-
cient associated with its current group should be twice the weighting coefficient
associated with other groups. In addition, the total number of members in the
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Figure 5: The subgroups members assignment procedure.

populations (np) should be divisible by the defined number of subgroups (nsg);
thereby, all subgroups would have the same number of fireflies through the indi-
vidual assignment procedure.

Remark 6. In this paper, the subgroups members assignment procedure pre-
sented by (10) and Fig. 5, as well as the position update (11) are presented
for the case nsg = 4. The procedure for other values of nsg can be carried out
analogously.

The population is divided into four semi-independent subgroups
{A,B,C,D}, where the best four individuals of the exploration process are as-
signed as subgroup leaders (see Fig. 5), and other members join the subgroups
as follows:

A = {A1, A2, A3, ..., An} = {1, 5, 9, ..., An} , (10a)

B = {B1, B2, B3, ..., Bn} = {2, 6, 10, ..., Bn} , (10b)

C = {C1, C2, C3, ..., Cn} = {3, 7, 11, ..., Cn} , (10c)

D = {D1, D2, D3, ..., Dn} = {4, 8, 12, ..., Dn} , (10d)

where n = np/nsg = 4.
The weighting coefficients wA, wB , wC , and wD are defined for subgroups

in order to establish a connection between the whole population and subgroups
leaders to exchange their location information. The weighting coefficients are
chosen in such a way that wtotal = wA + wB + wC + wD = 10. Accordingly,
in every step of the exploitation process, the individuals update their positions,
taking into account the position of the leaders with different weights. The
switching coefficient Θ = round

(
κ/eR

)
represents the number of exploitation

steps and dynamically makes a trade-off between the exploitation and explo-
ration functions of the algorithm, where κ is the switching coefficient sensitivity
parameter, an arbitrary positive number that determines the depth of the ex-
ploitation process. Members of each subgroup are updated according to (11),
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taking into consideration their subgroup leader and other leaders as follows:

X (t+ 1) = X +Rχr (XGL − X) (11)

+

(
wAr1 (XA − X) + wBr2 (XB − X)
+wCr3 (XC − X) + wDr4 (XD − X)

)
/wtotal + η · (ψ − 0.5) ,

where XGL represents the subgroup leader’s position and ri ∈ (0, 1) , i = 1, 2, 3, 4
is a random number that directs the movement.

Remark 7. Considering (11), suppose that the position of a firefly in group B
is to be updated. Since the firefly belongs to group B, XGL ≡ XB denotes the
position of its subgroup leader. The damping coefficient R in the second term of
(11) linearly decreases from two to zero over the number of iterations; hence, R
increases the exploration performance at the beginning of the algorithm, and as
the algorithm proceeds and the fireflies approach the subgroup leader, it increases
the exploitation performance around the leader. This helps the individuals per-
form a semi-local search behavior to better search space around the optimum
solution. The third term in (11) benefits from the position of other subgroups’
leaders and their associated weighting coefficients (wsg), giving more weight to
each firefly’s current leader as mentioned in Remark 5. This helps the fireflies
consider other leaders’ positions as they move towards their own group’s leader,
resulting in increased diversity of movements.

After each exploitation step, the individuals are evaluated, and the best
solution becomes the leader of the subgroup. By completing the exploitation
process, the four subgroups are merged into one big group so that agents can
share location information amongst the search space. According to (11), it is
observed that utilizing the subgroup method increases the information exchange
between individuals, and effectively increases the algorithm’s convergence speed.
Besides, despite the conventional FA, the brightest member’s movement is not
entirely random, and it performs a more sophisticated search through the ex-
ploitation process. Algorithm 1 presents the pseudo-code of the DWPFA, where
NFE represents the number of function evaluations.

3.3 On the computational complexity of the proposed
DWPFA

The computational complexity of an EA is a pointer of its execution time and is
controlled by its structure. Let O (F ) denote the computational complexity of
the fitness evaluation function F (·). The conventional FA has a computational
complexity of O

(
Itmax × n2

p × F
)

[60], where Itmax represents the maximum
number of iterations and np denotes the population size. However, compared
to the relatively small np, the study of the number of attractions and move-
ments during Itmax iterations could be more important. It is noteworthy that
although larger np can result in significant benefits in terms of the algorithm’s
performance, its negative consequence is a substantial increase in calculation
time.
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Algorithm 1 Pseudo-code of DWPFA.
1: Objective function f(X), X = (X1,X2, ...,Xd)
2: NFE=0;
3: Initialize the population randomly;
4: Define the light absorption coefficient γ;
5: while not stopping criterion do
6: for i = 1 : np do
7: for j = 1 : np do
8: if Ij > Ii then
9: Move individual i towards j in all dimensions;

10: end if
11: Update Xi using (8);
12: Update light intensity Ii;
13: NFE=0;

14: end for
15: end for
16: Rank the individuals and find the current best;
17: Define the subgroups and assign the leaders and members;
18: for k = 1 : Θ do
19: for i = 2 : np do
20: if IGL > Ii then
21: Move individual i towards the subgroup leader in all dimensions;

22: end if
23: Update Xi using (11);
24: Update light intensity Ii;
25: NFE=0;
26: Rank the individuals and define the subgroup best as leader;

27: end for
28: end for
29: Merge the subgroups into one group;
30: Rank the individuals and find the current best;

31: end while

In the conventional FA, each firefly is compared with all other members of the
population, and at each comparison step, one of the agents is moved. Hence,
it can be concluded that each agent is moved with an average of (np − 1) /2
times per iteration [60]. Consequently, at each iteration of the conventional FA,
np × (np − 1) /2 attractions are performed. It should be noted that, although
the attraction enables the agents to find new optimal solutions, if a high number
of attractions does not come along with better exploitation performance (lead-
ing to higher convergence speed of the algorithm), excessive attractions can
induce oscillations during the search process, and simultaneously impose a high
computational burden with less optimal solutions. Accordingly, an effective EA
should provide a trade-off between the accuracy and computational cost. In this
regard, efforts have been made to enhance the FAs performance considering the
abovementioned objectives (i.e. better convergence and keeping the computa-
tional complexity as low as possible). Authors in [35] proposed a modified FA
with Gaussian disturbance and local search (GDLSFA). As reported, the solu-
tions’ accuracy and convergence speed has increased; however, compared to the
conventional FA, a higher number of attractions 3/2×np× (np − 1) is achieved.
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Authors in [45] developed a memetic FA (MFA) to enhance the solutions’ ac-
curacy of FA; however, the optimization objective is achieved with an increased
number of attractions as np×(np − 1) due to the embedded exploitation process.

In the proposed DWPFA algorithm, the exploration process has the
same number of attractions as the conventional FA has. During the ex-
ploitation process, each firefly moves with an average of Θ times per
iteration. Consequently, at each iteration, Θ × nsg × (np − nsg) attractions
are performed during the exploitation process. That is to say, the total
number of each agent’s movement per iteration is (np − 1) /2 + Θ, with
an attraction number of np × (np − 1) /2 + (Θ× nsg × (np − nsg)). As a
result, the total number of attractions per iteration is within the range
of [np × (np − 1) /2 + (np − nsg) , np × (np − 1) /2 + (κ× nsg × (np − nsg))],
which is slightly more than that of FA with the same computational complexity.
In our experiments, κ = 4 is a good selection for DWPFA. Figure 6 illustrates a
comparative study on the number of attractions associated with FA, GDLSFA,
MFA, and the proposed DWPFA with different numbers of populations. Ac-
cording to the foregoing analysis and Fig. 6, it can be observed that the number
of attractions of DWPFA under the full attraction model is much lower than
the abovementioned studies, showing much less imposed computational burden.
In addition, considering the DWPFA’s superior exploitation performance and
solutions accuracy compared to FA, the slight increase in its computational
burden is negligible.

4 Proposed Extended Memory Pitch Control
Strategy

PID controllers have been extensively applied in industrial applications owing
to their design and implementation simplicity, low computational complexity,
and robustness in the presence of external disturbances. FOPID controllers
have demonstrated more flexibility to controller design, and more robustness
in comparison with conventional PIDs [38, 58]. FOPIDs involve two additional
degrees of freedom to the conventional PID; namely, the non-integer integral
δ and derivative µ orders, leading to a more promising performance with five
adjustable parameters [38]. Since the wind energy level and direction changes
continuously, and the pitch actuation system cannot provide immediate precise
responses, considering the slight time delay between these changes can play an
effective role in enhancing the control performance. Accordingly, it may be de-
sirable to keep track of past effective pitch angles, as they serve as memory of
the pitch system characteristics. Thus, extending the memory of pitch angles re-
sults in acquiring more data and a more comprehensive perspective of the system
behavior. In this regard, in this paper, the incorporation of fractional-calculus-
based extended memory of pitch angles with an optimal FOPID controller is
proposed in order to generate the desired pitch angle reference for the WT in
region III.
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Figure 6: Comparative illustration on changes in the number of attractions
associated with FA, GDLSFA [35], MFA [45], and DWPFA.
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Fractional calculus generalizes the integration and differentiation of a func-
tion to non-integer order, represented by Dσ operator, where σ denotes the frac-
tional order. Fractional-order derivatives and integrals can be derived through
various definitions [52]. However, the Grunwald–Letnikov (G-L) approxima-
tion is the most prominent definition in fractional-order calculus [39, 5, 49, 44].
The G-L fractional derivative of a function x (t) in discrete-time is expressed as
follows.

Dσ [x (t)] =
1

Tσ

Υ∑
k=0

(−1)
k Γ (σ + 1)x (t− kT )

Γ (k + 1) Γ (σ − k + 1)
, (12)

where T and Υ denote the sampling period in [s] and the truncation
order, respectively. Γ (·) is Euler’s gamma function, where Γ (z) =∫∞

0
nz−1e−ndn, Re (z) > 0.
The main control actions in region III are carried out by the pitch system,

through designing a controller to minimize the error e (t) = ωnom − ωg (t). The
proposed EM-FOPID is implemented in the time domain as follows,

βr (t) = βr (t− 1) +Kpe (t) +KiD
−δe (t) +KdD

µe (t) . (13)

Remark 8. According to fractional calculus concepts, despite the integer-order
derivative that represents a finite series, the fractional-order derivative involves
an infinite number of terms [52]. This characteristic leads to acquiring a
memory of all past pitch angles and can be controlled by the fractional order
0 ≤ σ ≤ 1. It is noteworthy that the controller is implemented in discrete time
to benefit from the memory preservation characteristics of the discrete-time G-L
fractional derivative. Hence, all considered time-dependent variables discrete-
time.

In this perspective, (13) can be rearranged as

βr (t)− βr (t− 1) = Kpe (t) +KiD
−δe (t) +KdD

µe (t) . (14)

Remark 9. Assuming T = 1, the left side of (14) represents the G-L fractional
derivative with order σ = 1, which leads to:

Dσ [βr (t)] = Kpe (t) +KiD
−δe (t) +KdD

µe (t) . (15)

Thus, considering the first Υ = 4 terms of differential derivative (12), (15)
can be rewritten as follows:

βr (t) = σβr (t− 1) (16)

+
1

2!
σ (1− σ)βr (t− 2) +

1

3!
σ (1− σ) (2− σ)βr (t− 3)

+
1

4!
σ (1− σ) (2− σ) (3− σ)βr (t− 4)

+Kpe (t) +KiD
−δe (t) +KdD

µe (t) .

Remark 10. Experimental tests have shown that larger values of Υ > 4 lead
to similar results [38].
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In this work, the proposed DWPFA is utilized to achieve the optimum pa-
rameters {Kp,Ki, δ,Kd, µ} for the proposed EM-FOPID controller. To simulta-
neously improve the transient and steady-state error, the integral of time multi-
plied squared error (ITSE) index is incorporated in the objective function. Also,
to avoid large control signals and simultaneously reduce its deviations, which
may lead to actuator saturation, the integral of squared control signal (ISCO)
is embedded alongside the ITSE. The objective function evaluated to determine
the controller parameters is defined as J =

∫∞
0

[
te2 (t) + u2 (t)

]
dt + Vc sub-

jected to the pitch actuator constraints stated in Remark 2, where u (t) denotes
the controller’s output, and Vc is the constraints violation coefficient such that
Vc is a very small value when the constraints are respected during the optimal
design procedure, and Vc = ∞ in case of any violations. Figure 7 depicts the
procedure of tuning the proposed EM-FOPID using DWPFA algorithm.

Remark 11. In this study, the pitch actuator (4) is modeled as a second-order
transfer function with constraints to ensure the feasible operational range of the
WT [47]. A common drawback associated with some studies, such as [57], is
that the pitch actuator constraints are not considered in the controller’s design
procedure, which may cause the wind-up phenomenon and consequently degrade
the WT performance if the control input reaches the saturation limits. In this
regard, in many studies magnitude and rate limiters are implemented to deal
with the constraints [47, 30, 53]. In this work, constraints are explicitly checked
at each iteration, with high penalties added to the objective function in case of
any violations, to ensure adherence to constraints in future iterations.

5 Simulation Results and Discussions

The performance of the proposed DWPFA algorithm is first evaluated in com-
parison with other EAs through solving the CEC2017 mathematical benchmark
functions. Then, the proposed DWPFA-optimized EM-FOPID controller is uti-
lized to adjust the pitch angle of WT blades, where its performance is compared
to PI and DWPFA-optimized conventional FOPID approaches under sensor, ac-
tuator, and system faults. Simulations are carried out using MATLAB R2020a
(9.8.0.1417392) 64-bit, on a ASUS laptop with 64-bit win10 operating system,
processor: Intel® coreTM i7-8550U CPU 2.50 GHz, installed memory: 8.00 GB,
and VGA: GeForce NVidia 620M-4GB.

5.1 Performance Evaluation of DWPFA

In this section, well-defined CEC2017 special session mathematical benchmark
functions [8] are used as objective functions, to assess the performance of the
proposed DWPFA compared to other EAs. In this regard, 30 test functions
are used and are categorized as follows: unimodal functions (f1 − f3), simple
multimodal functions (f4 − f10), hybrid functions (f11 − f20), and composition
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Figure 7: The flowchart of the proposed EM-FOPID tuning using DWPFA.

functions (f21 − f30). To testify the performance of the proposed DWPFA al-
gorithm, it is compared with PSO, fractional PSO-based memetic algorithm
(FPSOMA) [38], grey wolf optimizer (GWO), enhanced GWO (EGWO) [34],
enhanced BFO (CCGBFO) [19], FA, and fractional order FA [39]. In the pro-
posed algorithm, γ = 1 and χ0 = 1.2 are considered. In the performed experi-
ments, the benchmark functions’ dimension is set to D = 50, and all EAs have
a population size of 40. Each algorithm is run 200 times independently for each
test instance, and the allowed number of maximum function evaluation (NFE) is
set to 10000×D. Since achieving zero error on CEC2017 functions is a demand-
ing task for the algorithms, the constant ε is defined as an acceptable threshold
value of a satisfactory solution near the optimal solution for each function. In
this work, ε = 50 is set for (f1 − f20) and ε = 500 is set for (f21 − f30). In Table
3, the first column illustrates the sequence of 30 CEC2017 benchmark functions,
and the next columns show the mean results achieved, while the minimum value
obtained for each function is emphasized in bold. In addition, a comparison is
carried out by reporting the experimental results of CEC2017 test suit as a
logarithmic radar graph (spider plot) in Fig. 8.
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Table 3: Obtained results for CEC2017 test functions with D = 50.
Fun. PSO FPSOMA GWO EGWO BFO CCGBFO FA FOFA DWPFA

f1 1.20× 104 1.06× 102 2.95× 103 2.17× 102 3.94× 102 3.41× 102 1.88× 102 1.47× 101 1.05× 101

f2 5.08× 107 1.22× 105 2.61× 107 4.70× 105 4.90× 105 3.22× 105 2.93× 106 1.49× 105 1.29× 104

f3 3.75× 105 2.25× 100 3.64× 104 2.13× 102 2.23× 104 2.14× 102 4.69× 102 2.50× 10−3 2.19× 10−3

f4 2.30× 104 1.69× 101 2.37× 103 3.73× 101 2.67× 102 2.12× 102 4.63× 102 1.99× 101 1.10× 101

f5 1.68× 103 4.49× 101 1.94× 102 1.67× 101 3.89× 102 5.53× 101 1.82× 102 1.21× 101 1.86× 101

f6 2.19× 103 1.89× 10−2 3.65× 101 2.40× 10−2 2.60× 101 1.13× 10−1 3.60× 101 1.53× 10−3 1.58× 10−2

f7 2.14× 103 1.84× 101 2.78× 102 2.44× 102 2.30× 102 1.75× 102 3.54× 102 1.73× 101 1.06× 101

f8 1.50× 103 1.71× 101 5.75× 102 2.47× 101 3.26× 102 2.13× 102 1.50× 102 1.43× 101 1.38× 101

f9 1.74× 103 1.61× 10−1 5.59× 102 2.63× 101 3.80× 102 1.34× 102 2.54× 101 1.03× 10−1 1.92× 10−2

f10 1.44× 104 1.28× 103 3.30× 103 1.35× 103 3.16× 103 2.57× 103 3.44× 103 2.51× 103 1.11× 103

f11 1.43× 104 5.57× 101 4.75× 101 1.37× 101 5.19× 102 2.57× 101 4.10× 101 1.69× 101 1.26× 101

f12 5.87× 104 4.32× 103 3.10× 103 4.89× 103 2.51× 104 5.21× 103 4.93× 103 3.02× 103 1.08× 103

f13 1.31× 103 1.45× 101 1.89× 102 4.77× 101 5.75× 101 3.65× 101 5.38× 102 4.62× 101 1.05× 101

f14 1.63× 104 3.77× 101 1.51× 102 2.96× 101 6.65× 101 2.92× 101 5.83× 101 1.89× 101 2.17× 101

f15 6.52× 103 1.84× 101 2.63× 102 6.87× 101 2.95× 102 4.51× 101 3.47× 102 4.13× 101 1.09× 101

f16 6.62× 103 2.19× 102 2.85× 103 1.75× 102 3.39× 102 2.72× 102 4.41× 102 1.13× 102 1.83× 102

f17 2.24× 108 4.28× 101 3.43× 103 4.58× 102 2.86× 103 5.03× 102 2.30× 103 5.45× 102 2.85× 101

f18 9.42× 103 1.47× 101 3.49× 102 5.39× 101 3.12× 102 3.30× 101 6.12× 102 2.39× 101 1.18× 101

f19 2.68× 103 4.52× 101 5.10× 102 4.29× 101 2.44× 103 6.09× 101 6.01× 102 3.36× 101 2.23× 101

f20 6.94× 105 1.97× 102 2.94× 103 3.14× 102 6.57× 102 4.40× 102 3.27× 102 1.87× 102 1.34× 102

f21 4.36× 107 2.36× 102 2.11× 103 2.01× 102 3.51× 104 2.01× 102 4.54× 103 3.37× 102 1.29× 102

f22 6.61× 103 4.99× 102 3.18× 103 2.53× 102 5.60× 103 4.75× 102 1.07× 103 3.95× 102 1.12× 102

f23 4.24× 103 1.08× 102 1.99× 102 1.24× 102 1.58× 102 1.34× 102 2.70× 102 1.14× 102 1.32× 102

f24 2.34× 103 1.55× 102 3.23× 102 2.34× 102 1.47× 103 1.67× 102 1.03× 103 3.71× 102 1.09× 102

f25 5.86× 103 1.97× 102 2.56× 102 1.95× 102 3.59× 102 2.95× 102 1.87× 102 1.36× 102 1.19× 102

f26 2.71× 103 1.72× 102 5.12× 102 3.39× 102 2.11× 103 4.99× 102 1.44× 103 6.35× 102 1.47× 102

f27 4.75× 103 1.54× 102 5.42× 102 1.84× 102 2.95× 102 2.04× 102 2.22× 102 1.36× 102 1.33× 102

f28 9.28× 102 1.37× 102 1.78× 102 1.45× 102 2.85× 102 1.52× 102 4.67× 102 1.24× 102 1.02× 102

f29 5.96× 107 1.95× 102 3.89× 103 3.67× 102 3.81× 103 4.33× 102 4.47× 102 1.70× 102 1.27× 102

f30 1.96× 106 1.79× 103 2.08× 104 1.52× 103 2.97× 104 3.43× 103 5.61× 104 1.16× 103 1.46× 103

According to Table 3, it can be seen that the optimization performance
obtained by the proposed DWPFA are markedly less than other algorithms in
solving real-parameter optimization problems in the CEC2017 suite. Results
illustrated in Table 3 and Fig. 8 demonstrates the superiority of DWPFA,
yielding outstanding performance with 24 best solutions achieved out of 30
test problems, followed by FOFA and FPSOMA with 5 and 1 best solutions,
respectively.

To intuitively show the performances of DWPFA, Fig. 9 is plotted to illus-
trate the box-and-whisker diagrams of solutions obtained on different selected
problems of each category, for all 200 runs with D = 50. The vertical and
horizontal axes indicate the optimal solution and the nine algorithms, respec-
tively. From Fig. 9 it is observed that despite the high complexity of functions,
DWPFA provides promising results maintaining fewer values and shorter distri-
bution of solutions comparing to other algorithms under evaluation, indicating
excellent and steady performances of it. This implies that DWPFA is more
effective for optimizing functions, and thus its superiority is apparent. In order
to determine whether to accept or reject the null hypothesis, non-parametric
tests can be utilized. Non-parametric tests determine whether the data sets to
be compared have the same variance [18]. Accordingly, to statistically compare
and analyze the quality of the solution, two non-parametric statistical hypoth-
esis tests were used to compare the results, namely the Friedman test and the
Friedman Aligned Ranks test [18]. The null hypothesis for the Friedman test
represents the equality of medians between the populations, while the ranks
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Figure 9: The box-and-whisker comparative performance diagrams on the se-
lected functions, D = 50.

assigned to the resulting differences (aligned observations) are called Friedman
aligned ranks. Table 4 demonstrates the Friedman and Friedman Aligned test
results sorted by the performance order “Rank”. The results indicate that DW-
PFA obtains the best rank, followed by FOFA and FPSOMA. The ranking of all
algorithms in both tests is the same, except for EGWO, where its rank improved
from fifth to fourth, taking CCGBFO’s place.
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Table 4: The Friedman and Friedman Aligned test results over CEC2017 test
functions, D = 50.

Friedman Friedman Aligned
Algorithm Score Rank Algorithm Score Rank

DWPFA 2.1925 1 DWPFA 33.263 1
FOFA 2.3852 2 FOFA 34.174 2
FPSOMA 2.5682 3 FPSOMA 34.368 3
CCGBFO 2.7268 4 EGWO 34.404 4
EGWO 3.1481 5 CCGBFO 34.671 5
FA 3.1692 6 FA 35.816 6
BFO 3.3744 7 BFO 36.221 7
GWO 3.5760 8 GWO 36.414 8
PSO 3.8767 9 PSO 38.162 9

5.2 Numerical Example

This section investigates the closed-loop performance of the proposed EM-
FOPID approach compared to the results obtained by other relevant methods
in terms of ITSE performance criterion. Consider the following system adopted
from literature [38],

m1D
n1x (t) +m2D

n2x (t) +m3x (t) = u (t) , (17)

where m1 = 0.8, m2 = 0.9, m3 = 1, n1 = 2.2, and n2 = 0.5.
The control variable u(t) can be considered as

u (t) = u (t− 1) +Kpe (t) +KiD
−δe (t) +KdD

µe (t) . (18)

Considering Remark 9 and employing the extended memory characteristics,
(18) can be rewritten as,

u (t) = σu (t− 1) (19)

+
1

2!
σ (1− σ)u (t− 2) +

1

3!
σ (1− σ) (2− σ)u (t− 3)

+
1

4!
σ (1− σ) (2− σ) (3− σ)u (t− 4)

+Kpe (t) +KiD
−δe (t) +KdD

µe (t) .

Table 5 summarizes the step responses obtained by the controllers under
study. Accordingly, it is observed that, compared to PID controllers, the
FOPIDs demonstrate superior performance in terms of maximum overshoot
and rise time. In addition, the proposed DWPFA algorithm delivers better
tuning performance compared to other algorithms. Comparison study involv-
ing DWPFA-optimized EM-FOPID and other methods validates the effective-
ness of embedding the memory characteristics to the controller. Accordingly,
the DWPFA-optimized EM-FOPID outperforms all other methods and demon-
strates more preferable performance with a maximum overshoot of 0.75% and
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Table 5: Performance comparison of the controllers.

Controller Kp Ki δ Kd µ σ Overshoot (%) Rise Time [s]

PID Ziegler–Nichols [38] 16.6281 9.4422 - 7.2230 - - 25.92 0.223
PID-DWPFA 5.3100 10.8620 - 18.1150 - - 12.28 0.137
FOPID-FPSOMA [38] 393.9550 353.9850 0.12 117.8490 1.2240 - 1.73 0.003
FOPID-DE [16] 21.2200 1.3700 0.92 12.0500 0.93 - 7.69 0.023
FOPID-DWPFA 36.2200 27.0500 0.24 112.2000 1.13 - 1.25 0.003
EM-FOPID-DWPFA 24.8400 19.8540 0.16 84.6800 1.34 0.7 0.75 0.002

Table 6: WT model parameters.

Parameter Value Unit Parameter Value Unit

R 57.5 m Ddt 775.49 Nms/rad
ρ 1.225 kg/m3 Bg 46.6 Nms/rad
ωn 11.11 rad/s Ng 95 -
ξ 0.6 - ηdt 0.97 -
Jr 55E+06 kg m2 αgc 50 rad/s
Jg 390 kg m2 ωnom 162 rad/s
Kdt 2.7E+09 Nm/rad Kopt 1.2171 -

rise time of 0.002 seconds, followed by the DWPFA-optimized FOPID with
1.25% overshoot and 0.003 seconds. In addition, although the FPSOMA-based
FOPID [38] provides an acceptable performance, large controller gains Kp, Ki,
and Kd are required, whereas, with similar fractional integral and derivative
orders δ and µ, the impact of incorporating the memory effects to the controller
has led to smaller controller gains with an even better control performance.

5.3 Optimal Pitch Angle Control of WT

In this section, the proposed DWPFA-optimized EM-FOPID is applied to gen-
erate the desired pitch angle reference of WT blades in region III, and its perfor-
mance is evaluated with respect to the conventional PI and DWPFA-optimized
conventional FOPID approaches under fault-free and faulty conditions. In this
study, it is assumed that all required system signals are available for the con-
troller. In practice, it is often necessary to estimate the wind speed and other
signals. The WT model parameters are listed in Table 6, and the WT is sub-
jected to sensor, actuator, and system faults described in Table 1. The proposed
DWPFA algorithm is used to tune the controller parameters (illustrated in Ta-
ble 7), and comparative simulations are conducted to validate the efficiency of
the proposed optimal EM-FOPID.

A critical issue in designing a controller is to ensure closed-loop stability;
this applies whether the system is linear or non-linear. However, although it
can generally be achieved for linear systems and some classes of non-linear sys-
tems, analytical investigation of the closed-loop stability for FOPID controllers
for a 4.8-MW WT is not a straightforward task due to the unavailability of
the exact dynamic model in Laplace domain representation and the nonlineari-
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Table 7: Controllers parameters for the WT system.

Controller Kp Ki δ Kd µ σ

Conventional PI [47] 4 1 - - - -
DWPFA-FOPID 8.2 3 0.7 2 0.5 -
DWPFA-EM-FOPID 5.5 2.1 0.8 1.8 0.45 0.7

ties associated with the WT system. On the contrary, PID/FOPID controllers
generally have the ability to destabilize a system if they are poorly designed.
However, since the objective function uses ITSE, the optimization algorithm is
expected to ensure stability and avoid any parameters that destabilize the sys-
tem. Hence, if a set of control parameters cause instability at any wind speeds,
the cost function would be a large value, and unstable modes would not be found
to be optimal and will be avoided over successive generations. Consequently, the
closed-loop system can be guaranteed to remain stable during the optimization
process.

The design parameters are considered within the search ranges −500 <
(Kp,Ki,Kd) < 500, and 0 < (δ, µ) < 2. It is often essential that the controller’s
parameters are not chosen close to the marginal stability regions, which may
lead to performance degradation in this particular case. Hence, to guarantee the
system’s stability, the controller’s gains Kp, Ki, and Kd must be non-negative,
and the fractional orders δ and µ should be chosen such that they maintain a
trade-off between a) getting as far as possible from stability margins and b) pro-
viding desirable integration (leading to higher precision) and derivation (leading
to more stability) performances. The marginal stability regions are depicted in
Fig. 10(a) via Venn diagram. It is worth mentioning that, although the whole
area 0 < (δ, µ) < 2 (as shown in Fig. 10(b)) maintain the stability and ac-
ceptable performance, the golden zone 0.3 < (δ, µ) < 0.95 has found to deliver
the best performance, where, as shown in Fig. 10(b) the optimal integral and
derivative orders δ = 0.8 and µ = 0.45 are found within this zone.

The wind profile covering a wind speed range of 5-20 m/s along with the
occurrence time intervals of each fault scenario is depicted in Fig. 11. It consists
of slow wind variations υm (t), stochastic wind behavior υs (t), the wind shear
effects υws (t), and the tower shadow effects υts (t) [22] expressed as follows:

υw (t) = υm (t) + υs (t) + υws (t) + υts (t) . (20)

According to Table 1, four different sensor fault scenarios (F1-F4) with low lev-
els of severity occur between the time intervals of 2000-4400 seconds. Also, two
actuator faults (F5, F6) and one system fault (F7) with medium and high levels
of severity occur between the time intervals of 2900-3600 seconds and 4100-4300
seconds, respectively. Simulations are performed using MATLAB/Simulink en-
vironment for the WT model presented in Section 2.

Remark 12. When actuator faults (hydraulic pressure drop or increment of air
content in the oil) occur, the pitch angle changes accordingly, which degrades
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(a) (b)

Figure 10: The stability regions for Kp, Ki, Kd, δ, and µ.

F1 F3F2 F5F1

F7

F6 F4

Figure 11: The wind speed profile and the occurrence time intervals of each
fault scenarios.
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the reference tracking of the generator. This tracking ability degradation can
lead to large fluctuations in the generator speed. It is worth mentioning that
these faults occur relatively slow; thus, the pitch angle can track the reference.
However, they need to be compensated in order to prevent the deterioration of
tracking performance.

Figure 12 depicts the power generated by the WT under the control of all
three controllers under consideration. It can be seen that the profiles cover the
full range of operation, demonstrating the suitability of this profile for compar-
ison under the various fault scenarios. It is noteworthy to mention that, due
to the stochastic wind behavior and its deviations, whenever the wind speed
decreases largely in region III, the generated power also decreases largely. How-
ever, faults also impose the effects based on their severity and result in the
decrement of generated power. According to Fig. 12, it can be seen that all
three control approaches can compensate the effects of the fault, delivering dif-
ferent levels of performance. Here, the conventional PI controller’s parameters
are chosen as in [47]. From Fig. 12, it is evident that the effects of faults
(F1-F3) with low severity are satisfactorily accommodated using all three con-
trollers. However, when the highly severe fault (F5) happens due to hydraulic
pressure drop, the conventional PI and optimal FOPID controllers could not
deliver a satisfactorily fault accommodation performance as the proposed EM-
OFOPID did. In the event of the air content increment in the oil with a medium
level of severity (F6), the same performance is achieved with the conventional
PI; however, in this case, the optimal FOPID has performed as well as the
proposed EM-OFOPID, outperforming the conventional PI. It can also be seen
that while the low sever fault (F4) is occurring in the time interval of 3805-4400
seconds, at some points, the conventional PI fails to accommodate the effects of
the fault. Besides, a significant decrease in the wind speed happens within the
interval of 4180-4260 seconds, which associates with the previously happened
fault (F4) and another fault (F7) during 4100-4300 seconds. Accordingly, the
generated power is decreased; however, from the zoomed-in inset, it is evident
that the proposed EM-OFOPID demonstrates superior performance compared
to other controllers in terms of fault accommodation and power generation. Fig-
ure 13 compares the performance of PI and EM-OFOPID controllers in terms
of power generation when fault F7 occurs to the system. The fault corresponds
to the friction changes in the drive-train with different levels of severity with a
5%, 10%, 50%, and 100% increase in the coefficient during the time interval of
4100-4300 seconds. Accordingly, it can be observed that increasing the sever-
ity of F7 degrades the performance of PI, while EM-OFOPID can effectively
compensate for the fault and demonstrate superior performance. In addition,
the comparative ‖Pg − Pg,opt‖2 in all controllers validate the superior perfor-
mance of EM-OFOPID with 1.4591e+08 over OFOPID with 1.4923e+08 and
PI with 1.6814e+08. It is readily observed that taking advantage of more de-
sign parameters and DWPFA to tune them; the FOPID schemes increase the
power generation compared to the conventional PI scheme. The results also re-
veal that utilizing a memory of pitch angles with the optimal FOPID effectively
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Table 8: The comparative ‖Pg − Pg,opt‖2 of EM-OFOPID and OFOPID con-
trollers tuned by optimization algorithms.

OFOPID EM-OFOPID
Algorithm ‖Pg − Pg,opt‖2 Rank Algorithm ‖Pg − Pg,opt‖2 Rank

DWPFA 1.4923e+08 1 DWPFA 1.4591e+08 1
FPSOMA 1.4940e+08 2 FOFA 1.4610e+08 2
FOFA 1.4961e+08 3 FPSOMA 1.4667e+08 3
CCGBFO 1.4996e+08 4 CCGBFO 1.4704e+08 4
EGWO 1.5058e+08 5 EGWO 1.4735e+08 5
FA 1.5094e+08 6 FA 1.4758e+08 6
GWO 1.5143e+08 7 BFO 1.4777e+08 7
BFO 1.5196e+08 8 GWO 1.4792e+08 8
PSO 1.5224e+08 9 PSO 1.4811e+08 9

F1 F3F2 F5F1

F7

F6 F4

Figure 12: Generator power under fault-free and faulty conditions; a compari-
son between PI, OFOPID, and EM-OFOPID methods. The insets exhibit the
dashed-line-highlighted regions.

enhances the control performance, while the superiority of DWPFA-optimized
EM-FOPID is apparent in comparison with the DWPFA-optimized conventional
FOPID. To further testify the performance of DWPFA compared to other EAs,
the comparative ‖Pg−Pg,opt‖2 of EM-OFOPID and OFOPID controllers tuned
by optimization algorithms is demonstrated and sorted by the performance order
“Rank” in Table 8. The results manifest the superior performance of DWPFA
over other algorithms, obtaining the best rank.

Figures 14 and 15 show the rotor and generator speed, respectively. As
it is observed, despite the occurrence of different faults, the conventional PI
and optimal FOPID approaches deliver sort of acceptable performance. In this
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Figure 13: Generator power under occurrence of faults F7 during the time
interval of 4100-4300 s; a comparison between PI and EM-OFOPID methods.

regard, as the zoomed-in insets show in Figs. 14 and 15, compared to the
fault-free case, the performance of conventional PI degrades as the faults occur.
The optimal FOPID also shows similar behavior; however, its performance is
significantly better than the conventional PI. Considering Figs. 14 and 15 it is
obvious that although each fault imposes its effects based on its severity level,
the EM-OFOPID evidently demonstrates improved performance, that is to say,
the proposed fault-tolerant EM-OFOPID controller with extended memory of
pitch angles can work well even at the situation of simultaneous sensor, actuator,
and system faults. Figure 16 shows the scatter plot of generated power, where it
is observed that, in comparison to other methods, the proposed control scheme
tends to be more consistent in the power generated at a given wind speed.
Figures 17, 18, and 19 respectively depict the measured pitch angle of blade 1
from sensor 1, blade 2 from sensor 2, and blade 3 from sensor 2 in the presence
of different fault scenarios. As it is observed, the operational constraints on
pitch angle (−3◦ ≤ β ≤ 90◦) are respected.

To sum up, according to the simulation results illustrated, the investi-
gated conventional PI, DWPFA optimized FOPID, and DWPFA optimized EM-
FOPID controllers, efficiently tolerate the effects of sensor, actuator, and system
faults. However, as investigated, the EM-OFOPID demonstrated the best per-
formance in mitigating the effects of fault scenarios and improving the power
generation of the WT.

Remark 13. Although non-PID approaches can often produce superior be-
haviour, but there is a strong industrial preference for PID controllers due to
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F6 F4

Figure 14: Rotor speed under fault-free and faulty conditions; a comparison be-
tween PI, OFOPID, and EM-OFOPID methods. The insets exhibit the dashed-
line-highlighted regions.

F1 F3F2 F5F1

F7

F6 F4

Figure 15: Generator speed under fault-free and faulty conditions; a compari-
son between PI, OFOPID, and EM-OFOPID methods. The insets exhibit the
dashed-line-highlighted regions.

some main reasons such as: a) simplicity of design and implementation, so PID
controller do not require overly complex mathematical models for the design pro-
cess, b) they can be re-tuned in the field if necessary, by operators who can make
small changes to improve performance without having to go back to re-do com-
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Figure 16: Scatter plot of generated power; a comparison between PI, OFOPID,
and EM-OFOPID methods.

Figure 17: Pitch angle of blade 1 under faulty condition; a comparison between
PI, OFOPID, and EM-OFOPID methods. The insets exhibit the dashed-line-
highlighted regions.

plicated analysis, and c) considering the industry’s current infrastructures and
the hardship and costly efforts that have to be done to install the required hard-
ware for other complex methods, the benefits of the proposed method in terms of
no requirements for costly or complex hardware installments will be salient.
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Figure 18: Pitch angle of blade 2 under faulty condition; a comparison between
PI, OFOPID, and EM-OFOPID methods. The insets exhibit the dashed-line-
highlighted regions.

Figure 19: Pitch angle of blade 3 under faulty condition; a comparison between
PI, OFOPID, and EM-OFOPID methods. The insets exhibit the dashed-line-
highlighted regions.

6 Conclusions

This study proposed a new fault-tolerant pitch control scheme to adjust the
pitch angle of WT blades subjected to sensor, actuator, and system faults. The
proposed FTPC scheme comprises a fractional-calculus-based extended memory
of pitch angles augmented with FOPID controller to maintain improvement in
power generation performance of WT. Furthermore, a novel dynamic weighted
parallel firefly algorithm (DWPFA) has been proposed, and its performance
was evaluated through well-defined CEC2017 benchmark functions in compari-
son with other EAs. Non-parametric Friedman and Friedman Aligned statistical
tests were utilized to analyze the quality of solutions. Comparative simulation
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results revealed the superiority of DWPFA over other EAs. The performance
of the proposed fault-tolerant EM-FOPID has been investigated in comparison
to conventional PI and optimal FOPID approaches, on a 4.8-MW WT model
in region III, where the controller parameters were tuned using DWPFA. Simu-
lation results demonstrated the efficaciousness of the proposed FTPC strategy
under fault-free and faulty conditions. Accordingly, the proposed DWPFA op-
timized EM-FOPID not only demonstrated the best performance in mitigating
the effects of fault scenarios, but also improved the power generation of the WT.

The most significant limitation in this work is that all necessary signals, in-
cluding immediate wind speed at appropriate resolution along with rotor speed,
are assumed to be available. However, these signals have been found to be
easily measured/estimated in practice by taking advantage of estimators. Also,
a limitation for realization of the proposed EM-FOPID control scheme for the
blade pitch control system is a slight increase in the computational complexity
due to the memory requirements based on the fractional-order operators and
the higher number of parameters that must be tuned, compared to the con-
ventional controllers. Since approximations must be considered to implement
such controllers, fractional-order operators’ implementations are relatively com-
plex and costly compared to their integer-order counterparts. However, for the
specific controller presented here, it only takes 1.8% and 6.4% more time as com-
pared to that of FOPID and PI controllers, respectively, to perform the blade
pitch control. Besides, although the conventional PI and the optimal FOPID
approaches provide lower computational complexities with respect to the pro-
posed EM-FOPID, prioritizing more power generation and better fault-tolerant
performances will make the proposed method a more preferred candidate pro-
viding a viable solution that can be implemented with ease without the needs
of costly or complex hardware installments.
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