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Abs t r ac t .  A fault tolerant algorithm based on Givens rotations and a 
modified weighted checksum method is proposed for the QR-decomposi- 
tion of matrices. The algorithm enables us to correct a single error in each 
row or column of an input M x N matrix A occurred at any among N 
steps of the algorithm. This effect is obtained at the cost of 2.5N 2 +O(N) 
multiply-add operations (M = N). A parallel version of the proposed 
algorithm is designed, dedicated for a fixed-size linear processor array 
with fully local communications and low I/O requirements. 

1 I n t r o d u c t i o n  

The high complexity of most  of mat r ix  problems [1] implies the necessity of solv- 
ing them on high performance computers  and, in particular,  on VLSI processor 
arrays [3]. Application areas of these computers  demand a large degree of reli- 
ability of results, while a single failure may render computat ions  useless. Hence 
fault tolerance should be provided on hardware o r /and  software levels [4]. 

The algori thm-based fault tolerance (ABFT) methods [5 9] are very suit- 
able for such systems. In this case, input da ta  are encoded using error detecting 
o r / and  correcting codes. An original algorithm is modified to operate on en- 
coded da ta  and produce encoded outputs,  from which useful information can 
be recovered easily. The modified algorithm will take more t ime in comparison 
with the original one. This t ime overhead should not be excessive. An A B F T  
method called the weighted checksum (WCS) one, especially tailored for mat r ix  
algorithms and processor arrays, was proposed in Ref. [5]. However, the origi- 
nal WCS method is little suitable for such algorithms as Gaussian elimination, 
Choleski, and Faddeev algorithms, etc., since a single transient fault in a module 
may  cause multiple output  errors, which can not be located. In Refs. [8, 9], we 
proposed improved ABFT versions of these algorithms. 

For such impor tan t  matr ix  problems as least squares problems, singular value 
and eigenvalue decompositions, more complicated algori thms based on the QR- 
decomposition should be applied [2]. In this paper,  we design a fault  tolerant  
version of the QR-decomposit ion based on Givens rotations and a modified WCS 
method.  The derived algorithm enables correcting a single error in each row or 
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column of an input M x N matr ix A occurred at any among N steps of the 
algorithm. This effect is obtained at the cost of 2.5N 2 + O(N) multiply-add 
operations. A parallel version of the algorithm is designed, dedicated for a fixed- 
size linear processor array with local communications and low I /O requirements. 

2 Fault Model and Weighted Checksum Method 

Module-levd faults are assumed [6] in algorithm-based fault tolerance. A module 
is allowed to produce arbitrary logical errors under physical failure mechanism. 
This assumption is quite general since it does not assume any technology-depen- 
dent fault model. Without loss of generality, a single module error is assumed in 
this paper. Communication links are supposed to be fault-free. 

In the W C S  method [6], redundancy is encoded at the matr ix  level by aug- 
menting the original matr ix  with weighted checksums. Since the checksum prop- 
erty is preserved for various matr ix operations, these checksums are able to 
detect and correct errors in the resultant matrix. The complexity of correction 
process is much smaller than that of the original computation. For example, a 
W C S  encoded data  vector a with the Hamming distance equal to three (which 
can correct a single error) is expressed as 

a T = [ a l  a2 . . . aN  P U S  QCS] (1) 

P C S = p  T [a, a2 . . .  aN], Q C S = q  T [al a2 . . .  aN] (2) 

Possible choices for encoder vectors p, q are, for example, [10] : 

p =[2 0 21 . . .  q =[1 2 . . .  X] (3) 

For the floating-point implementation, numerical properties of single-error cor- 
rection codes based on different encoder vectors were considered in Refs. [7, 
11]. 

Based on an encoder vector, a matr ix  A can be encoded as either a row 
encoded matr ix  An,  a column encoded matr ix  A c ,  or a full encoded matr ix  
A~qc [11]. For example, for the matr ix  multiplication A B = D, the column 
encoded matr ix  A c  is exploited [6]. Then choosing the linear weighted vector 
(3), the equation A c  * B = D c  is computed. To have the possibility of verifying 
computations and correcting a single error, syndromes $1 and $2 for the j - th  
column of D-matr ix  should be calculated, where 

M M 

< = - p c s j ,  & = i ,  - Q C S j  (4) 
i=1  /=1  

3 Design of the ABFT QR-Decomposition Algorithm 
The complexity of the Givens algorithm [2] is determined by 4N3/3 multipli- 
cations and 2N3/3 additions, for a real N • N matr ix  A. Based on equivalent 
matr ix  transformations, this algorithm preserves the Euclidean norm for columns 
of A during computations. This property is important  for error detection and 
enable us to save computations. 
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In the course of the Givens algorithm, an M x N input mat r ix  A = A 1 ---- 

{aij} is recursively modified in K steps to obtain the upper t r iangular  mat r ix  
R = A K+I,  where K = M - l f o r  M _< N,  and K = N for M > N.  The i-th step 
consists in eliminating e l e m e n t s  a}i in the i-th column of A i by multiplications on 
rotat ion matrices Pji,  j = i+ 1 , . . . ,  M,  which correspond to rotat ion coefficients 

= j -1  j-1 = a j i l ~ / ( a i  i ) _t_(a}i)2 cjl aii /v / (ai i  )2-t-(a}i)2, sji i j--1 2 

Each step of the algorithm includes two phases. The first phase consists in 
recomputing M - i times the first element aii of the pivot (i.e. i-th) row, and 
computing the rotat ion coefficients. The second phase includes computa t ion  of 
ai+l and resulting elements rik in the i-th row of R.  This phase includes also j k  , 
recomputing M - i t imes the rest of elements in the pivot row. 

J is wrongly Consequently, if during the i-th step, i = 1 , . . . ,  K ,  an element aii 
calculated, then errors firstly appear  in coefficients ejl and 8ji , j = i+  1 , . . . ,  M ,  
and then in all the elements of i I + 1  . Moreover, if at the i-th step, any coefficient 
eji or sji is wrongly calculated, then errors firstly appear  in all the elements of 
the pivot row, and then in all the elements of A i+1. All these errors can not be 
located and corrected by the original W C S  method.  To remove these drawbacks, 
the following lemmas are proved. It  is assumed that  a single transient error may  
appear  at each row or column of A i at any step of the algorithm. 

^i+1 k) is wrongly calcu- L e m m a  1. I f  at the i-th step, an element ajk (i < j, i <  

lated, then errors will not appear among other elements of A i + 1  . 

However, if a}k is erroneous, then error appears while comput ing either the 

element _j+l in the pivot row at the j - th  step of the algorithm, for j < k, or ttjk 

values ofa~k , ejk and sjk (j = i + 1 , . . . ,  M ) at the k-th step, for j > k. Hence in 
these cases, we should check and possibly correct elements of the i-th and j - t h  
rows of A i, each t ime after their recomputing.  

L e m m a  2. Let an element a~k of the pivot row (j = i+ l , . . . , M , "  k = 1 , . . . , N )  
~ i+1  or an element ~ja of a non-pivot row (k = i + 1 , . . . ,  N )  was wrongly calculated 

when executing phase 2 of the i-th step of the Givens algorithm. Then it is 
possible to correct its value while executing this phase, using the W C S  method 
for the row encoded matrix An,  where 

A R = [ A  A p  Aq] = [A P C S  QCS]  (5) 

pCS~+I _i+1 _i+1 _i+1 i .. i : u j , i+l  "JI-tLj,i+2-]-' ' ' (~j,N = ( - - s j i a i , i + l  -1- e j~aj , i+l)  at- . . .  
�9 " " i . .  i i + (-ss a ,N = + a ,N) + + a ,N) ( 6 )  

So before executing phase 2 of the i-th step we should be certain tha t  cji, 
J sji and aii were calculated correctly at phase 1 of this step (we assume tha t  the 

remaining elements were checked and corrected at the previous step). For this 
aim, the following properties of the Givens algorithm may  be used: 

- = 1 ( 7 )  

- preserving the Euclidean norm for column of A during computa t ion  

~/  i 2 i 2 a M M (a~,i)2 -t- (a i+l , i )  - ] - . . .  + (aM,i )  = ~,~ (where aii = rii ) (8 )  
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The triple t ime redundancy (TTR) method [4] may  also be used for its modest  
t ime overhead. In this case, values of cji, sji or /and  a~i are calculated three times. 

Hence, for cji and sji, the procedure of error detection and correction consists 
in computing the left part  of expression (7), and its recomputing if equality (7) 
is not fulfilled, taking into account a given tolerance r [6]. For elements a~i , 
i = 1 . . . .  , K,  this procedure consists in computing the both parts  of expression 
(8), and their recomputing if they are not equal. The correctness of this procedure 
is based on the assumption that  only one transient error may  appear  at each row 
or column of A i at any step. Moreover, instead of using the correction procedure 
based on formulae (4), we recompute all elements in the row with an erroneous 
element detected. 

The resulting ABFT Givens algorithm is as follows: 

1. The original mat r ix  A = {aja} is represented as the row encoded mat r ix  
* = P C S ) , f o r j = l ,  . , M ; k = l ,  ,N .  A n  = {alk} with a~k = ajk, aj,N+ , . . . . .  

2. For i = 1, 2 , . . . ,  K ,  stages 3-9 are repeated. 
~/ (a i./12 3. The values o f  a~i = (a{ i -1)2  -}-~ 3~/ ' a r e  calculated, j = i + 1 , . . . ,  M.  

4. The norm { ai [ for the i-th column of A is calculated. This stage needs 
approximately  M - i  multiply-add operations. The value of I ai I is compared 
with the value of aiiM. If ai iM 7k ] al [, then stages 3,4 are repeated. 

5. The coefficients cji and sji are computed,  and correctness of equation (7) is 
checked, for j = i + 1 , . . . ,  M.  In case of non-equality, stage 5 is repeated. 

6. For j = i + 1 , . . . , M ,  stages 7-10 are repeated. 
J of the i-th row of A i+* are computed,  k = 1 N + 1. 7. The elements aik , . . . ,  

8. The value of PCS~ is calculated according to (6). This stage needs approxi- 

mate ly  N -  i additions. The obtained value is compared with tha t  of j ai,N+ 1 �9 
In case of the negative answer, stages 7,8 are performed again. 

9. The elements a i+l in the j - th  row of A i+1 a r e  calculated, k = i+1, ,N+I .  jk "'" 
10. The value of PCS} +t is computed according to expression (6). This  stage 

also needs approximately N - i additions. The computed value is compared 
ai+l with that  of j,N+I" In case of the negative ease, stages 9,10 are repeated. 

The procedures of error detection and correction increase the complexity 
of the Givens algorithm on N2/2 + O(N) multiply-add operations and N 2 + 
O(N) additions, for M = N. Due to increased sizes of the input matr ix ,  the 
additional overhead of the proposed algori thm is 2N 2 + O(N) multiplications 
and N u + O(N) additions (M = N).  As a result, the complexity of the whole 
algori thm is increased approximately on 2.5N 2 + O(N) multiply-add operations 
and 2N 2 + O(N) additions. At this cost, the proposed algori thm enables us to 
correct one single transient error oceured in each row or column of A at any 
among K steps of computations.  Consequently, for M = N, it is possible to 
correct up to N u single errors when solving the whole problem. 

4 Parallel Implementation 

The dependence graph G1 of the proposed algorithm is shown in Fig.1 for M = 4, 
N = 3. Nodes of G1 are located in vertices of the integer lattice Q = {K = 
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Fig, 1. Graph of the algorithm 
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( i , j , k )  : 1 < i < K; i +  1 < j < M; i < k < N} .  There are two kind of 
nodes in GI .  Note that  non-locM arcs marked with broken lines, and given by 
vectors d5 -= (0, i + 1 - M, 0), d6 = (0, 0, i - N) are result of introducing A B F T  
properties into the original algorithm. 

To run the algorithm in parallel on a processor array with local links, all the 
vectors d5 are excluded using the T T R  technique for computing values of j aii, 
eji and sji.  This needs to execute additionally 6N 2 + O(N) multiplications and 
additions. Then all the non-local vectors d6 are eliminated by projecting G1 
along k-axis. As a result, a 2-D graph G2 is derived (see Fig.2). 

To run G2 on a linear array with a fixed number  n of processors, (32 should 
be decomposed into a set of s =IN~n[ subgraphs with the "same" topology 
and without bidirectional data  dependencies. Such a decomposition is done by 
cutting (32 by a set of straight lines parallel to j-axis.  These subgraphs are then 
mapped  into an array with n processors by projecting each subgraph onto i- 
axis [12]. The resulting architecture, which is provided with an external RAM 
module, features a simple scheme of local communicat ions and a small number  
of I / O  channels. The proposed ABFT Givens algori thm is executed on this array 
in s 

T = Z  [ ( N + 3 - n ( i - 1 ) )  + (M - n ( i - 1 )  )] 
i = 1  

t ime steps. For M = N, we have 

T =  N3 /n  - ( N -  n)N2/2  + ( 2 N - n ) N 2 / ( 6 n )  

The processor utilization is En = W / ( T  * n), where W is the computa t iona l  
complexity of the proposed algorithm. 

Using these formulae, for example, in case of s = 10, we obtain 

E~ = 0.86 

Note that  with increasing in parameter  s the value of En also increases. 
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Fig. 2. Fixed-sized linear array 
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