Fault tolerant quantum computation with high threshold in two dimensions

Kovid Goyal with Robert Raussendorf and Jim Harrington

Institute for Quantum Information Caltech

December 20

We need experimentally viable methods for fault tolerance

- High threshold
- Threshold should be robust against variations in the error model
- Moderate overhead
- Simple architecture (e.g. no long range interaction)

(B)

Motivation

Operational requirements

 Preparation of 2D cluster state by translation invariant nearest-neighbor Ising type interactions

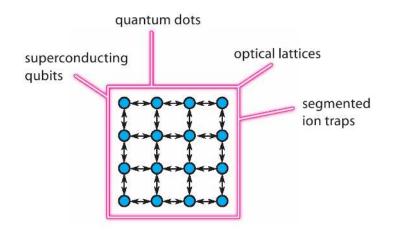
• Hadamard gate

- Single qubit measurements in the X + Y, X, Y and Z bases
- Classical post-processing of measurement results

4 B K 4 B K

Motivation

Operational requirements



2D, short range translation invariant interactions

Kovid Goyal (IQI, Caltech)

2D FT QC_0

QEC '07 2 / 22

(3)

Outline

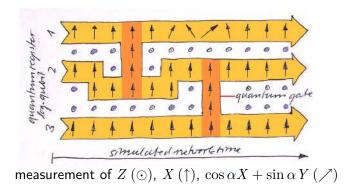
Introduction

2 The fault tolerant $QC_{\mathcal{C}}$

Threshold and overhead

イロト イヨト イヨト イヨト

The one way quantum computer



- Universal computational resource: 2D cluster state.
- Information is written onto the cluster, processed and read out by single qubit measurements only.

The threshold theorem

Theorem

If the noise per elementary operation is below a constant non-zero threshold then an arbitrarily long quantum computation can be performed with arbitrary accuracy and **small operational overhead**.^a

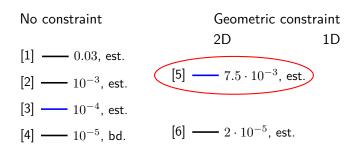
^aAhronov & Ben-Or (1996), Kitaev (1997), Knill, Laflamme & Zurek (1998), Aliferis, Gottesman & Preskill (2005)

- What is the threshold value?
- What is the overhead?
- What are the requirements on interaction?

QEC '07

5 / 22

Known thresholds



 $[7] - 10^{-8}$, bd.

イロト 不得 トイラト イラト 一日

[1] Knill (2005) [2] Zalka (1990) [3] Dawson & Nielsen (2005) [4] Alferis, Gottesman & Preskill (2005)
 [5] Raussendorf, Harrington & Goyal quant-ph/0703143 [9] Source, DiVincenzo & Terhal, quant-ph/0604090,
 [7] Aharonov & Ben-Or (1999)

2D FT QC_{C}

Fault tolerant $QC_{\mathcal{C}}$

Main idea Replace 2D cluster state with 3D cluster state

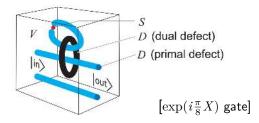
• The 3D cluster state is a fault tolerant substrate

- Topological quantum logic via lattice defects
- Mapping to 2D physical lattice
- Threshold: 7.5×10^{-3}

글 🕨 🖌 글

Macroscopic view

• Example CNOT

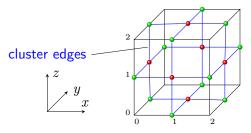


- Three cluster regions

 V (Vacuum), D (Defect) and S (Singular)
 V: local X measurements
 D: local Z measurements
 S: local X + Y/2, Y measurements
- Defect region *D* is string like. The quantum circuit is encoded in the topology of *D*.

3 > < 3 >

Microscopic view

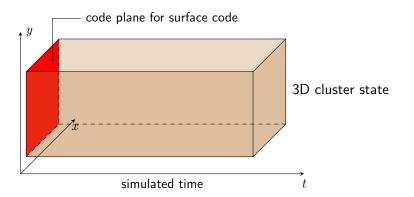


elementary cell of the Lattice

A (10) N (10)

qubit location:(even, odd, odd)-face of \mathcal{L} qubit location:(odd, even, even)-edge of \mathcal{L} syndrome location:(odd, odd, odd)-cube of \mathcal{L} syndrome location:(even, even, even)-site of \mathcal{L}

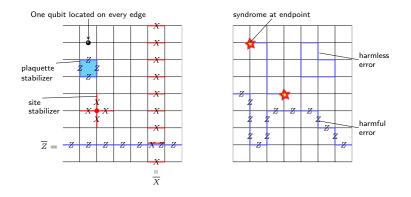
Key to the scheme



QEC '07 10 / 22

3 1 4 3

Surface codes



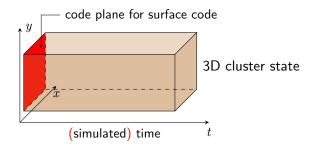
• Surface codes[†] are CSS codes associated with planar lattices

< ロ > < 同 > < 回 > < 回 >

[•] Harmful errors stretch across the entire lattice (rare events)

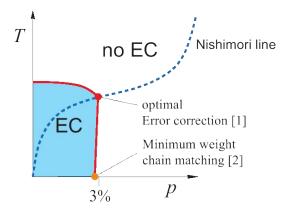
[†]A. Kitaev, quant-ph/9707021 (1997)

$QC_{\mathcal{C}}$: topological error correction in V



- Fault tolerant quantum memory with planar code ⇔ Random plaquette Z₂ gauge model (RPGM)[†].
- Same error correction applies to the 3D cluster state

Phase diagram of the RPGM



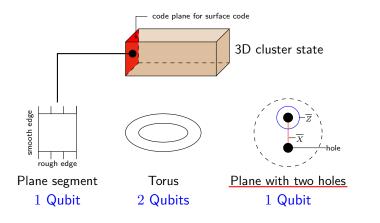
• Have an error budget of 3%

- [1] T. Ohno et al., quant-ph/0401101 (2004).
- [2] E. Dennis et al., quant-ph/0110143 (2001); J. Edmonds, Canadian J. Math. 17, 449 (1965).

2D FT QC_c

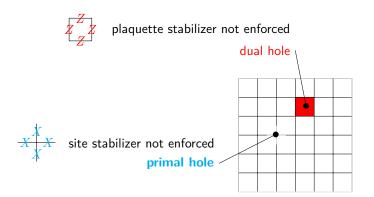
Fault tolerant quantum logic

Encoding capacity of the code depends on the topology of the code surface



QEC '07 14 / 22

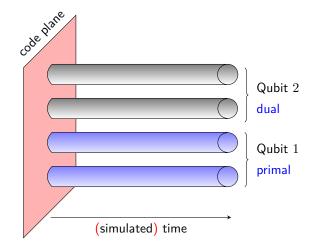
Surface code on a plane with holes



- There are two types of hole: primal and dual
- A pair of same-type holes form an encoded qubit

A (10) × (10) × (10)

Quantum logic via defect topology



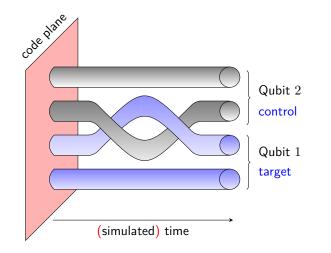
Defects are the extension of holes in the code plane to the third dimension.

Kovid Goyal (IQI, Caltech)

2D FT QC_C

QEC '07 16 / 22

Quantum logic via defect topology C-NOT gate



Topological quantum gates are encoded in the way primal and dual defects are wound around each other.

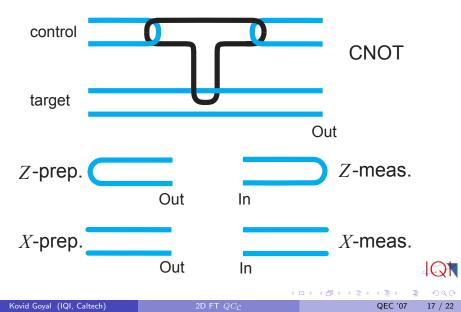
Kovid Goyal (IQI, Caltech)

2D FT QC

QEC '07 16 / 22

Quantum gates

Clifford gates



Quantum gates

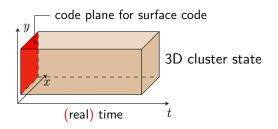
Non-Clifford gates

• Need one non-Clifford element:

fault tolerant preparation of $\left|A\right\rangle := \frac{X+Y}{\sqrt{2}} \left|A\right\rangle$

• FT prep. of $|A\rangle$ is achieved via concatented magic state distillation^{\dagger} of logical qubits

Mapping to 2D



- Turn simulated time into real time
- Require a single 2D layer

Fault tolerance threshold

Error sources after mapping to 2D

- |+> preparation: Perfect preparation followed by single qubit partially depolarizing noise with probability p_P.
- **2** $\Lambda(Z)$ gates (space like edges of \mathcal{L})): Perfect gates followed by two qubit partially depolarizing noise with probability p_2 .
- Hadamard gates (time like edges of L)): Perfect gates followed by single qubit partially depolarizing noise with probability p₁.
- Measurement: Perfect measurement preceded by single qubit partially depolarizing noise with probability p_M .

No qubit is idle between preparation and measurement - no memory error

イロト 不得 トイヨト イヨト 二日

Fault tolerance threshold

Threshold estimate $(p := p_1 = p_2 = p_P = p_M)$

• Topological threshold in cluster region V:

$$p_c = 7.5 \times 10^{-3}$$

• Threshold for magic state distillation:

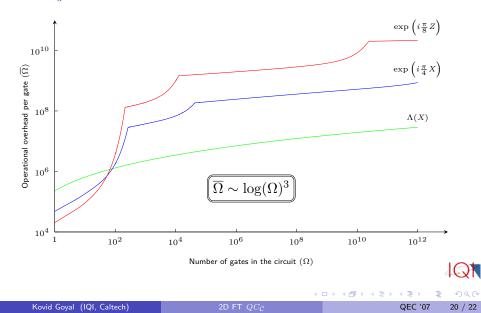
$$p_c = 2.8 \times 10^{-2}$$

• The threshold is robust against variations in the error model such as higher weight elementary errors or decaying long distance errors.

Topological EC sets the overall threshold

★ ∃ ► < ∃ ►</p>

Operational overhead (At $p = \frac{1}{2}p_c$)



Summary

[quant-ph/0703143]

Scenario

Local and nearest neighbor gates on a 2D lattice

Performance

- Threshold: 7.5×10^{-3}
- Overhead: $\overline{\Omega} \sim \log(\Omega)^3$

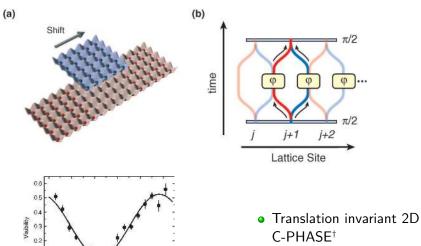
Method

 3D cluster states provide intrinsic topological error correction and topologically protected quantum gates

Suitable systems for implementation

 Cold atoms in optical lattices, segmented ion traps, superconducting qubits, quantum dots...

Cold atoms in an optical lattice



• Individual atom readout

[†]Greiner et. al., Nature (2002)

100

200

300

Hold Time (Us)

400 500

0.1

Kovid Goyal (IQI, Caltech)

QEC '07 22 / 22