
Fault-Tolerant Rate-Monotonic First-Fit
Scheduling in Hard-Real-Time Systems

Alan A. Bertossi, Luigi V. Mancini, and Federico Rossini

AbstractÐHard-real-time systems require predictable performance despite the occurrence of failures. In this paper, fault tolerance is

implemented by using a novel duplication technique where each task scheduled on a processor has either an active backup copy or a

passive backup copy scheduled on a different processor. An active copy is always executed, while a passive copy is executed only in

the case of a failure. First, the paper considers the ability of the widely-used Rate-Monotonic scheduling algorithm to meet the

deadlines of periodic tasks in the presence of a processor failure. In particular, the Completion Time Test is extended so as to check

the schedulability on a single processor of a task set including backup copies. Then, the paper extends the well-known Rate-Monotonic

First-Fit assignment algorithm, where all the task copies, included the backup copies, are considered by Rate-Monotonic priority order

and assigned to the first processor in which they fit. The proposed algorithm determines which tasks must use the active duplication

and which can use the passive duplication. Passive duplication is preferred whenever possible, so as to overbook each processor with

many passive copies whose primary copies are assigned to different processors. Moreover, the space allocated to active copies is

reclaimed as soon as a failure is detected. Passive copy overbooking and active copy deallocation allow many passive copies to be

scheduled sharing the same time intervals on the same processor, thus reducing the total number of processors needed. Simulation

studies reveal a remarkable saving of processors with respect to those needed by the usual active duplication approach in which the

schedule of the non-fault-tolerant case is duplicated on two sets of processors.

Index TermsÐFault tolerance, hard-real-time systems, multiprocessor systems, periodic tasks, rate-monotonic scheduling, task

replication.

æ

1 INTRODUCTION

THROUGHOUT industrial computing, there is an increasing
demand for more complex and sophisticated hard-real-

time computing systems. In particular, fault tolerance is one
of the requirements that are playing a vital role in the
design of new hard-real-time distributed systems.

A variety of schemes have been proposed to support
fault-tolerant computing in distributed systems, such
schemes can be partitioned into two broad classes. In the
first class, which employs the passive replication techniques,
a passive backup copy of a primary task is assigned to one
or more backup processors; when a primary task fails, the
passive copies of the task are restarted on the backup
processor, hence a passive copy is executed only in the
presence of a failure. In the second class, which employs the
active replication techniques, the same set of tasks is always
executed on two or more sets of processors; every primary
task has an active backup copy: if any task fails, its mirror
image will continue to execute.

Many hard-real-time scheduling problems have been
found to be NP-hard: most likely, there are no optimal
polynomial-time algorithms for them [2], [11]. In particular,

scheduling periodic tasks with arbitrary deadlines is NP-
hard, even if only a single processor is available [12].
Several heuristics for scheduling periodic tasks on uni-
processor and multiprocessor systems have been proposed.
Liu and Layland [10] introduced the Rate-Monotonic (RM)
algorithm for preemptively scheduling periodic tasks on a
single processor, under the assumption that task deadlines
are equal to their periods. Joseph and Pandya [5] later
derived the Completion Time Test (CTT) for checking
schedulability of a set of fixed-priority tasks on a single
processor. RM was generalized to multiprocessor systems
by Dhall and Liu [3], who proposed, among others, the
Rate-Monotonic First-Fit (RMFF) heuristic. More refined
heuristics for multiprocessors were proposed by Burchard,
Liebeherr, Oh, and Son [1].

It is worth noting that the RM algorithm is becoming an
industry standard because of its simplicity and flexibility. It
is a low overhead greedy algorithm, which is optimal
among all fixed-priority algorithms. Moreover, it possesses
certain advantages, for example, the implementation of
efficient schedulers for aperiodic tasks, and the retiming of
intervals in order to shed the load in a predictable fashion
[8].

As for fault-tolerant scheduling algorithms, a dynamic
programming algorithm for multiprocessors was presented
in [7] which ensures that backup schedules can be
efficiently embedded within the primary schedule. An
algorithm was proposed in [9] which generates optimal
schedules in a uniprocessor system by employing a passive
replication to tolerate software failures only. The algorithms
proposed in [14] are based on a bidding strategy and
dynamically recompute the schedule when a processor

934 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 10, NO. 9, SEPTEMBER 1999

. A.A. Bertossi is with the Dipartimento di Matematica, UniversitaÁ di
Trento, Via Sommarive 14, 38050 Trento, Italy.
E-mail: bertossi@science.unitn.it.

. L.V. Mancini is with the Dipartimento di Scienze dell'Informazione,
UniversitaÁ di Roma ªLa Sapienza,º Via Salaria 113, 00198 Roma, Italy. E-
mail: lv.mancini@dsi.uniroma1.it.

. F. Rossini is with Telecom Italia Mobile, Area Applicazioni Informatiche,
Via Tor Pagnotta 90, 00143 Roma, Italy.

Manuscript received 20 June 1997.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number 105271.

1045-9219/99/$10.00 ß 1999 IEEE

fails, in order to redistribute the tasks among the remaining
nonfaulty processors. In [13], two algorithms are designed
which reserve time for the processing of backup tasks on
uniprocessors running fixed-priority schedulers. Finally,
the techniques of backup overbooking and backup deal-
location were introduced in [4] to achieve fault tolerance in
multiprocessor systems, but for aperiodic nonpreemptive
tasks only.

It is noted here that none of the fault-tolerant algorithms
discussed above extended the RMFF algorithm or have
combined in the same schedule both active and passive
replication of the tasks. However, the latter idea seems
potentially useful since it provides the ability to exploit the
advantages of both types of replication in the same system.

Indeed, the simplest way to achieve fault tolerance in
hard-real-time systems consists in using active duplication
for all tasks. An active copy presents the advantages of
requiring no synchronization with its primary copyÐit can
run before, after, or concurrently with the other copyÐand
of having a larger time window for executionÐnamely, the
whole period of the task. However, using active duplication
for all tasks doubles the number of processors required in
the nonfault-tolerant case. In contrast, a passive copy can be
executed only if a failure prevents the corresponding
primary copy from completing. A passive copy has the
disadvantages of having tighter timing constraintsÐin the
worst case it is not activated until the scheduled completion
time of the primary copyÐand of requiring some time
overhead for synchronization with the corresponding
primary copy. These drawbacks can be overcome by
choosing active replication when the scheduled completion
time of the primary copy is close to the deadline, that is to
the end of the period, and by having smaller execution
times for the backup copies. Moreover, since the time
overhead for synchronization is usually very small, it can be
included in the execution time of the primary task. Most
importantly, passive duplication has the great advantage of
overbooking the processorsÐmany passive copies whose
primary copies are assigned to different processors can be
scheduled on the same processor so as to share the same
time interval. Indeed, under the assumption of a single
processor failure, only one of such passive copies will be
actually executed, namely, the passive copy whose primary
copy was prevented from completing because of the failure.
Moreover, if only one failure is tolerated, the space allocated
to active copies whose primary copy is not assigned to the
failed processor can be reclaimed as soon as a failure is
detected. Passive copy overbooking and active copy deal-
location allow fewer processors to be used with respect to
the case in which active duplication is used for all tasks.

The present paper considers the problem of preemp-
tively scheduling a set of independent periodic tasks on a
distributed system, such that each task deadline coincides
with the next request of the same task, and all tasks start in-
phase. In particular, this paper extends the RMFF algorithm
to tolerate failures under the assumption that processors fail
in a fail-stop manner. The algorithm determines by itself
which tasks must use active duplication and which can use
passive duplication, preferring passive duplication when-
ever possible. The rest of the paper is organized as follows.

Section 2 gives a formal definition of the scheduling
problem and a precise specification of the fault tolerance
model. Moreover, the classical RM, CTT, and RMFF
algorithms are recalled. Section 3 provides a high-level
description of the proposed Fault-Tolerant Rate-Monotonic
First-Fit (FTRMFF) algorithm. The algorithm analysis is
done in Section 4. In particular, the ability of RM to meet the
deadlines in the presence of one processor failure is
characterized in Section 4.1, and CTT is extended in Section
4.2 so as to check the schedulability on a single processor of
a task set including backup copies. Then, such an extended
CTT is used in Section 4.3 to assign task copies to processors
following a First-Fit heuristic which employs passive copy
overbooking and active copy space reclaiming. An algo-
rithm to recover from a single processor failure is shown in
Section 4.4, while extensions to tolerate both many
processor failures and software failures are presented in
Sections 4.5 and 4.6, respectively. In Section 5, simulation
experiments show that the proposed FTRMFF algorithm
requires fewer processors than the active duplication
approach. Finally, Section 6 summarizes the work and
discusses further possible extensions.

2 BACKGROUND

This section gives a formal definition of the scheduling
problem and a precise specification of the fault tolerance
model. Moreover, important properties of the well-known
RM, CTT, and RMFF algorithms are recalled.

2.1 The Scheduling Problem

A periodic task �i is completely identified by a pair �Ci; Ti�,
where Ci is �i's execution time and Ti is �i's request period. The
requests for �i are periodic, with constant interval Ti
between every two consecutive requests, and �i's first
request occurs at time 0. The worst case execution time for
all the (infinite) requests of �i is constant and equal to Ci,
with Ci � Ti. Periodic tasks �1; :::; �n are independent, that is
the requests of any task do not depend on the execution of
the other tasks. The load of a periodic task �i � �Ci; Ti� is
Ui � Ci=Ti, while the load of the task set �1; . . . ; �n is U �P

1� i�n Ui:
Given n independent periodic tasks �1; . . . ; �n and a set of

identical processors, the scheduling problem consists of
finding an order in which all the periodic requests of the
tasks are to be executed on the processors so as to satisfy the
following scheduling conditions:

(S1) integrity is preserved, that is, tasks and processors are
sequential: each task is executed by at most one
processor at a time and no processor executes more than
one task at a time;

(S2) deadlines are met, namely, each request of any task must
be completely executed before the next request of the
same task, that is, by the end of its period;

(S3) the number m of processors is minimized.

2.2 The Fault-Tolerant Model

It is assumed that the processors belong to a distributed
system and are connected by some kind of communication

BERTOSSI ET AL.: FAULT-TOLERANT RATE-MONOTONIC FIRST-FIT SCHEDULING IN HARD-REAL-TIME SYSTEMS 935

subsystem. The failure characteristics of the hardware are
the following:

(F1) Processors fail in a fail-stop manner, that is a processor
is either operational (i.e., nonfaulty) or ceases function-
ing;

(F2) All nonfaulty processors can communicate with each
other;

(F3) Hardware provides fault isolation in the sense that a
faulty processor cannot cause incorrect behavior in a
nonfaulty processor; in other words, processors are
independent as regard to failures;

(F4) The failure of a processor Pf is detected by the
remaining nonfaulty processors after the failure, but
within the instant corresponding to the closest task
completion time of a task scheduled on Pf .

Note that assumption (F4) can be easily satisfied by a
specific failure detection protocol as explained below, since
by assumption (F1) all the processors are assumed to be fail-
stop.

The fault-tolerant scheduling problem consists of finding a
schedule for the tasks so as to satisfy the following
additional condition:

(S4) fault tolerance is guaranteed, namely, conditions (S1)-
(S3) are verified even in the presence of failures.

In order to achieve fault tolerance, two copies for each
task are used, called primary and backup copies. The primary
copy �i has its request period equal to Ti and its execution
time equal to Ci, while the backup copy �i has the same
request period Ti but an execution time Di 6� Ci. Although
the fault-tolerant algorithm to be proposed works also when
Di is greater than or equal to Ci, in practice Di is smaller
than Ci, since backup copies usually provide a reduced
functionality in a smaller execution time than the primary
copies.

The primary copy of a task is always executed, while its
backup copy �i is executed according to �i's status, which
can be active or passive. If the status is active, then �i is
always executed, while if it is passive, then �i is executed
only when the primary copy fails. In other words, although
both active and passive copies of the primary tasks are
statically assigned to processors, passive backup copies are
actually executed only when a failure of the corresponding
primary copy occurs.

Each passive copy �i is informed of the completion of �i
at every occurrence of the periodic task by means of a
message that the processor running �i sends in each period
�hTi; �h� 1�Ti� by �i's completion time to the processor
assigned to the passive copy �i. This message is small: since
it must contain the indices of the primary task and of the
sender and receiver processors, its size is O�log n� bits. If the
message is not received by a certain due time (to be
specified in Section 3), a failure on the processor running �i
is assumed and the passive copy �i is scheduled. The
overhead needed for such processor failure detections is
mainly given by the short-message latency of the commu-
nication subsystem employed. In particular, with the
current off-the-shelf technology, this overhead can be
estimated in the order of few microseconds and is assumed

to be included in the execution time of the primary copies.

As for active copies, no implicit or explicit synchronization

is assumed with their primary copies, since an active copy

can run before, after, or concurrently with its primary copy.

2.3 The Rate-Monotonic Algorithm

Liu and Layland [10] proposed a fixed-priority scheduling

algorithm, called Rate-Monotonic (RM), for solving the

(nonfault-tolerant) problem stated in Section 2.1 on a single

processor system, that is when m � 1. In their algorithm,

each task is assigned a priority according to its request rate

(the inverse of its request period)Ðtasks with short periods

are assigned high priorities. At any instant of time, a

pending task with the highest priority is scheduled. A

currently running task with lower priority is preempted

whenever a request of higher priority occurs, and the

interrupted task is resumed later.
As an example, consider tasks �1 and �2 to be scheduled

on o ne p roces sor , and le t �C1; T1� � �1; 3� and

�C2; T2� � �3; 5�. Task �1 has higher priority than �2, and

the first request of �1 is scheduled during the time interval

�0; 1�: Then the first request of �2 is scheduled during �1; 3�.
At time 3, the second request of �1 comes, �2 is preempted,

and �1 is scheduled during �3; 4�. Then �2 is resumed and

scheduled during �4; 5�; and so on.
Liu and Layland proved the following two important

results concerning fixed-priority scheduling algorithms.

Theorem 1. The largest response time for any periodic request of

�1 occurs whenever �i is requested simultaneously with the

requests for all higher priority tasks.

Theorem 2. A periodic task set can be scheduled by a fixed-

priority algorithm provided that the deadline of the first

request of each task starting from a critical instant (i.e., an

instant in which all tasks are simultaneously requested) is met.

For example, a critical instant occurs when all tasks are in

phase at time zero, which is called critical instant phasing,

because it is the phasing that results in the longest response

time for the first request of each task. As a consequence, to

check the schedulability of any task �i, it is sufficient to

check whether �i is schedulable in its first period �0; Ti�
when it is scheduled with all higher priority tasks.

2.4 The Completion Time Test

From Theorems 1 and 2, the following necessary and

sufficient schedulability criterion was derived by Joseph

and Pandya [5], as discussed also in [8].

Theorem 3. Let the periodic tasks �1; . . . ; �n be given in priority

order and scheduled by a fixed-priority algorithm. All the

periodic requests of �i will meet the deadlines under all task

phasings if and only if:

min0<t�Ti

� X
1� k�i

Ckdt=Tke=t
�
� 1:

The entire set of tasks �1; . . . ; �n is schedulable under all task

phasings if and only if:

936 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 10, NO. 9, SEPTEMBER 1999

max1� i�n min0< t�Ti

�X
1�k�i

Ckdt=Tke=t
�
� 1

The minimization required in Theorem 3 is easy to
compute in the case of the Rate-Monotonic algorithm. In
fact, t needs to be checked only a finite number of times, as
explained below.

Let � � f�1; . . . ; �ig, with T1 � . . . � Ti, be a set of tasks
in phase at time zero, the cumulative work on a processor
required by tasks in � during �0; t� is:

W�t; �� �
X
�k 2 �

Ck dt=Tke:

Create the sequence of times S0; S1; . . . with
S0 �

P
�k 2 � Ck, and with Sl�1 �W�Sl; ��. If for some l,

Sl � Sl�1 � Ti, then �i is schedulable. Otherwise, if Ti � Sl
for some l, task �i is not schedulable. Note that Sl is exactly
equal to the minimum t, 0 < t < Ti, for whichP

1� k� i Ckdt=Tke � t as required in Theorem 3. This
schedulability test is called Completion Time Test (CTT).

As an immediate consequence of the above theorems, the
following property holds:

Property 1. Let the Completion Time Test be satisfied for
�1; . . . ; �i, and let Sl � Sl�1 � Ti for some l. Then in any
period �hTi; �h� 1�Ti�, with h integer, �i will complete
no later than the instant hTi � Sl.

For the sake of clarity, the quantity Sl will be denoted in
the following by i since such a quantity represents the
worst-case completion time of task �i in any request period Ti.

As an example of use of CTT, consider again tasks �1 and
�2 with �C1; T1� � �1; 3� and �C2; T2� � �3; 5� and let us
check the schedulability of �2:

S0 � 1� 3 � 4;

S1 �W�4; f�1; �2g� � 1d4=3e � 3d4=5e � 5;

and

S2 �W�5; f�1; �2g� � 1d5=3e � 3d5=5e � 5:

Since S1 � S2 � T2 � 5, all the periodic requests of �2 will
meet their deadlines.

It is worth noting that, by Theorem 3, the schedulability
of lower priority tasks does not guarantee the schedulability
of higher priority tasks. Therefore, in order to check the
schedulability of a set of tasks, each task must get through
the CTT when it is scheduled with all higher priority tasks.
If tasks are picked by priority order, the schedulability test
can proceed in an incremental way: CTT is performed
considering tasks �1; . . . �1 on the period �0; Ti�, for
i � 1; . . . ; n, that is, by adding one task �i at a time to the
preceding tasks �1; . . . ; �iÿ1; without the need to test again
the schedulability of �1; . . . ; �iÿ1. In this way, as soon as i is
computed, i will not change anymore, since only lower
priority tasks will be considered later.

2.5 The Rate-Monotonic First-Fit

Dhall and Liu [3] generalized the RM algorithm to
accommodate multiprocessor systems. In particular, they

proposed the so called Rate-Monotonic First-Fit (RMFF)
algorithm. It is a partitioning algorithm, where tasks are
first assigned to processors following the RM priority order
and then all the tasks assigned to the same processor are
scheduled with the RM algorithm. Let T1 � T2 � . . . � Tn,
the algorithm acts as follows. For i � 1; 2; . . . ; n, the generic
task �i is assigned to the first processor Pj such that �i and
the other tasks already assigned to Pj can be scheduled on
Pj according to RM. If no such processor exists, the task is
assigned to a new processor. Dhall and Liu showed that,
using a schedulability condition weaker than CTT, RMFF
uses about 2.33U processors in the worst case, where U is
the load of the task set. The 2.33 worst case bound was
recently lowered to 1.75 by Burchard, Liebeherr, Oh, and
Son [1], using a schedulability condition stronger than that
used in [3], but without using the RM priority order for task
assignment, and partially using CTT. In practice, however,
RMFF remains competitive, for its simplicity and efficiency.
It employs the same priority order both for assigning tasks
to processors and scheduling tasks on each processor, and
requires on the average a number of processors very close
to U when CTT is used to check for schedulability on each
processor, as confirmed also by the simulation experiments
exhibited in Section 5. Moreover, as shown in Section 4, it
can be extended in a clean way to tolerate hardware and
software failures.

3 OVERVIEW OF THE FAULT-TOLERANT RMFF
ALGORITHM

This section provides an informal high-level description of
the proposed Fault-Tolerant Rate-Monotonic First-Fit
(FTRMFF) algorithm. The algorithm analysis is done in
next section. For the sake of simplicity, only the extension to
tolerate one processor failure is discussed hereafter. Exten-
sions to support many processor failures or software
failures will be discussed in Sections 4.5 and 4.6, respec-
tively.

In the FTRMFF algorithm, primary and backup copies of
different tasks can be assigned to the same processor. Of
course, in order to tolerate a processor failure, the primary
copy and the backup copy of the same task should not be
assigned to the same processor. The algorithm proposed
can be viewed as the RMFF algorithm applied to a task set
including both primary and backup copies. Task copies,
both primary and backup, are ordered by increasing
periods, namely, the priority of a copy is equal to the
inverse of its period. A tie between a primary copy �i and its
backup copy �i is broken by giving higher priority to �i.
Thus tasks are indexed by decreasing RM priorities, and are
assigned to the processors following the order:

�1; �1; �2; �2; . . . ; �n; �n:

CTT is used to check whether a task copy can be
assigned to a processor. Thanks to Property 1 of Section 2,
CTT also provides enough information to decide whether a
backup copy should be active or passive. Indeed, while
checking for schedulability of a primary copy �i, CTT also
computes its worst-case completion time i. If the schedul-
ability test for �i succeeds, that is when i � Ti, then for

BERTOSSI ET AL.: FAULT-TOLERANT RATE-MONOTONIC FIRST-FIT SCHEDULING IN HARD-REAL-TIME SYSTEMS 937

each request period there are at least Ti ÿ i time units to
schedule �i as a passive copy on another processor. Let
Bi � Ti ÿ i be the recovery time of the backup copy �i. If
Bi � Di, then �i may be scheduled as a passive copy, since
there is enough time to execute �i after �i if a processor
failure prevents �i from being completed; otherwise �i must
be scheduled as an active copy. The algorithm prefers to
schedule a backup copy as a passive copy whenever
possible, so as to overbook each processor with more
passive copies whose primary copies are assigned to
different processors.

It is worth noting that, although tasks could be assigned
to processors following any order, considering task copies
by decreasing RM priorities greatly simplifies the algo-
rithm. Indeed, such an ordering is the same ordering used
by the RM algorithm to schedule the tasks assigned to each
processor. Therefore, when a task �i is assigned to a
processor, only lower priority tasks will be assigned later
to the same processor, and the time intervals for �i's
execution on the processor will remain unchanged. In
particular, also worst case completion time i will remain
unchanged. This allows to determine whether the backup
copy �i of �i can be scheduled as a passive copy. Clearly,
with another ordering a higher priority task can be assigned
to the same processor after �i. In this case, i needs to be
recomputed and �i must be reassigned and rescheduled.
This justifies the �1; �1; �2; �2; . . . �n; �n order of assign-
ment. Moreover, since the algorithm generalizes RMFF, it
assigns a backup copy �i, either passive or active, to the first
processor Pj such that �i is not assigned to Pj, and �i and
the other primary and backup copies already assigned to Pj
can be scheduled on Pj according to the RM algorithm for a
single processor.

To find a processor a task copy can be assigned to,
however, several applications of CTT are required, which
take into account the situations in which no processor fails
or any processor fails. The applications of the test depend
on the kind (primary/backup) of the task copy to be
assigned as well as on its status (active/passive) if the copy
is a backup copy. There are three main assignment cases.

(A1) To assign a primary copy �i to a processor Pj; two
conditions have to be checked.

. �i must be schedulable together with all the primary
and active backup copies already assigned to Pj;

. �i must be schedulable together with all the primary
copies already assigned to Pj and all the active and
backup copies assigned to Pj such that their
corresponding primary copies are all assigned to
the same processor Pf , and this condition must be
considered for all Pf 6� Pj:

The first condition takes into account the situation in
which no failure occurs, while the second one takes into
account the situation in which any processor other than Pj
fails. Thus, as many applications of CTT as the total number
of processors are required in the worst case to determine
whether �i can be assigned to Pj. Note that the second
condition use the space reserved on Pj to active copies
whose primary copies are not assigned to Pf , since only one
processor failure is assumed to be tolerated.

(A2) To assign an active backup copy �i to a processor Pj,
assume that the primary copy �i is already assigned to
processor Pp 6� Pj two conditions have also to be
checked.

. �i must be schedulable together with all the primary
and active backup copies already assigned to Pj;

. �i must be schedulable together with all the primary
copies already assigned to Pj and all the active and
backup copies assigned to Pj such that their
corresponding primary copies are all assigned to Pp.

These conditions are analogous to those of (A1), with the
difference that the second one takes into account the
situation where the failed processor is that running the
primary copy �i. Thus only two applications of CTT are
required to determine whether �i can be assigned to Pj.

(A3) Finally, to assign a passive backup copy �i to a
processor Pj, assuming again that the primary copy �i is
already assigned to processor Pp 6� Pj, only one condi-
tion has to be tested, which is identical to the second
condition of (A2). Thus only one application of CTT is
needed to determine whether �i can be assigned to Pj.

As soon as task copies are assigned to processors, all the
copies assigned to the same processor are scheduled with
the RM algorithm. However, in the absence of failures, each
processor executes its primary copies and active backup
copies only. When the processor assigned to �i does not
receive the synchronization message of �i by time hTi � i,
a failure of the processor running �i is assumed and the
passive copy �i is executed. To understand how to recover
from a failure, assume �i is assigned to processor Pf which
is detected at time � to be failed, with � belonging to
�hTi; �h� 1�Ti� for any h. If �i is an active copy scheduled
on a processor Pj, then �i will continue to be executed and
no further action is needed for �i. If �i is passive, then �i
becomes active on Pj starting either from �, if the execution
of �i was not completed by Pf before �, or from �h� 1�Ti, if
the execution of �i was already completed before �. In other
words, if � > hTi � i; then �i was completed before Pf 's
failure and there is no need to schedule �i by time �h� 1�Ti.
If � � hTi � i then, in order to recover the lost computation
of �i, �i must be executed for the first time during the
interval ��; �h� 1�Ti�, which in general is shorter than Ti. It
will be shown in the next section that �i, the primary copies
of Pj, and the backup copies of Pj meet their deadlines even
in this case.

4 ANALYSIS OF THE FAULT-TOLERANT RMFF
ALGORITHM

In this section, necessary and sufficient schedulability
criteria are proved which extend Theorem 3 to schedule a
set of primary and backup copies to recover from one
processor failure. Based on the proposed criteria, a fault-
tolerant extension of RMFF is derived and proved to be
correct.

4.1 Schedulability Criteria

In order to extend Theorem 3, consider a generic task set �
containing both primary and backup copies which must be

938 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 10, NO. 9, SEPTEMBER 1999

scheduled all together on a single processor. The cumulative

work W�t; �� during a time interval �0; t� can be defined as

follows:

W�t; �� �
X
�k 2�

Ckdt=Tke �
X
�k 2 �

Dk � �k; t�

where

��k; t� �
dt=Tke if �k is active
1 if �k is passive and t � Bk

1� d�tÿBk�=Tke if �k is passive and t > Bk

8<:
The function ��k; t� gives the overall number of requests

of a backup copy �k during �0; t�. If �k is an active copy, then

its work is the same as a primary copy. If �k is a passive

copy, then the first request of �k must be executed within �k's

recovery time, which is shorter than the task period Tk and

is at least Bk � Tk ÿ k time units long, while the next

requests of �k must be executed at every period Tk. Thus, if

t � Bk, there is only one request of �k to be executed within

�0; t� and ��k; t� � 1; otherwise there is one request to be

executed in �0; Bk�, and d�tÿBk�=Tke requests to be

executed in �Bk; t�, hence ��k; t� � 1� d�tÿBk�=Tke.
It is worth noting that, according to Theorems 1 and 2,

the previously defined W �t; �) takes into account the worst

possible cumulative work, in which all the passive backup

copies start in phase together with all the other primary and

active backup copies, and must be executed for the first

time within their recovery times, which are shorter than

their periods. Such a definition of the work W�t; �� is the

basis for providing fault tolerance, as shown in the

following.
In order to present the exact analysis of the schedul-

ability of a set of tasks using the RM algorithm to tolerate a

processor failure, some additional definitions are needed.

Let us assume that all the task copies in f�1; �2; . . . ; �ng [
f�1; �2; :::; �ng are already assigned to the processors and

that the worst case completion time i of �i and the status

(active/passive) of �i are already determined for all i. In the

following, status(�i) denotes the status (active/passive) of

�i; P ��i� the processor assigned to the primary copy �i, and

P ��i) the processor assigned to the backup copy �i. The

tasks assigned to each processor Pj are denoted as follows.
The sets primary(Pj) and backup(Pj) represent the primary

and backup copies assigned to processor Pj, namely:

primary�Pj� � f�h:P ��h� � Pjg;
backup�Pj� � f�h:P ��h� � Pjg:

The set active�Pj� includes the active backup copies assigned

to processor Pj, namely,

active�Pj� � f�h:�h:2 backup�Pj�; status��h� � activeg
The set passiveRecover�Pj; Pf� consists of the passive copies

assigned to Pj such that their primary copies are assigned to

Pf . In other words, this set contains all the passive backup

copies that processor Pj must start scheduling when a

failure of processor Pf is detected. That is,

passiveRecover�Pj; Pf�
� f�h:�h 2 backup�Pj�; P ��h� � Pf; status��h� � passiveg:

In contrast, the set activeRecover�Pj; Pf� denotes the active
copies assigned to Pj with primary copies assigned to Pf ,
namely, this set contains all the active backup copies that
processor Pj must keep scheduling when Pf fails:

activeRecover�Pj; Pf�
� f�h:�h 2 backup�Pj�; P ��h� � Pf; status��h� � activeg:

Finally, recover�Pj; Pf� gives the union between the last two
sets:

recover�Pj; Pf�
� passiveRecover�Pj; Pf� [activeRecover�Pj; Pf�:

In the absence of failures, any processor Pj must execute
its primary copies together with its active backup copies. In
other words, the set of tasks scheduled on Pj in the fault-
free case is given by primary�Pj� [active�Pj�.
Theorem 4. Let � � primary�Pj� [active�Pj� be the set of

periodic tasks given in priority order which are assigned to
processor Pj. All the periodic requests of tasks in � will meet
the deadlines if and only if:

max
�k; �k 2�

min
0<t�Tk

�X
�k 2�

Ckdt=Tke=t�
X
�k 2�

Dk��k; t�=t
�
� 1:

The proof of Theorem 4 follows from Theorem 3, since
active backup copies can be regarded as additional primary
copies and ��k; t� � dt=Tke by definition.

Consider now the case that a failure of processor Pf is
detected at time �. In such a case, only the backup copies in
recover�Pj; Pf� should be scheduled on Pj together with its
primary copies. Note that under the assumption of a single
p r o c e s s o r f a i l u r e , a l l t h e a c t i v e c o p i e s i n
active�Pj� ÿ activeRecover�Pj; Pf) do not need to be exe-
cuted after time �.

Theorem 5. Consider any processorPj and assume that the
failure of processor Pf; j 6� f; is detected at time �. Let � �
primary�Pj� [recover�Pj; Pf� be the set of periodic tasks
given in priority order and assigned to Pj. All the periodic
requests of tasks in � will meet the deadlines for any � if and
only if:

max
�k; �k 2�

min
0<t�Vk

�X
�k 2�

Ckdt=Tke=t�
X
�k 2�

Dk��k; t�=t
�
� 1:

where Vk is equal to Tk for a primary copy or an active backup
copy and to Bk for a passive backup copy.

Proof. A critical instant for a passive copy �k occurs when
�k and all primary and backup copies with higher
priority than �k are released simultaneously at time � on
processor Pj. Note that the first request period of �k may
be shorter than Tk and in the worst case is equal to Bk.
Since by Theorem 1 the worst case phasing occurs when
all tasks are in phase at time 0, we can restrict our
attention to the case in which all the tasks in � are
released at time 0 and each passive copy �k has its period
equal to Bk. Therefore, if �k can be scheduled within

BERTOSSI ET AL.: FAULT-TOLERANT RATE-MONOTONIC FIRST-FIT SCHEDULING IN HARD-REAL-TIME SYSTEMS 939

�0; Bk�, then can also be scheduled in any interval �hTk �
 k; hTk � k �Bk� � �hTk � k; �h� 1�Tk�.

Any copy
k (with
k equal to �k or �k), completes its
execution at time t 2 �0; Vk� if and only if all the requests
for copies with higher priority than
k and the request for

k itself are completed at time t. To evaluate the
cumulative work for processing
k, any backup copy �i
with higher priority than
k can be considered as a
primary copy having execution time Di and period Bi, if
�i is passive, or Ti, if �i is active. The number of requests
of �i in �0; t� is given by ��i; t�. It follows that a necessary
and sufficient condition for
k to meet its deadline is that
the cumulative work must be less than or equal to t.
Hence, the proof follows from Theorem 3. tu

4.2 Fault-Tolerant CTT

Based on Theorems 4 and 5, two kinds of schedulability
tests are needed, one to check for schedulability in the
absence of failures, and the other to check for schedulability
after a processor failure.

Given a task copy
i (either the primary copy �i or the
backup copy �i) to be assigned to a processor Pj, the first
schedulability test procedure, that we call NoFaultCTT, tests
for schedulability of
i on Pj together with the task copies
already assigned to Pj in the absence of failures:

NoFaultCTT(
i; Pj)

1. Check whether the task set � �
i [primary�Pj� [
active�Pj� is schedulable on Pj by means of the
formula given in Theorem 4;

2. If � is schedulable and
i � �i, then return the worst
case completion time i of �i.

Given
i to be assigned to Pj, and a processor Pf 6� Pj,
the second procedure, called OneFaultCTT, tests for sche-
dulability of
i on Pj together with the task copies already
assigned to Pj in the case that processor Pf failed:

OneFaultCTT�
i; Pj; Pf)

1. Check whether � �
i [primary�Pj� [recover�Pj;
Pf� is schedulable on Pj by means of the formula
given in Theorem 5.

T o a s s i g n a p r i m a r y c o p y �i t o Pj, b o t h
NoFaultCTT��i; Pj� and OneFaultCTT��i; Pj; Pf� must be
satisfied for all Pf 6� Pj, since the recovery from the failure
of any processor other than Pj must be taken into account.
To assign an active backup copy �i to Pj, instead, both
NoFaultCTT��i; Pj� and OneFaultCTT��i; Pj; Pf� must be
satisfied for Pf � P ��i� only, since the failure of the
processor running the corresponding primary copy has to
be tolerated. Finally, to assign a passive backup copy �i to
Pj, only OneFaultCTT��i; Pj; P ��i�� has to be satisfied.

4.3 Fault-Tolerant RMFF

Using the NoFaultCTT and OneFaultCTT procedures pre-
viously introduced, all the task copies are assigned to the
first processor in which they fit, following the ordering:

�1; �1; �2; �2; . . . ; �n; �n:

The assignment procedure consists of a main loop repeated
for i � 1; 2; . . . n, containing four consecutive steps. The

first step assigns the primary copy �i to the first processor in
which it fits. The second step establishes the recovery time
Bi and the status of the backup copy �i. Depending on �i's
status, the third or fourth step assigns the backup copy �i to
the first processor Pj in which �i fits such that the primary
copy �i is not assigned to the same processor. The FTRMFF-
Assignment procedure is summarized as follows.

FTRMFF-Assignment

(0) Let the task copies be given by RM priority ordering:
�1; �1; �2; �2; . . . ; �n; �n; Set the number m of processors
used to 1;

(1) Repeat the following steps for i � 1; 2; . . . ; n:

(1.1) Assign the primary copy �i to the first processor Pj
for which NoFaultCTT��i; Pj� is satisf ied and
OneFaultCTT��i Pj; Pf� is satisfied for all 1 � f 6� j � m
setting P ��i� � Pj; if no such a processor exists, set m to
m� 1 and assign �i to Pm, setting P ��i� � Pm;

(1.2) Let i be the worst case completion time of �i
computed in step (1.1); if Ti ÿ i < Di then set status��i�
to active, else set status��i� to passive;

(1.3) If status��i� � active then assign �i to the first
processor Pj 6� P ��i� for which NoFaultCTT��i; Pj� and
OneFaultCTT��i; Pj; P ��i�� are satisf ied, sett ing
P ��i� � Pj; If no such processor exists set m to m� 1
and assign �i to Pm, setting P ��i� � Pm;

(1.4) If status��i� � passive then assign �i to the first
processor Pj 6� P ��i� for which OneFaultCTT��i; Pj; P ��i��
is satisfied, setting P ��i� � Pj; if no such processor exists
set m to m� 1 and assign �i to Pm, setting P ��i� � Pm;

(2) Return the number m of processors used and the task
assignment found.

Example 1. As an example of execution of the FTRMFF-
Assignment algorithm, consider four primary tasks
�1; :::; �4 with execution times C1 � 2, C2 � 1, C3 � 3,
C4 � 3, and periods T1 � 5, T2 � 6, T3 � 8, T4 � 9, and
four backup copies �1; :::; �4 such that each �i has the
same period and execution time as the primary copy �i,
namely Di � Ci. The algorithm sets the status of �1, �2,
and �3 to passive, while only �4's status is set to active.
The final assignment of the primary and backup copies is
the following: primary�P1� � f�1; �2; �4g, backup�P1� � �,
p r i m a r y �P2� � �, b a c k u p �P2� � f�1; �2; �3g, p r i -
mary�P3� � f�3g, and backup�P3� � f�4g. It is worth
noting that P2 is overbooked with many passive copies,
but will never be required to execute the backup copies
of both processor P1 and processor P3 at the same time,
since at most one processor failure is assumed to occur.
Therefore, P2 gets allocated the backup copies
f�1; �2; �3g, although P2 is not able to execute all of
them together. In other words, if processor P1 fails, then
P2 starts the execution of passive copies �1 and �2, while
if P3 fails, then P2 starts the execution of �3. Note that at
least two processors are needed by any algorithm for
scheduling the primary copies only, since the load U of
�1; . . . ; �4 is 2=5� 1=6� 3=8� 3=9 � 1:26. Thus, duplicat-
ing on two sets of processors the schedule for the non-
fault-tolerant case requires at least four processors to

940 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 10, NO. 9, SEPTEMBER 1999

tolerate one failure. The proposed FTRMFF algorithm,
instead, tolerates one failure using three processors only.

The procedure FTRMFF-Assignment is executed off-line
and requires O�nm2� schedulability tests to be performed.
Indeed, to assign a primary copy, at most m processors are
tried. Each trial requires in turn one execution of
NoFaultCTT and mÿ 1 executions of OneFaultCTT, in the
worst case. In contrast, in the non-fault-tolerant RMFF, each
trial requires one execution of CTT, for a total of O�nm�
schedulability tests. It is worth noting that, although CTT
has a pseudopolynomial complexity in the worst case, it is
not too slow in practice. Moreover, since task copies are
picked by RM priority order, consecutive schedulability
tests on the same processor can be performed in an
incremental way, as discussed in Section 2.4, thus reducing
their computation time.

4.4 Recovery from a Processor Failure

Once an assignment is found by the FTRMFF algorithm,
each processor Pj schedules, in the absence of a failure, the
tasks in primary�Pj� [active�Pj� according to the RM
algorithm. When a failure of a processor, say Pf , is detected
at time �, the FTRMFF-Recovery procedure described below
is invoked. The procedure takes as input Pf and �, and
produces as its output a schedule according to the RM
algorithm on mÿ 1 processors of at least one copy of each
task, such that no task deadline is missed. The uncompleted
tasks assigned to Pf are recovered by the remaining
nonfaulty processors. Let �i be a passive copy assigned to
processor Pj such that Pf � P ��i) and � belongs to �hTi; �h�
1�Ti� for any h: �i becomes active on Pj starting either from
�, if the execution of �i was not completed before � (that is,
hTi � i � �), or from �h� 1�Ti, if the execution of �i was
already completed by Pf before � (that is, hTi � i < �).
Note that, in the former case, �i is executed on Pj for the
first time during the interval ��; �h� 1�Ti� in order to
recover the computation of �i lost during �hTi; ��. Note also
that, in any case, all the active backup copies of primary
tasks scheduled on the nonfaulty processors are deallocated
from Pj.

FTRMFF-Recovery�Pf; ��
(1) Do the following steps in parallel for all the processors
Pj such that 1 � j � m and j 6� f ;

(1.1) If passiveRecover�Pj; Pf� 6� � then do the following:

(1.1.1) Set to active the status of each �i 2
p a s s i v e R e c o v e r �Pj; Pf� e i t h e r f r o m t i m e �, i f
 i � � mod Ti, o r f r o m t h e n e x t p e r i o d o f
�i; if i < � mod Ti;

(1.1.2) Replace the schedule of Pj with that produced by
the RM algorithm for the set primary�Pj� [recover�Pj;
Pf�;
(1.2) If passiveRecover�Pj; Pf� � � then continue to sche-
dule primary�Pj� [active�Pj� on Pj with the RM
algorithm, as in the fault-free case.

As an example of recovery, consider the task set of
Example 1. The schedule in the absence of failures is shown
in Fig. 1. If a failure of processor P1 occurs at time 0, it is

detected by the other processors before the closest task
completion time on P1, namely by time � � 2. The schedule
of Fig. 1 is recovered as shown in Fig. 2.

The procedure FTRMFF-Recovery is executed on-line and
is very fast, since all the required sets, including
passiveRecover�Pj; Pf� and recover�Pj; Pf�, were previously
computed off-line by the FTRMFF-Assignment procedure,
which already made all the schedulability tests, too.

4.5 Tolerating Many Processor Failures

In order to tolerate many processor failures, spare proces-
sors must be employed to replace failed processors on-line.
Assuming that a processor failed and that a second
processor cannot fail before the first failure is recovered,
the substitution of the failed processor Pf with the spare
processor Ps can be done by the following FTRMFF-
Replacing procedure. In practice, the passive backup copies
of the uncompleted primary tasks of the failed processor Pf
are executed by the remaining processors only once, while
the spare processor Ps resumes the scheduling of the
primary and active backup copies of Pf from their first
requests following the failure detection time.

FTRMFF-Replacing�Pf; ��
(1) Do the following steps in parallel for all Pj such that

1 � j � m; j 6� f , and for j � s as well;

(1.1) If j 6� s and passiveRecover�Pj; Pf� 6� � then do the
following:

(1 . 1 . 1) L e t u n f i n i s h e d P a s s i v e �Pj; Pf� � f�i 2
passiveRecover�Pj; Pf�: i � � mod Tig. Set to active the
status of each �i 2 unfinishedPassive�Pj; Pf�;
(1.1.2) Replace the schedule of Pj with that produced by
t h e R M a l g o r i t h m f o r t h e s e t p r i -
mary�Pj� [unfinishedPassive�Pj; Pf�, but execute the co-
pies in unfinishedPassive�Pj; Pf� only once;

(1.1.3) Restore the old schedule of Pj, that is that for
primary�Pj� [active�Pj), resuming each �i 2 active�Pj�
starting from the first request following �� Ti;
(1.2) If j 6� s and passiveRecover�Pj; Pf� � � then con-
tinue to schedule primary�Pj� [active�Pj� on Pj with the
RM algorithm, as in the fault-free case;

(1.3) If j � s then inherit the schedule of Pf , that is that
for primary�Pf� [active�Pf�, resuming each task copy
starting from the first request following �.

As an example, the substitution of a failed processor
with a spare processor for the schedule of Fig. 2 is shown in
Fig. 3. The correctness of the above procedure is proved by
the following theorem.

Theorem 6. If q spare processors are available, then the FTRMFF
algorithm can tolerate q � 1 failures, provided that a failure of
processor Pf is detected within the closest completion time of
the task set primary�Pf� [active�Pf� and the time interval
between two consecutive failures is three times the largest task
request period.

Proof. The scheme to tolerate more than one failure can be
organized in three phases: detection, recovery and
reconfiguration phases. The last two phases are per-
formed by the FTRMFF-Replacing procedure.

BERTOSSI ET AL.: FAULT-TOLERANT RATE-MONOTONIC FIRST-FIT SCHEDULING IN HARD-REAL-TIME SYSTEMS 941

In the detection phase, the worst case occurs when �n,
which is the task with the longest request period, is the
only one allocated to Pf and Pf fails immediately after
the completion time of �n. This phase takes at most Tn
time units, since the failure of Pf will be detected within
the completion time of the next request of �n.

During the recovery phase, all the passive copies of
the uncompleted tasks assigned to Pf are executed by the
non-faulty processors only once (step 1.1.2 of FTRMFF-
Replacing), and the spare processor Ps inherits Pf 's
schedule starting from the first task request following
the failure detection time � (step 1.3). In other words, let �
belong to ��hÿ 1�Ti; hTi�, by Theorem 5 in the worst case
any passive copy �i 2 passiveRecover�Pj; Pf� is executed
within ��; hTi�. Hence, at time hTi, the execution of
passive copy �i can be suspended on Pj, since any
�i 2 primary�Pf� and any �i 2 active�Pf� are inherited by
Ps at that time. The recovery phase requires at most Tn
time units, since hTi - � < Tn for all i.

Finally, in the reconfiguration phase, for every non-
faulty processor Pj, each copy �i 2 active�Pj� which was
previously suspended, is resumed starting from the first
request of �i following �� Ti (step 1.1.3). In the worst
case, at time �� Tn the schedule of the faulty processor
Pf is completely inherited by the spare processor Ps; thus
the nonfaulty processors are no more required to execute
any passive copy. The reconfiguration phase is com-
pleted by time �� 2Tn.

Therefore, many processors failures can be tolerated,
provided that the minimum time interval between two
consecutive failures is 3Tn. If there are q spare processors,
q faulty processors can be replaced by means of the
FTRMFF-Replacing procedure, while one additional
failure can be tolerated by means of the FTRMFF-
Recovery procedure. tu

4.6 Tolerating Software Failures

In addition to processor failures, a hard-real-time system
can fail also due to design faults in the software. The
scheduling algorithm proposed allows the combination of
the recovery block technique with distributed processing to
achieve a uniform treatment of both software and hardware
failures. To explain the ideas of the approach, assume that
two different implementations of the same task specifica-
tion are provided. The two implementations, which may
have different execution times, represent the primary and
the backup copies of a task. It is worth noting that the
backup copy must have an independent design, so that if
the primary fails owing to a software error, it is highly
probable that the backup has not failed (see [6] for further
details). Assume also that an acceptance test, which is an
assertion on the state of the task, is executed at the end of
each copy. Since the processors are assumed fail-stop, if the
acceptance test fails, it signals the presence of an error in the
software. The time to execute the acceptance test is assumed
to be included in the primary copy execution time. One

942 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 10, NO. 9, SEPTEMBER 1999

Fig. 1. The schedule in the absence of failures.

Fig. 2. Recovery from a failure of P1 at time 0.

Fig. 3. Substitution of the failed processor with a spare processor.

approach to implement the recovery from software failures
is as follows. The primary copy �i is executed on P ��i), and
the backup copy �i is allocated on a processor
P ��i� 6� P ��i�. The result of �i is checked on P ��i� using
the acceptance test. If a software error is detected in �i, P ��i�
sends a notice to processor P ��i� to activate the backup
copy �i, only. Note that if the schedulability test was
successful on P ��i�, then �i will meet its deadline: In case of
software failure of �i only the time to recover �i is needed,
while the FTRMFF algorithm returns a feasible schedule
which can recover all the tasks allocated to P ��i). If the
primary copy �i produces results which satisfy the
acceptance test, it forwards them to the destination, and
the backup copy �i is not executed.

5 SIMULATION EXPERIMENTS

In order to evaluate the number of processors used by the
FTRMFF algorithm for scheduling both primary and back-
up copies, simulation experiments are performed. The
execution time Ci of each primary copy �i is assumed to
be equal to the execution time Di of the backup copy �i.
Indeed, when Ci > Di, the algorithm performs better, since
fewer processors are required for the execution of the
backup copies; while the case Ci < Di does not seem of
practical interest, since usually the backup copies provide a
reduced functionality in a shorter time than the primary
copies.

Large task sets with 100 � n � 1; 000 tasks are gener-
ated. In the experiments, we vary a parameter
� � maxfU1; � � � ; Ung, which represents the maximum load
occurring in the task set. Each task period Ti is selected to be
uniformly distributed in the interval 1 � Ti � 500,
1 � i � n. Each execution time Ci is also taken from a
uniform distribution, but in the interval 0 � Ci � �Ti,
1 � i � n. Three values are chosen for �, namely, 0:2, 0:5,
and 0:8. Higher values for �, and hence for the execution
times, are not considered, since as the average execution
time tends to be half the average period, there is no time to
execute a passive copy after its corresponding primary copy
in case of a processor failure; therefore, active duplication is
chosen for almost all tasks, and the number of processors of
the resulting schedule is approximately that obtained by
duplicating the schedule for the primary copies. For the
chosen n and �, the experiment is repeated 30 times, and
the average result is computed.

The performance metric in all the experiments is the
number of processors required to assign a given task set.
We compare the RMFF algorithm, which uses the CTT for
schedulability testing, and the FTRMFF-Assignment proce-
dure proposed in Section 4. In the outcome of the
experiments, we denote with N the number of processors
required by the FTRMFF algorithm for a task set consisting
of both primary and backup task copies, and with M the
number of processors required by the RMFF algorithm for a
task set with identical primary copies and no backup copies.
Since an optimal task assignment is very hard to be
calculated for large task sets, we use the total load U �
U1 � . . .� Un as a lower bound on the minimum number of
processors needed to assign the primary copies. The RMFF

and FTRMFF assignment algorithms were written in C++
and run on a Digital AlphaServer 2100.

The outcome of the experiments is given in Fig. 4, which
shows that both N and M increase in a way that is
proportional to U . For smaller values of �, M=U is very
close to 1 and N=U is far from being the double of M=U , as
would be if the schedule of RMFF were duplicated on two
sets of processors. Thus RMFF uses a number of processors
close to optimality, and FTRMFF gains benefits from
passive duplication, requiring a small number of additional
processors to provide fault tolerance. Clearly, as �
increases, the performance of FTRMFF decreases. More-
over, Fig. 5 shows the values of �N ÿM�=M for the same
experiments, which give the ratio of additional processors
introduced by FTRMFF to provide fault tolerance with
respect to RMFF. Clearly, when active duplication is used
for all tasks, this ratio becomes 1. It is observed that, when
few tasks must be scheduled and � is small, few processors
are needed regardless of the task execution times; hence, the
various ratios shown in Fig. 5 are about the same, namely
0:35 for n � 100 and both � � 0:2, 0:5. When the number of
tasks increases, such ratios tend to different values, namely,
about 0:3, 0:6, and 0:9 for � � 0:2, 0:5, and 0:8, respectively.
Thus, Fig. 5 illustrates a remarkable saving of processors
with respect to the duplication on two sets of processors of
the schedule found by RMFF, when the tasks have a small
average execution time. This saving is about 70 percent for
� � 0:2 and 40 percent for � � 0:5.

6 CONCLUDING REMARKS

This paper has considered the problem of preemptively
scheduling a set of independent periodic tasks under the
assumption that each task deadline coincides with the next
request of the same task. The proposed FTRMFF algorithm
extends the well-known Rate-Monotonic First-Fit schedul-
ing algorithm to tolerate failures, uses a novel combined
active/passive duplication scheme, and determines by itself
which tasks should use passive duplication and which
should use active duplication. Simulation studies revealed a
remarkable saving of processors with respect to those
needed by the usual active duplication approach in which
the schedule of the non-fault-tolerant case is duplicated on
two sets of processors. However, further research is needed,
e.g., to derive an analytical worst case bound on the number
of processors used by the proposed FTRMFF algorithm, or
to devise schedulability conditions which are weaker but
simpler than the Completion Time Test, e.g., as those
proposed in [1].

This paper has assumed that there is no implicit or
explicit synchronization between a primary copy and its
active copy. However, if they are synchronized, processors
can be used more efficiently by reclaiming the time for an
active copy if its primary copy terminates successfully. This
optimization is left for further work. It is worth noting that
the proposed algorithm works also if some backup copies
are forced to be active. Thus, further study could be devoted
to consider the case in which also some backup copies are
forced to be passive, that is, the status (active/passive) of a
subset of backup copies is given in input to the algorithm.

BERTOSSI ET AL.: FAULT-TOLERANT RATE-MONOTONIC FIRST-FIT SCHEDULING IN HARD-REAL-TIME SYSTEMS 943

A relevant issue is the schedule of a set of tasks subject to
precedence constraints and resource requirements [8]. As a
subject for future research, the combined duplication
scheme proposed in the present paper could be used to
extend the Rate-Monotonic First-Fit algorithm in order to
tolerate failures also in the presence of resource reclaiming
and task synchronization.

Finally, further research could deal with assignment
strategies which are different from those considered in this
paper. More precisely, tasks could be assigned to processors
following an order different from the Rate-Monotonic
priority one (such as the order proposed in [1]) while
processors could be considered following an order other
than the First-Fit one (such as assigning primary tasks to
more lightly-loaded processors, thereby easing the effort to
schedule their passive backup copies).

ACKNOWLEDGMENTS

The C++ code used in the simulation experiments was

written by Andrea Fusiello. This work was supported by

grants from the Ministero dell'UniversitaÁ e della Ricerca

Scientifica e Tecnologica, the Consiglio Nazionale delle

Ricerche, and the UniversitaÁ di TrentoÐProgetto Speciale

1997.

REFERENCES

[1] A. Burchard, J. Liebeherr, Y. Oh, and S.H. Son, ªNew Strategies for
Assigning Real-Time Tasks to Multiprocessor Systems,º IEEE
Trans. Computers, vol. 44, no. 12, pp. 1,429-1,442, Dec. 1995.

[2] Computer and Job/Shop Scheduling Theory, E.G. Coffman Jr. ed., New
York: John Wiley & Sons, 1976.

[3] S.K. Dhall and C.L. Liu, ªOn a Real-Time Scheduling Problem,º
Operations Research, vol. 26, pp. 127-140, 1978.

[4] S. Ghosh, R. Melhem, and D. MosseÂ, ªFault-Tolerance through
Scheduling of Aperiodic Tasks in Hard-Real-Time Systems,º IEEE
Trans. Parallel and Distributed Systems, vol. 8, no. 3, pp. 272-284,
Mar. 1997.

944 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 10, NO. 9, SEPTEMBER 1999

Fig. 4. Ratios between the number of processors required by FTRMFF (upper functions) or RMFF (lower functions) and the total load of the task
sets.

Fig. 5. Ratio �N ÿM�=M of additional processors required by FTRMFF with respect to RMFF to provide fault tolerance.

[5] M. Joseph and P. Pandya, ªFinding Response Times in a Real-
Time System,º The Computer J., vol. 29, pp. 390-395, Oct. 1986.

[6] K.H. Kim, ªDistributed Execution of Recovery Block: An
Approach to Uniform Treatment of Hardware and Software
Faults,º Proc. Fourth IEEE Int'l Conf. Distributed Computing Systems,
pp. 526-532, San Francisco, Calif., May 1984.

[7] C.M. Krishna and K.G. Shin, ªOn Scheduling Tasks with a Quick
Recovery from Failure,º IEEE Trans. Computers, vol. 35, no. 5, pp.
448-454, May 1986.

[8] M.H. Klein, J.P. Lehoczky , and R. Rajkumar, ªRate-Monotonic
Analysis for Real-Time Industrial Computing,º Computer, pp. 24-
33, Jan. 1994.

[9] A.L. Liestman and R.H. Campbell, ªA Fault-Tolerant Scheduling
Problem,º IEEE Trans. Software Eng., vol. 12, no. 11, pp. 1,089-
1,095, Nov. 1986.

[10] C.L. Liu and J.W. Layland, ªScheduling Algorithms for Multi-
programming in a Hard-Real-Time Environment,º J. ACM, vol. 20,
pp. 46-61, 1973.

[11] E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, and H. Shmoys,
ªSequencing and Scheduling: Algorithms and Complexity,º
Handbooks in Operations Research and Management Science, vol. 4,
Logistic of Production and Inventory. , Amsterdam: North Holland,
1993.

[12] J.Y.-T. Leung and M.L. Merrill, ªA Note on Preemptive Schedul-
ing Periodic Real-Time Tasks,º Information Processing Letters, vol.
11, pp. 115-118, 1980.

[13] S. Ramos-Thuel and J.K. Strosnider, ªScheduling Fault Recovery
Operations for Time-Critical Applications,º Proc. Fourth Int'l Conf.
Dependable Computing for Critical Applications, pp. 270-282, Jan.
1994.

[14] J.A. Stankovic, ªDecentralized Decision Making for Task Realloca-
tion in Hard-Real-Time Systems,º IEEE Trans. Computers, vol. 38,
no. 3, pp. 341-355, Mar. 1989.

Alan A. Bertossi received the Laurea degree
(summa cum laude) in computer science from
the University of Pisa, Italy, in 1979. Afterwards
he worked as a systems programmer and
designer. During 1983-1994, he was with the
Department of Computer Science, University of
Pisa, as a research associate first and, later, as
an associate professor. Since 1995, he has
been with the Department of Mathematics,
University of Trento, Italy, as a professor of

computer science. His main research interests are the algorithmic
aspects of high-performance, parallel, distributed, fault-tolerant, and
real-time systems. He has published more than 50 refereed papers (two
invited) in international journals, conferences, and encyclopedias. He is
currently serving as guest coeditor for two special issues of Algorithmica
and Discrete Applied Mathematics, both on experimental algorithmics.
His biography is included in the edition of Who's Who in the World in
1999.

Luigi V. Mancini received the Laurea degree in
computer science from the University of Pisa,
Italy, in 1983, and a PhD degree in computer
science from the University of Newcastle upon
Tyne, United Kingdom in 1989. From 1985-
1989, he was with the University of Newcastle
upon Tyne, where he worked on the reliability
project led by Prof. Brian Randell. From 1989-
1992, he was with the Department of Computer
Science, University of Pisa, as an assistant

professor. From 1993-1996, he was with the Department of Computer
Science of the University of Genova, Italy, as an associate professor.
Since 1996, he has been with the Department of Computer Science of
the University of Roma ªLa Sapienza,º Italy. His current research
interests include distributed algorithms and systems, computer and
information security, and transaction processing systems.

Federico Rossini received his Laurea degree
(summa cum laude) in computer science from
the University of Pisa, Italy, in 1993. After
spending a year in army service, he worked as
a consultant for Telecom Italia, the Italian
telephone company, on database design for
marketing back office. Since June 1997, he has
been employed by Telecom Italia Mobile (TIM)
as a software designer. Currently, he is devel-
oping and testing new software applications for

the marketing and billing systems of the company.

BERTOSSI ET AL.: FAULT-TOLERANT RATE-MONOTONIC FIRST-FIT SCHEDULING IN HARD-REAL-TIME SYSTEMS 945

