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Abstract. This paper describes a novel approach to fault-tolerance in distributed
object-based systems. It uses the fragmented-object model to integrate replica-
tion mechanisms into distributed applications. This approach enables the use of
customised code on a per-object basis to access replica groups and to manage
consistency. The addition of fault tolerance to the infrastructure has only little
overhead, is fully transparent for clients, and does not require internal modifi-
cations to the existing middleware. Semantic annotations at the interface level
allow the developer to customise the provision of fault tolerance. Operations can
be marked as read-only to allow an execution with weaker ordering semantics or
as parallelisable to allow true multithreaded execution. A code-generation tool is
provided to automatically produce object-specific fragment code for client access
and for replica consistency management, taking into account the annotations, the
interface specification, and the non-replicated implementation. A further con-
tribution of our code-generation approach is the support of deterministic mul-
tithreading in replicated objects.

1 Introduction

The development of fault-tolerant applications in distributed systems is a complex
task. It can be simplified for the developer by providing support for fault-tolerance
at the middleware level. Replication support has previously been added to middleware
systems like CORBA in various ways, for example using the interception approach
[13], the integration approach [3], or the service approach [4]. The approaches differ in
their properties regarding transparency, efficiency, and portability; each approach has
its specific advantages, but also disadvantages.

Recent publications (e.g., [2, 5]) indicate that the current support for replication in
general-purpose distributed object middleware is not yet sufficient in several regards.
One of the limitations is the lack of interoperability between multiple middleware in-
frastructures. For example, typical fault-tolerant CORBA systems require all replicas to
run on the same ORB implementation. Often, clients must use the same manufacturer’s
ORB to benefit from the fault-tolerance mechanisms. Consequently, heterogeneity in
terms of middleware platform or programming language—an important feature and one
of the main objectives of CORBA—lacks support.
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Replica nondeterminism is a source of problems, both in passive replication in
case of replica faults and in active replication [23]. If potentially nondeterministic
actions are not simply prohibited in replica implementations (a popular approach),
they have to be intercepted and coordinated by the infrastructure. One problematic
source of nondeterminism is multithreaded execution of object operations. Many fault-
tolerant infrastructures solve this problem by forcing a strictly sequential execution of
all client requests in total order. This solution has serious limitations, as it not only lacks
performance, but is also inherently deadlock-prone. Only few systems (e.g, [15, 8, 23])
offer a multithreaded solution with an adequate deterministic thread scheduling strategy.
Such approaches require that the service uses specific locking methods that can be
intercepted by the fault-tolerance infrastructure.

Furthermore, most existing fault-tolerant object middleware systems provide no
mechanism to use semantic knowledge about the replicated object. Often, this is not
the most efficient solution: If, for example, it is known that some methods are read-
only or parallelisable, weaker ordering semantics than total order can be employed to
improve efficiency. A replication infrastructure can provide such optimisations auto-
matically only if it has access to semantic information explicitly expressed by the object
developer.

The contribution of this paper are approaches to handle several of these problematic
issues in fault-tolerant middleware systems. Our implementation provides an infrastruc-
ture for fault-tolerant distributed applications in the AspectIX middleware based on
fragmented objects. The fragmented-object model [12, 7, 21] is a versatile approach
to design complex distributed services that do not strictly adhere to a simple client-
server structure. It supports dynamic loading of object-specific fragment code at the
client side and at replica locations. This flexibility of a fragmented-object middleware
enables the integration of fault-tolerance support without requiring internal middleware
modifications. The access to replica groups remains fully transparent for clients. At the
same time, the directly loaded object-specific fragment code avoids the overhead of
interception strategies or other delegation approaches.

At the core of our architecture, we provide a code-generation tool that automatically
creates client-side access fragments and server-side replica fragments based on the
non-replicated object implementation, the interface definition, and semantic annota-
tions. This way, the transition from an existing implementation to a replicated one is
automated as much as possible, with only minimal developer intervention required.
Annotations can be provided to specify if an object operation interacts with the replica
and modifies its state, if it is a read-only operation, if it is parallelisable with other
methods, or if it is a method that can be computed locally at the client side without
interacting with the replica group.

Our replication system allows multithreading inside actively replicated objects. A
deterministic thread scheduler supports an arbitrary number of reentrant mutex locks,
condition variables that allow threads to block and be woken up by other threads,
and timeouts on blocking synchronisation operations. Language-specific synchronisa-
tion statements need to be mapped to the synchronisation interface of the scheduler.
Our Java-based prototype provides a code-generation tool that automatically trans-
forms native Java synchronisation statements. This allows application developers to use
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Java-specific constructs (e.g., synchronized statements) to express the required
coordination, as they would do in non-replicated code. The multithreading issues of
replication remain fully transparent for the application developer. Semantic annotations
can be used to further improve the thread-scheduling mechanism. For example, mul-
tiple methods that are marked as parallelisable can all be executed in parallel without
coordinating their lock acquisitions.

This paper is structured as follows: Section 2 discusses established approaches to
fault tolerance in traditional middleware and surveys in more detail the fragmented-
object model. Section 3 presents the realisation of fault-tolerant replication in the
AspectIX middleware based on fragmented objects. It describes our code-generation
process, which considers semantic annotations, and discusses the advantages of our
approach regarding multithreading. Section 4 evaluates our system. Finally, Section 5
concludes.

2 Background

2.1 Approaches to Replication Support in Distributed Object Middleware

Replication adds redundancy to a system, which makes it possible to tolerate the failure
of some of the nodes on which an object is located. Some strategy, like active or passive
replication, is required to keep the replicas in a consistent state. In passive replication,
only a single designated primary replica executes all operations; secondary replicas are
able to take over the primary’s functionality if it fails. In active replication, all replicas
execute all operations. This causes more overhead than passive replication in failure-
free executions, but allows faster reaction to failures (ideally, the failure of a single
node remains fully unnoticed by clients). In addition, keeping all replicas constantly
up-to-date allows using load-balancing for read-only requests, which are handled by
only one replica.

Several research projects have investigated ways for adding fault-tolerance mech-
anisms to distributed object middleware. For fault-tolerance in CORBA systems, the
OMG provides the FT-CORBA specifications [16, Chap. 23] as a general standard,
without specifying exact implementation details. The implementation of this standard in
existing CORBA middleware is usually based on the interception approach, the service
approach, or the integration approach.

The interception approach initially was propagated by the Eternal system [13]. Eter-
nal intercepts IIOP messages between the ORB and the operating system. This way, any
off-the-shelf ORB can be used, and replication becomes fully transparent for clients and
servers. However, such interception requires adequate support at the operating-system
level. Fault-tolerance mechanisms are fully separated from the ORB core; information
about remote invocations can only be obtained by parsing the marshalled invocation
data.

A prominent example for the service approach is OpenDREAMS [4]. This system
encapsulates fault-tolerance mechanisms inside a CORBA service. The only direct
interaction of application objects is with a local Object Group Service (OGS), which
in turn coordinates with other OGS instances and executes the requested operations
at the replicas. This approach does not offer replication transparency, as clients are
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aware of the OGS, and adds an additional step of indirection, which increases latency.
Its outstanding benefit is that no proprietary extensions to the ORB or the operating
system are needed.

In the integration approach, the ORB is directly modified to provide the desired sup-
port for fault tolerance. In general, this provides the most efficient solution. However,
this approach usually inhibits any interoperability with clients running on standard off-
the-shelf CORBA platforms. Orbix+Isis [3] and Electra [11] are examples where the
integration approach has successfully been used.

Replication may also be added to other non-CORBA middleware infrastructures. For
example, the AROMA system [14] transparently enhances the Java RMI system with
mechanisms for consistent object replication. It modifies the Java RMI infrastructure to
intercept remote invocations and maps them to a reliable, totally ordered group com-
munication protocol. As another example, the .NET remoting infrastructure provides
the possibility to load custom stub code (“real proxy”) instead of the default stub. This
makes it possible to transparently add custom support for replication [19].

Our fault-tolerance infrastructure is based on the AspectIX middleware, which pro-
vides support for fragmented objects. This support is implemented as an extension to a
standard CORBA ORB. With fragmented objects, custom fragment code can be loaded
transparently at client side and replica side on a per-object basis. Our fault-tolerance
architecture provides code-generation tools to create fragment code for fragmented
objects. This code can be used on any middleware that supports our fragmented-object
model; to this extent our approach is portable and not restricted to a specific vendor’s
ORB. Furthermore, it provides client-side transparency and has optimal efficiency, as
the client directly invokes fragment methods without unnecessary indirection steps.

2.2 The Fragmented-Object Model

In a traditional client/server system based on remote method invocations, the function-
ality of an object completely resides on a single node. For transparently accessing the
object, the client-side middleware instantiates a stub that handles remote invocations
(Fig. 1a). Usually, the stub code is automatically generated from an interface specifica-
tion. All objects with the same interface share the same stub code. The middleware run-
time systems instantiates the stub as soon as the client binds to an object reference. The
bind operation is either requested explicitly by the client, or it is performed implicitly
when an object reference is passed to the client through the marshalling mechanisms of
the ORB.

In the fragmented-object model, the distinction between client stubs and the server
object is no longer present. From an abstract point of view, a fragmented object is
a unit with unique identity, interface, behaviour, and state, as it is in classic object-
oriented design. The implementation of these properties, however, is not bound to a
certain location, but may be distributed arbitrarily on various fragments (Fig. 1b). Any
client that wants to access the fragmented object needs a local fragment. In addition,
there can be fragments that are deployed on nodes without a client. The client interface
of a local fragment is identical to that of a traditional stub. However, the local fragment
can be specific for exactly that object. Two objects with the same interface can lead
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Fig. 1. Traditional Client/Stub Structure vs. Fragmented Object

to completely different local fragments. This internal structure allows a high degree
of freedom on where the state and functionality of an object is provided, and how
the interaction between fragments is done. The internal distribution and interaction
is hidden from the outer interface. In addition, the distribution of functionality to
fragments can even be changed dynamically at runtime.

The AspectIX middleware provides support for fragmented objects. Unlike other
fragmented-object middleware infrastructures such as FOG [12] and Globe [7], it even
supports implicit binding of fragmented objects upon the receipt of a marshalled object
reference. All reference-related operations are handled by a generic reference manager
and pluggable profile managers [6]. AspectIX uses CORBA IORs as references and also
provides interoperability with standard CORBA applications. In addition to CORBA
IIOP profiles, a custom IOR profile (called APX) for fragmented objects is supported.
When binding to such a reference, fragment-specific code is transparently loaded; for
this purpose, AspectIX provides a Dynamic Loading Service (DLS [9]) that enables
the lookup, selection, and loading of platform-dependent code at run-time. From a
client point of view, the interface of a local fragment is identical to that of a standard
CORBA object.

3 The AspectIX Replication Architecture

3.1 Overview

On top of the basic infrastructure for fragmented objects, we provide support for
fault-tolerant active replication of distributed objects. This chapter first outlines our
architecture, which encapsulates replication inside a fragmented object. We discuss the
internal implementation structure of the fragments, illustrate the use of the AspectIX
profile in the IOR to reference replica groups, and describe the run-time infrastructure,
which is used to create and administrate replica groups. Subsequently, we explain how
semantic properties can be defined by developer annotations. Finally, we focus on the
code-generation process that automatically produces fragment code from the interface
definition, the semantical annotations, and the non-replicated implementation.
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3.2 Fault-Tolerant Replication with Fragmented Objects

A fault-tolerant service in the fragmented-object model is represented by a single
distributed object which is composed of replica fragments and access fragments (Fig. 2).
The development process consists of defining the global object interface in CORBA
IDL, implementing the functional parts of the service, and creating the fragment code.
The creation of fragment code is done automatically by tools; these tools can make use
of additional semantic annotations provided by the developer, as we will describe in
Section 3.3. This enables the generation of a customised layer between the client and
the core framework and also between the framework and the replica implementation.

Host A

Host D Host E

Host B Host C

Replica
Fragment

Client Client

Replica
Fragment

Replica
Fragment

Access
Fragment

Access
Fragment

Fragmented
Object

Fig. 2. Replication with Fragmented Objects

Details of the Fragment Architecture. The layered design of access and replica
fragments in our architecture is shown in Fig. 3. Access fragments are used by client
applications; the replica fragments contain the object state. Replica fragments do not
support direct client access. Instead, an access fragment is instantiated at the same
location as the replica fragment. For simplicity, this detail is not shown in Fig. 3.

Starting at the client side, the client application accesses the fault-tolerant frag-
mented object via its interface like any other CORBA object. The generated access frag-
ment may contain optional developer code that is directly embedded (see Section 3.3).
Furthermore, it contains a Context Handler, code for marshalling and unmarshalling of
requests (equal to a standard client-side stub), and code for remote communication.

If client A invokes a method at a replicated object B, a node failure during the
invocation can make it necessary to repeat the invocation. This happens if the client A
communicates with a replica fragment that fails. The re-invocation contacts a different
replica of B. Alternatively, A can be replicated itself. In this case, the access fragment
provides client-side duplication suppression by selecting one replica of A to actually
make the remote invocation. If this selected replica fails, another replica of A repeats
the invocation. To preserve the at-most-once invocation semantics of CORBA, in both
cases the repetition of the invocation needs to be detected and filtered out at the replica
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fragments of B. For this purpose, the Context Handler adds context information with a
consistent unique ID that identifies the request.

At the network level, a totally ordered group communication system provides the
basis for consistent active replication. Currently, our prototype uses the JGroups system
[1], which is based on the closed-group approach. This implies that group communi-
cation is only used between replicas; any replica can act as a gateway to communicate
between an access fragment and the replica group. However, our implementation easily
supports the exchange of the network layer, such that group communication systems
with an open-group model—like our own group communication framework [18]—can
be used. This potentially improves performance (e.g., the access fragment can directly
multicast its request to all replicas). For tolerating Byzantine failures, an appropriate
variant

With the gateway approach, the Communication element in the access replica is
responsible for transmitting calls to one available replica. If this replica fails, the
Communication transparently reconnects to another replica fragment and reissues the
call. If the call has already been processed by the replicas, this is detected and the
invocation result is returned from a cache. The Communication component in replica
fragments is responsible for passing requests to group communication. All requests
that are received from group communication are placed into a totally ordered queue for
subsequent processing in the upper layer.

The upper layer consists of three different components: First, the Marshalling com-
ponent deserialises requests and serialises replies. The replica side of the Context
Handler component is used for the suppression of duplicated requests. The Scheduling
component is responsible for the internal message management and for the deter-
ministic multithreading support, which is explained in detail in Section 3.5. On the
top end, requests are passed to the functional implementation that was provided by
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the developer; this implementation may partially get modified by the code generation
process (see Section 3.4)

IOR References to Replica Groups. As described in Section 2.2, the AspectIX
middleware uses CORBA IORs to reference fragmented objects via an APX profile.
This profile contains a unique object ID, a specification of the initial fragment type
to load, and contact information of other fragments. The initial fragment type can be
specified in a language-independent way; equivalent fragment implementations may
exist for various programming languages or execution platforms. The Dynamic Loading
Service (DLS) of AspectIX loads the appropriate code based on the specification from
the IOR profile [9].

The initially loaded fragment evaluates the contact information from the IOR profile.
In the gateway approach, this information consists of a list of all replica gateway
addresses of the group. In the open-group approach, address information for the group
communication system (like a multicast address for group discovery or the addresses
of gossip servers) can be stored in the contact information. The removal or addition of
replicas triggers the creation of a new version of the replica group’s IOR. The standard
approach for updating the client’s IORs, which is also used in FT-CORBA, is to include
the client’s current IOR version in each invocation request to the replica group. If this
version is out-of-date, the replica will send the current version in the reply to the client.

This approach is practical in many situations; however, it does not provide any
guarantees that all client-side IORs will get updated in time before they no longer
provide valid contact information. To improve this situation, we additionally support
the concept of a lifetime specified within the IOR references [10]. During the specified
lifetime, the replica group guarantees that the IOR information can be used to contact
the group; in the gateway approach, this means that at least one of the replica gateway
addresses included in the IOR remains accessible. Optionally, the address of a location
service can be specified in the IOR, which manages an up-to-date contact information
for the replica group. This is useful if the distribution of a fragmented object changes
frequently and the risk of stale references is high.

Run-Time Infrastructure. Similar to other fault-tolerant middleware infrastructures,
AspectIX uses the factory pattern to create and set up replicas. Replication groups are
implemented as self-managing entities; this reduces the complexity of the necessary
infrastructure compared to other systems that require a dedicated replication manager.
In addition, the management automatically benefits from the same fault-tolerance mech-
anisms as the replicated object itself.

Starting a new replicated service involves several steps. First, a factory must be
acquired via a factory finder. A factory finder represents a search scope for possible
places of execution, as defined by the CORBA Life Cycle Specification [17]. Currently,
our factory finder is implemented straightforwardly in plain CORBA and well-known
on every node within a domain. This way, a node can register its local factories and it
can lookup factories from all other nodes. Multiple factory finders can be provided for
fault tolerance.

Our generic factory for object creation offers two methods: one for setting up an
initial replica of a replicated fragmented object and another one for setting up additional
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Fig. 4. Creation of first and additional replicas

replicas. After lookup of one or more factories via the factory finder, one of them
is requested to instantiate the first replica via create initial replica() (see
Fig. 4 (a)). The factory creates the initial replica and activates the fragment object.
Afterwards, the object is returned to the calling client and, as it is a fragmented object, a
local access fragment is dynamically instantiated. This results in a simple client/server
structure with only one replica. The management code within this replica is able to
control the creation of additional replicas.

A management interface of the fragmented object is used to adjust the desired
number of replicas (see Fig. 4 (b)). If the client increases the number of replicas, the
existing replica group is triggered to add the necessary number of additional replicas.
The replica-side fragment contacts the factory finder to request additional factories. In
the next step, a reference to the fragmented object is passed to a factory. At the factory
side, the fragmented object is transparently bound by the middleware, which loads the
initial fragment. Under control of the factory, the local fragment is reconfigured to be a
replica fragment. The state of the existing replica group is transferred to the new replica
similar to the CORBA Life Cycle Service. The addition of replicas is repeated until
the desired replication level is reached or until no additional factories are found. The
failure of a replica in the group is detected by a failure-detection mechanism at the
group-communication level. After detecting a failure, the replica group automatically
sets up a new replica in the same way, as long as another factory is available.

3.3 Semantic Information from Object Developers

A simple scheme for generating client-side and replica-side fragment code only uses
IDL interface information, like a traditional CORBA IDL compiler does for stubs
and skeletons. Additionally, our architecture allows the developer to express semantic
knowledge in order to improve and customise the replication mechanisms. Currently,
we support several annotations on a per-method basis:
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1 i n t e r f a c e C C p r o c e s s o r {
2 t r a n s a c t i o n i d c h a r g e ( i n c a r d d a t a card , i n f l o a t amount )
3 r a i s e s ( CardNotVal id , T r a n s a c t i o n F a i l e d ) ;
4
5 # pragma a n n o t a t e ( r e a d o n l y )
6 b o o l e a n v a l i d a t e c a r d ( i n c a r d d a t a c a r d ) r a i s e s ( CardNotVa l id ) ;
7
8 # pragma a n n o t a t e ( l o c a l )
9 b o o l e a n v a l i d a t e c a r d c h e c k s u m ( i n c a r d d a t a c a r d )

10 r a i s e s ( CardNotVa l id ) ;
11 } ;

Fig. 5. IDL with semantic annotations

– readonly: A method marked as read-only does not modify the relevant replica
state. Instead of executing this method in total-order at all replicas, it is sufficient
to invoke it on one available replica.

– parallelizable(methodlist): A method marked as parallelisable with
respect to a set of other methods can be executed in parallel with the specified
list of other methods. This allows true multithreading.

– local: The implementation of a method marked as local will be placed in the
client-side fragment. This way, methods that need no access to the replica state
can be executed locally at the client, while still being conceptionally part of the
distributed object.

– intercepted: A method marked as intercepted will execute custom code at the
client-side before and after invoking the remote method at the replica group. This
mechanism can be used for local preprocessing, for caching, or for the accumula-
tion of multiple client invocations into one remote invocation to the replica group.

Our current implementation uses annotations embedded as #pragma instructions
within the IDL file, as the example in Fig. 5 illustrates. Our flexible IDL compiler
IDLflex [22] allowed us to implement this solution easily.

3.4 Code Generation for Fragments

In our replication infrastructure, the creation of fragment implementations is automated
by a code-generation tool. Two basic fragment types are required (see Section 3): A
replica fragment for consistency management and a client-side access fragment. The
current prototype of the code-generation tool is based on IDLflex [22], an IDL-compiler
that generates customisable code. IDLflex parses CORBA IDL, evaluates an XML-
based mapping specification, and uses this specification to create arbitrary output code.
It includes two standard mapping specifications for the Java programming language,
one for standard CORBA and one for AspectIX fragmented objects.

For replication support, the IDL-compiler was extended to support semantic anno-
tations in IDL files, expressed as #pragma annotate statements. Within a custom
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mapping specification, these annotations are evaluated and used to control the code-
generation process.

The development process of a fault-tolerant fragmented object is illustrated by Fig. 6.
The annotated IDL is used to create a base class for the access fragment and the replica
fragment. Additional developer code can be added to the access fragment if required by
local or intercepted operations, as we describe below. The implementation of the replica
fragment is similar to that of a non-replicated CORBA servant. The main differences are
that (1) it has to inherit from the generated replica base class and (2) it has to implement
methods for state transfer.

The generated code depends on the code annotations. If at least one read-only
method is present, the generated code for the Communication component will examine
all invocation requests. If the requested method is marked as read-only, it will be
passed directly to the implementation of one replica, bypassing the totally ordered group
communication.

The Scheduling component interacts with the deterministic thread-scheduling sup-
port of our replication infrastructure (see Section 3.5). The generated code of the
component knows which methods are marked read-only and parallelisable. This infor-
mation is made available to the thread scheduler in order to maximise the concurrency
of request execution.

Specifying a method as local causes the method’s implementation to be placed in
the access fragment instead of the replica fragment. Such method implementation must
not access replica state. This approach is useful for methods that, for example, validate
client data in a state-independent way or that provide static information to the client.

For each method annotated as intercepted, an abstract method is created in the ac-
cess fragment; the actual method implementation must be provided by the developer.
A protected method is provided in the access fragment for accessing the real imple-
mentation at the remote replica group; this method can be used within the developer
code in the access fragment. Applications for such interceptions are client-side caching
strategies or the accumulation of multiple client method invocations with subsequent
manipulation of the replicated object’s state with only one invocation to the replica group.
Our current prototype requires that the developer manually implements the additional
client-side code.
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Another aspect of the creation of replica fragment code is the ability to modify
the functional object implementation. This approach is used to intercept native Java
synchronisation code. Synchronisation operations need to be intercepted by our de-
terministic thread scheduler (see Sect 3.5). By replacing all relevant statements with
custom code, such interceptions is possible without internal modification to JVM or
operating system. The same approach could be used to intercept Java API calls to
nondeterministic methods like the generation of time-stamps or random numbers.

3.5 Multithreading in Actively Replicated Services

Active replication requires a deterministic execution of all state-modifying actions.
If multiple threads are allowed to access the replicated object in parallel, the order
in which threads access shared data may vary between replicas; this can lead to an
inconsistent object state.

The popular solution of using a single-threaded execution has several drawbacks. If
a replica group issues a nested invocation, it has to idle until this invocation returns; if
a second thread used this waiting time for computations, it would result in improved
performance. The single-threaded approach is also deadlock prone: If such a nested
invocation calls back a method on the first replica group, this call is blocked by the
waiting thread, resulting in a deadlock. Similarly, with a single-threaded model, condi-
tion variables that suspend the current thread until woken up by another thread cannot
be used.

To provide support for multithreading, we integrated our deterministic thread sched-
uler for active replication [20] into our AspectIX replication architecture. Our scheduler
uses an algorithm similar to that by Zhao et al. [23], improved by support for condition
variables and for native Java synchronisation mechanism. It provides a non-preemptive,
deterministic mechanism for thread scheduling. A new thread is only created or an
existing thread is only resumed, if all other existing threads have reached a safe state,
i.e., have terminated or have blocked waiting for a mutex, for a condition variable
notification, for a timeout, or for a nested invocation reply. All decisions are fully
deterministic, and consequently remain consistent among all replicas. Lock requests,
lock releases, and condition variable access need to be passed to our thread scheduling
algorithm.

We do not want to modify the execution environment (i.e., the JVM), but still
want to allow implementing synchronisation in the replicated object with native Java
mechanisms (synchronized statements, etc). To intercept these statements, our code
generation tool automatically transforms these statements into appropriate synchronisa-
tion calls to the deterministic scheduler in the replica fragment, as described above. This
approach requires that the synchronisation of a replicated object is fully encapsulated
within the replica fragment. That is, we assume that lock object instances used by the
replica implementation are not used for synchronisation in code outside the replica
fragment, but within the same JVM (Java virtual machine). Developer code within
the access fragment has no direct access to the object state and thus does not require
synchronisation.

Based on the semantic annotations, the scheduling algorithm can be further im-
proved. A thread may be created or resumed not only if all other threads have reached
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a safe state, but also if it is marked as parallelisable with all other threads that have
not terminated. Special care needs to be taken for read-only methods, which are only
executed in one replica. These methods are not allowed to use wait/notify operations on
condition variables, as this could lead to an inconsistent scheduling of other modifying
methods.

4 Evaluation

Our semantic annotations at the interface level offer ample opportunities to tune and
optimise the implementation of replicated objects. In many cases these are very appli-
cation specific, e.g., if a resource intensive subtask is moved from server to client side.
In this section, we present two general examples, which show the possible speed-up of
our approach. All presented measurements were made on AMD Opteron 2.2 GHz Linux
server machines connected via a switched 100Mbit/s ethernet, using our AspectIX ORB
with JGroups 2.2.9.1 for group communication and Java SDK-1.5.0. The JGroups stack
was configured to use TCP connections and TOTAL ordering.

In the first example, we measured the difference in invocation time between a read-
only method and a modifying method. The read-only method invocation is not dis-
tributed via the group-communication framework but instead sent directly to one of the
replicas. Fig. 7(a) shows the average time per invocation, obtained from at least ten runs
with 5000 client invocations. A single client accesses a replica group with the number of
replicas increasing from one to five nodes. The invocation cost for modifying methods is
dominated by the cost of the totally ordered group communication. This underlines the
benefit from using semantic knowledge about object methods for building an efficient
fault-tolerant replication system.

The second example analyses our support for condition variables in the deterministic
scheduler. We implemented a simple replicated counter that is increased by a producer
and decreased by a variable number of consumers. Without condition variables, the
consumers must use polling (for our measurements, a one ms delay between retries was
used); with condition variables, a consumer call can block within the counter object
at a condition variable until it is woken up by a producer call. We again show the
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Fig. 7. Efficiency gains by read-only annotations and by multithreading
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average time per consumer invocation, averaged over repeated experiments with 5000
calls per client. The time is expected to increase linearly with the number of consumers,
as multiple consumers compete for values produced by a single producer. As shown in
Fig. 7(b), the multithreaded approach with condition variables outperforms a single-
threaded implementation; the benefit increases with a rising number of clients.

5 Conclusions

We have presented an architecture for fault-tolerant replication of objects in distributed
systems based on the fragmented-object model. A fragmented-object middleware loads
custom code at client side and server side on a per-object basis. This enables the
implementation of generic fault-tolerance support fully transparent for clients, without
internal modifications to the middleware, and without the overhead of indirections that
take place in the interception or service approach to fault-tolerance support.

The core of our architecture is a code-generation process that automatically produces
client-side access fragments and replica-side consistency management fragments, based
on the interface specification, the functional implementation provided by the object
developer, and semantic annotations. Our current prototype uses semantic annotations
inside the IDL interface definitions, and supports the Java programming language.

We use the semantic annotations for selecting consistency mechanisms for method
invocation, strategies for thread scheduling, and for supporting client-side computa-
tions. Methods can be marked as read-only, which allows their execution without strict
total-order requirements. They can be marked as parallelisable, which enables parallel
execution by our multithreading support for actively replicated objects. Furthermore,
parts of the functional object implementation can be directly placed at the client side.

Code transformation is also used for removing nondeterministic behaviour in object
implementations. We specifically use this to allow multithreading in actively replicated
objects; native Java synchronisation mechanisms are replaced with code that allows
interception by our deterministic thread scheduler.

Our prototype assumes that a fragmented object middleware is used, but our concept
is not strictly limited to such a platform. Other platforms that provide means to load
custom object-specific code at the client side, for example based on the smart-proxy
principle, can similarly use our code-generation concept for supporting fault tolerance.
One advantage of the fragmented-object approach is its flexibility that even supports
dynamic reconfiguration at run-time.
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10. Rüdiger Kapitza, Hans P. Reiser, and Franz J. Hauck. Stable, time-bound references in
context of dynamically changing environments. In MDC’05: Proc. of the 25th IEEE Int.
Conf. on Distributed Computing Systems - Workshops (ICDCS 2005 Workshops), 2005.

11. Silvano Maffeis. Adding group communication and fault-tolerance to CORBA. In
Proceedings of the Conference on Object-Oriented Technologies, (Monterey, CA), USENIX,
pages 135–146, 1995.

12. Mesaac Makpangou, Yvon Gourhant, Jean-Pierre Le Narzul, and Marc Shapiro. Fragmented
objects for distributed abstractions. In T. L. Casavant and M. Singhal, editors, Readings in
distributed computing systems, pages 170–186. IEEE Computer Society Press, 1994.

13. Luise E. Moser, P. M. Melliar-Smith, and Priya Narasimhan. Consistent object replication in
the eternal system. Theor. Pract. Object Syst., 4(2):81–92, 1998.

14. Nitya Narasimhan, Louise E. Moser, and P. M. Melliar-Smith. Transparent consistent
replication of Java RMI objects. In DOA, pages 17–26, 2000.

15. Priya Narasimhan, Louise E. Moser, and P. M. Melliar-Smith. Enforcing determinism for
the consistent replication of multithreaded CORBA applications. In SRDS ’99: Proceedings
of the 18th IEEE Symposium on Reliable Distributed Systems, page 263, Washington, DC,
USA, 1999. IEEE Computer Society.

16. Object Management Group (OMG). Common object request broker architecture: Core
specification, version 3.0.2. OMG document formal/02-12-02, 2002.

17. Object Management Group (OMG). Life cycle service specification, version 1.2. OMG
document formal/02-09-01, 2002.

18. Hans P. Reiser, Udo Bartlang, and Franz J. Hauck. A reconfigurable system architecture for
consensus-based group communication. In Proc. of the 17th IASTED Int. Conf on Parallel
and Distributed Systems (Phoenix, AZ, USA, Nov 14-16, 2005), 2005.

19. Hans P. Reiser, Michael J. Danel, and Franz J. Hauck. A flexible replication framework for
scalable and reliable .NET services. In Proc. of the IADIS Int. Conf. Applied Comuting 2005,
Vol I, Algarve, P, pages 161–169, 2005.
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