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This paper studies routing vulnerability in networks
modeled by chordal ring graphs. In a chordal ring graph,
the vertices are labeled in ZZZ2n2n2n and each even vertex iii
is adjacent to the vertices iii + aaa, iii + bbb, i + ci + ci + c, where aaa,
bbb, and ccc are different odd integers. Our study is based
on a geometrical representation that associates to the
graph a tile which periodically tessellates the plane. Us-
ing this approach, we present some previous results
on triple-loop graphs, including an algorithm to calcu-
late the coordinates of a given vertex in the tile. Then,
an optimal consistent fault-tolerant routing of shortest
paths is defined for a chordal ring graph with odd di-
ameter and maximum order. This is accomplished by
associating to the chordal ring graph a triple-loop one.
When some faulty elements are present in the network,
we give a method to obtain central vertices, which are
vertices that can be used to reroute any communication
affected by the faulty elements. This implies that the di-
ameter of the corresponding surviving route graph is
optimum. © 2000 John Wiley & Sons, Inc.

Keywords: chordal ring networks; fault-tolerance; routing vul-
nerability; plane tessellations

1. INTRODUCTION

Loop networks have been widely considered in recent
years as good models for interconnection or communi-
cation computer networks, due to their regularity, simple
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structure, and symmetry. See Bermond et al. [5] for an
exhaustive survey on this topic. Within this context, two
problems that have been considered in the literature—
because they are closely related to the network band-
width and the transmission delay—are the minimization
of the diameter for a given number of nodes and max-
imum degree and the maximization of the number of
nodes given the diameter and the maximum degree. Au-
thors that have contributed to the study of these problems
are, among others, Aguiló and Fiol [1], Aguiló et al. [2],
Bermond and Tzvieli [7], Chen and Jia [8], Du et al. [11],
Erdös and Hsu [12], Esqué et al. [14], Fiol et al. [17], Hsu
and Shapiro [19, 20], Tzivieli [29], and Yebra et al. [31].
See also the survey of Hwang [21].

Chordal ring graphs of degree 3 constitute a family
of generalized loop networks that, although they were
first introduced by Coxeter [9] more than 50 years ago,
were first considered from the point of view of intercon-
nection networks by Arden and Lee in [3]. These graphs
are simply obtained by adding chords in a regular man-
ner to an undirected cycle. Yebra et al. [31] improved
the number of vertices (in relation to its diameter) in the
construction of Arden and Lee. Moreover, several op-
timal constructions of generalized chordal ring graphs
were presented in this reference. Following this work,
and also Morillo [25], our study is based on a geometri-
cal representation that associates to a generalized chordal
ring graph a tile which periodically tessellates the plane.
This geometrical approach leads us to the study of lat-
tices and congruences in Z2. Within this framework, see
the contributions of Fiol [16] and Morillo [26]. It is worth
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mentioning that the study of graphs and digraphs asso-
ciated to plane tessellations was first initiated by Wong
and Coppersmith [30] and Fiol et al. [17]. Since then,
this geometrical approach has been successfully applied
to optimize the order and the diameter of different kinds
of networks, as well as to define routing schemes with
good properties with respect to routing vulnerability.

In fact, one of the most important features to be taken
into account in the design of an interconnection network
is the existence of efficient algorithms for routing mes-
sages. Let us consider the network modeled by a con-
nected graph G = (V, E). A routing ρ in G is a function
ρ : V×V → E∗, where E∗ is the set of all paths of G. We
say that ρ is a routing of shortest paths when ρ(x, y) is a
shortest path for every x, y ∈ V. The routing ρ is bidirec-
tional if ρ(x, y) = ρ(y, x) for every x, y ∈ V, and ρ is said
to be consistent when ρ(x, y) = x, u1, . . . , z, . . . , um, y im-
plies that ρ(x, z) = x, u1, · · · , z and ρ(z, y) = z, · · · , um, y.
To give a measure of the routing vulnerability, the sur-
viving route graph was introduced in [10] by Dolev et
al. Given a connected graph G, a routing ρ, and a set
F = VF ∪ EF of faulty vertices and edges, the surviv-
ing route graph R(G, ρ)/F is the directed graph with a
set of vertices V \ VF and where a vertex x is adjacent
to vertex y if ρ(x, y) does not contain any element of F.
Note that if the routing is bidirectional then R(G, ρ)/F
is a graph. The diameter of R(G, ρ)/F gives the maxi-
mum number of rerouting steps needed to send a mes-
sage, affected by the faulty elements of the set F, along
a sequence of surviving routes. Hence, this diameter is
a measure of the worst-case behavior of the faulty net-
work. Thus, given a network, an interesting problem is
to find routings that can tolerate many faults without in-
creasing too much the diameter of the corresponding sur-
viving route graph. A vertex c adjacent in R(G, ρ)/F to
and from any other vertex of the surviving route graph
will be called a (ρ, F)-central vertex. The existence of
such a vertex is interesting since, in the network mod-
eled by G, any communication from node x to node y
could always be carried out through c with only one
rerouting step. Thus, when (ρ, F)-central vertices exist,
the diameter of R(G, ρ)/F is at most two. See Bermond
et al. [5] for a survey of known results on the diameter
of the surviving route graph of different networks. See
also Fraigniaud and Lazard [18] for a survey on differ-
ent methods and problems of communication in usual
networks.

We are interested in the construction of reliable and
fault-tolerant routings of shortest paths in networks mod-
eled by chordal ring graphs. Authors that have con-
tributed to the study of these problems, for double-
and triple-loop graphs are, among others, Aguiló and
Fiol [1], Arden and Lee [4], Escudero et al. [13],
Fàbrega and Zaragozá [15], Hwang and Wright [22],
Liestman et al. [23], Manabe et al. [24], Mukhopad-
hyaya and Sinha [27], Narayanan and Opatrny [28], and

Zaragozá [32]. As mentioned above, a tile that periodi-
cally tessellates the plane will be associated to the graph
under study. Using this approach, we present in Section 2
some previously known results on triple-loop networks.
Moreover, an algorithm to calculate the coordinates of
a given vertex of an optimal triple-loop graph, in the
tile that represents it, is also presented in this section. In
Section 3, chordal ring graphs of degree 3 are studied.
A fault-tolerant routing of shortest paths is defined in
Section 4 for a chordal ring graph of degree 3 with odd
diameter and maximum order. This is accomplished by
associating to the chordal ring graph a triple-loop one
and taking into account the coordinates of the vertices.
Finally, the vulnerability of this routing is studied in Sec-
tion 5. When some faulty elements are present in the net-
work, we give a method to obtain central vertices. This
implies that the diameter of the corresponding surviving
route graph is optimum.

2. TRIPLE-LOOP GRAPHS

Let us review some previous results on triple-loop net-
works that will be used in the following in connection
with chordal ring graphs:

In this paper, a triple-loop graph TN(A, B, C) is a graph
with vertex set ZN and set of edges constituted by all
the pairs {i, i ± A}, {i, i ± B}, {i, i ± C}, where A and
B are different integers such that 1 ≤ A, B ≤ bN/2c ,
and C = −(A+B). The graph is vertex-transitive and the
translations i , i+α, α ∈ ZN, are automorphisms. More-
over, TN(A, B, C) is connected if and only if (A, B, N) = 1.
The adjacency pattern shown in Figure 1 leads to a geo-
metrical representation of the graph in which vertices
correspond to hexagonal cells and TN(A, B, C) corre-
sponds to a tile that periodically tessellates the plane.
See the references Bermond et al. [6], Morillo et al. [26],
Yebra et al. [31], and [15, 32] for a detailed study of the
use of this geometrical representation to solve metric
problems in loop graphs.

It has been proved in [25] that the triple-loop graphs
TNk ((3k + 1) B, B, −(3k + 2) B), where Nk = 3k2 + 3k + 1
and B ∈ Z∗

Nk
, are the ones with maximum order for

a given diameter k, and all of them are isomorphic to
TNk (3k + 1, 1, −(3k + 2)). In the tessellation associated
to these optimal triple-loop graphs, the hexagons corre-
sponding to vertex 0 are distributed in the plane accord-
ing to an integer lattice satisfying the following equa-

FIG. 1. Adjacency pattern.
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tions (in ZNk ), as shown in Figure 2:

(k + 1) A − k B = 0

k C − (k + 1) B = 0

To derive a routing algorithm in a network mod-
eled by a graph associated to a plane tessellation, it
will be useful to have a method to calculate the coor-
dinates of a given vertex in the tile. Let TNk (A, B, C) be
a triple-loop graph with diameter k and maximum or-
der Nk. For any z ∈ ZNk , we define [z] = {(m′, n′, p′) :
m′ A+n′ B+p′ C ≡ z (mod Nk)}. The triple (m′, n′, p′)
corresponds in TNk (A, B, C) to a walk from vertex 0 to
vertex z formed by m′ edges labeled A, n′ edges labeled
B, and p′ edges labeled C. In the hexagonal tessellation,
by doing m′ steps A, n′ steps B, and p′ steps C, we reach
from the center of any tile a cell corresponding to vertex
z which is not necessarily located in the same tile. Let
us call the coordinates of a vertex z the triple of integers
(m, n, p) such that m A + n B + p C ≡ z (mod Nk) and
|m|+ |n|+ |p| = d(0, z). In TNk (A, B, C) this triple gives
the shortest paths from vertex 0 to vertex z. Note that,
due to the 2-dimensional nature of our representation,
the integers m, n, p will have at least one of them equal
to 0. Furthermore, if two of them are different from 0,
then their signs must be different.

The purpose of the rest of this section is to derive an
algorithm to find the coordinates of a given vertex z in
a given tile centered at 0. To this end, we will find first
a triple (M, N, 0) ∈ [z] satisfying one of the following
conditions: (a) 0 ≤ M ≤ k and 0 ≤ N ≤ k; (b) 0 ≤
−M ≤ k and 0 ≤ −N ≤ k; (c) M > 0, N < 0 and
M − N ≤ k; or (d) M < 0, N > 0 and N − M ≤ k.
These conditions will assure that all the cells determined
by (M, N, 0), corresponding to the different vertices of
TNk (A, B, C), will belong to the same tile, as shown in
Figure 3. However, the path determined by (M, N, 0) is
not necessarily a shortest one. So, the algorithm must
finish obtaining the coordinates (m, n, p) from (M, N, 0).

FIG. 2. Tile and hexagonal tessellation corresponding to diameter
k = 2.

FIG. 3. The four zones, according to (M, N, 0).

We can restrict our study to the case A = 3k + 1, B =
1, and C = −(3k + 2). Let z ∈ ZNk and divide z by
A = 3k + 1 to obtain z = q A + r. Since B = 1, we can
write z = q A + r B. See a detailed example in Figure 4,
in which the labeled cells are the ones reached from 0
according to the different values of q and r.

Thereby, the algorithm that we propose is the follow-
ing:

FIG. 4. First step of the algorithm, for k = 4, N4 = 61, A = 13,
B = 1.
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FIG. 5. Plane representation of adjacencies.

ALGORITHM

1. Divide z by A = 3k + 1.

Integers i =
⌊

z

3k + 1

⌋
and j = z (mod 3k + 1)

verify (i, j, 0) ∈ [z] , 0 ≤ i ≤ k , 0 ≤ j ≤ 3k.
2. Obtain (M, N, 0).

a. If j ≤ k, then (M, N, 0) = (i, j, 0).
b. If j > k, then (i1, j1, 0) = (i − k, j − 2k − 1, 0).

Since k A+(2k+1) B = Nk, we have (i1, j1, 0) ∈
[z]. Moreover, −k ≤ i1 ≤ 0 , −k ≤ j1 < k − 1.

(i) If j1 ≤ 0 or j1−i1 ≤ k, then (M, N, 0) =
(i1, j1, 0).

(ii) If j1 − i1 > k, then (i2, j2, 0) = (i1 + k +
1, j1 − k, 0).
Since (k + 1) A − k B = Nk, (i2, j2, 0) ∈
[z]. Moreover, 0 < i2 ≤ k, −k < j2 < 0,
and j2 − i2 ≥ k.
Thereby, (M, N, 0) = (i2, j2, 0).

3. Obtain (m, n, p) from (M, N, 0).

a. If M · N ≤ 0, then (m, n, p) = (M, N, 0).
b. If M · N > 0, then:

(i) If |N| ≥ |M|, then (m, n, p) =
(0, N − M, −M).

(ii) If |N| < |M|, then (m, n, p) =
(M − N, 0, −N).

This method to calculate the coordinates of a vertex in
the tile will be used in Sections 4 and 5 to define a
fault-tolerant routing in a chordal ring network. In Liest-
man et al. [23], an algorithm to calculate the coordinates
in triple-loop graphs is also presented. Although both
algorithms have the same order of complexity, the one
given in [23] depends on a previous method to calculate
coordinates in double-loop graphs, while our algorithm
is based on simple integer division.

FIG. 6. The graph C12(1, 5, −1) and the associated tessellation.

3. CHORDAL RING GRAPHS OF DEGREE 3

Let 2n be an even integer and let a, b, c be different
odd integers between 0 and 2n. A chordal ring graph of
order 2n and steps a, b, c is a graph C2n(a, b, c) in which
the set of vertices is Z2n and any even vertex i is adjacent
to the odd vertices i + a, i + b, i + c (consequently, any
odd vertex j is adjacent to the even vertices j − a, j −
b, j − c.) The graph C2n(a, b, c) is 3-regular, bipartite,
vertex-transitive and it is connected if and only if (a −
b, b − c, 2n) = 2.

As triple-loop graphs, chordal ring graphs can be rep-
resented by a periodic tessellation of the plane. The adja-
cency pattern shown in Figure 5 defines such a tessella-
tion, in which vertices are now represented by triangular
cells. An example is given in Figure 6.

We can consider the vertices of C2n(a, b, c) grouped
into n pairs P = (i, i + a) linked by the double steps
2A = b − c , 2B = c − a , and 2C = a − b . This allows
us to consider each pair P adjacent to the pairs P ± 2A ,
P ± 2B , and P ± 2C, so we have a new graph of order
n; see Figure 7. In fact, the obtained graph is isomorphic
to Tn(A, B, C), but with even vertices and steps.

It is proved in [25] that Cmk (−1, 3k, 1), with k = 2l+1
and mk = (3k2 + 1)/2, is the chordal ring of maximum
order for diameter k. The associated triple-loop graph is
TNl (3l + 1, 1, −(3l + 2)), which is also optimal. For the
case k = 2l, the maximum order attainable is at most
3k2/2 and the associated triple-loop graph is not optimal.
In the following sections, we concentrate on chordal ring
graphs with maximum order and odd diameter.

4. ROUTING

In this section, we define a consistent routing of short-
est paths in the graph Cmk (a, b, c) with odd diameter k
and steps a, b , and c chosen as above. The routing that
we propose has good properties because it makes use of
the graph symmetries.

Because of the vertex-transitivity of the graph, it suf-
fices to define the routing only for the pairs (0, z). To
this end, let us consider the spanning tree shown in Fig-
ure 8, which will be called the routing tree associated
to ρ(0, z), such that for any vertex z the unique path in

FIG. 7. Adjacency pattern for C2n(a, b, c) and its associated triple-loop
graph.

NETWORKS–2000 183



FIG. 8. Routing tree associated to ρ(0, z) and situation of vertices for k = 7.

this tree is precisely ρ(0, z). The tile is divided into three
zones which give us three subtrees. We only need to
define the paths in the first zone and obtain the others by
a rotation of 2π/3 or −2π/3 , depending on the situation
of the vertex in the tile. Rotating a path is equivalent to
permuting the steps, as will be detailed in what follows.

Even vertices are distributed in the tile according
to their coordinates in the corresponding triple-loop
graph. In the first zone, we find vertices with nega-
tive second coordinates: z = (0, −n, p), n, p ≥ 0 and
(m, −n, 0), m, n > 0. By a (2π/3)-rotation, we obtain
the vertices of the second zone, whose first coordi-
nate is negative: z = (−m, n, 0), m, n ≥ 0 and z =
(−m, 0, p), m, p > 0. The third zone, corresponding to
vertices with a negative third coordinate, can be ob-
tained by a (2π/3)-rotation from the second one or by
a (−2π/3)-rotation from the first one. Odd vertices are
all in the same zone as their even mates, except vertices
z = i 2A + a, which are in the first zone, while vertices
z = i 2A are in the third one.

Let α denote the (2π/3)-rotation. If z = (m, n, p) is an
even vertex, then α(z) = (n, p, m). On the other hand, if z
is odd, then α(z) = α(z−a)+α(a) = α(z−a)+c. Similarly,
if z = (m, n, p) is an even vertex, then α−1(z) = (p, m, n),
and if z is odd, then α−1(z) = α−1(z − a) + α−1(a) =
α−1(z − a) + b.

For the given vertex z , we define Z(z) as 1, 2 or 3,
according to the zone of the tile that it belongs to. For
Z(z) = 1, we calculate the path ρ(0, z). For Z(z) = 2,
the vertex α−1(z) is in the first zone, so we can calculate
ρ(0, α−1(z)) and rotate this path by α to obtain ρ(0, z).
Finally, for Z(z) = 3, the vertex α(z) is in the first zone;
thus, we can calculate ρ(0, α(z)) and rotate this path by
α−1 to obtain ρ(0, z). Since we will give a path as a suc-
cession of steps, we can also observe how steps a, b and
c are changed under α and α−1. To do a (2π/3)-rotation
(or (−2π/3)-rotation) is the same as permuting the steps
a, b, c. In fact, changing a into c, b into a, and c into b

we obtain the α-rotation. On the other hand, changing a
into b, b into c, and c into a , we have α−1. (See Fig. 8.)

At this point, we finish by giving ρ(0, z) for Z(z) = 1.
Four possible cases have to be considered, depending on
the parity and the coordinates of z:

1. Even vertex, z = (0, −n, p), n, p ≥ 0
ρ(0, z) = a, −b︸ ︷︷ ︸

1

, a, −b︸ ︷︷ ︸
2

, . . . , a, −b︸ ︷︷ ︸
p

, a, −c︸ ︷︷ ︸
1

, a, −c︸ ︷︷ ︸
2

, . . . ,

a, −c︸ ︷︷ ︸
n

2. Even vertex, z = (m, −n, 0), m, n > 0
ρ(0, z) = a, −c︸ ︷︷ ︸

1

, a, −c︸ ︷︷ ︸
2

, . . . , a, −c︸ ︷︷ ︸
n

, b, −c︸ ︷︷ ︸
1

, b, −c︸ ︷︷ ︸
2

, . . . ,

b, −c︸ ︷︷ ︸
m

3. Odd vertex, z − a = (0, −n, p), n, p ≥ 0
ρ(0, z) = a, −b, a︸ ︷︷ ︸

1

, −b, a︸ ︷︷ ︸
2

, . . . , −b, a︸ ︷︷ ︸
p

, −c, a︸ ︷︷ ︸
1

, −c, a︸ ︷︷ ︸
2

, . . . ,

−c, a︸ ︷︷ ︸
n

4. Odd vertex, z − a = (m, −n, 0), m > 0, n ≥ 0
ρ(0, z) = a, −c, a︸ ︷︷ ︸

1

, −c, a︸ ︷︷ ︸
2

, . . . , −c, a︸ ︷︷ ︸
n

, −c, b︸ ︷︷ ︸
1

, −c, b︸ ︷︷ ︸
2

, . . . ,

−c, b︸ ︷︷ ︸
m

For any two vertices x, y, we define αx,y : Z2n → Z2n as
follows: If x − y ≡ 0 (mod 2) , then αx,y(i) = y − x + i;

FIG. 9. The routing trees ρ(a, z) and ρ(z, 0).
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FIG. 10. The boundary of the tile.

else if x − y ≡ 1 (mod 2) , then αx,y(i) = y + x − i.
In both cases, αx,y is an automorphism and it satisfies
αx,y(x) = y.

If x is even, α0,x(i) = x + i is a translation, so in this
case, the representation of ρ(x, y) is the representation
of ρ(0, α−1

0,x(y)). But when x is odd, α0,x(i) = x − i is
a π-rotation followed by a translation, while αa,x(i) =
x − a + i is a translation. So, we must study the routing
tree associated to ρ(a, z). Moreover, since the routing is
not bidirectional, it is necessary to study the paths from
one vertex to the tile center, which depend on the parity
of this center. We will have then two more routing trees
associated to ρ(z, 0) and ρ(z, a), respectively.

We will show that the trees given in Figure 9 exactly
represent the paths defined above. Observe that to ob-
tain ρ(a, z) from ρ(0, z) we make a π-rotation of the tile,
while to pass from ρ(0, z) to ρ(z, 0) , the transformation
applied is a symmetry with respect to the central vertical
axis.

First, we study the representation of ρ(a, z). The au-
tomorphism A(x) = a − x transforms ρ(0, z) into ρ(a, z).
We must show that A is a π-rotation of the tile. But this
is easy to prove because A is a π-rotation centered at
the 0 vertex, followed by a translation with step a (in
the plane tessellation, step a is represented by a vector).
Such a transformation equals a π-rotation with the center
the middle point of vertices 0 and a, and this point is the
center of the tile. Second, let us study the representation
of ρ(z, 0). If the coordinates of z are (0, −n, p), the path
ρ(z, 0) depends on the parity of z. For z = −n 2B+p 2C
this path can be obtained from ρ(0, −z) by applying the

FIG. 11. Only one vertex fails.

FIG. 12. The special case y = x + a.

translation i , i + z. In this way, we obtain ρ(z, 0) =
b, −a︸ ︷︷ ︸

1

, b, −a︸ ︷︷ ︸
2

, . . . , b, −a︸ ︷︷ ︸
p

, c, −a︸ ︷︷ ︸
1

, c, −a︸ ︷︷ ︸
2

, . . . , c, −a︸ ︷︷ ︸
n

. On the

other hand, if z = −n 2B + p 2C + a , the path ρ(z, 0)
is obtained now from ρ(0, z) by applying the automor-
phism i , z − i. Hence, ρ(z, 0) is just ρ(0, z) traversed
in the opposite direction. In both cases, this corresponds
to the routing tree given in Figure 9. For other vertex
coordinates, the determination of ρ(z, 0) can be reduced
to the above-considered cases by a permutation of the
steps. Finally, note that ρ(z, a) can be determined either
from ρ(a, z) in the same way as ρ(z, 0) is determined
from ρ(0, z), or from ρ(z, 0) in the same way as ρ(a, z)
is determined from ρ(0, z).

5. ROUTING VULNERABILITY:
CENTRAL VERTICES

In this last section, the vulnerability of the routing
ρ defined in the preceding one is studied. Let us recall
that, given a set F of faulty vertices, a vertex v is (ρ, F)-
central if and only if, for any vertex u, the paths ρ(u, v)
and ρ(v, u) include no elements of F. When (ρ, F)-central
vertices exist, the diameter of the surviving route graph
is optimum, that is, it is at most two.

Let L1 be the set of leaves of the routing tree ρ(0, z).
For any vertex v /∈ L1 the path ρ(0, v) contains no ver-
tices of L1. Similarly, if L2 is the set of leaves of ρ(z, 0),
then the path ρ(v, 0) does not contain vertices of L2, for

FIG. 13. Three different cases, according to the location of z∗.
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any v /∈ L2 . So, vertex 0 is (ρ, L)-central, for L = L1∩L2.
The set L contains the odd vertices i 2A − (l − i) 2B + a
for 0 < i ≤ l, −i 2B + (l − i) 2C + a for 0 ≤ i ≤ l,
and −i 2A + (l − i) 2C + a for 0 < i ≤ l; and the even
vertices −i 2A + (l − i) 2B for 0 < i < l, i 2B − (l − i) 2C
for 0 ≤ i ≤ l, and i 2A − (l − i) 2C for 0 < i < l.
This set is represented in Figure 10, where we show
also the corresponding hexagonal tile for the associated
triple-loop graph. Odd vertices of L correspond to the
boundary hexagons located at the upper half of the tile,
and even vertices of L correspond to lower-half ones.
To prove that a vertex v is a (ρ, F)-central, it suffices to
show that when centering the tile at v the elements of F
are disposed on the boundary of the tile, that is, that the
automorphism αv,0 transforms F into a subset of L.

In the case F = {z}, the existence of a (ρ, F)-central
vertex v is clear as the following reasoning shows: If
z = ze is even, consider v = ze − l 2B. Then, the
automorphism αv,0(i) = i − v transforms ze into l 2B,
which is on the boundary L of the tile. So, v is a (ρ, F)-
central vertex. Otherwise, if z = zo is odd, then we de-
fine v = zo − a − l 2C. Now, if αv,0(i) = v − i, then
α(zo) = −a − l 2C, which is again on the tile boundary.
Hence, v is again a (ρ, F)-central vertex.

The following result proves the existence of (ρ, F)-
central vertices in the case |F| = 2. In a certain sense,
this is the best we can do because the degree of the graph
is three and the failure of three or more vertices could
disconnect it.

Theorem 1. For any pair of vertices x, y of Cmk (a, b, c),
there exists (ρ, {x, y})-central vertices.

Proof. A special case is when |y − x| = a. We can
assume without loss of generality that y = x + a. We
cannot place both vertices on the tile boundary. But the
vertices u = x + l A and v = x − l A are both (ρ, {x, y})-
central (see Figure 12), because y is a leaf in the routing
trees associated to ρ(u, z) and ρ(z, u), x is a leaf in the
routing tree associated to ρ(u, z), and x is also a leaf in
the tree obtained by removing y from the routing tree
associated to ρ(z, u). Also, similarly for v.

In general, |x − y| ≠ a.

FIG. 14. First case, z∗ = z1.

(a) First, we consider two vertices x, y with x−y even.
Suppose that z = αx,0(y) and v is a vertex (ρ, {0, z})-
central. Then, α0,x(v) is (ρ, {x, y})-central. Thus, without
loss of generality, we can reduce our study to the case
in which the faulty set is {0, z}. Moreover, the automor-
phism αx,0 transforms x into 0 and y into z = αx,0(y), and
the automorphism αy,0 transforms y into 0 and x into
−z = αy,0(x). Hence, we can further reduce our study
to even vertices from half the tile. To work in the as-
sociated triple-loop graph, let us define z∗ = z/2. Now,
to calculate a (ρ, {0, z})-central vertex, we must place the
vertices 0 and z∗ in the boundary hexagons of the lower
half of the triple-loop tile. Then, the vertex in the center
of this tile gives us a pair of vertices in the chordal ring
graph. At least one of them is (ρ, {0, z})-central.

Now, we have to consider three subcases according
to the coordinates of z∗, namely: z∗ = z1 = m A − n B
with coordinates (m, −n, 0), 0 < m ≤ l, 0 ≤ n < l; z∗ =
z2 = −m A+p C with coordinates (−m, 0, p), 0 ≤ m < l,
0 < p ≤ l; and z∗ = z3 = −n B + p C with coordinates
(0, −n, p), 0 < n ≤ l, 0 ≤ p < l. For each of these cases,
we will give a (ρ, {0, z})-central vertex.

If z∗ = z1, let us center the tile at v = m A + l C.
Then, vertices 0 and z∗ are in the lower tile boundary,
as shown in Figure 14. Let u = 2v and consider the
automorphism αu,0 of Cmk (a, b, c) defined by αu,0(i) =
i −m 2A− l 2C. Then, αu,0(0) = −m 2A− l 2C = m (2B+
2C) − l 2C = m 2B − (l − m) 2C and αu,0(z) = z − m 2A −
l 2C = m 2A − n 2B − m 2A − l 2C = −n 2B − l 2C =

FIG. 15. Second case, z∗ = z2, and third case, z∗ = z3.
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FIG. 16. Four different cases, according to the situation of z∗.

n (2A + 2C) − l 2C = n 2A − (l − n) 2C belong both to L.
Thereby, vertex u is (ρ, {0, z})-central. Notice that vertex
u + a could have been taken instead of u.

If z∗ = z2, centering the tile at v = −m A − l B leaves
vertices 0 and z∗ in the lower boundary, as shown in
Figure 15. Now, let u = 2v+a and consider the automor-
phism of the chordal ring αu,0(i) = −m 2A − l 2B + a − i.
As in the previous case, it is easily checked that αu,0(0)
and αu,0(z) belong both to L. Thereby, vertex u is
(ρ, {0, z})-central. By taking the automorphism αu−a,0, it
is easy to see that vertex u − a is also (ρ, {0, z})-central,
for p ≠ l.

In the last case, when z∗ = z3, it is useful to con-
sider z∗ in a convenient adjacent tile. To this end, let
us transform the coordinates of z∗ by adding −(l +
1) A + l B ≡ 0. In this way, the new coordinates of ver-
tex z∗ are (−(l + 1), l − n, p). If we center the tile at
v = (l − n + 1) B + l C, then 0 and z∗ are in the lower
tile boundary; see Figure 15. Now, let us consider the
vertex u = 2v + a of the chordal ring and the automor-
phism αu,0(i) = (l − n + 1) 2B + l 2C + a − i. Again, it
is easily checked that αu,0(0) and αu,0(z) belong both to
L and that vertex u is (ρ, {0, z})-central. By considering
the automorphism αu−a,0, it is also verified that vertex
u − a is (ρ, {0, z})-central, for p ≠ l − 1 and n ≠ 1.

FIG. 17. First case, z∗ = z1.

(b) Finally, we study the case in which x − y is odd.
As in case (a), it is only necessary to consider F = {0, z}.
The automorphism αx,0 transforms vertices x, y into ver-
tices 0, z = αx,0(y), but now αy,0(x) = αx,0(y). To work in
the associated triple-loop tile, let us define z∗ = (z−a)/2.
To obtain a (ρ, {0, z})-central vertex, we must locate ver-
tex 0 in the boundary hexagons of the lower half of the
tile and vertex z∗ in the boundary hexagons of the upper
half. Then, the vertex in the center of the tile gives us
a pair of vertices in the chordal ring graph. At least one
of them is (ρ, {0, z})-central.

To further reduce the number of cases to consider,
we proceed in the following way: Let σ be the sym-
metry with respect to the vertical axis passing through
vertex 0. It is easy to see that if 0 is in a lower-boundary
hexagon and z∗ is in an upper-boundary one of the tile
centered at v then 0 is in a lower-boundary hexagon and
σ(z∗) is in an upper-boundary one of the tile centered
at σ(v); see Figure 16. Thus, the only cases to consider
are z∗ = z1 = −n B + p C with coordinates (0, −n, p),
0 < n ≤ l, 0 ≤ p < l, p ≤ n; z∗ = z2 = m A − n B
with coordinates (m, −n, 0), 0 < m ≤ l, 0 ≤ n < l;
z∗ = z3 = m A − p C with coordinates (m, 0, −p),
0 ≤ m < l, 0 < p < l; and z∗ = z4 = n B − p C
with coordinates (0, n, −p), 0 < n < l, 0 < p ≤ l,
n ≤ p.

If z∗ = z1, let us center the tile at v = l A + p C.
Then, vertex 0 is in the lower tile boundary and z∗ is in
the upper one; see Figure 7. To come back to the chordal
ring graph, let u = 2v+a and consider the automorphism
αu,0(i) = l 2A+p 2C+a− i. In this way, αu,0(0) = l 2A+
p 2C+a = l 2A−p 2(A+B)+a = (l−p) 2A−p 2B+a ∈ L,
and αu,0(z) = l 2A + p 2C + a − z = l 2A + p 2C + a −
2z∗ − a = l 2A + p 2C + n 2B − p 2C = l 2A + n 2B =
l 2A−n 2(A+C) = (l−n) 2A−n 2C ∈ L. Thereby, vertex
u is (ρ, {0, z})-central. By considering the automorphism
αu−a,0, it can also be proved that, for p ≠ 0, vertex u−a
is also (ρ, {0, z})-central.

In the second case z∗ = z2, we consider z∗ in a con-
venient adjacent tile, by adding −A+(l−1) B+2lC ≡ 0;
see Figure 18. In this way, the coordinates of z∗ are (m−
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FIG. 18. Second case, z∗ = z2.

1, l−n−1, 2l). If we center the tile at v = (l−n−1) B+l C,
then vertex 0 is in the lower tile boundary and z∗ is in
the upper one. Now, letting u = 2v and considering the
automorphism αu,0(i) = i − (l − n − 1) 2B − l 2C it can be
proved that αu,0(0) and αu,0(z) both belong to L. Thereby,
the vertex u is (ρ, {0, z})-central. In a similar way, it can
be proved that another possible (ρ, {0, z})-central vertex
is u + a.

If z∗ = z3, let us again consider z∗ in an adjacent
tile, by adding (1 − l) A − 2l B + (1 − p)C ≡ 0. Thus,
z∗ = (−l + m + 1, −2l, −p + 1); see Figure 19. As in the
previous cases, center the tile at v = −l B + (1 − p)C,
let u = 2v, and consider the automorphism αu,0(i) =
i + l 2B+(p −1) 2C. Again, αu,0(0) and αu,0(z) belong to
L and vertex u is (ρ, {0, z})-central. We can also consider
vertex u + a instead of u.

FIG. 19. Third case, z∗ = z3.
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FIG. 20. Fourth case, z∗ = z4.

Finally, the case z∗ = z4 is shown in Figure 20. Now,
the coordinates of z∗ that we consider are (0, −l + n −
1, l − p) and the center of the triple-loop tile is v =
l A + (l − p) C. Vertex u = 2v is (ρ, {0, z})-central in the
chordal ring graph, and this is proved by considering the
automorphism αu,0(i) = i+ l 2B+(p−1) 2C. Vertex u+a
is also (ρ, {0, z})-central.

6. CONCLUSIONS

The main purpose of the paper was the study of
fault-tolerant routings in chordal ring networks. This
study was accomplished by using a geometrical approach
that associates to the graph under consideration a tile
that periodically tessellates the plane. This approach has
shown some interesting relations between chordal ring
and triple-loop networks. First, an algorithm to calcu-
late the coordinates of the vertices in an optimal triple-
loop graph was presented, and this result has been used
to define an optimal and consistent routing function of
shortest paths in an optimal chordal ring network with
maximum order and odd diameter. Finally, the vulnera-
bility of this routing was studied. The techniques used
in the paper can also be applied to deal with nonop-
timal cases, which include chordal ring networks with
maximum order and even diameter. Moreover, the geo-
metrical approach can also be useful in analyzing other
communication problems in chordal ring networks, such
as broadcasting, gossiping, and WDM routings.
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