Fault Tolerant Scheduling of Precedence Task Graphs on Heterogeneous Platforms

Anne Benoit, Mourad Hakem and Yves Robert

LIP Laboratory - ENS Lyon - France

APDCM 2008 - Miami, Florida, USA

April 14, 2008

Anne.Benoit@ens-lyon.fr

Motivation

Context

- General context of DAG scheduling (precedence task graphs)
- Goal: minimize the latency (makespan)
- Already a difficult challenge

Failures?

- Software is assumed to be reliable
- Only hardware failures of processors
- Faults are assumed to be fail-silent (fail-stop)

Constraints and objectives

- Precedence constraints between tasks: don't violate them
- Real time constraint: minimize the latency
- Fault tolerance objective: tolerate at most ε proc. failures

Motivation

Context

- General context of DAG scheduling (precedence task graphs)
- Goal: minimize the latency (makespan)
- Already a difficult challenge

Failures?

- Software is assumed to be reliable
- Only hardware failures of processors
- Faults are assumed to be fail-silent (fail-stop)

Constraints and objectives

- Precedence constraints between tasks: don't violate them
- Real time constraint: minimize the latency
- Fault tolerance objective: tolerate at most ε proc. failures

・ 何 ト ・ ヨ ト ・ ヨ ト

Motivation

Context

- General context of DAG scheduling (precedence task graphs)
- Goal: minimize the latency (makespan)
- Already a difficult challenge

Failures?

- Software is assumed to be reliable
- Only hardware failures of processors
- Faults are assumed to be fail-silent (fail-stop)

Constraints and objectives

- Precedence constraints between tasks: don't violate them
- Real time constraint: minimize the latency
- Fault tolerance objective: tolerate at most ε proc. failures

Problem and solutions

Bi-criteria problem

Find a distributed schedule on heterogeneous platforms which minimizes latency \mathcal{L} while tolerating ε processor failures.

- Primary/Backup (passive replication)
 - all techniques in the literature assume only one proc. failure
 - requires fault detection mechanism
- Active replication
 - tolerates *multiple* processor failure
 - no fault detection mechanism
 - ... but communication and computation overhead
 - FTBAR algorithm, our approach (off-line scheduling)

Problem and solutions

Bi-criteria problem

Find a distributed schedule on heterogeneous platforms which minimizes latency \mathcal{L} while tolerating ε processor failures.

- Primary/Backup (passive replication)
 - all techniques in the literature assume only one proc. failure
 - requires fault detection mechanism

Active replication

- tolerates *multiple* processor failure
- no fault detection mechanism
- ... but communication and computation overhead
- FTBAR algorithm, our approach (off-line scheduling)

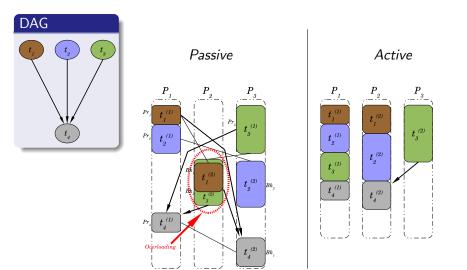
Problem and solutions

Bi-criteria problem

Find a distributed schedule on heterogeneous platforms which minimizes latency \mathcal{L} while tolerating ε processor failures.

- Primary/Backup (passive replication)
 - all techniques in the literature assume only one proc. failure
 - requires fault detection mechanism
- Active replication
 - tolerates *multiple* processor failure
 - no fault detection mechanism
 - ... but communication and computation overhead
 - FTBAR algorithm, our approach (off-line scheduling)

Example: passive/active replication schemes, $\varepsilon = 1$



- 4 同 6 4 日 6 4 日 6

Basic definitions and notations

- Parallel application: DAG $\rightarrow G = (V, E)$
- $\Gamma^{-}(t)$, $\Gamma^{+}(t)$: set of predecessors and successors of t
- Free task: all predecessors are already scheduled
- Top level *tl* of a free task: computed from predecessors top levels (including communication)
- Bottom level $b\ell$ of a task: computed from
 - average computation time of the task
 - average communication cost to successors
 - bottom level of successors
- Task criticalness: task t with the highest priority: $t\ell(t) + b\ell(t)$

Basic definitions and notations

- Parallel application: DAG $\rightarrow G = (V, E)$
- $\Gamma^{-}(t)$, $\Gamma^{+}(t)$: set of predecessors and successors of t
- Free task: all predecessors are already scheduled
- Top level *tl* of a free task: computed from predecessors top levels (including communication)
- Bottom level $b\ell$ of a task: computed from
 - average computation time of the task
 - average communication cost to successors
 - bottom level of successors
- Task criticalness: task t with the highest priority: $t\ell(t) + b\ell(t)$

一日、

Basic definitions and notations

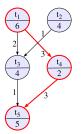
- Parallel application: DAG $\rightarrow G = (V, E)$
- $\Gamma^{-}(t)$, $\Gamma^{+}(t)$: set of predecessors and successors of t
- Free task: all predecessors are already scheduled
- Top level *tl* of a free task: computed from predecessors top levels (including communication)
- Bottom level $b\ell$ of a task: computed from
 - average computation time of the task
 - average communication cost to successors
 - bottom level of successors
- Task criticalness: task t with the highest priority: $t\ell(t) + b\ell(t)$

Experimental results

Conclusion

Examples of top and bottom levels

Example: Homogeneous platforms



- $t\ell(t_4) = 9$
- $b\ell(t_4) = 10$
- Priority $(t_4) = 19$

< 回 ト < 三 ト < 三 ト

Principle

- Software solution
- Uses the active software *replication scheme* to *mask failures*
- Can tolerate a fixed number ε of arbitrary processor failures

The algorithm:

- Select a critical free task t (keep ordered list)
- Simulate its mapping on all processors using equation:
 ∀ 1 ≤ j ≤ m, F(t, P_j) =
 - $\mathcal{E}(t,\mathcal{P}_j) + \max\left(\max_{t_*\in\Gamma^-(t)}\left\{\min_{k=1}^{\varepsilon+1}\left\{\mathcal{F}(t^k_*,\mathcal{P}(t^k_*)) + W(t^k_*,t)\right\}\right\}, r(\mathcal{P}_j)\right)$
- Keep $\varepsilon + 1$ processors allowing minimum finish time of t;
- Schedule $t^k, 1 \le k \le \varepsilon + 1$ on selected $\varepsilon + 1$ distinct proc.

Principle

- Software solution
- Uses the active software *replication scheme* to *mask failures*
- Can tolerate a fixed number ε of arbitrary processor failures

The algorithm:

- Select a critical free task t (keep ordered list)
- Simulate its mapping on all processors using equation: $\forall \ 1 \leq j \leq m, \quad \mathcal{F}(t, \mathcal{P}_j) = \\ \mathcal{E}(t, \mathcal{P}_j) + \max\left(\max_{t_* \in \Gamma^-(t)} \left\{\min_{k=1}^{\varepsilon+1} \left\{\mathcal{F}(t^k_*, \mathcal{P}(t^k_*)) + W(t^k_*, t)\right\}\right\}, r(\mathcal{P}_j)\right)$
- Keep $\varepsilon + 1$ processors allowing minimum finish time of t;
- Schedule $t^k, 1 \le k \le \varepsilon + 1$ on selected $\varepsilon + 1$ distinct proc.

Principle

- Software solution
- Uses the active software *replication scheme* to *mask failures*
- Can tolerate a fixed number ε of arbitrary processor failures

The algorithm:

- Select a critical free task t (keep ordered list)
- Simulate its mapping on all processors using equation: $\forall \ 1 \leq j \leq m, \quad \mathcal{F}(t, \mathcal{P}_j) =$ $\mathcal{E}(t, \mathcal{P}_j) + \max\left(\max_{t_* \in \Gamma^-(t)} \left\{ \min_{k=1}^{\varepsilon+1} \left\{ \mathcal{F}(t_*^k, \mathcal{P}(t_*^k)) + W(t_*^k, t) \right\} \right\}, r(\mathcal{P}_j)$
- Keep $\varepsilon + 1$ processors allowing minimum finish time of t;
- Schedule $t^k, 1 \le k \le \varepsilon + 1$ on selected $\varepsilon + 1$ distinct proc.

Principle

- Software solution
- Uses the active software *replication scheme* to *mask failures*
- Can tolerate a fixed number ε of arbitrary processor failures

The algorithm:

- Select a critical free task t (keep ordered list)
- Simulate its mapping on all processors using equation: $\forall \ 1 \leq j \leq m, \quad \mathcal{F}(t, \mathcal{P}_j) = \\ \mathcal{E}(t, \mathcal{P}_j) + \max\left(\max_{t_* \in \Gamma^-(t)} \left\{ \min_{k=1}^{\varepsilon+1} \left\{ \mathcal{F}(t^k_*, \mathcal{P}(t^k_*)) + W(t^k_*, t) \right\} \right\}, r(\mathcal{P}_j) \right)$
- Keep ε + 1 processors allowing minimum finish time of t;
- Schedule $t^k, 1 \le k \le \varepsilon + 1$ on selected $\varepsilon + 1$ distinct proc.

Principle

- Software solution
- Uses the active software *replication scheme* to *mask failures*
- Can tolerate a fixed number ε of arbitrary processor failures

The algorithm:

- Select a critical free task t (keep ordered list)
- Simulate its mapping on all processors using equation: $\forall \ 1 \leq j \leq m, \quad \mathcal{F}(t, \mathcal{P}_j) = \\ \mathcal{E}(t, \mathcal{P}_j) + \max\left(\max_{t_* \in \Gamma^-(t)} \left\{ \min_{k=1}^{\varepsilon+1} \left\{ \mathcal{F}(t^k_*, \mathcal{P}(t^k_*)) + W(t^k_*, t) \right\} \right\}, r(\mathcal{P}_j) \right)$
- Keep $\varepsilon + 1$ processors allowing *minimum finish time* of *t*;
- Schedule $t^k, 1 \le k \le \varepsilon + 1$ on selected $\varepsilon + 1$ distinct proc.

通 ト イヨ ト イヨト

Principle

- Software solution
- Uses the active software *replication scheme* to *mask failures*
- Can tolerate a fixed number ε of arbitrary processor failures

The algorithm:

- Select a critical free task t (keep ordered list)
- Simulate its mapping on all processors using equation: $\forall \ 1 \leq j \leq m, \quad \mathcal{F}(t, \mathcal{P}_j) = \\ \mathcal{E}(t, \mathcal{P}_j) + \max\left(\max_{t_* \in \Gamma^-(t)} \left\{ \min_{k=1}^{\varepsilon+1} \left\{ \mathcal{F}(t^k_*, \mathcal{P}(t^k_*)) + W(t^k_*, t) \right\} \right\}, r(\mathcal{P}_j) \right)$
- Keep $\varepsilon + 1$ processors allowing *minimum finish time* of *t*;
- Schedule $t^k, 1 \le k \le \varepsilon + 1$ on selected $\varepsilon + 1$ distinct proc.

FTSA Algorithm - Time and Bounds

Time complexity of FTSA: $O(em^2 + v \log \omega)$ e: nb edges, m: nb procs, v: nb tasks, ω : graph width

.ower Bound /

 $\begin{array}{l} \forall \ 1 \leq j \leq m, \quad \mathcal{F}(t,\mathcal{P}_j) \text{ computed as in the algorithm} \\ \rightarrow \mathcal{M}^* = \max_t \left\{ \min_{1 \leq k \leq \varepsilon + 1} \left\{ \mathcal{F}(t^k,\mathcal{P}(t^k)) \right\} \right\} \quad \text{first replica to complete} \end{array}$

通 と く ヨ と く ヨ と

FTSA Algorithm - Time and Bounds

Time complexity of FTSA: $O(em^2 + v \log \omega)$ e: nb edges, m: nb procs, v: nb tasks, ω : graph width

Lower Bound \mathcal{M}^{r}

 $\begin{array}{l} \forall \ 1 \leq j \leq m, \quad \mathcal{F}(t,\mathcal{P}_j) \text{ computed as in the algorithm} \\ \rightarrow \mathcal{M}^* = \max_t \left\{ \min_{1 \leq k \leq \varepsilon + 1} \left\{ \mathcal{F}(t^k,\mathcal{P}(t^k)) \right\} \right\} \quad \text{ first replica to complete} \end{array}$

FTSA Algorithm - *Time and Bounds*

Time complexity of FTSA: $O(em^2 + v \log \omega)$ e: nb edges, m: nb procs, v: nb tasks, ω : graph width

Lower Bound \mathcal{M}^{s}

$$\begin{array}{l} \forall \; 1 \leq j \leq m, \quad \mathcal{F}(t,\mathcal{P}_j) \text{ computed as in the algorithm} \\ \rightarrow \mathcal{M}^* = \max_t \left\{ \min_{1 \leq k \leq \varepsilon + 1} \left\{ \mathcal{F}(t^k,\mathcal{P}(t^k)) \right\} \right\} \quad \text{ first replica to complete} \end{array}$$

Lower Bound \mathcal{M}^{*}

$$\forall 1 \leq j \leq m, \quad \mathcal{F}(t, \mathcal{P}_j) = \\ \mathcal{E}(t, \mathcal{P}_j) + \max\left(\max_{t_* \in \Gamma^-(t)} \left\{\min_{1 \leq k \leq \varepsilon + 1} \left\{\mathcal{F}(t^k_*, \mathcal{P}(t^k_*)) + W(t^k_*, t)\right\}\right\}, r(\mathcal{P}_j)\right) \\ \rightarrow \mathcal{M}^* = \max_t \left\{\min_{1 \leq k \leq \varepsilon + 1} \left\{\mathcal{F}(t^k, \mathcal{P}(t^k))\right\}\right\}$$

FTSA Algorithm - *Time and Bounds*

Time complexity of FTSA: $O(em^2 + v \log \omega)$ e: nb edges, m: nb procs, v: nb tasks, ω : graph width

Lower Bound \mathcal{M}

$$\begin{array}{l} \forall \; 1 \leq j \leq m, \quad \mathcal{F}(t,\mathcal{P}_j) \text{ computed as in the algorithm} \\ \rightarrow \mathcal{M}^* = \max_t \left\{ \min_{1 \leq k \leq \varepsilon + 1} \left\{ \mathcal{F}(t^k,\mathcal{P}(t^k)) \right\} \right\} \quad \text{ first replica to complete} \end{array}$$

Upper Bound \mathcal{M}

$$\forall \ 1 \leq j \leq m, \quad \mathcal{F}(t, \mathcal{P}_j) = \\ \mathcal{E}(t, \mathcal{P}_j) + \max\left(\max_{t_* \in \Gamma^-(t)} \left\{\max_{1 \leq k \leq \varepsilon + 1} \left\{\mathcal{F}(t^k_*, \mathcal{P}(t^k_*)) + W(t^k_*, t)\right\}\right\}, r(\mathcal{P}_j)\right) \\ \rightarrow \mathcal{M} = \max_t \left\{\max_{1 \leq k \leq \varepsilon + 1} \left\{\mathcal{F}(t^k, \mathcal{P}(t^k))\right\}\right\} \quad \text{longest possible execution time}$$

FTSA Algorithm - Properties

Property 1: Space exclusion

For an active replication scheme, a task $t \in G$ is guaranteed to execute in the presence of ε failures if and only if $\mathcal{P}(t^k) \neq \mathcal{P}(t^{k'}), 1 \leq k, k' \leq \varepsilon + 1$

Property 2:

The latency achieved by FTSA is $\mathcal{L} \leq \mathcal{M}$ despite ε failures

Theorem:

If at most ε failures occur in the system, then the schedule remains valid

All to all mapping communications

FTSA Algorithm - Properties

Property 1: Space exclusion

For an active replication scheme, a task $t \in G$ is guaranteed to execute in the presence of ε failures if and only if $\mathcal{P}(t^k) \neq \mathcal{P}(t^{k'}), 1 \leq k, k' \leq \varepsilon + 1$

Property 2: Achieved latency

The latency achieved by FTSA is $\mathcal{L} \leq \mathcal{M}$ despite ε failures

Theorem:

If at most ε failures occur in the system, then the schedule remains valid

All to all mapping communications

< 回 ト < 三 ト < 三 ト

FTSA Algorithm - Properties

Property 1: Space exclusion

For an active replication scheme, a task $t \in G$ is guaranteed to execute in the presence of ε failures if and only if $\mathcal{P}(t^k) \neq \mathcal{P}(t^{k'}), 1 \leq k, k' \leq \varepsilon + 1$

Property 2: Achieved latency

The latency achieved by FTSA is $\mathcal{L} \leq \mathcal{M}$ despite ε failures

Theorem: Fault tolerant schedule

If at most ε failures occur in the system, then the schedule remains valid

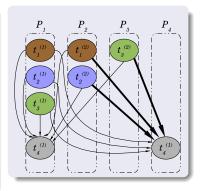
All to all mapping communications

Communication overhead reduction and MC-FTSA algorithm

MC-FTSA Algorithm

Idea: Try to decrease communication overhead from $e(\varepsilon + 1)^2$ down to at most $e(\varepsilon + 1)$

- consider mapping returned by FTSA
- enforce internal communication
- greedily select the edges in non decreasing weights order



Experimental results

Aim

- Evaluation of FTSA and MC-FTSA performance
- Comparison with FTBAR heuristic [Girault et al'04] (integrated in **SynDex**: Synchronized Distributed Executive)
- Comparison with fault-free schedule ($\varepsilon = 0$)

Simulation parameters

- 20 processors, 1 5 failures
- random graphs, 100 150 tasks, granularity [0.2,2] (comp/comm ratio)

Metrics

- Latency bounds, latency with crash
- Overhead = $\frac{\text{FTSA}^{\ell b} | \text{FTBAR}^{\ell b} | \text{FTSA}^{c} | \text{FTSA}^{c} \text{FTSA}^{*}}{\text{FTSA}^{*}}$

- 4 同 6 4 日 6 4 日 6

Experimental results

Aim

- Evaluation of FTSA and MC-FTSA performance
- Comparison with FTBAR heuristic [Girault et al'04] (integrated in **SynDex**: Synchronized Distributed Executive)
- Comparison with fault-free schedule ($\varepsilon = 0$)

Simulation parameters

- 20 processors, 1-5 failures
- random graphs, 100 150 tasks, granularity [0.2, 2] (comp/comm ratio)

Metrics

- Latency bounds, latency with crash
- Overhead = $\frac{\text{FTSA}^{\ell b}|\text{FTBAR}^{\ell b}|\text{FTSA}^{c}|\text{FTBAR}^{c}-\text{FTSA}^{*}}{\text{FTSA}^{*}}$

- 4 目 ト - 4 日 ト - 4 日 ト

Experimental results

Aim

- Evaluation of FTSA and MC-FTSA performance
- Comparison with FTBAR heuristic [Girault et al'04] (integrated in **SynDex**: Synchronized Distributed Executive)
- Comparison with fault-free schedule ($\varepsilon = 0$)

Simulation parameters

- 20 processors, 1-5 failures
- random graphs, 100 150 tasks, granularity [0.2, 2] (comp/comm ratio)

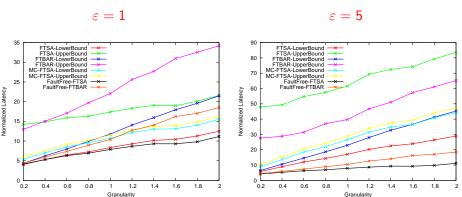
Metrics

- Latency bounds, latency with crash
- Overhead = $\frac{\text{FTSA}^{\ell b} | \text{FTBAR}^{\ell b} | \text{FTSA}^c | \text{FTBAR}^c \text{FTSA}^*}{\text{FTSA}^*}$

Anne.Benoit@ens-lyon.fr

- 4 同 6 4 日 6 4 日 6

Bounds ($\varepsilon = 1, \varepsilon = 5$)



- FTSA lower bound close to fault-free schedule
- FTSA lower bound better than FTBAR lower bound
- MC-FTSA: upper bound close to lower bound

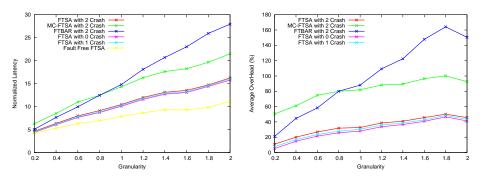
Experimental results

Conclusion

Latency and overhead with crash ($\varepsilon = 2$)

Latency with crash ($\varepsilon = 2$)

Overhead with crash ($\varepsilon = 2$ **)**

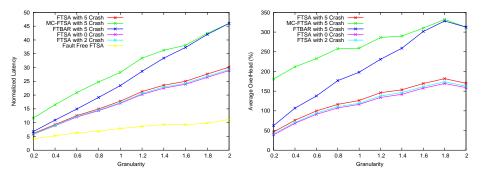


- Execution slightly slower when crashes occur
- MC-FTSA: bigger latency (less comm links)
- MC-FTSA: still better than FTBAR in some cases

Latency and overhead with crash ($\varepsilon = 5$)

Latency with crash ($\varepsilon = 5$)

Overhead with crash ($\varepsilon = 5$)



- Similar to case $\varepsilon = 2$
- Many failures: FTBAR better than MC-FTSA with crash

Running times in seconds

Number of tasks	FTSA	MC-FTSA	FTBAR
100	0.01	0.02	0.15
500	0.08	0.12	4.19
1000	0.16	0.24	17.10
2000	0.30	0.50	71.22
3000	0.46	0.75	167.57
5000	0.77	1.28	465.75

$|\mathcal{P}| = 50$, $\varepsilon = 5$, language: C, machine: Core 2 Duo (CPU 1.66 GHz)

・ 何 ト ・ ヨ ト ・ ヨ ト

Conclusion

Efficient Fault Tolerant Scheduling Algorithm FTSA

- Based on active replication scheme
- Aims at minimizing latency while supporting failures
- Low time complexity
- Better than standard FTBAR heuristic
- Different objective functions: fixed latency

Future work

- Maximize system reliability (failure probabilities)
- Multicriteria (reliability, failures and latency) scheduling
- Realistic comm. model (one-port, bounded multi-port)
- Already results, good behavior of MC-FTSA