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Abstract. In this article we present a case-based approach for the self-
localization of autonomous robots based on local visual information of
landmarks. The goal is to determine the position and the orientation
of the robot su�ciently enough, despite some strongly incorrect visual
information. Our approach to solve this problem makes use of case-based
reasoning methods.

1 Introduction

In order to enable robots to make goal-oriented decisions, their position and
direction are very important. If the operational area of the robot is known in
advance, e.g. given by geographical maps, the robot should be supplied with this
information to improve its localization skills. Our approach relies on informa-
tion about absolute positions of landmarks in the operational area of the robot.
This information is suitable for a case base. With such a case base the robot
can determine its position and orientation in its operational area based on per-
ceived sizes and shapes of landmarks and on perceived angles between pairs of
landmarks.

In this article we only describe the determination of the robots position. Its
orientation can be determined easily in a next step using the already determined
position or it can be included into the described approach.

We are using the fully autonomous \Sony Legged Robots" [3]. These are
small dog-like robots, that play soccer in teams of 3 robots at the Robocup
competitions. At the games the robots are entirely independent, global view or
remote control is not allowed. Furthermore, extensions of the robots hardware
are prohibited. The robots play on a small �eld, which contains some well de�ned
markers and goals of di�erent colors. The \Sony Legged Robots" utilize a camera
for input and an integrated video processing unit for discriminating between the
di�erent colored markers and goals.
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In the next section we describe the properties of the \Sony Legged Robots"
and present their environment. In section 3 we describe our approach in detail.
Afterwards we give an overview to some related work before we demonstrate
some results of our approach in section 5.

2 The Robot and its Environment

Sony kindly provided us with four of their four-legged robots (ERS-1100), which
are marketed by Sony in a similar con�guration, known as AIBO (ERS-110 and
ERS-111). With this platform there come some restrictions which are very close
to the properties of biological systems. On the one hand these restrictions raise
some problems, on the other hand they represent interesting challenges for the
use of intelligent techniques.

The robot contains a camera, which has a very limited �eld of view1. The
head, to which the camera is a�xed in the front, has three degrees of freedom.
With these the robot is able to overcome the disadvantages of the small �eld of
view of the camera. Therefore the robot has the possibility to support its self
localization by turning its head into a direction where it expects additionally
landmarks. This can usually be done without interfering with the robot's current
actions2. The integrated video processing unit performs a fast color separation
into 8 colors, which is highly sensitive to temporal and spatial changes of the
light, like 
ashes, re
ections and shading. Such changes can heavily in
uence the
shape and size of a color region or, much worse, it is possible that a color region
is assigned to the wrong color. Unfortunately the integrated color separation
algorithm returns only information about the biggest coherent area for each of
these 8 colors. So some information in the pictures maybe already lost at this
stage.

As already mentioned, the robot uses four legs for the movement in contrast
to common robot architectures. Each leg has 3 degrees of freedom, two at the
shoulder joint and one at the knee joint. The walking causes some tilting during
movement, which leads to virtual relative movements of objects on the �eld.

For all other computations besides the color segmentation the robot has a
100 MHz RISC-processor (MIPS R4300) and 16 MB main memory. Figure 1
shows the structure of the dog-like robot.

The �eld of the robot is equipped with di�erent colored �xed objects, which
allow the robot to orient itself. These objects consists of six two-color markers
and two one-color goals, which are used for self localization. Furthermore, it is
conceivable to use the borders of the �eld and some other �eld markings like the
middle line or the penalty area line for localization. In �gure 2 a picture of the
�eld with its landmarks is given.

1 The CCD-camera has a resolution of 176� 120 pixels and a �eld of view of approx-
imately 47� � 30�.

2 Unfortunately this does not apply for actions which involves the head, as the search
for the ball.
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Fig. 1. Structure of the dog-like robot

The �eld has an e�ective length of 280 cm and an e�ective width of 180 cm.
The dog itself is approximately 30 cm long and 14 cm wide.

3 Case Base Reasoning for the Self Localization

For the self localization we have divided the state space of �eld positions into
a 14 � 9 (X;Y ) grid. This corresponds to a raster of 20 cm � 20 cm. For each
of these states a case was generated, that consists of information on the relative
position of all landmarks for this state. To apply the technique of case base
reasoning (CBR)[6] in this scenario, several design decisions have to be made.
For that the following questions will be answered:

{ What is a case? How will cases be represented?
{ Where do the cases come from?
{ How is the query to the case base determined?
{ How is the similarity measure between the cases de�ned?
{ How does the structure of the case base looks like?
{ What is the �nal result?

3.1 Case Structure

Because the determination of the robots position depends on perceived sizes and
shapes of landmarks and on perceived angles between pairs of landmarks, this
information has to be a part of the case base. We are using the term landmark
only for the elemental parts of markers and goals. Therefore a marker will be seen
as two landmarks (one landmark for every color). With this view the uniqueness
of landmarks seems to be lost, but it is still coded by small angles (angles of
zero or near zero) between two landmarks that represent the same marker. The
advantage of this view takes e�ect if parts of a marker are covered by other
robots or if only parts of a marker are identi�ed by the robot, due to shading for
instance. In such cases the information about the identi�ed part of the marker
isn't lost. Furthermore this view is more universal, because it permits di�erent
landmarks with identical appearance. According to this view a case consists of
the following properties:
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Fig. 2. The �eld with its landmarks

Size of all landmarks and their position in the picture: For every case the width
and the height of all 14 landmarks (six times pink, three times yellow, three times
sky blue and two times green) are saved. Width and height indicate the amount
of pixels of that color in the corresponding dimension.With the separation of the
markers into their elemental parts the information about whether the landmark
corresponds to an upper or to a lower part of a marker is lost. For that reason this
information is included in the case. For each landmark this is done by its position
in the picture. If the landmark is a known part of a marker its position has the
value \top" or \down", if it is an unknown part of a marker its position has the
value \unknown". The last case only occurs in the queries. If the landmark is a
goal its position has the value \irrelevant".

Angle between pairs of landmarks: Whereas the perceived size of landmarks may
have a relatively high error because of changes of the light, the error of the an-
gles between pairs of landmarks is more limited. If the robot is moving a lot the
error can get a higher value. For that reason we decided only to look at the pairs
of landmarks which are directly or indirectly (exactly one marker between the
two landmarks) neighboring and at pairs which represent the same marker. So
we have 6 pairs where each pair represent one marker, 24 direct and 24 indirect
neighboring pairs.

Every property which is assigned with a �xed value will be called an infor-
mation entity (IE) in the following. A case consists of a set of IEs, here there are
68 IEs. Theoretical we could have up to number of cases multiplied by number

of IEs per case di�erent IEs (14 � 9 � 68 = 8568). But many IEs are shared
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among di�erent cases so we have a total of 859 di�erent IEs in our case base.
A case represents an omni-directional picture of the robot. The solution of the
case is the position of the robot on the �eld from which the picture was taken.

(4, 4)

(4, 4)

(41, 21)

(5, 5)

(5, 5)

(13, 13)

(13, 13)

69 82 43

possible camera image

Fig. 3. Graphical excerpt of the case base

In �gure 3, a graphical extract of the case base is presented for the case
where the robot is at position (110, 60), which is the position marked with a
black circle in �gure 6. The values in �gure 3 are given in pixels of the dog's
camera. The �gure consists already of 24 IEs, 7 of them are representing the
size of landmarks and its position in the picture. The other 17 represent angles
between pairs of landmarks (3 pairs represent the same marker, 8 pairs represent
direct neighboring pairs, and 6 pairs represent indirect neighboring pairs).

3.2 Where do the Cases come from?

The case base was generated semi-automatically in two steps.
In the �rst manual step, a table was created which maps the distances of

landmarks to perceived sizes of these landmarks. Using the robots camera, pic-
tures of landmarks were taken from di�erent distances (5 cm to 3,20 m distance)
and the sizes (in pixel) of the landmarks were determined. These measurements
were done with one marker and one goal three times and the mean value was
calculated.

In a second automatic step, the distances to all markers and goals and the
angles between all relevant markers and goals were calculated for all the 14� 9
positions on the �eld. After that the markers were separated into landmarks and
the distance to the landmarks were replaced by the determined sizes. Hence the
case base for the self localization was developed.
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3.3 Determination of the Case Base Query

The color detection module supplies the self localization module with data about
landmarks in the picture. For every detected landmark the following values are
supplied:

{ its color identifying information,
{ its size (width and height) in pixel,
{ its balance point in the camera picture as (x, y) coordinate, and
{ the orientation of the head at the picture creation time.

Using the x-coordinate of the balance points it is possible to determine the
angles between pairs of landmarks. In a �rst step the angles will be normalized
according to the optic axis of the robot. After that the angles of landmark pairs
are calculated. Small angles indicate that this pair represents the same marker.
By comparing the y-coordinates of such pairs of landmarks the position of the

landmark (\top" or \down") in the picture can be determined. The position of
any landmarks whose position isn't set in this manner is treated as \unknown".
The orientation of the head is used to normalize the relative angles (normalized
to the optic axis) of landmarks according to the orientation of the robot. With
this normalization it is possible to use informations about landmarks from older
pictures despite head motions. This holds as long as the robot is only moving
marginally.

(44, 38)

(40, 21)

(72, 96)

(70, 67)

Fig. 4. Observation
of two landmarks

The case base query is generated using as much visual
information about landmarks as possible to smooth the er-
rors of the observed data which is sometimes very big and
other times very small.

In �gure 4 an observation of two landmarks is shown. It
shows a pink (dark) landmark at the top with an balance
point of (72,96) and a size of (44,38), and a sky blue (light)
landmark at the bottom with an balance point of (70,67)
and a size of (40,21). Because the x-coordinates of these two
landmarks does not di�er so much, the angle between these
landmarks is very small and therefore the two landmarks
represent the same marker. Because the y-coordinate of the
pink landmark is greater its position in the picture has the
value \top" whereas the value is \down" for the sky blue landmark.

3.4 Similarity Measure

The self localizationmodule gets unambiguous color identifying information from
the color detection module. Therefore a similarity comparison is only done be-
tween IEs with the same color identifying information. For this reason, we have
separated the IEs into di�erent categories.

The IEs, which represent the size of landmarks and their position in the

picture has been separated into four categories (for every color, one category).
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Two of these IEs of the same color are similar if their size di�erence is small and
their position in the picture is equal or one of the positions is \unknown". The
smaller the size di�erence, the more similar the IEs are. An \unknown" position
of the landmark in the observed picture decreases the similarity to all IEs with
positions \top" or \down" in the case base. If the query consists of the IE for
the pink (dark) landmark of �gure 4, all pink IEs whose position is \top" and
who have a small size di�erences to the size (44,38) are similar to the query IE.
The IE with the size (42,38) is more similar to the query IE than the IE with
the size (40,36).

For the IEs which characterize angles between pairs of landmarks, the sep-
aration into categories is done according to their color combination. Because
the combination (green, green) does not exist among the selected pairs, we get
9 categories here. A high similarity is given here between two IEs if its angle
di�erence is small.

Given these local similarity measures, we could de�ne a composite similarity
measure which computes the weighted sum over all local similarities where all
IEs have the same relevance. We instead use a di�erent composite similarity
measure where an IE has less relevance the more often this IE appears on the
�eld. Given this, the IEs for the sizes of landmarks with the color pink has much
less relevance than the IEs for the sizes of landmarks with the color green.

3.5 Structure of the Case Base and Retrieval

A crucial point of the self localization is that is has to be done in real time.
An e�cient organization of the case memory and of the retrieval procedure is
needed. For that reason we apply the Case Retrieval Net (CRN) model[7].

In a CRN the case base is represented by a net of nodes for the IEs and by
nodes which mark the cases. IE nodes might be connected among each other by
similarity arcs. Every case node is connected with all its IEs nodes by relevance
arcs. Based on this structure the retrieval works as follows:

1. activation of the IEs from the query,
2. propagation of the activation through the net along the similarity arcs, and
3. propagation of the activation reached so far to the case nodes along the

relevance arcs.

Whereas the similarity arcs represent the local similarity measure, the com-
posite similarity measure is represented by the relevance arcs. Di�erent strength
of similarity and relevance can be represented by weighting the arcs.

3.6 Determination of the Final Result

After having done the case based retrieval we get a list of cases which represents
most likely positions of the robot. Every case is activated by some value, the
higher the value the more likely the robot is at the corresponding position.

For the determination of the robot's position we consider all cases which have
a similar activation to the maximumactivated case (80% activation or more) and
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are not more than 50 cm away from the maximum activated case. A weighted
sum over all these cases is computed to determine the robot's position.

4 Related Work

All the groups we are aware o�, which focus on similar or even the same problems
as we do in our approach, are using probabilistic methods for the self localization
and robot navigation. In [8] the authors are using partially observable Markov
models to robustly track a robot's location in o�ce environments. Furthermore
Markov models have been employed successfully in various mobile robot systems
like [1, 4, 8]. Even in the same domain, for the \Sony legged robots", these models
have been applied [5].

With our completely novel approach we want to evaluate whether we can
reach similar results by applying case based techniques. We predict that our ap-
proach has some advantages and some disadvantages in relation to the Markov
model approach. For instance we expect that our approach is faster if the infor-
mation set of perceived landmarks is low whereas our approach maybe slower in
cases where many landmarks can be perceived. Furthermore we think that active
localization [2] can be supported more easily by a case base structure than by a
Markov model.

5 Results and Future Work

To test and evaluate our approach we performed three simulated experiments and
one real-world experiment. The simulated experiments were done automatically
without using the robot or the �eld, whereas the real-world experiment was done
manually with the robot on the �eld.

In our �rst simulated experiment we randomly chose 1000 positions on the
�eld. For each of these positions, 10 virtual pictures were generated which con-
sisted of 2 to 14 landmarks. For each of these 10000 pictures, IEs were created
using the landmarks and incorporating an error between �20% and 20% of the
correct value. These IEs were used as queries for our localization approach and
the error between the correct position and the computed position was deter-
mined. The average error's dependence on the number of landmarks in the vir-
tual picture is shown in �gure 5 with the solid line. In the second experiment we
incorporated a 50% possibility that the information about whether a landmark
is the \top" or the \bottom" of a marker was lost. The results of this experiment
is represented by the dashed line in the same �gure. In the last simulated ex-
periment, whose results are represented by the dash-dotted line, all 10 pictures
of one position had the same number of landmarks (randomly chosen between 2
and 14). The IEs were created using the same error as above but this time every
IE of each of these 10 pictures was used as localization query. This experiment is
quite natural because the robot usually takes more then 10 pictures in a second
and all these pictures have errors but di�erent ones. In �gure 5, only the average
errors for the three experiments are shown, but sometimes the error was much
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Fig. 5. Simulated Results

bigger. This happens if the incorporated errors modify the virtual picture in a
manner such that it \looks" like a virtual picture from another position.

For our real-world experiments the robot was put onto the �eld and allowed
some time to localize itself by turning its head and taking pictures. The actual
location and the result computed by the robot were compared. Figure 6 shows
three (out of 30) typical examples from this experiment. The dark squares show
the actual and the light the computed positions of the robot. The �gure also
shows the given and the computed orientation of the robot. The orientation
was computed using the determined position and one fully observed marker or
goal. Although the robot sometimes had problems determining its position well
enough (in example 3 it had an error of 75 cm), it was always pretty good at
determining its orientation (maximum error of 10�).

The simulated and the real results already show the usefulness of the ap-
proach, even though we are not fully satis�ed with it. During evaluation we
discovered that the IEs which represent angles between landmarks don't include
the orientation of the angle, so we lost the information about which of the land-
marks were right or left. Furthermore the algorithm to determine the �nal result
out of the activated cases needs improvement. Up to now the robot localizes
itself using only the most current information about landmarks. We also want
to incorporate older information and the robot's movements into the case base
approach as well as enhancing our approach with active localization.
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