
Journal of Cloud Computing:
Advances, Systems and Applications

Chinnaiah and Niranjan Journal of Cloud Computing: Advances, Systems

and Applications (2018) 7:3

DOI 10.1186/s13677-018-0104-9

RESEARCH Open Access

Fault tolerant software systems using
software configurations for cloud computing
Mylara Reddy Chinnaiah1* and Nalini Niranjan2

Abstract

Customizable software systems consist of a large number of different, critical, non-critical and interdependent

configurations. Reliability and performance of configurable system depend on successful completion of

communication or interactions among its configurations. Most of the time users of configurable systems very often

use critical configurations than non-critical configurations. Failure of critical configurations will have severe impact on

system reliability and performance. We can overcome this problem by identifying critical configurations that play a

vital role, then provide a suitable fault tolerant candidate to each critical configuration. In this article we have

proposed an algorithm that identifies optimal fault tolerant candidate for every critical configuration of a software

system. We have also proposed two schemes to classify configurations into critical and non-critical configurations

based on: 1) Frequency of configuration interactions (IFrFT), 2) Characteristics and frequency of interactions (ChIFrFT).

These schemes have played very important role in achieving reliability and fault tolerance of a software system in a

cost effective manner. The percentage of successful interactions of IFrFT and ChIFrFT are 25 and 40% higher than that

of the NoFT scheme. In NoFT scheme none of the configurations are supported by fault tolerance candidates.

Performance of IFrFT, ChIFrFT, and NoFT schemes are tested using a file structure system.

Keywords: Configurable software systems, Fault tolerance, Reliability, Configurations interactions

Introduction
Customization of a software system varies with user

requirements or target platform. Programmers employ

preprocessor directives, command-line arguments, setup

files, configuration files to customize a software system.

Using product-line technology, it is possible to generate a

program tailored to individual user requirements by using

program generators. Program generation process leverage

software system features where a feature is a visible behav-

ior or characteristic of a software program [1]. According

to product-line technology, any customizable option that

can be selected during the compile or load time is called

a feature of a program. Program generator generates a

program depending on features selected by the user(s).

Every program or software system will have functional

and non-functional properties. Functional properties are

activities that are to be performed or a behavior that has

to be exhibited by a program when a specified condition

*Correspondence: mylarareddy@revainstitution.org
1School of Computing and Information Technology, REVA University, Rukmini

Knowledge Park, Yelahanka, 560064 Bangalore, India

Full list of author information is available at the end of the article

is met. Most of the non-functional properties are related

to performance, such as accessibility, fault-tolerance,

reliability, scalability, recoverability, maintainability and

availability of program(s). Most of the time users will be

interested in non-functional properties such as alloca-

tion and release of memory, emailing electronic adver-

tisements to users. A software configuration consists of

non-functional properties customized to a specific set

of features. For example, preprocessor directives cus-

tomized to a particular set of requirements and pro-

cessed during compilation of software system will become

configurations.

Generally software systems consists of several differ-

ent configurations, in turn, each configuration consist of

many features. Similar to a configuration model with a

few configurations produce several variants of software

systems in [2, 3], a feature model that consists of few

features can produce several numbers of configurations.

An interaction is a communication between two or more

configurations of a software system to exchange data. A

software system that consists of hundreds or thousands of

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-018-0104-9&domain=pdf
http://orcid.org/0000-0001-9118-3647
mailto: mylarareddy@revainstitution.org
http://creativecommons.org/licenses/by/4.0/

Chinnaiah and Niranjan Journal of Cloud Computing: Advances, Systems and Applications (2018) 7:3 Page 2 of 17

configurations having different failure behavior is prone to

failure.

Configurations that perform important, common or

default operations are called critical configurations. Dur-

ing the execution of software system many non-critical

configurations interact with critical configurations. Criti-

cal configurations are specialized versions of non-critical

configurations similar to many features are extended ver-

sions of important features [4].

A configuration is said to be failed configuration if

it either produce errors during its execution or fail to

successfully complete its task. A software system that

consists of configurations which are prone to failure will

have unpredictable behavior and performance anoma-

lies making it unusable or untrustworthy. Communica-

tion (parameters, return values, etc.) between two or

more configurations is called Configurations Interaction.

Incomplete/failed communication between two or more

configurations is said to be Failed Interaction. The sig-

nificance level of critical configuration will come down

when it is involved in failed interactions. Failed inter-

actions have become common than exceptions [5] in

modern complex software systems. Further, by classify-

ing the configurations into two categories as given below,

we can improve software systems reliability and fault

tolerance.

1) Frequently used or Critical configurations, and

2) Less frequently used or non-critical configurations

After the classification of configurations into the cat-

egories mentioned above,frequently used configurations

are backed up by fault tolerant candidates to improve the

reliability and performance of software systems.

According to software reliability engineering, the main

approaches to build reliable software systems are 1) Fault

Forecasting [6, 7], 2) Fault Prevention, 3) Fault Removal

[8] and 4) Fault Tolerance [9]. Fault prevention and fault

tolerance techniques are leveraged in the development of

large and reliable complex software systems. To tolerate

faults, design diversity technique proposed by Avizienis

et al. [10], employs functionally equivalent yet indepen-

dently designed and developed software system modules.

Since this technique incur high development and main-

tenance cost it is employed only in the development and

maintenance of machine critical systems (disaster control,

threat of loss of life).

Software systems usually consist of hundreds of

configurations. Although provisioning redundant con-

figurations for every configuration of large and complex

software system help to tolerate failures, it would be very

expensive and results in high upfront investment cost. It

is possible to minimize investment cost by provisioning

redundant configurations only for frequently configura-

tions. Microsoft has reported that it has reduced 80%

of failures by fixing top 20% of most frequently reported

bugs or crashes in its windows and office suite. Generally

80% of end users use only 20% of software application

features [11].

Our contributions in this paper are as follows:

• Classification of configurations of software systems

into following categories: 1) Frequently used

(Critical) configurations and 2) Less frequently used

(non-critical) configurations.
• Compare the performance of the following proposed

strategies 1) Frequently-used (Critical) configurations

enabled with fault tolerance, 2) All configurations of a

software system enabled with fault tolerance, 3) None

of the configurations have fault tolerance support.
• Demonstrate practicality of the proposed strategies

on a file structures system that consists of several

configurations.

Organization of this paper is as follows:

“Related work” section presents the related work,

“System model and failure model” section present

system model and failure models used in this work,

“Overview of proposed approach” section introduces

an overview of the proposed approach and system

architecture, “Classification of configurations” section

presents a mathematical model to classify configurations,

“Fault tolerance schemes” section presents various

fault tolerant schemes, selection of most suitable fault

tolerant candidate to each configuration, finally the

“Experimental setup and performance evaluation” section

presents experimental setup and results discussion.

Related work
In cloud computing environment occurrence of failures is

random in nature and also there may be unknown types of

failures. It is important either to eliminate failures perma-

nently or minimize the impact of failures. Fault tolerant

approaches are broadly classified into two categories. 1)

Reactive schemes and 2) Proactive schemes.

Reactive schemes swing into action as soon as software

system failed. Some of the popular reactive techniques are:

a) Checkpoint-Restart: In this approach the overall exe-

cution time of a job/task depends on checkpoint intervals.

Shorter checkpoint intervals cause frequent checkpoint-

ing, large number of checkpoints thus resulting in much

time spent in checkpoint activity, higher disk space

required to store checkpoint images. Longer checkpoint

intervals cause high resource wastage due to re-execution

of a job from its longer distant previous checkpoint. A

checkpoint interval that is very good for some workloads

may be worse for other workloads. For example, in case

of transmission failures shorter checkpoint intervals

completely eliminate retransmission of lengthy messages

of TCP applications (deal with longer messages) while

Chinnaiah and Niranjan Journal of Cloud Computing: Advances, Systems and Applications (2018) 7:3 Page 3 of 17

checkpointing UDP (deal with short messages) applica-

tions with longer intervals eliminate the need for large

storage space to save checkpoint images and reduce the

cumulative compute power overhead of all checkpoints.

Research on finding most suitable checkpoint intervals

for different workloads, yet to happen. Checkpointing

identical operations performed by many users on several

computing machines will lead to wastage of resources and

increased cost. To overcome this problem a technique

proposed by Zhou et al. in [12] checkpoint identical parts

of all virtual machines which host and render identical

services.

b) Job migration: Job migration can be further classified

into preemptive and non-preemptive migration. In pre-

emptive migration mechanism a job undergoes migration

whenever a monitoring system detects misbehavior of the

job. Accuracy of preemptive migration schemes depends

on fitness of failure prediction algorithms. Incorrect

predictions lead to unnecessary job migrations, increased

resource wastage and longer job turnaround time. In this

approach Mean Time To Migrate (MTTM) consists of

time taken i) by prediction algorithm, ii) to notify run time

environment iii) to complete the migration task and iv)

how best the prediction algorithms know types of failures

that occur. In preemptive approach Mean time to migrate

a job is less compare to non-preemptive approach. Pre-

emptive approach is more suitable for critical machine

control systems such as aviation, nuclear control

systems, etc.

c) Replication: In replication mechanism a job is repli-

cated over multiple compute platforms in which replicas

are executed in parallel. Voting mechanism is used in case

of more than two replicas to decide correct output. As an

alternative method to parallel execution of replicas, the

concept of primary and secondary was proposed. In this

approach secondary job takes over the role of primary

as soon as primary job failed. Byzantine Fault Tolerance

(BFT) approach [13] proposed by Zhang et al. make use

of 3k+1 replicas to overcome K faults. In gossip approach

proposed by Lim et al. [14] 2K+1 replicas are used to tol-

erate K faults. For further reading about job migration

techniques interested reader may refer following articles

[15–19].

To improve the fault tolerance of distributed applica-

tions in a cloud computing environment, Zhao et al. in

[20] proposed a fault tolerant middleware that consist of

three components: 1) A low level messaging protocol that

render reliable, totally ordered multicast service between

primary and backup members of a group. 2) A leader-

determined membership protocol to ensure that every

member of a group has a consistent view of primary mem-

ber and other members belong to its group, also shorten

the time required to elect a primary member among

several members of the group. 3) A virtual determiner

framework that transforms every non-deterministic oper-

ation of a primary member to virtually determinis-

tic operation while guaranteeing that all backups shall

receive results in the same order as that of the primary

member.

Proactive schemes: In proactive schemes hardware

and computing environment continuously monitored for

occurrence of failures by employing best failure prediction

algorithms. Prediction algorithms take decisions based

on the outcome of intermittent results and communica-

tion messages. Whenever a monitoring system detects

deviation in behavior of a job due to failure of under-

lying hardware or computing environment, then the job

is migrated to fault free computing environment. Some

of the schemes in proactive fault tolerance are as given

below:

a) Self Healing: Self healing systems detect and respond

to malfunctions that occur during run time. They have the

ability to recognize failures and take suitable action imme-

diately to minimize the impact of failures. Functional and

interaction failures are common that occur during run-

time in component based software systems. An approach

proposed by Nicolo P. [22] exploits redundancy of com-

ponents to mask failures. Cliff Saran in [23] highlighted

some of the difficulties involved in usage of self-managing

systems such as common software standards across the

industry and proprietary system management interfaces.

Quality of service of an application is ensured by dealing

with its quality attributes. In [24] V. Nallur et al. have pro-

posed a self-optimizing architecture based on service level

agreements. Using this architecture any service hosted on

the cloud will dynamically self-manage depending on ser-

vice provider inputs to minimize the cost of service. As far

as possible this architecture ensures that the user service

level agreements are satisfied while the service is being

re-configured according to service provider input.

Execution of parallel applications in a cloud computing

environment requires multiple processing nodes. Process-

ing nodes that have poor coordination/synchronization

will produce incorrect results and would lead to wastage

of resources. An algorithm proposed in [25] schedule

parallel applications based on virtual machine charac-

teristics to reduce consumption of physical resources

such as network elements and power within the data

center.

b) Software Rejuvenation: This approach deal with han-

dling transient failures caused by software aging phe-

nomenon. It involves resetting a part of the internal state

of a job followed by restarting the execution of a job.

Fault tolerant software systems with two-version redun-

dant structures and single-version rejuvenation were pro-

posed in [26] and [27] respectively. An approach based on

backup of virtual machines in the cloud [28] was proposed

by Xinyi et al. to improve system reliability. For more

Chinnaiah and Niranjan Journal of Cloud Computing: Advances, Systems and Applications (2018) 7:3 Page 4 of 17

information on software rejuvenation interested reader

may refer to [29–32].

c) Preemptive Migration: Migration of processes, oper-

ating systems and virtual machines enable load balancing,

efficient resource usage, fault management and system

maintenance. Migration of virtual machines, computing

platform across homogeneous and heterogeneous hosts

help administrators manage data centers, clusters in easy

and efficient manner. Some of the research articles pub-

lished in this area are [33–36]. Proactive recovery tech-

niques such as staggered proactive recovery, rebooting

a compromised node, refreshing the state of a node do

not guarantee hundred percent recovery of nodes and

are not sufficient enough to prevent Byzantine faults per-

manently. Since the reboot and recovery operations are

performed as part of the critical execution sequence,

they take more time to achieve a stable state by recover-

ing failed node. A proactive recovery mechanism based

on service migration [21] was proposed to overcome

limitations of reboot and recovery mechanisms. In this

scheme pool of spare nodes are used to migrate long-

running applications off the critical path, run as back-

ground/separate tasks, therebyminimizing the reboot and

recovery time.

Fault tolerance can be considered during the design,

development and architecture of large, complex soft-

ware systems [6]. Considering virtual machines and cloud

elasticity property Xiaomin Zhu et al. have proposed

an algorithm, FASTER, [37] that overlap workload tasks

to improve reliability of scientific workloads in virtual

clouds. Seigmund et al. in [38] have proposed an approach

that treats customizable systems as a black box and detect

performance relevant feature interactions on a set of

specially selected configurations. The pair-wise heuristic

technique was used to and measure a set of configura-

tions that select cover all pairwise interactions among

configurations relevant to performance.

Liebig et al. in [39] have analyzed the variability charac-

teristic in forty software programs ranging from small to

large scale and claimed that structural interactions occur

betweens two features and such interactions in turn may

cause performance feature interactions. Sincero et al. in

[40] proposed a model that deals with feature attributes,

interaction among features that predict configurations

non-functional properties. Software feature behavior that

produce an unexpected outcome indicates malfunction-

ing of software feature. Zheng et al. [41] and Slawinska

et al. [42] have proposed collaborative solutions for spe-

cific applications such as MPI. Parnas et al. [43] and

Shooman et al. [44] highlighted the impact of the struc-

ture of an application on its performance, reliability and

correctness.

Fault tolerance techniques proposed in this article are

based on replication. As there exist many robust, effi-

cient, optimal fault tolerant schemes in the literature

related to hardware, middleware, platform levels, we

assume that there are no failures in hardware, middle-

ware, and platform levels. Fault tolerance in hardware,

middleware, computing platform is out of the scope

of this article. In this article we address fault toler-

ance at the application level by exploiting application

characteristics such as structure and feature’s behav-

ior. In this direction we propose a scheme to iden-

tify frequently used configurations which play vital role

in a software system, then enable them configurations

using suitable fault tolerance candidate to improve reli-

ability and fault tolerance of a software system. Also,

we investigate the importance of configurations inter-

actions on system performance, reliability and fault

tolerance.

Systemmodel and failure model
• System Model: The various operations of file

structures techniques involve interaction among

Fig. 1 System Model

Chinnaiah and Niranjan Journal of Cloud Computing: Advances, Systems and Applications (2018) 7:3 Page 5 of 17

several configurations and successful execution of

their interactions. Pictorial representation of the

system is shown in Fig. 1. File structure system has

several configurations, each of which have their

functionally equivalent yet an independent

configuration written in different programming logic.

Every independent configuration act as fault tolerant

candidate. Fault tolerance of the system depends on

the number of redundant configurations, type of

failures and number of failures. In our file structure

system each critical configuration is supported by

only one fault tolerant candidate and two types of

failures are dealt with. Requests are generated to save

new data records, fetch existing data records from the

file structure. Pack operation is invoked by all

techniques of file structures for every request to

create a new record. Similarly unpack operation is

invoked for every request to fetch data record(s) from

file structures.

Value of record fields are passed to/returned from

one configuration to another configuration. During

this process faults are introduced by flipping some

bits of the fields of a record through random

selection. When faults are introduced in non-critical

configurations, then such configurations are treated

as permanently failed configurations. Subsequent

requests for such configurations are considered as

unsuccessful/failed interactions. When faults are

introduced in a critical configuration that has the

support of the fault tolerant candidate, then

subsequent requests will be delegated to the fault

tolerant candidate. However, upon failure of fault

tolerant candidate subsequent requests targeted to it

are treated as failed requests.
• Failure Model: In the file structure system we have

considered 1) Response failures: a) Value failure, b)

State transition failure and 2) Omission failures: a)

Receive omission failure, b) Send omission failure as

given in Table 1. Value failures and state transition

failures are injected randomly into the record fields to

flip values of some of the bits of record fields. Value

Table 1 Failure models

Type of failure Operations/techniques

Response failures Pack, Indexes, Balanced Trees, Hashing

1. Value failure

2. State transition failure

Omission failure Unpack, Indexes, Balance Trees, Hashing,

Storage compaction

1. Receive omission

2. Send omission

failures are injected into the parameters and return

value of functions. State transition failures occur

when we change the value of variable(s) used in

conditional constructs resulting in execution of

different part of a program. For example block of

statements belong to the else part of an if statement

instead of true part. Omission failures occur during

read and write operations on file structure. During

the execution of a request to create a new record

some of the bits of record fields are set and reset to

introduce failures and such failures contribute to

receive omission failures. Similarly, while reading

record fields some of the record fields are modified by

setting and resetting bits and such failures are called

send omission failures. As shown in Table 1 response

failures occur in pack, indexes, balanced and hashing

techniques while omission failures are generated in

unpack, indexes, balance trees, hashing, and storage

compaction techniques. For example hash key is

modified while a record is being hashed. As a result of

modified key, hash algorithm may or may not

produce collisions, that is, it might produce collision

for a key to which collision should not occur and

vice-versa.

Overview of proposed approach
Figure 2 depicts a pictorial representation of the proposed

architecture to address some of the challenges mentioned

above. It consists of two parts: 1) Classification of configu-

rations and 2) Selection of the most suitable, optimal fault

tolerant candidate to every critical configuration. Proce-

dure to achieve fault tolerance of a software system is as

follows:

• We have used two versions of the file structure

software system. In first one, all configurations of a

software system are supported by their replicas. In

the second version, only critical or frequently used

configurations, which contribute to 20% of all

configurations, are supported by suitable fault

tolerant candidates that are functionally equivalent

yet independent configurations developed using

different programming constructs/logic to mask

failures.
• After the completion of all interactions, interaction

value of each configuration is calculated based on the

number of successful interactions.
• Configurations are classified into most frequently

used (critical) and less frequently used (non-critical)

categories based on their interaction values.
• Effectiveness of each fault tolerance strategy is

measured and compared with other strategies, then

most suitable fault tolerance strategy for a given

critical configuration is selected.

Chinnaiah and Niranjan Journal of Cloud Computing: Advances, Systems and Applications (2018) 7:3 Page 6 of 17

Fig. 2 System architecture of the proposed work

Classification of configurations
Configurations interaction graph building

A software system can be modeled as a weighted directed

graph denoted by G, where Ci represent ith configura-

tion and an edge denoted by Ijk represent interaction

between configurationsCj andCk , that is, configurationCj

invokesCk . In this process every configuration, sayCi, that

is involved in successful interaction has a non-negative

interaction value P(Ci). At the end of all interactions the

percentage of successfully executed interactions between

every pair of configurations, for example, between Cj and

Ck , are calculated using Eq. 1

M
(

Ijk
)

=
Fjk

∑N
k=1 FjK

(1)

Where Fjk represent the number of times configura-

tion Cj invoked Ck and N is the number of configurations

present in a software system. If there is no interaction

between Cj and Ck then Fjk = 0. Value of Ijk increased by

one for every successful interaction betweenCj andCk . An

interaction Ijk will have a larger value if Cj interacts with

Ck more number of times than other configurations. For

a software system having N configurations, the configu-

ration graph represent N ∗ N matrix, denoted by M, that

can be obtained from Eq. 1. Each element of M, denoted

by mjk , represent interactions between jth and kth config-

urations. A configuration interaction value between every

pair of configurations is calculated according to the steps

given below:

• If jth configuration during its life time never interact

with kth configuration, then the interaction value of

jth configuration with kth configuration will be zero,
that is,M

(

Ijk
)

.mjk = 0

• If jth configuration interacts with itself, in case of

recursive configurations, then its interaction value

represented bymjj is incremented by one for every

successful interaction.
• If jth configuration interact with none of the

configurations except kth, then the interaction value

will be calculated as Ijk = 1
N for all k = 1 to N except

j. MatrixM is a stochastic matrix since all the

elements in a row ofM sum to one and each element

lies in the range [0, 1].

Configurations classification

Software system configurations are categorized based on :

1) Frequency of interactions between configurations

(IFrFT)

2) Characteristics such as structure (critical or non-

critical) and frequency of interactions (ChIFrFT)

IFrFT: fault tolerance based on frequency of interactions

In this approach all configurations are treated as equal

by setting their individual interaction value to zero at

the beginning of execution of a software system. Con-

figurations that are involved in most of the interactions

during execution of software system are considered as

critical configurations. Reliability and performance of any

software system depend on successful execution of its

critical configurations. For an increased number of failed

critical configurations and configuration interactions reli-

ability and performance of software system deteriorate

significantly. By employing fault tolerant candidates to

critical configurations, successful execution of most of

interactions, it is possible to improve the reliability and

performance of a software system. In this context, we

propose a mathematical model to find frequently used

configurations of a software system based on frequency

of interactions. The proposed mathematical model is as

follows:

• Configuration Ci is assigned to a value Vi
∑N

j=1 Vj
, where

N is the number of configurations, Vi is the

significance of ith configuration.
• Compute the interaction value of ith configuration Ci,

denoted by P (Ci), for i = 1 to N, using

P (Ci) =
1 − α

N
+ α

∑

j∈S(Ci)

P(Cj)M
(

Iji
)

(2)

where S (Ci) is a set of configurations that invoke

interactions with configuration Ci. Variable α

(0 ≤ α ≤ 1) in Eq. 2, indicate the interactions

Chinnaiah and Niranjan Journal of Cloud Computing: Advances, Systems and Applications (2018) 7:3 Page 7 of 17

Fig. 3 N-Version programming

influence, in terms of interaction value, between Ci

and Cj. Therefore, an interaction value of Ci is

derived from configurations that have invoked it for

interaction. Interaction value of Ci depends on

|S(Ci)|, P
(

Cj

)

,M
(

Iji
)

. The larger value of Ci

indicates that it has been invoked very frequently by

other configurations. Using Eq. 2 we find frequently

used configurations of a software system. Value of α

is varied between zero and one until we get stabilized

interaction values for 10000 interactions.

Using Eq. 2 we obtain configurations that are frequently

used and play important role in improving the reliability

of a software system.

ChIFrFT: fault tolerance based on characteristics and

interaction frequencies of configurations

In this approach software configurations are categorized

into two sets 1) A set, denoted by C, of configurations

which perform critical tasks (checking for uniqueness,

size of index table, search operation, and collisions are

treated as characteristics) 2) A set, denoted byUC, of con-

figurations which perform non-critical tasks (the padding

of special symbol in fixed-length records). Initial inter-

action values of configurations that belong to the set C

are assigned to higher values compare to configurations

of UC. Since the reliability and performance of software

systems depend on successful execution of their critical

configurations, we can improve the reliability, perfor-

mance by provisioning fault tolerant candidates to critical

configurations.

Performance (defined in terms of interaction value and

the number of successful interactions) of a critical config-

uration, say Ci, where Ci ∈ C is computed by using Eq. 3

given below:

P (Ci) = (1 − α)
β

|C|
+ α

∑

j∈S(Ci)

P
(

Cj

)

M
(

Iji
)

(3)

For a non-critical configuration Ck , where Ck ∈ NC, we

compute the performance using Eq. 4 given below:

P (Ck) = (1 − α)
1 − β

|NC|
+ α

∑

j∈S(Ck)

P
(

Cj

)

M
(

Ijk
)

(4)

Where S (Ck) is the set of configurations that invoke

configuration Ck , sum of |C| and |NC| is equal to N. In

ChIFrFT approach the parameter β is used to find the

importance of configurations belong to sets C and UC.

For β ≤
|C|

|NC|
performance of ChIFrFT approach is same

as that of IFrFT, that is, frequently used and less fre-

quently used configurations are treated equally. However,

ChIFrFT performs better than IFrFT for |C|

|NC|
≤ β ≤ 1,

that is, frequently used configurations are treated with

higher priority than less frequently used configurations.

Fault tolerance schemes
Classification of software fault tolerance techniques

Software fault tolerance schemes are classified into two

major categories. 1) Proactive schemes and 2) Reactive

schemes

• Proactive Fault Tolerance Schemes: Proactive fault

tolerance schemes are adopted in computing systems

which suffer severely due to failures. Proactive

schemes are costlier as they need lots of resources to

support simultaneous execution of primary job and

its replicas. Some of the proactive fault tolerance

schemes are:

1. Preemptive migration: Preemptive migration

[45] techniques require very good failure

Chinnaiah and Niranjan Journal of Cloud Computing: Advances, Systems and Applications (2018) 7:3 Page 8 of 17

prediction algorithms. For instance prediction of

faults related to performance, resource outages

and functional failures for timely actions.

Effectiveness of preemptive migration schemes

depends on the correctness of the output of

prediction algorithms.

2. N-Version programming: In N-version

programming [46] N programs, N ≥ 2, that are

functionally equivalent yet independent as shown

in Fig. 3 are generated from the initial formal

specification defined using any specification

language. Some of the specification languages are

Clear, OBJ3, CafeOBJ, ACT, ASL, ASL+,
SPECTRUM, and Larch.

3. N-Copy programming: N-Copy programming as

shown in Fig. 4 is the data diverse complement of

N-Version Programming. All copies of programs

execute in parallel by taking data produced by

data re-expression algorithms [47].

4. Byzantine fault tolerance: A Byzantine fault is

an incorrect operation that occurs in a distributed

environment. Byzantine faults can be classified

into 1) Omission failure: Failure of a resource

means requested resource might not exist or

unavailable due to busy 2) Execution failure:

Failure due to sending incorrect or inconsistent

data, corrupting local state or responding with

incorrect data, for example, round-off errors

propagated from one function to another

function [48].

To provide Byzantine fault tolerance in presence

ofm faulty processors, (1) There must be at least

3m + 1 processors, (2) Must exist, at least 2m + 1

communication paths between a pair of

Fig. 4 N-Copy programming

Fig. 5 Recovery Block programming

processors, (3) There must bem + 1 rounds of

messages exchanged and (4) Processors must be

synchronized within a known skew of each other.

• Reactive Fault Tolerance Schemes: Reactive fault

tolerance schemes act on the recovery process after

the occurrence of failure. These schemes take less

amount of resources, more time for recovery,

compare to proactive schemes. Some of the reactive

schemes are:

1. Recovery Block programming: Recovery block

[49] is a popular technique employed in software

fault tolerance domain. Figure 5 depicts the

pictorial representation of recovery block

technique. This technique makes use of

redundant program modules. Redundant program

modules are executed in sequential manner. For

example, in Fig. 5 RB2 executed when RB1 failed,

RB3 executed when both RB1 and RB2 failed.

Similarly redundant block RBn is executed when

all the redundant blocks other than RBn, that is

RB1 to RBn−1, are failed.

This technique fails when all redundant program

modules failed. Probability of failure of recovery

block technique, denoted by F, can be calculated

by using the equation given below:

F =

n
∏

i=1

fi (5)

2. Process checkpointing: Checkpointing is a

technique that is commonly used to reduce

execution time of long running programs in the

presence of failures [50]. In this technique, the

status of the program/job under execution is

saved intermittently. Program/job resumes its

execution from the most recent checkpoint

instead of from the beginning of the program/job

upon occurrence of failure. For a program/job,

Fig. 6 Checkpoint Technique

Chinnaiah and Niranjan Journal of Cloud Computing: Advances, Systems and Applications (2018) 7:3 Page 9 of 17

Table 2 Overview of software system considered

System Domain Language LOC Configurations

File structures File handling C++ 2136 92

having n modules with n-1 equally spaced

checkpoints, as shown in Fig. 6, expected

execution time of a program/job is given by,

E
(

T
(

x,n

))

=

(

1

γ
+ E(R)

)

[

(n − 1)
(

φc (−γ) e
γ x
n − 1

)

+

(

e
γ x
n − 1

)]

(6)

where x is program/job processing requirement,

random variable C is a checkpoint duration, R is a

random variable that represents repair time, γ is

the rate at which failures occur according to a

Poisson distribution, φc is the Laplace-Stieltjes

transformation (LST), E(R) is the expected repair

time.

3. Process migration: It is an act of transferring

state information of live processes from one

machine to another across homogeneous or

heterogeneous hardware, platforms [51]. Process

migration technique to realize its full potential

must be able to perform the following tasks 1) A

process must preserve its internal state during

migration, 2) Must be efficient and 3) Must be as

transparent as possible to the external

environment.

Selection of best fault tolerance scheme

Each fault tolerant scheme will have several unique can-

didates based on their configurations and characteris-

tics such as response time, resources like computing

power, storage, etc. For example, replication fault toler-

ance schemes are storage and compute power intensive

Algorithm 1 Select Best Fault Tolerance Scheme

Input: Array of FT candidate values, value of a configura-

tion that require FT

Output: Best FT candidate for the given configuration

1: function SELECT_BEST_FT_CANDIDATE(t [i], Ctk) ⊲

Where t [i] - FT values, Ctk is an interaction value

2: x = 0

3: for i = 1 to n do

4: if t [i] <= Ctk then

5: S [x] = t [i]
6: x = x + 1

7: end if

8: end for

9: min = S [1]
10: for j = 2 to x do

11: ifmin > S
[

j
]

then

12: min = S
[

j
]

13: FT(Ct) = j

14: end if

15: end for

16: end function

whereas process migration schemes are time intensive. A

fault tolerance scheme, say Fi, may have J candidates Fij for

J = 1 to n. Given the interaction value of a configuration,

values of all eligible fault tolerant schemes (set of redun-

dant configurations which are functionally equivalent, but

independent) that are suitable to Ct as arguments to

Algorithm 1, it selects the most optimal fault tolerant

candidate from the set of eligible fault tolerant candi-

dates. Each fault tolerant scheme will have several can-

didates depending on the characteristics and constraints

to be satisfied. To select the most suitable and optimal

fault tolerant scheme to a given critical configuration

above algorithm uses failure probability of every fault

tolerant scheme. For the set of constraints of a critical

Fig. 7 Code snippet for pack, unpack and index operations

Chinnaiah and Niranjan Journal of Cloud Computing: Advances, Systems and Applications (2018) 7:3 Page 10 of 17

Table 3 Possible failures in each operation

Operation Role and specification Possible failures

Pack operation on fixed and variable
length records

Concatenation of attributes of fields to compose
a record

1. Overflow of record fields

2. Data of a record exceeds the length of the
record
3. Null values to record fields
4. Data type mismatch between record fields and
values
5. File cannot be opened for write operation

Unpack operation on fixed and variable
length records

Extraction of attributes of fields of a record 1. Null value of a field

2. Type mismatch between target data type and
field value
3. File not found
4. File cannot be opened for read operation

Search using relative record number
(RRN)

Search an index file for a record whose RRN is
same as a search key

1. Record not found

2. Invalid RRN
3. RRN exceeds maximum value

Primary index and Secondary index Building primary and secondary indexes for a
data file

1. Primary key constraint violation

2. Incorrect index record address
3. Invalid secondary key value

Balanced trees Balanced trees to manipulate data records 1. Incorrect leaf node
2. Incorrect key index
3. Deletion of a key from empty node

Hashing Generate a unique address to each data record to
store it in a hash table

1. Multiple keys hash to the same address

2. Overflow of hash table

Storage compaction Method to reuse memory reserved for data
records which no more exist

1. Internal and external fragmentation

configuration given as input to the algorithm, it generates

a list of suitable fault tolerant candidates whose failure

probability is less than the configuration interaction value.

Finally the best FT candidate that has minimum failure

probability among all possible candidates will be assigned

to the critical configuration.

Experimental setup and performance evaluation
Using C++ language we have developed a software sys-

tem for file structure techniques proposed by Michael J.

Folk in [54]. Details of the software system are given in

Table 2. It consists of several configurations which are

functionally equivalent yet independent to achieve fault

tolerance. The file structure system involves following

operations: 1. Fixed-length record packing 2. Variable-

length record packing 3. Unpacking of fixed-length records

4. Unpacking of variable-length records 5. Searching for

a record using Relative Record Number(RRN) 6. Create

Primary Index 7. Create Secondary Index 8. Balanced

Trees 9. Hashing 10. Dynamic Hashing and 11. Storage

Compaction

Figure 7 shows a sample code snippet for record

packing, unpacking, and index operations.

Table 3 shows the list of various operations, role and

specifications, possible failures of each operation.

Table 4 shows the list of various failures caused by failed

interactions and their descriptions.

We have used two versions of a file structure system

1) With all of its configurations enabled, 2) Functionally

equivalent yet independent versions of frequently used

(critical) configurations that are 1%, 5%, 10%, 15%, and

20% of all configurations which act as a fault tolerant

plane. The file structure system is deployed on VMWare

vCenter Server 4.1 that runs on PowerEdge T340 hav-

ing following configuration: Intel Xeon E5-2430, 2.2 GHz,

16 GB RAM and vSphere Cleint 4.1 installed on the

remote desktop computer. Execution requests to mul-

tiple groups that consists of both frequently used

and less frequently used configurations are gener-

ated using a synthetic workload generator. Every exe-

cution request randomly generates values for fields

of a data record. The operations listed in Table 3

Chinnaiah and Niranjan Journal of Cloud Computing: Advances, Systems and Applications (2018) 7:3 Page 11 of 17

Table 4 List of possible failures and their description

Failure name Description

Overflow Occur when size of data exceeds the

maximum length of a field or record

Null value Occur when nothing is set to record field

Invalid data Occur when there is a type mismatch

between data type of a field and the value

being assigned

Read, Write Occur when a specified file cannot be

opened for read, write operations

Duplicate values Occur when a field has similar attributes

Invalid RRN When a given RRN exceeds its maximum

value or larger

than the current largest RRN

Primary key constraint
violation

Duplicate key exist in primary index

Collision When two or more keys hash to the same

address of hash table

Invalid field value When there is a type mismatch between

data type of a field and the value

cause interactions between dependent configurations.

By monitoring configuration interactions for failure,

information about failed interactions logged for further

processing.

Fault tolerance techniques IFrFT,ChIFrFT,AllFT,NoFT

and FT candidate selection algorithm are implemented

in C++ language. In IFrFT and ChIFrFT techniques

frequently used configurations are supported by fault

tolerant candidates. None of the configurations are sup-

ported by fault tolerant candidates in NoFT technique. In

AllFT technique every configuration is supported by their

replicas. The percentage of failed configurations varied

from 10 to 100% in steps of 10. The maximum num-

ber of frequently used configurations is set to 20% of

all configurations. Value for parameter α in Eq. 2 varied

between 0.7 and 0.9 to identify the best value as it is used

in [52, 53].

• Among all the schemes performance of AllFT is

better since every configuration is supported by its

replica. In this scheme replicated configurations help

the system to overcome most of the failures for less

number of interaction requests, for e.g. 2000 and

4000.
• Performance of ChIFrFT is better than IFrFT and

NoFT in all the experimental scenarios since it

considers both frequency of interactions and

characteristics of configurations. This signifies that

both characteristics and frequency of interactions of

configurations play important role in improving

performance and reliability of software systems.
• Reliability and performance of software systems

deteriorate as the number of failed interactions

increased. This effect can be nullified by provisioning

fault tolerant candidates to frequently used

configurations.
• For any failure percentage between 10 and 100,

proposed IFrFT and ChIFrFT techniques perform

better than NoFT while ChIFrFT outperform IFrFT.
• In case of lesser number of interaction requests, the

software system has better performance and

reliability when frequently used configurations that

are enabled with fault tolerant candidates increased

from 1 to 20%. However, performance and reliability

of software system worsen for a large number of

interaction requests.

We study the impact of a K percent of critical or

frequently used configurations on system performance,

reliability for different values of K (that is, 1%, 5%, 10%,

15%, and 20%) and interaction requests (2000, 4000, 6000,

8000, and 10000).

Fig. 8 Critical configurations are 1% of all configurations

Chinnaiah and Niranjan Journal of Cloud Computing: Advances, Systems and Applications (2018) 7:3 Page 12 of 17

Fig. 9 Critical configurations are 5% of all configurations

Fig. 10 Critical configurations are 10% of all configurations

Fig. 11 Critical configurations are 15% of all configurations

Chinnaiah and Niranjan Journal of Cloud Computing: Advances, Systems and Applications (2018) 7:3 Page 13 of 17

Fig. 12 Critical configurations are 20% of all configurations

Fig. 13 Critical configurations are 1% of all configurations

Fig. 14 Critical configurations are 5% of all configurations

Chinnaiah and Niranjan Journal of Cloud Computing: Advances, Systems and Applications (2018) 7:3 Page 14 of 17

Fig. 15 Critical configurations are 10% of all configurations

• ChIFrFT has consistently better performance

compared to IFrFT as the percentage of frequently

used configurations increased.
• The rate at which the amount of successful

interactions decrease depends on the percentage of

frequently used and failed configurations.
• When frequently used configurations are 1% of all

configurations of the system and the number of failed

configurations increased from 10% to a hundred

percent, then the number of successful interactions

decrease at a faster rate as shown in Fig. 8. Reason for

this is only 1% of critical configurations are supported

by fault tolerant candidates. Under this scenario,

when all the configurations are failed, only fault

tolerant candidates which are 1% of all configurations

serve requests.
• There is no much difference in percentage of

successful interactions for ChIFrFT, IFrFT, andNoFT
techniques when frequently used configurations are

only 1% of all configurations as shown in Fig. 8.

Figure 9 shows the performance of a system when

frequently used configurations are 5% of all configura-

tions. As the percentage of failed configurations increased

from 10 to 100 in steps of 10, the number of successful

interactions will decrease. However, in this case the num-

ber of successful interactions is higher compared to the

scenario where frequently used configurations are 1% of

all configurations. When all the frequently used configu-

rations are failed then fault tolerant candidates, which are

equivalent to 5% of all configurations serve requests.

In this case performance of ChIFrFT, IFrFT techniques

are little better than NoFT technique because of 5% of

configurations are supported by fault tolerant candidates.

Figure 10 shows the performance of the file structure

system when frequently used configurations are 10% of all

configurations. In this case system performance is better

compare to previous scenarios in which frequently used

configurations are 1% and 5%. Furthermore, for a larger

number of failed configurations NoFT technique suffer

severely compare to ChIFrFT and IFrFT techniques.

Fig. 16 Critical configurations are 15% of all configurations

Chinnaiah and Niranjan Journal of Cloud Computing: Advances, Systems and Applications (2018) 7:3 Page 15 of 17

Fig. 17 Critical configurations are 20% of all configurations

Figure 11 shows the performance of the file structure

system when frequently used configurations are Fifteen

percent of all configurations. Large number of interac-

tion requests, higher number of failed configurations lead

to a large number of failed requests, even though every

configuration has its replica.

As the number of interaction requests increased from

2000 to 10000 in steps of 1000, system undergo perfor-

mance deterioration due to the large number of failed

interaction requests. The reason is that every config-

uration in AllFT technique is supported by only one

backup configuration. After primary configuration failed,

its backup configuration also may fail to serve requests.

Figure 12 shows the performance of the system when

frequently used configurations are 20% of all configura-

tions. Since 20% of all configurations constitute a consid-

erably large number of configurations that are supported

by fault tolerant candidates, performance in this case is

better when compared to scenarios in which critical con-

figurations are 1%, 5%, 10%, 15% and 20%. However, 10000

interaction requests in this case have significant impact

on performance of AllFT technique. That is, in spite

of having replicas for all critical configurations they are

prone to failure as the number of interaction requests

increased. Also NoFT technique suffer from performance

deterioration due to large number of interaction requests.

Figures 13, 14, 15, 16 and 17 showcase the impor-

tance of configuration interactions on performance and

reliability of a software system. More the number of inter-

action requests, then higher the likely hood of reduced

performance of a software system. Figure 13 shows the

percentage of interactions that are successfully executed

when frequently used configurations are 1% of all con-

figurations. This percentage decreases as the number of

interaction requests increased.

Figures 14, 15, 16, 17 shows the percentage of success-

ful interactions when frequently used configurations are

5, 10, 15, and 20% of all configurations, respectively.

Conclusion
In this research article we have proposed fault tolerant

techniques based on frequency of interactions, charac-

teristics of configurations. IFrFT technique based on fre-

quency of interactions makes use of interaction values of

configurations to measure the reliability and performance

of a software system. ChIFrFT technique is based on fre-

quency of interactions and characteristics (critical opera-

tions such as payment transactions and control systems)

makes use of structural information of configurations.

Performance of NoFT, AllFT, IFrFT and ChIFrFT tech-

niques compared for various percentages of critical con-

figurations, number of interaction requests. While AllFT

technique perform better than all the other techniques

ChIFrFT approach has consistent performance compare

to IFrFT and NoFT. Performance of IFrFT and ChIFrFT

techniques, in terms of the number of successful interac-

tions, has increased by 25 and 40% respectively compare

to NoFT. Our experimental results show that either large

number of interaction requests, or more number of failed

critical configurations or both will result in performance

deterioration of software systems in spite of having fault

tolerant support for the complete software system.

Abbreviations

AllFT: All configurations enabled with fault tolerant candidates; ChIFrFT:

Characteristics and interaction frequency based fault tolerance; IFrFT:

Interaction frequency based fault tolerance; NoFT: None of the configurations

of a software system enabled with fault tolerant candidates; RB: Recovery

block; RRN: Relative record number

Acknowledgments

We thank following members of REVA University for continuous support and

motivation: Our beloved Chancellor of REVA University Dr. P. Shyamaraju, Dr. V.

G. Talawar, Advisor, Dr. S. Y. Kulkarni, Vice-Chancellor, Dr. M. Dhanamjaya,

Registrar, Dr. N. Ramesh, Director of Placement Training and Planning, Dr. B. P.

Divakar, Director of Research and Innovation, Dr. Sunilkumar S. Manvi, Director

C and IT, and every member of C and IT. Also we thank Dr. N. R. Shetty, Advisor,

NMIT, Dr. H. C. Nagaraj, Principal, NMIT for their constant encouragement and

support. We thank G. Anitha for her comments on independent

configurations and proofreading that helped us to improve the manuscript.

We express our heartfelt thanks to the reviewers for their invaluable time

Chinnaiah and Niranjan Journal of Cloud Computing: Advances, Systems and Applications (2018) 7:3 Page 16 of 17

spent on a review process and very critical suggestions which played

significant role in improving the technical content of the manuscript and also

helped us in the thinking process. We thank the editor and every member of

the editorial office of the Journal of Cloud Computing, Springer for their

continuous support while processing research article. Last but not the least we

thank Manojkumar Pandey, Arunkumar Reddy, Swetha Ramapriya, Shristi

Srivastsav for their assistance in coding files structures concepts.

Funding

Not Applicable.

Availability of data andmaterials

Data and materials related to this research article will be uploaded as early as

possible in GitHub portal.

Authors’ contributions

Both authors have made intellectual contribution to the research in the field of

fault tolerant computing in cloud computing. Authors have conducted

experiments and responsible to writing, editing manuscript. Both authors

have read this research article and approved the final manuscript.

Authors’ information

Mr. Mylara Reddy C. is an Assistant Professor at School of Computing and

Information Technology, REVA University, Bangalore, Karnataka, India. He

received M. Tech. degree from Visvesraya Technological University in 2006. He

has published few papers in international conferences and peer reviewed

journals such Journal of Computer Networks, Elsevier, International Journal of

Computer and Electrical Engineering. He is pursuing Ph. D. as part time

research scholar under the supervision of Dr. Nalini N. at Nitte Meenakshi

Institute of Technology, Bangalore, affiliated to Visvesvaraya Technological

University, Karnataka, India. His research interest include cloud computing,

fault tolerance, Computer networks.

Nalini N. received her Ph.D. degree in Computer Science and Engineering from

Visvesvaraya Technological University in 2006. She is working as professor in

the Department of Computer Science and Engineering, Nitte Meenakshi

Institute of Technology, Bangalore, India. She has published several research

articles in international conferences and peer reviewed journals. She has

successfully supervised six students for Ph.D. degree. She is the recipient of

several awards from industry, social organizations and academia. Her research

interest include security in wireless communication systems, fault tolerant

computing in wireless mobile systems and sensor networks, cryptography and

network security, Fault tolerance framework for cloud computing applications,

machine learning.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in

published maps and institutional affiliations.

Author details
1School of Computing and Information Technology, REVA University, Rukmini

Knowledge Park, Yelahanka, 560064 Bangalore, India. 2Department of

Computer Science and Engineering, Nitte Meenakshi Institute of Technology,

Yelahanka, 560064 Bangalore, India.

Received: 22 March 2017 Accepted: 4 January 2018

References

1. BCzarnecki K, Eisenecker U (2000) Generative Programming: Methods,

Tools, and Applications. Addison-Wesley Publishing Co.

2. Siegmund N, Rosenmuller M, Kastner C, Giarrusso PG, Apel S, Kolesnikov

SS (2011) Scalable prediction of non-functional properties in software

product lines. In: 2011 15th International Software Product Line

Conference, Munich. pp 160–169. https://doi.org/10.1109/SPLC.2011.20

3. Batory D, Höfner P, Kim J (2011) Feature interactions, products, and

composition. In: Proceedings of the 10th ACM international conference

on Generative programming and component engineering. ACM,

Portland. pp 13–22. https://doi.org/10.1145/2047862.2047867

4. Dart S (1990) Spectrum of Functionality in Configuration Management

Systems. Software Engineering Institute, Carnegie Mellon University,

Pittsburgh, Pennsylvania, Technical Report CMU/SEI-90-TR-011. http://

resources.sei.cmu.edu/library/asset-view.cfm?AssetID=11187

5. Talbert N (1998) The cost of COTS. Computer 31: 46–52. https://doi.org/

10.1109/MC.1998.683007

6. Gokhale SS, Trivedi KS (2002) Reliability prediction and sensitivity analysis

based on software architecture. In: 13th International Symposium on

Software Reliability Engineering. pp 64–78. https://doi.org/10.1109/ISSRE.

2002.1173214

7. Wu G, Wei J, Qiao X, Li L (2007) A bayesian network based qos assessment

model for web services. In: Proc. Int’l Conf. Services Computing (SCC’07).

pp 498–505

8. Tsai WT, Zhou X, Chen Y, Bai X (2008) On testing and evaluating

service-oriented software. IEEE Comput 41(8):40–46

9. Lyu MR (1996) Handbook of Software Reliability. McGraw-Hill, New York

10. Avizienis A (1995) The methodology and n-version programming. In: Lyu

MR (ed). Software fault tolerance. Wiley, Chichester, pp 23–46

11. Rooney P (2002) Microsoft’s CEO:80-20 rule applies to bugs, not just

features. ChannelWeb. http://www.crn.com/news/security/18821726/

microsofts-ceo-80-20-rule-applies-to-bugs-not-just-features.htm

12. Zhou A, Wang S, Zheng Z, Hsu C, Lyu M, Yang F (2016) On Cloud Service

Reliability Enhancement with Optimal Resource Usage. IEEE Trans Cloud

Comput 4(4):452–466

13. Zhang Y, Zheng Z, Lyu MR (2011) BFTCloud: a byzantine fault tolerance

framework for voluntary-resource cloud computing. 2011 IEEE 4th

International Conference on Cloud Computing, Washington, DC.

pp 444–451. https://doi.org/10.1109/CLOUD.2011.16. http://ieeexplore.

ieee.org/stamp/stamp.jsp?tp=&arnumber=6008741&isnumber=6008659

14. Lim J, Suh T, Gil J, Yu H (2014) Scalable and Leaderless Byzantine

Consensus in Cloud Computing Environments. Information Systems

Frontiers, Springer 16(1):19–34

15. Ganesh A, Sandhya M, Shankar S (2014) A Study on Fault Tolerance

methods in cloud computing. In: IEEE Int’l. Advanced Computing

Conference (IACC):844–9. http://dx.doi.org/10.1109/IAdCC.2014.6779432

16. Vacca JR (2013) Cyber security and IT infrastructure protection. Syngress.

PaperBack ISBN: 9780124166813

17. Kaur J, Kinger S (2013) Analysis of different techniques used for fault

tolerance. IJCSIT: Int. J Comput Technol 4(2):737–41

18. Egwutuoha IP, Chen S, Levy D, Selic B (2012) A fault tolerance framework

for high performance computing in cloud, Cluster, Cloud and Grid

Computing (CCGrid). In: Proceedings of the 12th IEEE/ACM international

symposium. 13-16 May. pp 709–710. https://doi.org/10.1109/CCGrid.

2012.80

19. Bala A, Chana I (2012) Fault tolerance- challenges, techniques and

implementation in cloud computing, ISSN (Online): 16940814. IJCSI Int J

Comput Sci 9(1). www.IJCSI.org

20. Zhao W, Wenbing Z, Melliar-Smith PM, Moser LE (2010) Fault Tolerance

Middleware for Cloud Computing. In: 2010 IEEE 3rd International

Conference on Cloud Computing, Miami. pp 67–74. https://doi.org/10.

1109/CLOUD.2010.26

21. Zhao W, Zhang H (2009) Proactive service migration for long-running

Byzantine fault-tolerant systems. lET Softw 3(2):154–164

22. Nicolo P (2013) A frame work for self-healing software systems. In: IEEE

35th International Conference on Software Engineering (ICSE).

pp 1397–1400. https://doi.org/10.1109/ICSE.2013.6606726

23. Saran C (2017) Cloud self-healing software be the Itdirector’s way of

cutting support costs? computerweekly.com. http://www.

computerweekly.com/feature/Could-self-healing-software-be-the-IT-

directors-way-of-cutting-support-costs

24. Nallur V, Bahsoon R, Xin Y (2009) Self-optimizing architecture for ensuring

quality attributes in the cloud. In: 2009 Joint Working IEEE/IFIP

Conference on Software Architecture & European Conference on

Software Architecture, Cambridge. pp 281–284. http://doi.org/10.1109/

WICSA.2009.5290820. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&

arnumber=5290820&isnumber=5290660

25. Liu J, Wang S, Zhou A, Kumar SAP, Yang F, Buyya R (2016) Using Proactive

Fault-Tolerance Approach to Enhance Cloud Service Reliability. IEEE Trans

Cloud Comput PP(99):1–1. http://dx.doi.org/10.1109/TCC.2016.2567392

26. Trivedi TS (1982) Probability and Statistics with Reliability, Queuing, and

Computer Science Applications. Prentice-Hall, Englewood Cliffs

https://doi.org/10.1109/SPLC.2011.20
https://doi.org/10.1145/2047862.2047867
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=11187
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=11187
https://doi.org/10.1109/MC.1998.683007
https://doi.org/10.1109/MC.1998.683007
https://doi.org/10.1109/ISSRE.2002.1173214
https://doi.org/10.1109/ISSRE.2002.1173214
http://www.crn.com/news/security/18821726/microsofts-ceo-80-20-rule-applies-to-bugs-not-just-features.htm
http://www.crn.com/news/security/18821726/microsofts-ceo-80-20-rule-applies-to-bugs-not-just-features.htm
https://doi.org/10.1109/CLOUD.2011.16
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6008741&isnumber=6008659
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6008741&isnumber=6008659
http://dx.doi.org/10.1109/IAdCC.2014.6779432
https://doi.org/10.1109/CCGrid.2012.80
https://doi.org/10.1109/CCGrid.2012.80
www.IJCSI.org
https://doi.org/10.1109/CLOUD.2010.26
https://doi.org/10.1109/CLOUD.2010.26
https://doi.org/10.1109/ICSE.2013.6606726
http://www.computerweekly.com/feature/Could-self-healing-software-be-the-IT-directors-way-of-cutting-support-costs
http://www.computerweekly.com/feature/Could-self-healing-software-be-the-IT-directors-way-of-cutting-support-costs
http://www.computerweekly.com/feature/Could-self-healing-software-be-the-IT-directors-way-of-cutting-support-costs
http://doi.org/10.1109/WICSA.2009.5290820
http://doi.org/10.1109/WICSA.2009.5290820
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5290820&isnumber=5290660
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5290820&isnumber=5290660
http://dx.doi.org/10.1109/TCC.2016.2567392

Chinnaiah and Niranjan Journal of Cloud Computing: Advances, Systems and Applications (2018) 7:3 Page 17 of 17

27. Hecht H (1976) Fault Tolerant Software for Real-Time Applications. ACM

Comput Surv 8(4):391–407

28. Li X, Qi Y, Chen P, Zhang X (2016) Optimizing backup resources in the

cloud. In: 2016 IEEE 9th International Conference on Cloud Computing

(CLOUD), San Francisco. pp 790–797. https://doi.org/10.1109/CLOUD.

2016.0109. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=

7820346&isnumber=7820017

29. Liu J, Zhou J, Buyya R (2015) Software rejuvenation based fault tolerance

scheme for cloud applications. In: 2015 IEEE 8th International Conference

on Cloud Computing, New York. pp 1115–1118. https://doi.org/10.1109/

CLOUD.2015.164

30. Bruneo D, Distefano S, Longo F, Puliafito A (2013) Scarpa M

Workload-Based Software Rejuvenation in Cloud Systems. IEEE Trans

Comput 62(6):1072–1085

31. Araujo J, Matos R, Maciel P, Matias R (2011) Software aging issues on the

eucalyptus cloud computing infrastructure. In: 2011 IEEE International

Conference on Systems, Man, and Cybernetics, Anchorage.

pp 1411–1416. https://doi.org/10.1109/ICSMC.2011.6083867

32. Langner F, Andrzejak A (2013) Detecting software aging in a cloud

computing framework by comparing development versions. In: 2013

IFIP/IEEE International Symposium on Integrated Network Management

(IM 2013), Ghent. pp 896–899

33. Clark C, Fraser K, Hand A, Hansen J, Jul E, Limpach C, Pratt I, Warfield A

(2005) Live Migration of Virtual Machines. In: Proceedings of the

Symposium on Networked Systems Design and Implementation.

pp 273–286

34. Sapuntzakis C (2002) Optimizing the Migration of Virtual Computers. In:

Proc. 5th Symp. Operating Systems Design and Implementation.

Available: http://suif.stanford.edu/collective/osdi02-optimize-migrate-

computer.pdf

35. Fu K, Frans Kaashoek M, Mazières D (2005) Fast and secure distributed

read-only file system. In: Proceedings of the 4th conference on

Symposium on Operating System Design & Implementation, San Diego

36. Lublin U, Liguori A (2007) KVM Live Migration. KVM Forum, Tucson

37. Zhu X, Wang J, Guo H, Zhu D, Yang LT, Liu L (2016) Fault-tolerant

scheduling for real-time scientific workflows with elastic resource

provisioning in virtualized clouds. IEEE Trans Parallel Distrib Syst

27(12):3501–3517. https://doi.org/10.1109/TPDS.2016.2543731

38. Siegmund N, Kolesnikov S, Kastner C, Apel S, Batory D, Rosen Muller M,

Saake G (2012) Predicting performance via automated feature-interaction

detection. In: 2012 34th International Conference on Software

Engineering (ICSE), Zurich. pp 167–177. https://doi.org/10.1109/ICSE.

2012.6227196

39. Liebig J, Apel S, Lengauer C, Kastner C, Schulze M (2010) An analysis of the

variability inforty preprocessor-based software product lines. In:

Proceedings of the 32nd ACM/IEEE International Conference on Software

Engineering. ACM, Cape Town. pp 105–114. https://doi.org/10.1145/

1806799.1806819

40. Sincero J, Schroder-Preikschat W, Spinczyk O (2010) Approaching

non-functional properties of software product lines: Learning from

products. In: APSEC. IEEE, pp 147–155

41. Zheng Q (2010) Improving MapReduce fault tolerance in the cloud. In:

2010 IEEE International Symposium on Parallel & Distributed Processing,

Workshops and Phd Forum (IPDPSW), Atlanta. pp 1–6. https://doi.org/10.

1109/IPDPSW.2010.5470865

42. Slawinska M, Slawinski J, Sunderam V (2010) Unibus: Aspects of

heterogeneity and fault tolerance in cloud computing. In: Parallel and

Distributed Processing, Workshops and Phd Forum (IPDPSW). pp 1–10

43. Parnas DL (1975) The influence of software structure on reliability. In:

Proceedings of the international conference on Reliable software, Los

Angeles. pp 358–362. https://doi.org/10.1145/800027.808458. http://

citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.645.6073&rep=

rep1&type=pdf

44. Shooman ML (1976) Structural models for software reliability prediction.

In: Proceedings of the 2nd international conference on Software

engineering, San Fransisco, pp 268–280

45. Engelmann C, Vallee GR, Naughton T, Scott SL (2009) Proactive Fault

Tolerance using Preemptive Migration. In: 2009 17th Euromicro

International Conference on Parallel, Distributed and Network-based

Processing, Weimar. pp 252–257. https://doi.org/10.1109/PDP.2009.31

46. Avizienis A (1995) The methodology of n-version programming. In: Lyu

MR (ed). Software Fault Tolerance. Wiley, Chichester. pp 23–46

47. Ramos BLC (2007) Challenging malicious inputs with fault tolerance

techniques. https://www.blackhat.com/presentations/bh-europe-07/

Luiz_Ramos/Whitepaper/bh-eu-07-luiz_ramos-WP.pdf

48. Castro M, Liskov B (2002) Practical Byzantine Fault Tolerance and Proactive

Recovery. ACM Trans Comput Syst (Assoc Comput Mach) 20(4):398–461.

https://doi.org/10.1145/571637.571640. CiteSeerX: 10.1.1.127.613

49. Kim K, Welch H (1989) Distributed execution of recovery blocks: An

approach for uniform treatment of hardware and software faults in

real-time applications. IEEE Trans Comput 38(5):626–63

50. Nicola VF (1995) Checkpointing and the Modeling of Program Execution

Time. Software Fault Tolerance. Wiley

51. Petri S, Langendörfer H (1995) Load balancing and fault tolerance in

workstation clusters migrating groups of communicating processes. ACM

SIGOPS Operating Systems Review 29(4):25–36. https://doi.org/10.1145/

219282.219288

52. Brin S, Page L (1998) The anatomy of a large-scale hypertextual Web

search engine. In: Proceedings of the seventh international conference

on World Wide Web 7, Brisbane. pp 107–117. http://www.site.uottawa.

ca/~diana/csi4107/Google_SearchEngine.pdf

53. Inoue K, Yokomori R, Yamamoto T, Matsushita M, Kusumoto S (2005)

Ranking significance of software components based on use relations. IEEE

Trans Softw Eng 31:213–225

54. Folk MJ, Riccardi G (1997) File Structures: An Object-Oriented Approach

with C++. Addison-Wesley Publishing Co.

https://doi.org/10.1109/CLOUD.2016.0109
https://doi.org/10.1109/CLOUD.2016.0109
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7820346&isnumber=7820017
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7820346&isnumber=7820017
https://doi.org/10.1109/CLOUD.2015.164
https://doi.org/10.1109/CLOUD.2015.164
https://doi.org/10.1109/ICSMC.2011.6083867
http://suif.stanford.edu/collective/osdi02-optimize-migrate-computer.pdf
http://suif.stanford.edu/collective/osdi02-optimize-migrate-computer.pdf
https://doi.org/10.1109/TPDS.2016.2543731
https://doi.org/10.1109/ICSE.2012.6227196
https://doi.org/10.1109/ICSE.2012.6227196
https://doi.org/10.1145/1806799.1806819
https://doi.org/10.1145/1806799.1806819
https://doi.org/10.1109/IPDPSW.2010.5470865
https://doi.org/10.1109/IPDPSW.2010.5470865
https://doi.org/10.1145/800027.808458
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.645.6073&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.645.6073&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.645.6073&rep=rep1&type=pdf
https://doi.org/10.1109/PDP.2009.31
https://www.blackhat.com/presentations/bh-europe-07/Luiz_Ramos/Whitepaper/bh-eu-07-luiz_ramos-WP.pdf
https://www.blackhat.com/presentations/bh-europe-07/Luiz_Ramos/Whitepaper/bh-eu-07-luiz_ramos-WP.pdf
https://doi.org/10.1145/571637.571640
https://doi.org/10.1145/219282.219288
https://doi.org/10.1145/219282.219288
http://www.site.uottawa.ca/~diana/csi4107/Google_SearchEngine.pdf
http://www.site.uottawa.ca/~diana/csi4107/Google_SearchEngine.pdf

	Abstract
	Keywords

	Introduction
	Related work
	System model and failure model
	Overview of proposed approach
	Classification of configurations
	Configurations interaction graph building
	Configurations classification
	IFrFT: fault tolerance based on frequency of interactions
	ChIFrFT: fault tolerance based on characteristics and interaction frequencies of configurations

	Fault tolerance schemes
	Classification of software fault tolerance techniques
	Selection of best fault tolerance scheme

	Experimental setup and performance evaluation
	Conclusion
	Abbreviations
	Acknowledgments
	Funding
	Availability of data and materials
	Authors' contributions
	Authors' information
	Competing interests
	Publisher's Note
	Author details
	References

