
Fault Tolerant Solid State

Mass Memory for Space

Applications

G. C. CARDARILLI

M. OTTAVI, Member, IEEE

S. PONTARELLI

M. RE

A. SALSANO

University of Rome “Tor Vergata”

Italy

In this paper an innovative fault tolerant solid state mass

memory (FTSSMM) architecture is described. Solid state

mass memories (SSMMs) are particularly suitable for space

applications and more in general for harsh environments such

us, for example, nuclear accelerators or avionics. The presented

FTSSMM design has been entirely based on commercial off the

shelf (COTS) components. In fact, cost competitive and very

high performance SSMMs cannot be easily implemented by

using space qualified components, due the technological gap

and very high cost characterizing these components. In order to

match the severe reliability requirements of space applications

a COTS-based apparatus must be designed by using suitable

system level methodologies [1, 2]. In the proposed architecture

error-correcting codes are used to strengthen the commercial

dynamic random access memory (DRAM) chips, while the system

controller has been designed by applying suitable fault tolerant

design techniques. Different from other proposed solutions, our

architecture fully exploits the reconfiguration capabilities of

Reed-Solomon (RS) codes, discriminates between permanent and

transient faults reducing the use of spare elements, and provides

dynamic reconfiguration and graceful degradation capability, i.e.,

the FTSSMM performances are gracefully reduced in case of

permanent faults, maintaining part of the system functionality.

The papers shows the FTSSMM design methodology, the

architecture, the reliability analysis, some simulation results, and

a description of its implementation based on fast prototyping

techniques.

Manuscript received May 7, 2004; revised March 25, 2005; released

for publication May 20, 2005.

IEEE Log No. T-AES/41/4/860799.

Refereeing of this contribution was handled by M. Ruggieri.

Authors’ current addresses: G. C. Cardarilli, S. Pontarelli, M. Re,

A. Salsano, Dept. of Electronic Engineering, University of Rome

“Tor Vergata,” Via de Pontecnico 1, 00133, Rome, Italy, E-mail:

(marco.re@ieee.org); M. Ottavi, Dept. of Electrical and Computer

Engineering, Northeastern University, Boston, MA.

0018-9251/05/$17.00 c° 2005 IEEE

I. INTRODUCTION

The designer of electronic systems for space
applications should take into account a number
of critical design constraints related to the harsh
environment in which they operate. In fact, in the
space environment electronic components are stressed
by a number of physical phenomena, such as, for
example, mechanical stresses, ionizing radiations, and
critical thermal conditions. In order to deal with these
issues the typical approach has been the development
of space qualified electronic devices based on special
and expensive technology processes. The use of
such components implies some drawbacks such as
high cost (due to the special technology and the low
number of produced parts) and low performances
compared with commercial off the shelf (COTS)
components (due to limiting factors in radiation hard
technology) [3]. On the other hand the use of COTS
components push for a design based on suitable
system level methodologies in order to match the
severe reliability requirements of space applications.
A typical case, where this approach is exploited, is
the design of space-borne mass memories. In fact, the
rapid growth in capacity of semiconductor memory
devices permits the development of solid-state mass
memories, which are competitive with respect to
tape recorders due to higher reliability, comparable
density, and better performances. Solid state mass
memories (SSMMs) have no moving parts and their
operational flexibility has made them suitable for
many applications. Moreover, the requirements of low
latency time, high throughput, and storage capabilities,
cannot be satisfied by space qualified components and
the choice of COTS is mandatory. The fault tolerant
solid state mass memory (FTSSMM) presented here is
based on COTS components. In [4] different coding
schemes based on fixed Reed-Solomon (RS) codes,
and hardware configurations to protect data stored in
COTS-based memories are compared. However, in our
architecture highly reconfigurability of RS codes is
exploited to obtain a trade-off between reliability, data
integrity, and overhead. The reconfigurability of RS
codes is also used to achieve a graceful degradation of
the system and the discrimination between permanent
and transient fault allows to reduce the use of spare
elements. Moreover, in our architecture a number of
SpaceWire data links [5] accesses the memory banks
through a crossbar switch matrix [6]. This solution
has many advantages with respect to a bus-based
architecture in terms of bandwidth, latency, and
reconfiguration capability. In fact, the failure of a
connection does not compromise the entire connection
of the network but only the access to a specific node.
In order to improve both the fault tolerance and the
memory usage, a distributed file system has been
implemented. Most of the functions performed by the
file system are hardware based and handled locally

IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 41, NO. 4 OCTOBER 2005 1353

on each memory module. This paper is organized
as follows. Section II illustrates the used design
methodology, Section III describes in details the
FTSSMM architecture, while the reliability, data
integrity, graceful degradation evaluation, and the used
simulation methodology are reported, respectively, in
Section IV and Section V. In Section VI a description
of the prototype setup and a description of the
used fast prototyping methodology is presented.
Conclusions are drawn in Section VII.

II. DESIGN METHODOLOGY OF FAULT TOLERANT
SYSTEMS

In this section the design methodology used for the
implementation of the FTSSMM is presented.
The proposed design has been developed in order

to cope with the typical fault set used to model the
effects of radiations in space environment, i.e., the
single event upset (SEU) faults, caused by ionizing
particles, and stuck-at faults, related to the total
ionizing dose (TID) [7, 8].
The fault tolerance design techniques applied,

when COTS are used, are basically two: fault
masking, e.g. triple modular redundancy (TMR) or,
when the application needs low hardware overhead,
fault detection, and dynamic system recovery
techniques. The latter method satisfies the requirement
of a lower hardware redundancy and lower power
consumption, with respect to TMR technique, but,
on the other hand, needs reconfiguration algorithms
(software redundancy) and, when a fault occurs,
implies an out-of-order time interval related to the
mean time to repair (MTTR).
In order to choose the proper design strategies,

each functional block has been evaluated in terms of
the impact of its failure on the overall performance of
the FTSSMM. In particular, the impact of permanent
and transient faults after their detection have been
evaluated. The functionalities of a block affected by
a transient fault can be recovered, after its detection,
simply reinitializing the hardware block. Therefore
the impact of a transient fault is mainly related to
the integrity of the stored data. On the other hand,
permanent faults cause the unavailability of one of
the implemented functions; therefore, their impact is
mainly related to the performance assessment.
It is straightforward that the trade-off between

reliability, power, and throughput is closely related
to the requirements of the target application. In
this design we pushed for obtaining the following
objectives:

1) a scalable architecture which can be easily
adapted to mission requirements,
2) high throughput achieved by choosing a highly

parallel architecture,
3) capability to reduce the power consumption and

failure rate of the memory by simply turning off the
unused modules,

Fig. 1. External FTSSMM connections.

4) graceful degradation both in terms of
functionalities and of availability of the service,
5) protection of the implementation of each

function using different fault tolerant techniques.

Thus, a scalable architecture has been obtained by
using the following techniques.

1) The error detection and correction (EDAC)
codes used to protect the synchronized DRAM
(SDRAM) chips are scalable RS codes; depending
on the trade-off between reliability and latency
requirements a different RS code can be used.
2) A different set of redundancy in the blocks can

be used to obtain a trade-off between reliability versus
power consumption and area overhead.
3) The use of a switching matrix to obtain

dynamic routing capabilities allows to select the
optimum number of I/O and memory modules to
satisfy the throughput requirements.

Moreover, the use of dynamic reconfiguration
algorithms allows a graceful degradation of the
system. In fact, after the detection of an unrecoverable
fault, the system can be modified to keep it working,
even if its performances are reduced. The use of
graceful degradation technique is suitable for the
design of SSMMs for space applications, where the
constraints on power and weight are quite relevant and
the system can tolerate the presence of an out-of-order
time when time-critical operations are not performed.

III. ARCHITECTURE DESCRIPTION

In this section, a detailed description of the
FTSSMM architecture is presented. This architecture
has been designed following the approach described in
Section II.
At the top level, the FTSSMM can be viewed as a

black box connected to different satellite apparatuses
(Fig. 1). A number of bi-directional serial links are
used for high-speed data exchange. For these links the

1354 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 41, NO. 4 OCTOBER 2005

Fig. 2. FTSSMM architecture.

Fig. 3. Hierarchical view of FTSSMM and related fault tolerance techniques.

SpaceWire (IEEE 1355 DS-DE) protocol [9] has been
chosen. In fact, SpaceWire is planned to become a
European Space Agency (ESA) standard for on-board
data handling in the near future and is expected to be
widely used in future European missions [10, 5]. Each
SpaceWire link is able to carry information (data or
commands) at about 100 Mbit/s over distances of up
to 10 m. Moreover, the FTSSMM can be connected to
other apparatuses by a MIL 1553 interface, which is
widely used in satellite platforms due to its physical
redundancy (dual twisted pair bus structure) [11]. The
FTSSMM is composed of the following two main
units (Fig. 2).

1) The memory kernel unit (MKU) manages the
bi-directional dataflow between users and memory
chips

2) The system control unit (SCU) manages
the memory resources and provides system level
reconfiguration.

The required reliability of the FTSSMM system is
achieved both by means of architectural redundancies
and by introducing EDAC codes, granting the data
integrity.
In Fig. 3, a hierarchical view of the FTSSMM is

given. Each unit and the related subunits are indicated
together with the adopted fault tolerant techniques.
A simplified description of the FTSSMM operations
can be drawn by analyzing the arrangement of the
architecture shown in Fig. 4, where M data links
(SpaceWire serial links) and N memory modules
are connected by means of a crossbar switch matrix.
The interfaces between the switch matrix and the N

CARDARILLI ET AL.: FAULT TOLERANT SOLID STATE MASS MEMORY FOR SPACE APPLICATIONS 1355

Fig. 4. Simplified FTSSMM architecture.

memory modules are called memory interfaces, while
the interfaces toward the external M data links are
called link interfaces.
All the interfaces and also the access arbiter,

which handles the outputs contentions, are able
to communicate with the SCU both for normal
operations and for error handling. A system operation
starts when a packet, that can contain either controls
or data (see Fig. 5), arrives to the FTSSMM.
When it is a control packet (P(r)) that requires a

read operation to a link interface it is forwarded to the
microcontroller. The required memory modules are
activated by using the commands (Ci(r)). As shown
in Fig. 5, after a read operation request, the SCU
generates C1(r) in order to enable the first memory
module. If the file is spread on different memory
modules a chain of Ci(r) commands is generated
by the memory modules itself. Instead, when a data
packet P(w) arrives to a link interface (the arrival of
a data packet means a write operation), the SCU is
asked to allocate the destination module. The SCU
answers to the link interface through the command
C(w) to write its routing table. Thus the SCU can
dynamically decide different file allocation strategies
on different memory modules.
SCU also handles the error signals generated by

the FTSSMM blocks. When an interface is affected by
a fault, because of its self-checking implementation,
the fault is detected and communicated to the SCU
as shown in Fig. 6. The SCU can handle the error by
using different policies depending on the faulty block
and on the availability of spares. For instance a spare
block can be used if available, thus implementing a
typical duplex system, or a rerouting of data can be

Fig. 5. Normal FTSSMM operations.

activated in order to obtain graceful degradation, if no
cold spare is available.

A. Memory Kernel Unit: General Description

As shown in Fig. 2 the MKU is composed of four
functional modules:

1) independent memory array modules (IMAM)
(see Section IIIA1),
2) routing module (see Section IIIA2),
3) I/O memory interfaces (see Section IIIA3),
4) I/O link interfaces (see Section IIIA4).

The MKU under the SCU control provides
all the resources for the implementation of a file
system on the set of SDRAM modules. The I/O
interfaces are divided into two groups: I/O link
interfaces and I/O memory interfaces. The I/O
memory interfaces handle the IMAM file system,
allowing basic operations like file read/write, delete,

1356 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 41, NO. 4 OCTOBER 2005

Fig. 6. FTSSMM reconfiguration.

format, etc. The I/O link interfaces are the front end
of the system, providing a bi-directional transport
of data and messages. The packet routing control
and the dynamic reconfiguration of the system
in case of faults are handled by exploiting the
HW/SW interaction between these interfaces and
the SCU. Once a connection between two interfaces
is established, the data flow control is achieved
through full handshake. The routing module is the
central switch that interconnects the users (I/O link
interface) with the memory modules. Each module
has been developed by using different fault tolerant
methodologies, depending on the final reliability
requirements and the functionalities performed. These
choices are described in the following subsections
together with a detailed description of the modules
architecture.
1) Independent Memory Array Module (IMAM):

The design of the memory array based on COTS
RAM chips (dynamic random access memory
(DRAM)) requires an accurate characterization of
the used components in the environment in which
they will operate. The effects of ionizing radiations
on DRAM memory chips can be widely found in
literature [3, 12, 13]. The usage of error-correcting
codes strengthens the IMAM both in terms of
reliability and data integrity.
Each IMAM module is composed of the following:

1) dynamic random access memory (SDRAM)
bank (composed of several COTS chips or multi-chip
modules (MCMs)),
2) control circuitry that interfaces the memory

bank to the other components of the IMAM module,

TABLE I

Supported Codes

n,k n¡ k

(18,16) 2

(36,32) 4

(72,64) 8

(144,128) 16

3) RS coder-decoder which adds redundancy to
the data stored into the SDRAM.

The IMAM architecture is shown in Fig. 7. The
SDRAM packages are arranged to implement either
an RS code [14] with a maximum codeword length
of 144 symbols or a code with a minimum codeword
length of 18 symbols.
The most important features of the used RS codes

are as follows.

1) small area due to the methodology proposed
in [15] and “time- sharing” techniques that have been
successfully applied to finite response filters [16],
2) optimization of the decode latency as illustrated

in [17],
3) low cost reconfiguration: the codes can be

reconfigured as RS(n,k), as shown in Table I, where k
is the dataword length and n is the codeword length,
i.e., (n¡ k) redundant symbols are added to the
original dataword.

The ratio k=n, for all the used codes, is 0.89, i.e.,
the check byte overhead is constant with respect to the
selected code.
RS code reconfiguration is used when a permanent

failure occurs in a memory package. For example,
if the FTSSMM is initially configured with an
RS(18,16) code and a permanent failure occurs in a
memory package, the code can’t correct any random
error. Therefore we need to reconfigure the memory
module with a new RS code. Permanent package
failures can be easily detected by applying a reading
and decoding procedure. The decoded (and corrected)
data will be coded again with an RS code with higher
correction capabilities. To perform this operation, a
suitable buffer temporarily stores the codewords that
will be grouped to form the larger one. Obviously, the
use of a higher RS code involves the use of a higher
number of symbols. On the other hand the fixed ratio
k=n allows the use of higher RS code without adding
symbols overhead.
As an example we show the reconfiguration from

the RS(36,32) to the RS(144,128). Starting from an
RS(36,32) coding scheme, after a certain period of
time the check procedure detects three permanent
package failures (three erasures). All the data stored
in the memory module are converted from RS(36,32)
to RS(144,128): i.e., four 36 byte codewords are read
and decoded and the 128 data bytes are coded into a
codeword of 144 bytes.
This procedure allows preserving the data stored

in the memory. However, if the number of erasures

CARDARILLI ET AL.: FAULT TOLERANT SOLID STATE MASS MEMORY FOR SPACE APPLICATIONS 1357

Fig. 7. Memory array architecture.

is greater than the error correction capability of the
active code, (e.g. 5 erasures for the RS(36,32) code),
the data stored in the codeword are unrecoverable,
but the functionality of the memory element can be
restored using a code with greater error correction
capability. The use of longer codewords improves the
integrity of the stored data degrading the performance
of the IMAM in terms of latency. In fact, the decode
latency depends on the codeword length.
2) Routing Module: The routing system connects

the I/O memory interfaces with the I/O link interfaces
through a crossbar switch matrix. The interconnection
is performed in nonblocking mode. An arbiter
provides the acknowledge signals to the I/O interfaces
that send data through the crossbar. With this
interconnection method multiple parallel connections
between users and resources can be established,
by increasing the overall throughput. Latencies
can be reduced choosing appropriate arbitrating
policies. Moreover, the intrinsic redundancy of such
architecture increases the reliability of the system.

The failure of a connection, due to a fault in an I/O
interface or in a switch, implies only a partial loss of
the system functionality.
a) Crossbar switch matrix: This component

allows the physical interconnection among ® I/O link
interfaces and ¯ I/O memory interfaces (see Fig. 2).
The number of the possible connections, and thus
the number of switches and wires necessary in a
crossbar switch matrix, can be defined by introducing
an (n£ n) interconnection matrix where n= ®+¯. In
this matrix the (i,j) element is equal to 1 if there is
a connection between the input i and the output j, 0
if there is no connection. In our implementation we
consider two subsets of the set N of I/O interfaces:
A and B of ® and ¯ elements, respectively, being
®+¯ = n A[B =N and A\B =Ø. Connections are
only present between elements belonging to different
subsets, requiring 2 ¢® ¢¯ switches and 2n wires.
b) Arbiters: The arbiters added to the routing

matrix, handle the interconnections conflicts between
the I/O interfaces (I/O link interfaces and I/O memory

1358 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 41, NO. 4 OCTOBER 2005

Fig. 8. Distributed arbiter.

interfaces). They are able to manage write conflicts
(different I/O link interfaces trying to write on the
same IMAM) and read conflicts (different memory
interfaces trying to access to the same I/O link
interface during file read operations). In Fig. 8 the
switch matrix functional architecture is shown. For
the sake of simplicity only write arbiters have been
indicated. The use of an arbiter for each output (write
and read mode) avoid setting different arbitrating
policies for each output (write and read mode).
The available arbitrating policies are priority based

or time sharing. For instance, a priority-based policy
can be used during the window of visibility of a Low
Earth Orbit (LEO) satellite, when the I/O memory
interfaces that are downloading the data to the Earth
station should be assigned more bandwidth. Instead,
with a time-sharing policy the bandwidth is almost
equally shared between all the interfaces requesting
the same output. The different arbitrating policies are
programmed by the SCU through the Msg Bus.
3) I/O Memory Interfaces: These interfaces

handle the file system. Each I/O memory interface
has a local file allocation table (FAT) stored in the
controlled memory module (IMAM). The partition
of the file system in the different memory modules
reduces the amount of data that can be lost in case of
a FAT unrecoverable failure. In fact, in this case only
the local stored information will be lost.
The internal architecture of the I/O memory

interface, is composed by a number of subblocks as
shown in Fig. 9.
The file system handling functions, implemented

by dedicated blocks are the following.

Fig. 9. I/O memory interface.

1) Delete function: used to delete a file from the
FAT.
2) Fragment function: used to add to the FAT the

occurrence of more fragments of the same file.
3) Read function: used to read a file from the

memory.
4) Write function: used to write a file in the

memory.
5) Format function: used to setup the FAT in the

initialization phase.

Each function is implemented with a separate
block and the “operation handler” (interface controller
subblock) activates the different functions. Moreover,
each block is self-checking and a spare block is
used to obtain the fault tolerance. In fact, when the
occurrence of a failure (single block failures) is

CARDARILLI ET AL.: FAULT TOLERANT SOLID STATE MASS MEMORY FOR SPACE APPLICATIONS 1359

Fig. 10. SpaceWire packets.

detected the “error handler” activates the spare module
with a low time overhead.
Both the operation handler and the error handler

communicate with the rest of the FTSSMM through
the message handler. Therefore, through the message
bus, the SCU is able to control the status of each
I/O memory interface both in the case of normal
operations or in the case of the occurrence of a fault.
In order to obtain single point of failure avoidance,
the interface controller has been implemented by using
the TMR technique.
4) I/O Link Interfaces: The I/O link interfaces

allow the exchange of data (through the routing
matrix) from the input channels to the memory
modules and commands from the I/O link interfaces,
to the SCU.
The packets organization for the SpaceWire

interface is shown in Fig. 10.
The one byte header is the packet ID while the

payload is composed of a variable number of bytes
terminated by the end of packet (EOP) marker. We
assume that the header values in the range 1 to 255
indicate that the packet is part of a file whose ID
number is the header value. Header value 0 indicates
a special packet containing commands to the SCU
sent through the Msg Bus. Thus the file system can
handle 255 files and the memory can be controlled
and monitored by using the same links carrying the
data.
In the FTSSMM, most of the I/O link interfaces

are used in unidirectional mode (links carrying
measurement data from the on-board instrumentation).
Just a small number of I/O link interfaces require
reading and writing of the memories (connection to
the satellite CPU or its telemetry).
An internal shared bus interconnects all the

I/O interfaces, the SCU, and the routing module to
provide file system management and error detection
(Msg Bus).

B. System Control Unit

The SCU (Fig. 11), manages the high level tasks
of the FTSSM. This module is connected to the MKU
through the Msg Bus. The main functions of the
SCU are closely related to the high level file system
operations and can be summarized as follows.

1) Create file request (from I/O link): when a
packet must be written in a file that does not exist,
the file must be created. The file create operation is
performed by the SCU, which has the control of the
FAT.

Fig. 11. System control unit.

2) Command execution request (from I/O link):
the packets with header 0 represent the command
for the FTSSSM. All these commands (read file
request, erase file request, and diagnosis and debug
commands) are managed by the SCU.
3) Page allocation (from IMAM): when the page

currently used by the IMAM is full, the IMAM sends
to the SCU a request for a new empty page.

The Bus IF interface handles the exchange of
messages between the controller and the rest of the
FTSSMM system through the Msg Bus. The system
uses two microcontrollers Intel 8051 that can be
connected or isolated from the system through the
block bypass. Normally only a single processor is
active and connected to the system, while the other
one is in stand-by and electrically isolated. The active
microcontroller accesses a 2k ROM program memory
and a 1k RAM data memory.
The Mem IF block supplies the coding of the data

the microcontroller writes in the RAM. The data read
from the memory is decoded from the same block.
The operation performed by the Mem IF is transparent
to the microcontroller. A Hamming code capable of
correcting single errors has been used.
The “address handler” block handles the

connection between the microcontroller and the
Mem IF and Bus IF creating the suitable switches,
transparently to the microcontroller, to achieve the
required connections.
The “signature computation” block checks the

correctness of the operations performed by the
microcontroller. This block reads the sequence of
the addresses at the output of the microcontroller and
checks if they are following a correct sequence. The
evaluation of the correct execution is performed by
using signature analysis [18, 19].
The operations handler block manages the phases

of the elaboration of a message: if some phases are
not executed correctly, this system supplies the relative
error signaling.

1360 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 41, NO. 4 OCTOBER 2005

TABLE II

Reliability Evaluation of FTSSMM

RS(36,32) RS(72,64)

ROUTER + SCU RELIABILITY @ 2 years (Cold redundancy–1 out 2) 0.9996 (23 FIT @ 2 y) 0.9996 (23 FIT @ 2 y)

IMAM RELIABILITY @ 2 years (RMM) 0.9984 (91 FIT @ 2 y) 0.9984 (91 FIT @ 2 y)

–MEMORY CONTROL/EDAC/INTERFACE @ 2 years 0.99845 (89 FIT @ 2 y) 0.9986 (80 FIT @ 2 y)

–MEMORY ARRAY RELIABILITY @ 2 years 0.99995 (3 FIT @ 2 y) 0.9998 (12 FIT @ 2 y)

MEMORY STACK RELIABILITY @ 2 years (Cold redundancy–5 out 6) 0.99997 (1.7 FIT @ 2 y) 0.99997 (1.7 FIT @ 2 y)

FTSSMM MEMORY RELIABILITY @ 2 years 0.9996 (23 FIT @ 2 y) 0.9996 (23 FIT @ 2 y)

The error handler block receives error signals
from all the blocks of the system and handles the
error exceptions. It operates in a transparent way and
assumes the control of the system only if an error is
found. The error management is aimed to mask the
system faults. If the error persists the manager can
substitute the active microcontroller with the spare
one.

IV. RELIABILITY, DATA INTEGRITY, AND GRACEFUL
DEGRADATION EVALUATIONS

In this section some evaluations of reliability, data
integrity, and graceful degradation capabilities of
the FTSSMM are shown. The IMAM dominates the
complexity of the system. In fact, to obtain a storage
capability of several Gigabytes, a high number of
SDRAM chips must be used. Therefore, the reliability
of this subsystem must be accurately studied. The
use of RS codes to grant a high level of data integrity
allows also increasing the reliability of the IMAM. In
fact, the erroneous data of a failed SDRAM chip can
be faced as particular data errors, called erasure, and
corrected by the RS codes. This improvement of the
reliability depends on the codeword length and on the
memory scrubbing frequency. Moreover, the choice
of RS codes with a number of bit per symbol of 8 is
useful also in case of multiple bit upset (MBU) with
a limited number of corrupted bits. In fact, an MBU
of up to 8 bits corrupt one or two symbols, and due
to the ability of RS code to correct symbols instead of
bits, these kinds of faults can be easily managed by
RS codes with a sufficient number of check symbols.
Finally, the modularity of the FTSSMM allows to face
the occurrence of unrecoverable faults preserving a
reduced functionality set and/or reducing the amount
of available memory storage capability.

A. Reliability Evaluation

The allocation of reliability of a system involves
solving the following inequality

f(R1,R2, : : : ,Rn)> R
¤

where Ri is the allocation reliability parameter for the
ith subsystem, R¤ is the system reliability requirement
parameter, and f() is the functional relationship
between subsystem and system reliability.

For a simple series of systems, in which the Rs
represent the probability of survival at end of life
(EOL), we get

R1R2 : : :Rn > R
¤:

The above equation has an infinite number of
solutions and a procedure that yields a unique or
limited number of solutions must be used. For this
purpose we use a proprietary optimization tool [20]
based on the minimization of an effort function, as
described in [21]. For the reliability evaluation of the
FTSSMM a suitable reliability model is used [22].
It must be noticed that theoretically the results of
the reliability evaluations depend on the chosen RS
code, because different codes correspond to different
reliability models (see [22] for a detailed description).
In Table II the results of this evaluation are reported,
for both the subsystem and the overall FTSSMM with
two RS code configurations.
The above results show that the architecture has

a reliability level matching the requirements of a 2
year long satellite mission. It has to be noticed that
the overall results are related to the hypothesis of full
functionality of the FTSSMM after 2 years. However,
the graceful degradation capability of our system
allows different levels of acceptable performances,
i.e., the FTSSMM can be reconfigured to work also
with less I/O link interfaces and/or memory modules.
Therefore the above evaluations can be considered
as a worst case analysis of the system, while the
probability that the FTSSMM keeps working at the
end of mission with reduced performances is higher
as explained in Section IVC. Analyzing the results in
detail, we can notice that the reliability of the memory
control for the RS(36,32) configuration is better than
RS(72,64), however the latter can tolerate a larger
number of memory package failures. Therefore, the
overall reliability of the RS(72,64) configuration is
almost the same of the other case. The modification of
RS coding scheme improves the data integrity as we
show in the next subsection.

B. Data Integrity Evaluation

To evaluate the data integrity of the system we use
the notation adopted in [23] and [24] and reported in
Table III.

CARDARILLI ET AL.: FAULT TOLERANT SOLID STATE MASS MEMORY FOR SPACE APPLICATIONS 1361

TABLE III

Notation

¸ Upset bit rate

Nerror Number of corrupted bits

m Number of bits per symbol

Ntotal,W Memory size in number of bits and words

k Number of symbol per data word

MTTDL Mean Time To Data Loss

MTTF Mean Time To Failure

c Number of check symbols in a codeword

r(¿) Probability @ time ¿ of codeword error free

n Number of symbol per code word

R(¿) Probability @ time ¿ of memory system error free

t Correctable random error

T Interval of scrubbing with deterministic mechanism

LT Latency Time of stored data

j Number of intervals of deterministic scrubbing

TABLE IV

BER at Storage Period of 48 Hours and Tscrubbing = 1000 s

Reed- BER @ Minimum BER @ Maximum

Solomon Error SEU Rate SEU Rate

RS(36,32) 2 re, 0 er 1:7 ¢ 10¡20 1:7 ¢ 10¡14

RS(72,64) 4 re, 0 er 2:5 ¢ 10¡33 2:5 ¢ 10¡23

We assume the following.

1) Transient faults occur with a Poisson
distribution.
2) Bit failures are statistically independent and

thus linearly uncorrelated.
3) The control, correction, and interface circuitry

in the memory system are fault tolerant.
4) There is a dominant memory bit cell failure

mode. This with assumption 3 provides an upper
bound on system reliability.

In interplanetary space a background rate of
7:3 ¢ 10¡7 errors/bit/day can be assumed, which
occasionally increases up to 1:7 ¢10¡5 errors/bit/day
during solar flares. The following tables summarize
the data integrity evaluation in terms of bit error
rate (BER) from the minimum SEU rate to the
maximum SEU rate, even if some package failures
occur.
Different situations in which the FTSSMM can

operate are summarized in Table II. Table IV shows
the data integrity evaluations computed assuming the
following hypotheses.

1) The data are downloaded from the satellite to
the Earth station every two days.
2) A scrubbing operation is performed with

a period of 1000 s. The scrubbing operation is
performed reading a data stored in the memory
and rewriting it in the same memory location. This
operation allows to correct errors that can occur in the
data word, preventing the situation in which different

TABLE V

Tscrubbing@ Tstorage = 2 day and BER= 10
¡12

(0 Memory Package Failure)

Tscrubbing Tscrubbing
Reed- @ Minimum @ Maximum

Solomon Error SEU Rate SEU Rate

RS(36,32) 2 re, 0 er > 2 days 7:67 ¢ 103 s

(» 2 h)< 2 days

RS(72,64) 4 re, 0 er > 2 days > 2 days

TABLE VI

Tscrubbing@ Tstorage = 2 day and BER= 10
¡12

(2 Memory Package Failure)

Tscrubbing Tscrubbing
Reed- @ Minimum @ Maximum

Solomon Error SEU Rate SEU Rate

RS(36,32) 1 re, 2 er 6 ¢ 103 s 6 ¢ 10¡1 s (¿ 2 days)

(1.8 h < 2 days)

RS(72,64) 3 re, 2 er > 2 days 8 ¢ 104 s

(» 1:8 h< 2 days)

errors accumulate in the same word leading to an

unrecoverable erroneous word.

These results show that the FTSSMM is able

to tolerate the occurrence of transient faults giving

very high data integrity levels. Table V shows the

frequency of the scrubbing operation needed to

achieve a requested BER level of 10¡12. The table

shows that the scrubbing operation is needed only

for high SEU rates and for an RS(36,32) code. In the
other cases the scrubbing operation is not necessary,

and a reduction in terms of power consumption can

be obtained. Finally, in Table VI, the BER levels

in the presence of permanent faults in two memory

packages are reported. The table shows that, also in

presence of permanent faults, the FTSSMM remain

able to provide high reliability levels. It can be noticed
that, also in presence of permanent faults, there are

some combinations of SEU rate and coding scheme

in which the scrubbing technique is not necessary.

The above reported results show that the FTSSMM

is able to tolerate a high number of permanent and

transient faults occurring in the IMAM exploiting the

RS coding reconfiguration. The reconfigurability of

the RS code allows, given an expected SEU rate and a
BER requirement, to operate both on the codeword

length and/or the scrubbing period to obtain the

requested memory performances. The choice of

the codeword length and of the scrubbing period

is the result of a trade-off. In fact the use of long

codewords increases the time for decoding the

data-word, while the use of short scrubbing periods
increases the time in which the memory can’t be

accessed by the user.

1362 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 41, NO. 4 OCTOBER 2005

Fig. 12. Reliability curves for different performances.

TABLE VII

Characteristic of Set A

Write Read Delete

Detection Technique CED Signature analysis CED

Redundancy None None None

CLB 1015 390 265

TABLE VIII

Characteristic of Set B

Write Read Delete

Detection Technique CED – CED

Redundancy Cold Spare TMR Cold Spare

CLB 1630 803 445

C. Graceful Degradation Capabilities Evaluation

The graceful degradation capabilities of the system
[25] can be evaluated by calculating the probability
that the system works correctly at different levels of
performance. This approach is quite similar to the
performability defined in [26]. In this section we
focus our attention on the IMAM block, because the
reliability of this block is dominant with respect to
the other blocks (see Table II). As an example, let us
report two possible sets of fault tolerant techniques
that can be applied to the file system functions. In
Table VII (set A) concurrent error detection (CED)
techniques are used to check the write and delete
functions reducing the latency of the transient and
permanent fault detection that could lead to irreparable
FAT incongruities. This set of solutions has a limited
area overhead because no spares are introduced. The
drawback of this choice is that when a permanent fault
is detected, the function can’t be recovered and the
performance of the mass memory must be degraded.
In Table VIII (set B) the concurrent detection

technique is applied to both write and delete functions
while TMR is applied to read function to provide
better reliability and lower read latency.
Lower read latency is a requirement for a LEO

satellite. In fact, the short window of visibility

requires the implementation of fast downloads with
no repetition. This set of solutions has a higher area
overhead with respect to the previous one. On the
other hand, when a permanent fault is detected, the
functionality can be recovered using the redundant
blocks and the performances of the mass memory
are not degraded. Depending on the selected set of
solutions different levels of performance degradation
can be obtained. In fact, for a field programmable
gate array (FPGA) implementation of the various
file system functional blocks the reliability of each
of these blocks can be estimated as follows. Assume
that the reliability of each block is the reliability of
the series of the complex logic blocks (CLBs) needed
to implement the function. Therefore, given a certain
failure rate ¸ of a single CLB, the failure rate of the
functions can be expressed as

¸W = 652¤¸, ¸R = 260¤¸, ¸D = 178¤¸

where ¸W, ¸R, ¸D are the failure rates of the
write, read, and delete blocks, respectively. In a
configuration with only fault detection capability
(set A), inside the memory interface, the reliability
can be assumed as the reliability of the series of
the function blocks. The failure rate ¸MI of a single
memory interface is

¸MI = ¸W+¸R+¸D:

Using this failure rate can estimate the reliability
of the overall set of memory interfaces at different
levels of performance for a 4 Gigabytes FTSSMM
composed of four 1 Gigabyte memory modules. The
possible levels of performance are defined as the
amount of memory available. With n interfaces, the
reliability with r interfaces functioning is

Rs =

nX

i=r

µ
n

i

¶
[R(t)]i[1¡R(t)]n¡i

where R(t) is the reliability of a single interface. If
an unrecoverable fault is detected, the FTSSMM is
reconfigured reducing the available storing capability.
In Fig. 12 the reliability curves are drawn. It can be
noticed that the reliability to a typical end of mission

CARDARILLI ET AL.: FAULT TOLERANT SOLID STATE MASS MEMORY FOR SPACE APPLICATIONS 1363

TABLE IX

Reliability Comparison at EOM

R(t) t= 3 years 4 GB 3 GB 2 GB 1 GB

Set A 0,7097 0,9638 0,9979 0,9999

Set B 0,9893 0,9999 0,9999 0,9999

(EOM) of 36 months is about 70% if complete
availability is required (4 GB), while, in the cases of
75%, 50%, and 25% storage capability the reliabilities
are above 95%. The use of redundancy inside the
memory interface (set B) provides better reliability
for each memory interface.
In fact, with this configuration and the same

failure rates for each hardware block (¸W, ¸R, ¸D) the
formulas given in [27] can be applied to calculate the
reliabilities of a TMR configuration and cold spare
configuration. Using the obtained reliabilities of the
hardware blocks the reliability curves of Fig. 12 can
be recalculated. In Table IX is shown the improvement
of the reliability for each performance configuration at
the EOM.

V. FTSSMM SIMULATIONS

The simulation of the FTSSMM has been
performed with the purpose of evaluating both its
performances and its fault tolerant capabilities. In
particular, during the design phase the simulations
have been carried out using the VHDL hardware
description language. To have a closer emulation of
real physical faults, we injected faults in postsynthesis
structural VHDL [28, 29]. The results obtained by
behavioral and postsynthesis with fault injection
simulations of the system provided a feedback in the
design flow (Fig. 13).
Different from a typical design flow, the

verification phase of fault tolerant systems requires
not only the verification of the correctness of normal
functionalities, but also of the functionalities related
to the operations which must be performed to face the
occurrence of a fault in the system.
The simulation results are mandatory to confirm

the fault tolerance and graceful degradation
capabilities of the FTSSMM. The use of VHDL
descriptions of the FTSSMM (both structural and
behavioral) allowed us to perform a fault injection
campaign using a method called the “saboteurs”
method [30].
The validation of the FTSSMM has been

performed by splitting the system into the two main
blocks MKU and SCU. In both subsystems transient
and permanent faults have been simulated. Regarding
the validation of the MKU we focused our attention
on the occurrence of permanent faults in a memory
module or in an I/O memory interface in order to
validate the graceful degradation capabilities of the
system. In fact, to face the occurrence of permanent

Fig. 13. FTSSMM design flow.

faults the gracefully degradable MKU must switch
the data path from the faulty memory module to
another one. Due to the system symmetry, the same
reconfiguration can be done also if a failure occurs
in an I/O link interface. This last feature exploits
the capability of the system to read the data stored
in the memories from any I/O link interface. The
reconfiguration of the routing allows a graceful
degradation of the system in terms of throughput
but keeps intact the basic functionality of the storage
system. In fact, the shared transfer of the files on the
same module is more time consuming than the time
needed for parallel transfer to different modules, but
we obtained the result that the system can still store
and read files from at least a memory module. The
same consideration can be done also if some link
interfaces fail.
For the validation of the SCU it must be noticed

that the fault simulation campaign implies a specific
approach with respect to the fault simulation in the
MKU block. In fact, as in the final release of the
FTSSMM where two actual microcontrollers will
be used, a prediction of the error rates and of the
behavior of the microcontroller in case of faults must
be performed.
The fault simulation has been done on a behavioral

VHDL description of the 8051 microcontroller, and
the correctness of the results has been validated
comparing the obtained data with the ones obtained
by a radiation ground testing campaign performed
running two programs used as test bench applications
[31]. Radiation testing experiments, in which the
80C51 processor was exposed to beams of several
heavy-ion species, were performed by the Cyclone

1364 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 41, NO. 4 OCTOBER 2005

Fig. 14. “Saboteur” process.

cyclotron available at the UCL (Université Catholique
de Louvain-la-Neuve, Belgium). Further details about
the Cyclone facility and the main characteristics of
the heavy ions, to which the studied processor was
exposed are provided in [32]. These experiments
of ground testing allowed measuring the static SEU
cross section of the 8051 microcontroller by executing
a memory-like test pattern (static strategy) while
exposing the circuit to the heavy ion beams. Such
an experiment provides statistical evaluations of the
number of particles needed to flip a bit of a given
memory element. The resulting cross section curve
gives for each of the used particle species (identified
by the energy they deposit in silicon measured by
linear energy transfer (LET)) the number of detected
bit flips normalized by the number of hitting particles

¾SEU = number detected errors/particle fluency: (1)

The considered faults are limited to changes in the
content of internal memory elements. The VHDL
model uses an array of 8 bit vectors in order to
simulate all the 128 internal RAM bytes and special
function registers (SFRs) included in the 8051
architecture. A test campaign has been performed in
which faults were randomly injected both in location
of the affected bits inside this array and in time of its
occurrence. Note that injected faults did not target the
memory bits of program code to be executed by the
microcontroller, the fault injection being performed by
means of suitable modifications added to the VHDL
signals within the emulated 8051.
The setup of the experiment was therefore a

simulation setup. In fact, we generated a VHDL

schematic with the instantiation of the studied

microcontroller and other needed blocks. Main blocks

of the setup were

8051,

SRAM 64k,

ROM 4k.

These blocks were simulated using a commercial

VHDL simulator [33]. The only modification made

to the VHDL model was to add a saboteur process

capable of injecting faults inside the registers within

the 8051. The VHDL simulator, concurrent with the

normal processes emulating the 8051 microcontroller,

executes the saboteur process. Therefore the activation

of fault injection, performed by means of the two

extra signals IND and BIT, is totally independent

and asynchronous to the state of the 8051. Fig. 14

shows a schematic description of the fault injection

strategy in a general case. The VHDL behavioral

description of the 8051 can be seen as a set of

concurrent processes, each one implementing a

function of the microcontroller (ALU, PC incrementer,

Watchdog, etc.) and the communication between these

processes is provided by a set of internal signals

visible to all the processes. Some of these signals

have physical meanings like SFR, RAM, PC, and

others. The saboteur is a special process that runs

concurrently to the other processes and is activated,

in our case, by two external commands IND and BIT.

When normal operation (without fault injection) is

carried out the saboteur is in a stand-by mode; when

the fault injection is activated, the saboteur modifies

an internal signal inverting its value. In this way

CARDARILLI ET AL.: FAULT TOLERANT SOLID STATE MASS MEMORY FOR SPACE APPLICATIONS 1365

TABLE X

Results of Fault Injection Campaigns

Result # Detected # Lost of # Detected Lost Result Errors Lost of Sequence

Runs Errors Errors sequence of Sequence coverage coverage

First 40000 6078 3110 4969 4908 51,16% 98,77%

Second 40000 5948 3066 4864 4797 51,54% 98,62%

Third 40000 5692 2964 4785 4746 52,07% 99,18%

Average 40000 5912,67 3046,67 4872,67 4817 51,53% 98,86%

the saboteur provides an asynchronous SEU injection
on any internal signal of the VHDL description.
It has to be noticed that, in order to have a realistic

behavior of the microcontroller, the injection must be
performed only on those signals representing physical
registers. Assuming that the SEUs mainly affect the
internal registers rather than combinatorial logic, we
isolated the signals representing these registers and
made them our SEU injection target.
The fault injection technique is composed of the

following steps. First, the time width of injection
zone relative to the program that must be tested is
defined, second, the number of logical targets is
defined that must be used in order to inject error in
all the internal registers (in this case 152). Once both
these ranges are determined, the macro routine is
generated for executing a test using a suitable C++
program. The C++ program is based on a recursive
algorithm, the first step of each cycle is the generation
of time variable for error injection (into the predefine
injection zone interval time), the second step is the
generation of logical targets of injection, both byte
and bit addresses. Finally the C++ program writes the
correct macro file commands for fault injection.
Aiming at comparing the validity of prediction

based on fault injection sessions radiation ground
testing was performed with the UCL cyclotron. In
Fig. 15 curves corresponding to both the measured
and predicted error rates are depicted. The comparison
of predicted and measured error rate curves, put in
evidence the excellent correlation obtained from the
prediction technique based on fault injection. These
results show clearly the excellent efficiency of this
technique to predict error rates, at least for the simple
studied processor (the 8051).
Starting from the validation of the fault injection

methodology, a set of simulations of the SCU
behavior in the presence of fault has been done
[34]. The simulation has been performed to validate
the self-checking capabilities of the SCU provided
by the signature computation and the operations
handler blocks. We performed a large number of fault
injection runs in three campaigns and the results are
reported in Table X.
We focused our attention on the lost of sequence

detection. We expected that the checker would have
a high coverage on these errors that affect the control
path of the microcontroller and the results provided

Fig. 15. Predicted and measured error rates under different heavy

ions for 80C51.

an average of 98.86% of coverage. We assumed
that a loss of sequence occurred; if the program
did not terminate in a time 150% of the normal
execution time then we checked if the signature
analysis checker detected the error. The high coverage
allows protecting the microcontroller from freezes
that would isolate it from the rest of the system. We
also checked the correlation between the control flow
errors detected by the checker and the origination of
errors in the results. For the vector-sorting algorithm
we found a 50% correlation. Even if this correlation
could improve the quality of the results, it is worth
noticing that the main result is the high coverage on
the loss of sequences.

VI. PROTOTYPE SETUP

The development of the prototype of the FTSSMM
was intended to obtain a simple but still representative
version of the design. The FTSSMM prototype
is based on two memory modules and two link
interfaces. This kind of setup permits testing of all
the features of the FTSSMM while reducing the
complexity of the implementation. Moreover, the
use of a fast prototyping methodology based on
reprogrammable FPGAs, allows an incremental testing
approach. The functional structure of the prototype is
shown in Fig. 2. It has been partitioned and mapped
on the hardware as specified in Table XI.
Each part of the hardware apparatuses shown in

the table are described in the following sections. The
prototype has been tested by realizing two emulators

1366 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 41, NO. 4 OCTOBER 2005

Fig. 16. Prototype setup.

TABLE XI

FTSSMM Blocks Partitioning

Subsystem Name Board Name

IMAM Memory Board

Routing Module DN2000K10

System Control Unit DN2000K10

I/O memory interfaces DN2000K10

I/O link interfaces DN2000K10

of remote terminals accessing to the FTSSMM. The
emulators have been implemented on two computers
interfaced to the FTSSMM through SpaceWire links
(SWLINK1, SWLINK2). The overall prototype setup
including the emulators of remote terminals is shown
in Fig. 16. As can be seen, the hardware blocks
implementing the overall test bed are as follows.

1) two computers,
2) two PC2AFX boards,
3) two Virtex II prototyping boards,
4) four national LVDS47/48EVK boards,
5) one DN2000k10 fast prototyping board,
6) two memory boards.

In the following, each of the composing hardware
blocks will be described and the partitioning of the
design will be shown. Fig. 17 and Fig. 18 show the
prototype setup.

A. Computers

They are used to implement the remote terminals.
A software implementing both high level functions
such as file read, write, and delete and low level
functions such as single packet send or receive useful
for debug purposes has been developed. From the
functional standpoint, the software is composed of two
parts:

1) Formatting of data and command packets. The
data to be exchanged with the FTSSMM must be

Fig. 17. Prototype setup: Virtex II prototyping board.

Fig. 18. Prototype setup: Dini board.

CARDARILLI ET AL.: FAULT TOLERANT SOLID STATE MASS MEMORY FOR SPACE APPLICATIONS 1367

TABLE XII

Test Software Developed

Routine Name Routine Function

BT Bitmap to ASCII file image translation and

vice versa

GC FTSSMM commands formatting

INP Translation from ASCII data to IEEE 1355

packets and vice versa

INTERFACE Parallel port bi-directional management

TABLE XIII

Logic Modules Implemented on XC2V3000

Module Name Module Function

Parallel Parallel port Handshake management handles

parallel port half duplex communication

between PC and FPGA

ParHandler Data codification from 8 bit data of the

parallel port to the 9 bit data of the

SpaceWire interface

SpaceWire block implementing the SpaceWire protocol

formatted in data packets in order to be compatible
with the FTSSMM itself. The commands to be sent to
the FTSSMM correspond to special command packets
(read, write, delete commands for example).
2) Bi-directional interface through the parallel

port (in the next release an HS USB port will be
used).

The tests have been realized by using the FTSSMM to
memorize and retrieve very big data files containing
high resolution images. In Table XII, the list of the
implemented routines is reported.
All the developed code has been written in C while

the GUI has been implemented by using the Tcl and
Tk graphic toolkits.

B. PC2AFX Boards

These boards have been developed in
order to implement voltage translation from
the TTL levels of the parallel ports to the low
voltage TTL (LVTTL) levels of the HW-AFX
Xilinx Boards. Two buffers have been used. A
bi-directional buffer is used for the data bus. A
directional buffer is used for control signals
(Fig. 16).

C. Virtex II Prototiping Boards

These Xilinx prototyping boards host a Xilinx
Virtex II XC2V3000 FPGA, a PROM for the
configuration bitstream and some control logic,
and have been used for the implementation of the
SpaceWire protocol and its interface to the parallel
ports of the two remote terminal emulators. In
Table XIII the main blocks implemented on the
XC2V3000 FPGA are described.

TABLE XIV

Logic Blocks Partition on DN2000K10 Board

Block Name Block Function

FPGA A SpaceWire Interface 1

FPGA B SpaceWire Interface 2

FPGA C Routing Module

I/O link interfaces

I/O memory interfaces

FPGA D System Control Unit

D. National LVDS 47/48 EVK Boards

These boards have been used for the voltage
level translation from the single ended LVTTL
standard to the low voltage differential signaling
(LVDS) differential standard adopted in the SpaceWire
protocol. The boards host a two channel differential
line driver and a two channel differential receiver. The
inputs to the board are two SMB female connectors;
the differential pairs in input and output are available
on two RJ45 CAT5 connectors [35]. The LVDS
boards are connected to the FPGA board by using a
50 − coaxial cable. Because of the inability of the
FPGA LVTTL outputs to drive a 50 − transmission
line [36], a small board with a 50 − buffer has been
developed.

E. DN2000k10 Fast Prototyping Board

This is a very complex board for fast ASIC
prototyping based on six Xilinx Virtex XCV1000-4
FPGAs [37]. The board hosts 8 Mbyte of Flash
memory to memorize the FPGAs configurations,
canned oscillators, and low skew clock drivers. A very
large number of headers both on the top and bottom
of the board allows a simple board interfacing. As
shown in Table XI the DN2000k10 board has been
used in order to map the core logic functions of the
FTSSMM, in particular in Table XIV the partition of
the design on the FPGAs provided by the board is
shown.
The interconnections from the DN2000k10 board

and the memory boards has been implemented by
using flat cables (see Fig. 16).

F. Memory Boards

The memory boards have been implemented on
two PCBs as can be seen in Fig. 19.

1) HOST PCB: ad-hoc developed backplane
housing SDRAM arrays (4 GB) and a Virtex
XCV1000 fast prototyping board (1).
2) HW-AFX-BG560-100 fast prototyping board

housing a Virtex XCV1000 device implementing the
logic for the IMAM handling.

The logic functions implemented on each VIRTEX
XCV1000 are related to the SDRAM control, RS

1368 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 41, NO. 4 OCTOBER 2005

Fig. 19. Memory module.

TABLE XV

Logic Blocks on VIRTEX XCV 1000 Devices

Block Name Block Function

MMC Memory module controller: handles the

handshake of the data I/O with the rest of the

system (FTSSMM dynamic router)

EDAC Error Detection and Correction performs the

Reed-Solomon coding/decoding of the data

stored in the memory

MAC Memory Address Controller: handles the data

I/O on the memory chips performing the

necessary handshaking of control signals for

accessing DRAM arrays

coding, and system interfacing with the rest of the
FTSSMM. In Table XV the logic blocks are sketched.

VII. CONCLUSIONS

In this paper the system design methodology,
the architecture, and the performance evaluations
of an FTSSMM for satellite applications has been
shown. The behavior, architecture, and implementation
of its building blocks have been described in
detail both for their normal functionality and fault
tolerant capabilities. A detailed analysis of the
system reliability and data integrity is reported.
The graceful degradation capability of our system
allows different levels of acceptable performances,
in terms of active I/O link interfaces and storage
capability. Different from other proposed solutions,
that are based on fixed RS codes, our architecture
uses reconfigurable RS codes, showing that the
overall reliability of the FTSSMM is almost the
same using different RS coding schemes allowing
a dynamic reconfiguration of the coding to reduce

the latency (shorter codewords) or to improve the
data integrity (longer codewords). The use of a
scrubbing technique can be useful if a high SEU rate
is expected, or if the data must be stored for a long
period in the FTSSMM. The reported simulations
show the behavior of the FTSSMM in the presence
of permanent and transient faults. In fact, we show
that the SCU is able to recover from transient faults.
On the other hand, using a spare microcontroller, hard
faults can be tolerated. The original approach of using
a distributed file system confines the unrecoverable
fault effects only in a single I/O interface. In this
way, the FTSSMM maintains its capability to store
and read data. The proposed system allows obtaining
FTSSMM characterized by high reliability and high
speed due to the intrinsic parallelism of the switching
matrix compared with other systems based on a bus
architecture.

REFERENCES

[1] Kluth, M. P., Simon, F., Le Gall, J. Y., and Muller, E.

Design of a fault tolerant 100 gbits solid-state mass

memory for satellites.

In Proceedings of 14th VLSI Test Symposium, 1996,

281—286.

[2] Fichna, T., Gartner, M., Gliem, F., and Rombeck, F.

Fault-tolerance of spacebome semiconductor mass

memories.

In Twenty-Eighth Annual International Symposium on

Fault-Tolerant Computing, Digest of Papers, 1998,

408—413.

[3] Fox, J., Abare, W. E., and Ross, A.

Suitability of cots ibm 64mb dram in space.

In Proceedings of Fourth European Conference on

Radiation and Its Effects on Components and Systems

(RADECS 97), 1997, 240—244.

[4] Underwood, C. I., and Oldfield, M. K.

Observations on the reliability of cots-device-based solid

state data recorders operating in low-Earth orbit.

IEEE Transactions on Nuclear Science, 47, 4 (June 2000),

647—653.

[5] Parkes, S. M.

Spacewire: The standard.

In DASIA’99, 1999, vol. (ESA SP-447) (ISBN 92 9092

788 7), 111—116.

[6] Cardarilli, G. C., Marinucci, P., Ottavi, M., and Salsano, A.

A fault-tolerant 176 gbit solid state mass memory

architecture.

In Proceedings of the International Symposium on Defect

and Fault Tolerance in VLSI Systems (DFT ’00), 2000,

173—180.

[7] Oldham, T. R., Bennett, K. W., Beaucour, J., Carriere,

T., Polvey, C., and Garnier, P.

Total dose failures in advanced electronics from single

ions.

IEEE Transactions on Nuclear Science, 40, 6 (Dec. 1993),

1820—1830.

[8] Johnston, A. H.

Radiation effects in advanced microelectronics

technologies.

IEEE Transactions on Nuclear Science, 45, 3 (June 1998),

1339—1354.

[9] European Space Agency

SpaceWire Homepage:

http://www.estec.esa.nl/tech/spacewire/index.html.

CARDARILLI ET AL.: FAULT TOLERANT SOLID STATE MASS MEMORY FOR SPACE APPLICATIONS 1369

[10] Maeusli, D., Teston, F., Vuilleumier, P., and

Harboe-Sorensen, R.

ESA developments in solid sate mass memories.

Preparing for the Future, (ESA Publication Division), 5, 2

(June 1995).

[11] MIL-STD-1553.

[12] Ziegler, J. F., and Nelson, M. E., et al.

Cosmic ray soft error rates of 16-mb dram memory chips.

IEEE Journal of Solid-State Circuits, 33, 2 (Feb. 1998).

[13] Bertazzoni, S., Cardarilli, G. C., Di Giovenale, D., Grande,

G. C., Piergentili, D., Salmeri, M., Salsano, A., and

Sperandei, S.

Failure tests on 64mb sdram in radiation environment.

In Proceedings of the International Symposium on Defect

and Fault Tolerance in VLSI Systems, (DFT ’99), 1999,

158—164.

[14] Blahut, R. E.

Theory and Practice of Error Control Codes.

Reading, MA: Addison-Wesley, 1983.

[15] Paar, C., and Rosner, M.

Comparison of arithmetic architectures for reed-solomon

decoders in reconfigurable hardware.

In Proceedings of the Symposium on Field-Programmable

Custom Computing Machines, Apr. 1997, 219—225.

[16] Wilhelm, W.

A new scalable VLSI architecture for Reed-Solomon

decoders.

IEEE Journal of Solid-State Circuits, 34 (Mar. 1999),

388—396.

[17] Kwon, S., and ShinDept, H.

An area-efficient VLSI architecture of a Reed-Solomon

decoder/encoder for digital VCRs.

IEEE Transactions on Consumer Electronics, 43 (Nov.

1997), 1019—1027.

[18] Mahmood, A., and McCluskey, E. J.

Concurrent error detection using watchdog processors–

A survey.

IEEE Transactions on Computers, 37, 2 (Feb. 1988),

160—174.

[19] Saxena, N. R., and McCluskey, E. J.

Parallel signature analysis design with bounds on aliasing.

IEEE Transactions on Computers, 46, 4 (Apr. 1997),

425—438.

[20] Cardarilli, G. C., Marinucci, P., and Salsano, A.

Development of an evaluation model for the design of

fault-tolerant solid state mass memory.

In Proceedings of the IEEE International Symposium on

Circuits and Systems (ISCAS2000), vol. 2, May 2000,

673—676.

[21] MIL-HDBK 338 B-6.3.5.

[22] Cardarilli, G. C., Leandri, A., Marinucci, P., Ottavi, M.,

Pontarelli, S., Re, M., and Salsano, A.

Design of a fault tolerant solid state mass memory.

IEEE Transactions on Reliability, 52, 4 (Dec. 2003),

476—491.

[23] Labeau, F., Desset, C., Macq, B., and Vandendorpe, L.

Approximating the protection offered by a channel code

in terms of bit error rate.

In Proceedings of the European Signal Processing

Conference, Rhodes, Greece, 1999.

[24] Saleh, A. M., Serrano, J. J., and Patel, J. H.

Reliability of scrubbing recovery-techniques for memory

systems.

IEEE Transactions on Reliability, 39 (Apr. 1990),

114—122.

[25] Cardarilli, G. C., Ottavi, M., Pontarelli, S., and Salsano, A.

A fault tolerant hardware based file system manager for

solid state mass memory.

In Proceedings of the 2003 International Symposium on

Circuits and Systems (ISCAS 2003), vol. 5, V-649—V-652.

[26] Meyer, J. F.

On evaluating the performability of degradable computing

systems.

IEEE Transactions on Computers, C-29 (Aug. 1980),

720—731.

[27] Lala, P. K.

Fault Tolerant and Fault Testable Hardware Design.

Englewood Cliffs, NJ: Prentice-Hall, 1985.

[28] Gracia, J., Baraza, J. C., Gil, D., and Gil, P. J.

Comparison and application of different vhdl-based fault

injection techniques.

In Proceedings of International Symposium on Defect and

Fault Tolerance in VLSI Systems, 2001, 233—241.

[29] Parrotta, B., Rebaudengo, M., Reorda, M. S., and

Violante, M.

New techniques for accelerating fault injection in VHDL

descriptions.

In Proceedings of 6th IEEE International On-Line Testing

Workshop, 2000, 61—66.

[30] Jenn, E., Arlat, J., Rimen, M., Ohlsson, J., and Karlsson, J.

Fault injection into VHDL models: The mefisto tool.

In Proceedings of 24th International Fault Tolerant

Computing Symposium (FTCS-24), Austin, TX, June

1994, 66—75.

[31] Cardarilli, G. C., Kaddour, F., Leandri, A., Ottavi, M.,

Pontarelli, S., and Velazco, R.

Bit flip injection in processor-based architectures: A case

study.

In Proceedings of 8th IEEE International On-Line Testing

Workshop (IOLTW02), Isle of Bendor, France, July 2002.

[32] Berger, G., Ryckewaert, G., Harboe-Sorensen, R., and

Adams, L.

Cyclone–A multipurpose heavy ion, proton and neutron

see test site.

In RADECS Radiation and its effects on Components and

Systems.

[33] Aldec, Inc.

Active-HDL, VHDL Reference Guide, Apr. 2001.

[34] Ottavi, M., Pontarelli, S., Re, M., Salsano, A., Cardarilli,

G. C., and Leandri, A.

A methodology for program-flow checking in

microcontrollers: Checker design and performance

evaluation.

Internal report, available upon request.

[35] National Semiconductors Inc.

Homepage: http://www.national.com.

[36] Xilinx Inc.

Homepage: http://www.xilinx.com.

[37] The Dini Group

Homepage: http://www.dinigroup.com.

1370 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 41, NO. 4 OCTOBER 2005

Gian Carlo Cardarilli received the Laurea (summa cum laude) in 1981 from the
University of Rome “La Sapienza.”
He has been with the University of Rome “Tor Vergata” since 1984, where he

is currently full professor of digital electronics and electronics for communication
systems. During the years 1992—1994 he worked for the University of L’Aquila.
From 1987—1988 he worked for the Circuits and Systems team at EPFL of
Lausanne, Switzerland. His interests are in the area of VLSI architectures for
signal processing and IC design. In particular, he works in the filed of computer
arithmetic and its application to the design of fast signal digital processor. he has
also developed mixed-signal neural network architectures implementing them
in silicon technology. Recently, he also proposed different new solutions for the
implementation of fault-tolerant architectures.
He has published over 140 papers in international journals and conferences.

He has also worked in cooperation with companies like Alenia Aerospazio,
Rome, Italy; STM, Agrate Brianza, Italy; Micron, Avezzano, Italy; Ericsson Lab,
Rome Italy and with a lot of SMEs.

Marco Ottavi (M’04) received the Laurea degree in electronic engineering from
the University of Rome “La Sapienza” in 1999 and the Ph.D. in microelectronics
and telecommunications from the University of Rome “Tor Vergata” in 2004.
In 2000 he was with ULISSE Consortium, Rome, as a designer of digital

systems for space applications. In 2003 he joined the Department of Electrical
and Computer Engineering of Northeastern University, Boston, as a visiting
research assistant. He is currently postdoctoral research associate in the same
department. His research interests include yield and reliability modeling,
fault-tolerant architectures, on-line testing and design of nano scale circuits and
systems.

Salvatore Pontarelli received the Laurea degree in electronic engineering
from the University of Bologna in 1999 and the Ph.D. in microelectronics and
telecommunications engineering from the University of Rome “Tor Vergata” in
2003.
Currently he has a postdoctoral fellowship with the Department of Electronic

Engineering of the University of Rome “Tor Vergata.” His research mainly
focuses on fault tolerance, on-line testing, and reconfigurable digital architectures.

CARDARILLI ET AL.: FAULT TOLERANT SOLID STATE MASS MEMORY FOR SPACE APPLICATIONS 1371

Marco Re received the Laurea degree in electronic engineering from the
University of Rome “La Sapienza” in 1991 and the Ph.D. in microelectronics and
telecommunications engineering from the University of Rome “Tor Vergata” in
1996.
In 1998 he joined the Department of Electronic Engineering of the University

of Rome “Tor Vergata” as a researcher. He was awarded two one-year NATO
fellowships with the University of California at Berkeley in 1997 and 1998.
His main interests and activities are in the area of DSP algorithms, fast DSP
architectures, fuzzy logic hardware architectures, hardware-software codesign,
number theory with particular emphasis on residue number system, computer
arithmetic and CAD tools for DSP, fault tolerant and self-checking circuits.
Dr. Re has authored and coauthored more than eighty papers.

Adelio Salsano was born in Rome on December 26, 1941 and is currently full
professor of microelectronics at the University of Rome “Tor Vergata” where he
teaches the courses of microelectronics and electronic programmable systems. His
present research work focuses on the techniques for the design of VLSI circuits,
considering both the CAD problems and the architectures for ASIC design. In
particular, of relevant interest are the research activities on fault tolerant/fail safe
systems for critical environments as space, automotive etc., on low power systems
considering the circuit and architectural points of view, and on fuzzy and neural
syste4ms for pattern recognition.
Dr. Salsano has an international patent and has written or presented more

than 90 papers. At present he is the president of the national consortium
named U.L.I.S.S.E., between ten universities, three polytechnics, and several
of the biggest national industries, such as STMicorelectronics, ESAOTE,
FINMECCANICA. He is responsible for contracts with the ASI (Italian Space
Agency), for the evaluation and use in space environment of COTS circuits and
for the definition of new suitable architectures for space applications. professor
Salsano is also involved in professional activities in the fields of information
technology and is also consultant to many public authoriti8es for specific
problems. In particular he is consultant to the Departments of Research and of
Industry, of IMI, and of other authorities for the evaluation of industrial public
and private research projects. he was a member of the Consulting Committee
for Engineering Sciences of the CNR (National Research Council) from 1981
to 1994 and participated in the design of public research programs in the field
of telematics, telemedicine, office automation, telecommunication and recently,
microelectronics and bioelectronics.

1372 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 41, NO. 4 OCTOBER 2005

