
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 34, NO. 9, SEPTEMBER 2015 1495

Fault-Tolerant Topology Generation Method for

Application-Specific Network-on-Chips
Suleyman Tosun, Vahid B. Ajabshir, Ozge Mercanoglu, and Ozcan Ozturk

Abstract—As the technology sizes of integrated circuits (ICs)
scale down rapidly, current transistor densities on chips dramat-
ically increase. While nanometer feature sizes allow denser chip
designs in each technology generation, fabricated ICs become
more susceptible to wear-outs, causing operation failure. Even a
single link failure within an on-chip fabric can halt communi-
cation between application blocks, which makes the entire chip
useless. In this paper, we aim to make faulty chips designed with
network-on-chip (NoC) communication usable. Specifically, we
present fault-tolerant irregular topology-generation method for
application-specific NoC designs. Designed NoC topology allows
different routing path if there is a link failure on the default rout-
ing path. Additionally, we present a simulated annealing-based
application mapping algorithm aiming to minimize total energy
consumption of the NoC design. We compare fault-tolerant
topologies with nonfault-tolerant application-specific irregular
topologies on energy consumption, performance, and area
using multimedia benchmarks and custom-generated graphs.
Our results demonstrate that our method is able to determine
fault-tolerant topologies with negligible area increase and better
energy values.

Index Terms—Energy minimization, fault tolerance, mapping,
network-on-chip (NoC), topology design.

I. INTRODUCTION

T
ECHNOLOGY improvements have made it possible to

place millions of transistors on a single chip, resulting

in more complex and denser designs than ever. Now, design-

ers can embed all system components on one chip, which

is called system-on-chip (SoC). Traditional SoC design space

exploration has focused on computational aspects of the appli-

cations whereas today’s design efforts have shifted toward

communication-based design space exploration as a result of

increase in the number of SoC components. Thus, the commu-

nication architecture plays a major role in performance, area,

and energy consumption of the SoC designs. Previous stud-

ies show that traditional shared-bus and point-to-point-based

architectures do not scale well for current communication

Manuscript received June 30, 2014; revised October 7, 2014,
December 25, 2014, and February 12, 2015; accepted February 23, 2015.
Date of publication March 16, 2015; date of current version August 18,
2015. This work was supported in part by the Scientific and Technological
Research Council of Turkey (TUBITAK) under Grant 112E360, and in part
by EU COST Action IC1204—TRUDEVICE. This paper was recommended
by Associate Editor S. Kim.

S. Tosun is with the Department of Computer Engineering, Hacettepe
University, Ankara 06800, Turkey (e-mail: stosun@hacettepe.edu.tr).

V. B. Ajabshir and O. Mercanoglu are with the Department of Computer
Engineering, Ankara University, Ankara 06500, Turkey.

O. Ozturk is with the Department of Computer Engineering, Bilkent
University, Ankara 06800, Turkey.

Digital Object Identifier 10.1109/TCAD.2015.2413848

intense applications [1]. As a solution to this scalability prob-

lem, researchers introduced a new on-chip communication

architecture, called network-on-chip (NoC) [2], [3].

NoC architectures can be constructed using regular or

irregular topologies. Although regular topologies are easy

to construct and reusable, applications cannot be well

optimized on them. Irregular topologies are beneficial for

designing application-specific NoCs since the design param-

eters such as energy consumption, performance, and area

can be optimized better than their regular counterparts [4].

Several studies have been published regarding energy-efficient

and/or fault-tolerant regular topology-based NoC designs,

especially for mesh topologies [5]–[7]. However, studies

of irregular application-specific topologies are restricted to

explore energy efficiency [8]; fault tolerance has not been

considered.

Application-specific topologies generated by current meth-

ods have only one communication path between any com-

municating nodes [4], [8], [9]. If there is a permanent fault

in any of the links or ports as a result of the fabrication

process, the system cannot recover its functionality and the

chip becomes useless. Motivated by this fact, in this paper,

we propose a fault-tolerant application-specific topology gen-

eration method for NoC-based designs. In our method, we

first generate random nonfault-tolerant irregular isomorphic

topologies. We then add extra links to the generated topologies

to make them fault-tolerant. Our method generates a topology

library (TL) consisting several fault-tolerant topology alter-

natives and a ring topology, which is also a fault-tolerant

topology with minimum number of network resources. The

designer can select a topology from the generated TL that

meets the design goals.

Our fault-tolerant NoC designs can be used for various fault

scenarios.

1) Designs with at least one link failure due to the CMOS

fabrication process can still be used, albeit with a

gracefully degraded performance.

2) Designs with at least one link failure during the lifetime

of the chip due to electromigration can still operate at a

gracefully degraded performance level.

3) Dynamically adaptive routing mechanisms can easily

be added to the generated fault-tolerant topologies,

which enables the application to use several routing

alternatives.

In this paper, we also propose an application mapping

algorithm that can be applied to fault-tolerant and nonfault-

tolerant NoC designs. The objective of the proposed mapping

0278-0070 c© 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

1496 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 34, NO. 9, SEPTEMBER 2015

algorithm is to minimize energy consumption while meeting

bandwidth constraints. Our mapping algorithm is based on the

commonly used simulated annealing (SA)-based method [10].

Since the mapping problem is NP-complete, SA is a good

choice for this kind of problem. SA is a probabilistic method

for finding the global optimum of a cost function. It is mod-

eled on the behavior of condensed matter at low temperatures.

The annealing process starts with an initial configuration and

continuously reduces the temperature of the system in search

of a better configuration. If the process obtains a better energy

values in a configuration, it directly accepts this configuration.

Otherwise, it accepts the new solution based on an acceptance

probability function. In this way, it makes uphill moves from

a local minimum in an attempt to jump to a valley where a

global minimum might reside.

We compare our fault-tolerant topologies with nonfault-

tolerant counterparts based on energy consumption, area, and

performance. Our results show that with a small area increase,

our method generates fault-tolerant topologies with better

energy values.

This paper is organized as follows. In Section II, we briefly

review the related work on fault-tolerant and nonfault-tolerant

topology designs for NoCs. We explain the motivation of this

paper in Section III, and we introduce the problems we deal

with in Section IV. In Sections V and VI, we present our

fault-tolerant topology generation (FTTG) algorithm and our

SA-based mapping algorithm, respectively. In Section VII, we

show the experimental results. Finally, in Section VIII, we

conclude this paper.

II. RELATED WORK

In this section, we examine the related work in two parts.

In the first part, we list the previous work on irregular topol-

ogy generation methods that do not consider fault tolerance.

In the second part, we present the related work that consider

reliability and fault tolerance for irregular topologies, which

is the main focus of this paper.

A. Irregular Topologies

One of the pioneering work aiming to generate irregular

topologies for NoC architecture designs is presented in [9],

and applies a two-step approach for designing the topology.

In the first step, it uses integer linear programming (ILP)-based

method for floor planning the application nodes and the NoC

components on the given chip area. In the second part, it gen-

erates the topology by determining the connections between

the NoC parts and the application nodes. Even though this

paper shows promising results, it also shows that ILP-based

methods take too much CPU time to find an optimal solu-

tion. The same research group thus developed a faster method

for the same problem using genetic algorithms [11]. In both

methods, the authors aimed to reduce the energy consumption

of the final application-specific irregular-topology-based NoC

architecture.

There are also heuristic-based irregular topology generation

algorithms in [4] and [8]. These methods first determine the

topology connection and then later decide the floorplanning,

as opposed to the methods in [9] and [11]. To obtain the

topology, they also use a two-step approach. In the first step,

they cluster the application nodes by placing heavily commu-

nicating nodes together. In the second step, they determine

how to connect these clusters on the routers of the topology.

Although all these methods obtain very promising results

when considering energy minimization of the generated irregu-

lar topology, they do not consider fault tolerance in the design.

If any link has a permanent fault, the produced chip becomes

useless.

B. Fault-Tolerant NoC Design

There have been some efforts at NoC designs that do

consider fault tolerance. For example, Dally et al. [12] intro-

duced the reliable interconnection design concept. In this

paper, the authors propose a reliable router architecture that

transmits data over the network even if there is a transient

fault in the links. Similar work focuses on the router archi-

tecture for reliable network transmission [13], introducing an

architecture called BulletProof, which uses N-modular redun-

dancy. The basic idea of this paper is to implement multiple

(generally three) copies of the same router and check the

packet sent by each router. It then decides on the correct

version of the result based on majority voting. A similar

redundancy-based technique uses duplication [14], doubling

the network components and determining fault in the sys-

tem by checking both copies of the sent packets. Although

above mentioned redundancy-based methods can be used for

generating fault-tolerant irregular topologies, they increase the

number of network components tremendously, resulting in

high chip area and energy consumption overheads.

The methods mentioned above consider transient fault

tolerance. Early work on permanent fault tolerance generally

study regular (especially mesh-based) topologies. If a router

or a link on a mesh-based NoC has a permanent fault, such

studies focus on routing methods that avoid sending packets

over the faulty part [15]–[22].

To increase NoC designs’ robustness, some prior efforts

focus on reconfigurability of NoCs [23], [24]. For example,

the MADNESS project [23] aims to design NoC architecture

with adaptive fault-tolerant capabilities. Cannella et al. [24]

presented a method that moves the job of the faulty core to

the neighboring core during run time.

This paper focuses on tolerating permanent link and

router port failures. Prior work also aims to tolerate

link failures [25]–[31], proposing rerouting mechanisms after

locating faulty links.

All the aforementioned studies focus only mesh-based or

regular topology-based NoCs and there are more routing path

options for these topology types. However, the current irregu-

lar topologies uses only one path between any communicating

nodes; thus, the methods for regular topologies cannot be

applied for tolerating permanent link failures on irregular

topologies.

In this paper, we propose a new idea to generate fault-

tolerant application-specific irregular topology design. We aim

to add a minimum number of extra routers and links to the

TOSUN et al.: FTTG METHOD FOR APPLICATION-SPECIFIC NoCs 1497

Fig. 1. Different topology examples for an application with 12 nodes. (a) Router with four ports. (b) Irregular topology with no fault-tolerance capability.
(c) Ring, (d) mesh, and (e) fault-tolerant irregular topologies.

topology to achieve fault-tolerance capability. If the produced

chip is not faulty, it works with the default routing. If there

is an error in any link, we can use an alternative routing with

only a small degradation in application performance. The new

routing requires at least two alternative paths between any

router pair. In this paper, our goal is to design such a topol-

ogy with the least area increase and at least two paths between

routers exist. We present the preliminary version of this paper

in [32]. This paper extends our preliminary version by several

aspects. We examine the previous work in detail and moti-

vate the importance of the studied problem. We present the

energy model and mapping problem. We give in depth analy-

sis of the proposed FTTG algorithm and present our SA-based

mapping method. Contrary to previous version, we conduct our

experiments with newer technology parameters and give more

experimental evaluations. Finally, we give a routing scenario

in this version of this paper.

III. MOTIVATION

When we design an NoC architecture for a given

application, we must first select the system topology. For this

step, we have the option to select either a regular or irregular

topology. The selection criteria can be based on energy con-

sumption, performance, throughput, fault tolerance capability,

and/or chip area.

In Fig. 1(a), we show an abstract view of a four-port router

used in our topologies. Each link connected to a router port

is assumed to be bi-directional (i.e., each port can be used

as input or output). In our topology design, we use homoge-

neous routers (i.e., all routers have the same number of ports)

to better deal with design complexity and to maintain regular-

ity. Fig. 1(b)–(e) shows, respectively, examples of an irregular

topology with no fault-tolerance capability, a ring topology,

a mesh topology, and a fault-tolerant irregular topology. These

topologies can be used for an application with up to 12 nodes

because at most 12 empty ports are available for each topology.

Ring and mesh are two examples of regular topologies.

As seen in Fig. 1, each topology has a different number

of routers. Nonfault-tolerant irregular topology has the small-

est number of routers because it is configured to minimize

NoC energy consumption and has no fault-tolerance capability.

The remaining three topologies have fault-tolerance capability

because an alternative communication path between any router

pair exists even if there is a permanent link failure.

Mesh and ring topologies are two basic regular topology

examples that can tolerate at least one link failure. However,

a link failure’s effects on each topology type can be different.

While a link failure on a ring topology may result in very

high energy consumption and performance degradation in new

routing because there is only one alternative rerouting path, a

mesh topology has more than one rerouting option and thus

can offer better energy and performance values.

In this paper, we investigate an irregular topology option

for fault-tolerant NoC design. To achieve this goal, we gener-

ate an application-specific topology with two alternative paths

between any routers in the topology. If a permanent link failure

is detected on the design, we select an alternative routing for

the application with only a small degradation in both energy

consumption and performance. Our goal is to achieve a better

energy consumption and area overhead than the mesh topol-

ogy counterpart. To do so, we add extra routers and links to

nonfault-tolerant irregular topologies.

Even though we design the topology to tolerate single link

failure the designed topology can tolerate multiple link errors

only if removing the faulty links from the topology does

not disconnect network components. If removing the faulty

links from our topology disconnects the network, the designed

topology cannot be used. One way to overcome this problem

and cover multiple link failures can be doubling the links.

However, when we double all the links, each router will need

extra ports, which increase the network area and energy con-

sumption. Thus, we aim to tolerate the single link failure that

may occur with higher probability than multiple link failures.

IV. PROBLEM DEFINITION

In this section, we first present the energy model used

in this paper and then define the fault-tolerant application-

specific topology generation and mapping problems for NoC

architecture.

A. Energy Model

The energy consumption of the functional blocks (i.e., the

cores) and the network resources (i.e., the routers and links)

constitute the total energy consumption of NoC architecture.

In this paper, our goal is not to minimize the energy consumed

by the cores, but to try minimizing the energy consumed by the

network components. The network’s energy consumption is

1498 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 34, NO. 9, SEPTEMBER 2015

Fig. 2. CFG of MP3 encoder.

directly proportional to the amount of bit transmissions on the

network. To estimate the energy consumption of NoC archi-

tecture, we should use an energy model based on the total

bit transmissions. We give the total energy consumption of

one bit (ETbit
)

ETbit
= ERbit

+ ELbit
(1)

where ERbit
and ELbit

represent the energy consumption of the

routers and the links, respectively. The average energy con-

sumption of sending one bit data from core vi to vj can be

calculated as

E
vi,vj

Tbit
= ηvi,vj × ERbit

+ δvi,vj × ELbit
(2)

where ηvi,vj is the number of routers the bit passes through and

δvi,vj is the link length in millimeter between the source and

destination routers. Since the link lengths between routers are

not known before floor planning, we assume fixed link lengths

for the topology generation step based on the chip dimensions.

B. Problem Definition

Our goals for the topology generation problem are: 1) to

determine a topology such that all communicating cores of the

application can transmit data to each other over the network

with at least two alternative paths and 2) to minimize energy

consumption. To achieve these goals, the number of routers

for the system must first be determined. Then, the resultant

topology must ensure that each router can be reached from all

other network routers via two paths and that all the cores are

connected to at most one router port. Additionally, the routing

must be deadlock and network-congestion free (i.e., the router

port and link bandwidth requirements must be satisfied.) To

explain this problem more formally, we give the following

definitions.

Definition 1: A core flow graph (CFG) is a graph G(V, E)

where each vertex vi ∈ V represents a core (i.e., a node) in

the application, and each edge ei,j ∈ E represents a depen-

dency between two tasks vi and vj. The amount of data transfer

between vi and vj is represented by the weight wi,j for all ei,j

and is given in bits per second.

In Fig. 2, we give the CFG of the MP3 encoder, taken

from [9].

Definition 2: A topology graph (TG) is a connected graph

T(R, L) where R represents the set of routers and L represents

the set of links connecting the routers.

In Fig. 3(a) and (b), we give two examples of a TG. In both

topologies, two alternative paths between any router pair exist.

TABLE I
SHORTEST PATH VALUES OF THE GRAPH

GIVEN IN FIG. 3(a)

In the first topology, we use 8 routers and 9 links, whereas in

the second we use 9 routers and 11 links.

Graph diameter and average path length (APL) of the

network are the two factors affecting the system’s total com-

munication. Thus, we try to minimize these two parameters in

the generated topology.

Definition 3: Graph diameter dT of a TG T(R, L) is the

maximum of the shortest distances between all pairs of the

vertices (i.e., routers), and can be calculated as

dT = max
{

d
(

ri, rj

)}

,∀
(

ri, rj

)

∈ R (3)

where d(ri, rj) represents the shortest distance between ver-

tices ri and rj.

To calculate the diameter of the TG, we first find all short-

est paths between each pair of vertices. Then, we select

the maximum distance. In Table I, we give the shortest

paths of the graph in Fig. 3(a). The graph diameter of this

topology is 3.

Definition 4: APLT of a topology T is the average of the

shortest paths between any pairs of the vertices of the TG.

Let r denote the number of vertices of the given topology.

Then, the APLT is calculated by the following formula:

APLT =
2

r(r − 1)

∑

ri≤rj

d
(

ri, rj

)

. (4)

For example, the APL of the graph in Fig. 3(a) is 1.92,

while the APL of the graph in Fig. 3(b) is 1.86.

Problem 1 (FTTG): Given a set of nodes n and the set

of routers, each having p ports, determine the number of

routers (r) and the number of links (l) to generate the topology.

Then generate the topology that meets the following criteria.

1) Constraints:

a) The topology must be fully connected with the

set of routing paths P, where each path pi,j is the

routing path between each pair of routers (ri, rj).

b) For each path pi,j, each link lk,l on this path should

satisfy the bandwidth constraint bw(ll,k).

c) Additionally, to satisfy the fault-tolerance criteria,

there must be at least two alternative routing paths

between any router pairs. That is

∀
(

ri, rj

)

∈ R,
(

pi,j

)

≥ 2. (5)

2) Objective Function:

a) The objective function of the FTTG problem is to

minimize the APL of the generated topology T .

TOSUN et al.: FTTG METHOD FOR APPLICATION-SPECIFIC NoCs 1499

Fig. 3. Two examples of a fault-tolerant TG. (a) TG with 8 routers and 9 links and (b) 9 routers and 11 links.

In other words, our objective function is

min : APLT . (6)

Problem 2 (Application Mapping): Given a CFG G(V, E)

and a TG T(R, L), determine a mapping such that each node

of the CFG is mapped to a router on the TG and the total

energy consumption of the designed NoC is minimized. We

mathematically formulate the application mapping problem as

follows.

Given a CFG and a TG that satisfy

|V| ≤ |R(pe)| (7)

where |V| is the number of vertices of the given CFG and

|R(pe)| is the number of empty ports of the topology routers,

find a many-to-one mapping function M : V → R from the

CFG to the TG with

min : ENoC =
∑

∀ei,j∈E

wi,j × E
vi,vj

Tbit
(8)

such that

∀vi ∈ V, ∃rk(pe) ∈ T, M(vi) = rk(pe) (9)

∀vi 	= vj ∈ V, M(vi) 	= M
(

vj

)

(10)

where ENoC is the total energy consumption of the network

and rk(pe) represents the empty port pe of router rk. Since

some routers may have more than one empty port, the mapping

function has a many-to-one relation.

V. FTTG ALGORITHM

Before explaining the details of our FTTG algorithm, we

give an overview of our approach in the following section.

A. Overview of FTTG Algorithm

We give the flowchart of the FTTG algorithm in Fig. 4.

Our algorithm has two main phases: 1) generating nonfault-

tolerant irregular topology using a minimum number of routers

and links and 2) adding extra routers and links to obtain a

fault-tolerant version of the topology.

As shown in the flowchart, our method accepts the number

of nodes (n) of the given application (CFG), the number of

ports (p) for routers, and the iteration count (t) as inputs. Based

on these input values, it generates a ring topology, which is

a fault-tolerant topology with minimum numbers of routers

and links. It then adds the ring topology to the TL as our

first topology. After that, it calculates the minimum number of

routers (rmin) and links (lmin) for non-FTTG (N-FTTG) and the

maximum number of routers (rmax) and links (lmax) that will

be used for fault-tolerant topologies. Since the fault-tolerant

irregular topology must utilize at least rmin routers, we start

FTTG with rmin routers. At each outer loop of the FTTG algo-

rithm, we add one more router to the routers at hand until we

reach rmax.

After selecting the number of routers (r) for the topology,

we determine how many extra links can be added to the net-

work using the formula l = lmax − lmin. When the routers

connected with links to generate a topology, enough empty

ports must be left for the application nodes, which is n here.

We then generate a random, fully connected, nonfault-tolerant

topology with r routers and r − 1 links. Certainly, some of

the routers must be connected to other routers with at most

one port. Thus, we connect these routers to each other by

adding l links, aiming to minimize the APL of the topology.

Each router and link must be on a cycle to have at least two

alternative routing paths, thus our next step is to check that

this is so. If there is a fault-tolerant topology with r ports in

the TL, we check whether the newly generated topology is

isomorphic with the existing topologies. If it is, we simply

discard the new topology; otherwise, we add it to the library.

This topology generation process iterates t times, which is a

predefined iteration count.

In our output TL, we may have several topology alter-

natives with different numbers of routers, varying between

rmin and rmax. The designer can select any of these topologies

that suits the design objectives, or the one with the minimum

APL. In the following sections, we give the details of each

step in the FTTG algorithm.

B. Calculating the Required Number of Network Components

For irregular N-FTTG and for regular and irregular FTTG,

we first need to determine the minimum number of routers and

links. We give the necessary calculations for nonfault-tolerant

irregular topology, ring topology, and FTTG in the following

paragraphs.

1) Nonfault-Tolerant Irregular Topology: Given an appli-

cation with n nodes and a router set having p ports each,

1500 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 34, NO. 9, SEPTEMBER 2015

Fig. 4. Flowchart of FTTG algorithm.

where p > 2, we can determine the minimum number of

routers rmin for nonfault-tolerant irregular topology generation

using the following formula:

rmin =

⌈

n − 2

p − 2

⌉

. (11)

For rmin routers, each of which has p ports, we can have

at most prmin ports. Each link consumes two ports to connect

Fig. 5. Example of nonfault-tolerant irregular topology for an application
with 14 nodes. The topology uses a minimum number of four port routers
and links.

two routers. For rmin routers, we can have at least rmin−1 links,

which means all the links consume at least 2(rmin − 1) ports.

Then, the remaining ports can be used for connecting at most

prmin − 2(rmin − 1) nodes. This inequality can be written as

n ≤ prmin − 2(rmin − 1). (12)

Solving this inequality for rmin gives us (11). Clearly, the

generated nonfault-tolerant irregular topology will need at least

lmin links to connect rmin routers, where lmin = rmin − 1, as

proven in [4].

As an example, we calculate the minimum number of

routers and links for an application with 14 nodes, assum-

ing each router has four ports. When we use (11), we find

rmin = 6 and lmin = 5. In Fig. 5, we show an example of a

randomly generated nonfault-tolerant irregular topology using

six routers with four ports and five links. In this topology,

there exist 14 empty ports for 14 application nodes.

2) Ring Topology: Given a set of routers rmin with p ports,

where p > 2, and a set of nodes n of the given application,

the minimum number of routers rmin to generate a valid ring

topology can be found by the following formula:

rmin =

⌈

n

p − 2

⌉

. (13)

For rmin routers, each of which has p ports, we can have

at most prmin ports. Each link consumes two ports to connect

two routers. For rmin routers, a ring topology needs rmin links.

Thus, all links consume 2rmin ports. Then, the remaining ports

can be used, connecting prmin − 2rmin nodes. This inequality

can be written as follows:

n ≤ prmin − 2rmin. (14)

Solving this inequality gives us (13).

3) Fault-Tolerant Irregular Topology: As stated above, the

ring topology is a fault-tolerant regular topology because it

has exactly two routing paths from any router pair. However,

it has a high APL value when the number of routers in

the topology is high. To reduce the APL of a fault-tolerant

topology, we need to add extra links to minimize the graph

diameter, resulting in a minimized APL. When we add extra

links to the nonfault-tolerant irregular topology or to the ring

topology, the required empty ports for application nodes will

be reduced. Thus, we cannot map the given application’s nodes

TOSUN et al.: FTTG METHOD FOR APPLICATION-SPECIFIC NoCs 1501

Algorithm 1: N-FTTG

Data: n: Number of nodes, p: Number of ports for routers.
Result: T ′(R′, L′): Generated topology, APLT ′ , R1: Routers with

one link connection.

1 begin

2 Determine rmin using Equation (11);
3 Add rmin routers to R = {r1, r2, . . . , rmin};
4 R′ = ∅; L′ = ∅;
5 Select a router r1 ∈ R;
6 R = R − r1; R′ = r1;
7 P′ = p(r1); /* Add empty ports p(r1) to empty

port list P′
*/

8 for i = 2 to i = rmin do
9 Select router ri ∈ R;

10 R = R − ri; R′ = R′ + ri;
11 Randomly select an empty port p(rj) ∈ P′;
12 Randomly select a port p(ri) from ri;
13 Connect ri and rj with the link lp(ri),p(rj)

;

14 L′ = L′ + lp(ri),p(rj)
;

15 P′ = P′ − p(rj) + (P(ri) − p(ri)); /* Remove

connected ports from and add empty

ports of ri to P′. */

16 Determine R1 : routers with p − 1 empty ports;
17 Calculate APLT ′ ;

18 return T ′(R′, L′), R1, and APLT ′ ;

on the topology. Therefore, we must add extra routers to the

nonfault topology to be able to add more links.

One option to resolve this issue is to double the routers

in the design. However, doing this will also double the area

of the network. Therefore, we limit the number of additional

routers to log2 (rmin) to have scalable increase for FTTG. We

determine the maximum number of routers using the following

formula:

rmax = ⌈rmin + log2 (rmin)⌉. (15)

When we utilize rmax routers, each having p ports, we need

at least n empty ports to generate a topology. The remaining

ports can be used for links to connect routers. Since we can

have prmax ports and each link consumes two ports, we can

determine the maximum number of links lmax as follows:

n ≤ prmax − 2lmax (16)

lmax =

⌊

prmax − n

2

⌋

. (17)

To generate a fault-tolerant irregular topology, we first start

with rmin routers. We then increase the number of routers

by one until we reach rmax. Thus, the number of routers

for the generated fault-tolerant topologies varies between

rmin and rmax. In the following paragraphs, we explain how

we generate the topologies.

C. N-FTTG Algorithm

As we show in Fig. 4, after determining the required number

of routers for both N-FTTG and FTTG, we randomly gener-

ate a nonfault-tolerant irregular topology using our N-FTTG

algorithm. We give the sketch of N-FTTG in Algorithm 1.

In this algorithm, using (11), we first determine how many

routers will be needed to generate a valid irregular topology.

We then select the first router r1 ∈ R and move it to R′.

After moving r1 to R′, we keep track of empty ports in the

list P′. In the for loop of the N-FTTG algorithm, we select

a router ri from R and connect it to the router in R′. To do

this, we randomly select a port from P′ and a port from ri and

connect them. We accordingly update the router list R′, link

list L′, and the empty port list P′. When we connect a router

in R′, we use one port from P′ and one port from ri. When we

remove these ports from the empty port list, we add the empty

ports of ri to P′. We continue these random connections until

R = ∅, which is rmin − 1 times.

After the for loop terminates, we have a nonfault-tolerant,

fully connected irregular topology, which has at least n empty

ports to be mapped on. In this algorithm, we calculate the APL

of the generated topology and the routers that are connected

to the network with only one link, R1, (i.e., the routers that

have p − 1 empty ports). We use the list R1 in our FTTG

algorithm.

D. Adding Extra Links

The N-FTTG algorithm generates irregular topologies, in

that there is only one routing path from one router to another.

If there is a permanent fault on any of the links or ports on

the specified path, the application may not operate properly.

Therefore, the fabricated chip cannot be used. For example,

if there is a failure in the topology given in Fig. 5, there will

not be alternative path to send packets. For an alternative path

between any communicating router pair, we must add extra

links to the topology generated by the N-FTTG algorithm.

As shown in Fig. 4, after generating nonfault-tolerant

topologies, we add extra links to the generated topology by

leaving enough empty ports to map n nodes of the given appli-

cation. We give the sketch of this process in Algorithm 2,

where we first determine how many extra links can be added

to the topology. As stated above, nonfault-tolerant topology

uses lmin = r − 1 links. Then, using (17), we then determine

the maximum number of links lmax that can be used in the

fault-tolerant topology. Clearly, we can add l = lmax − lmin

links to the topology at hand. To do this, we add l links one

by one by connecting selected router pairs.

When we select the pairs to be connected, we use the router

set R1, which contains routers that have only one link connec-

tion to the network, so that we can have one more alternative

port connection to the remainder of the network. Additionally,

all the network components (i.e., routers and links) must be on

a cycle in the generated topology to be fault-tolerant. If there

are at least two routers in R1, we select the router pairs from

this set. However, we can have more than one option for this

selection. In this case, we select two routers ri and rj from R1

with a maximum distance dri,rj to minimize the APLT of the

topology T . If we have one router in R1, we select this router

and another router in the topology with the maximum distance.

If R1 = ∅ and we still have additional links that can be added

to the topology, we select two routers from the topology to

minimize APLT . After each selection, we connect the selected

routers ri and rj with a new link lri,rj .

For example, the topology in Fig. 5 has four routers, R1 =

{r3, r4, r5, r6}, with only one link connection. Suppose we can

1502 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 34, NO. 9, SEPTEMBER 2015

Algorithm 2: AddLinks

Data: n: Number of nodes, p: Number of ports for routers,
T ′(R′, L′): Non-fault-tolerant topology, R1: Routers with
one link connection, TL: Topology library.

Result: TL: Updated topology library.

1 begin
2 Determine lmax using Equation (17);
3 l = lmax − lmin;
4 for i = 1 to l do

5 if |R1| ≥ 2 then

6 Select ri, rj ∈ R1 s.t. dri,rj is maximum;

7 R1 = R1 − ri − rj;

8 else if |R1| = 1 then

9 Select ri ∈ R1 and rj ∈ R′ s.t. dri,rj is maximum

and rj has at least one empty port;

10 R1 = R1 − ri;
11 else

12 Select ri, rj ∈ R′ s.t. dri,rj is maximum and

ri and rj have at least one empty port;

13 Connect ri and rj with lri,rj ;

14 L′ = L′ + lri,rj ;

15 isomorph = 0; cycle = 0;

16 if R1 = ∅ ∧ min − cut(T ′) ≥ 2 then
17 cycle = 1;

18 for All topologies in TL do
19 Select a topology T(R, L) ∈ TL;
20 if T ′(R′, L′) = T(R, L) then
21 isomorph = 1;

22 if isomorph = 0 ∧ cycle = 1 then

23 TL = TL + T ′(R′, L′);

24 return TL;

add two extra links to this topology. In this topology, the max-

imum distance is dmax = dr3,r4
= dr3,r5

= dr3,r6
= 3. We

then randomly select r3 and r4 to connect. Then, R1 becomes

R1 = {r5, r6}. For the second link, we select r5 and r6.

After connecting all extra links to the topology, we check

that all the network components (i.e., routers and links) are on

a cycle. We know that if R1 = ∅ after the link connections,

all routers are on a cycle. However, this may not be true for

the links. Fig. 6 shows an example topology of all routers on

a cycle but link lr3,r4
not on a cycle. If there is an error in this

link, the system may not operate properly. If all the links in

the topology are on a cycle, the minimum cut degree of the

topology T , min − cut(T), must be at least 2. If R1 = ∅ and

min − cut(T) ≥ 2, we determine that all the components of the

topology T are on a cycle. If there is even a single component

not on a cycle, we simply discard the topology. We should

note here that FTTG algorithm generates a valid topology if

R1 = ∅ and all network components are on a cycle; otherwise,

it only returns the ring topology as our fault-tolerant topology.

After generating the fault-tolerant topology, we compare it

with previously generated fault-tolerant topologies. We check

whether the topology at hand is isomorphic with any topology

in the TL. If it is, we discard the topology at hand; if it is not,

we add it to the TL. We use a polynomial-time algorithm to

check the isomorphism between two graphs [33]. In Fig. 7, we

give two isomorphic graphs. In these graphs, router numbers

are in different places but network connections are the same.

Fig. 6. Topology with a link not on a cycle.

Fig. 7. Isomorphic graphs.

E. Complexity of FTTG

Given r routers, lmin links for N-FTTG, lmax links for FTTG,

an application with n nodes, and an iteration count t, we

calculate the complexity of the FTTG algorithm as follows.

If we exclude the time complexity of the APL calculation

for the generated topology, the complexity of N-FTTG can be

written as O(r).

After generating the nonfault-tolerant topology T(R, L), we

add l = lmax − lmin links to it. When we add each link, we cal-

culate the path length for each router pair; its time complexity

is r2(|L| + |R| lg |R|), where (|L| + |R| log2 |R|) is the com-

plexity of Dijkstra’s shortest path algorithm. Then, the time

complexity of this process can be written as O(lr3) because

|R| = r and r > |L|.

We check the min − cut(T) in the polynomial time com-

plexity of O(r3) using the Edmonds–Karp algorithm [34]. We

then check if the generated topology is isomorphic with the

ones in the TL. Assuming we have at most t−1 topologies with

r nodes in the library, we use the algorithm presented in [33],

which has a time complexity of O(r5). The outer loop of the

FTTG algorithm runs log2 r times. As a result, the time com-

plexity of FTTG can be approximated as O(tr5 log2 r), which

is dominated by the graph isomorphism part.

VI. APPLICATION MAPPING ALGORITHM

After generating a set of fault-tolerant topologies and cre-

ating a TL, we select a topology with a minimum APL value

for NoC design. The second phase of NoC design is mapping

the application with the objective of energy minimization, as

stated in Section IV.

We give the pseudo code of an SA-based application map-

ping algorithm in Algorithm 3, where we randomly map tasks

onto the topology (line 2) to obtain an initial mapping. We

then calculate the total energy consumption cost of the initial

mapping using (8) and the shortest path routing.

TOSUN et al.: FTTG METHOD FOR APPLICATION-SPECIFIC NoCs 1503

Algorithm 3: SA-Based Mapping

Data: G(V, E), T(R, L), bwmin
Result: M: Mapping, ENoC

1 begin
2 M = Random_Initial_Mapping(G, T)

3 C = Calculate_ENoC(T)

4 Mbest = M

5 Cbest = C

6 Temperature = ⌈10 ln |R|⌉

7 for i → 0 to |R|2 do
8 Reject = 0
9 while Reject < 10 do

10 M′ = neighbor(M)

11 C′ = Calculate_ENoC(T ′)

12 bwreq = Calculate_max_bandwith_requirement(T ′)

�C = C − C′

13 Generate a random variable α, 0 ≤ α ≤ 1
14 if bwreq ≤ bwmin∧ (�C ≤ 0 or

α ≤ e(−�C)/Temperature) then

15 M = M′

16 Reject = 0
17 else

18 Reject + +

19 if Reject = 0 ∧ C < Cbest then
20 Mbest = M

21 Cbest = C

22 Decrement Temperature

23 M = Mbest
24 Comm = Cbest
25 return M, ENoC

After the initial mapping is determined, we set tempera-

ture to its highest value. The temperature parameter in our

mapping problem is analogous to the distance between two

nodes mapped on the topology. If the distance between two

exchange nodes is high, the temperature is high and vice

versa. Marcon et al. [36] stated that the algorithm obtains

good results when the initial temperature is selected to be

⌈10 ln |R|⌉, where |R| is the number of routers in the topology.

After the temperature of the system is initialized, the algo-

rithm executes two nested loops. While the external loop

searches for global minima, the internal loop tries to refine

the local solution. We limit the number of external loop itera-

tions to |R|2, as suggested in [36]. The internal loop randomly

selects two nodes and swaps them to determine a new solu-

tion. It then evaluates whether the new solution is better than

the solution at hand. It also checks whether the bandwidth

requirement bwreq of the generated topology is less than or

equal to the allowed bandwidth limit bwmin. If it is, the solu-

tion is accepted as the current solution. Otherwise, it generates

a random variable α, where 0 ≤ α ≤ 1, and compares

it with the acceptance probability function e(−�C)/temperature.

If the result of the function is higher than α, the new move

is accepted. At high temperatures, the acceptance probability

is also high. When we lower the temperature of the system,

acceptance probability decreases. We limit the iteration of the

internal loop to ten consecutive rejects. After each iteration,

we decrement the temperature of the system and start a new

iteration, accepting the solution at hand as our initial solution.

Our SA-based algorithm returns the mapping with minimum

energy consumption value.

VII. EXPERIMENTAL RESULTS

In this section, we evaluate the FTTG algorithm by compar-

ing the topologies generated by FTTG with the ones generated

by N-FTTG. We implemented both algorithms in C++ and

evaluated them using our implementations. In the first set of

experiments, we compare the FTTG algorithm with N-FTTG

based on APL and area under varying numbers of nodes. In the

second set of experiments, we use real multimedia benchmarks

and custom graphs to compare area, energy, and performance

[i.e., average hop count (AHC)]. Finally, we give a case study

that shows several alternative topologies and mappings for a

benchmark example.

A. Evaluating FTTG

In this set of experiments, we generate topologies using

FTTG and N-FTTG for applications with different numbers

of nodes (n). We select the iteration count t = 500 and the

number of router ports as 4, 5, and 8. We conduct experiments

with node numbers between 8 and 100. We give the APL

and area comparisons in Table II. In the table, we give the

results for n varying only between 8 and 20 due to space

concerns.

In Table II, we show the APL and area overhead brought

by the FTTG algorithm against topologies generated by the

N-FTTG algorithm. The first column gives the number of ports

for the routers used in each topology generation. In the second

column, we give the number of nodes that can be mapped on

the generated topologies. The third and fourth columns show

the APL and minimum number of routers used for nonfault-

tolerant topologies. Note that we can generate more than one

topology with N-FTTG algorithm, and thus we select the one

with best APL value. Columns 5–7 show the APL, the number

of routers, and links used for FTTG, respectively. As N-FTTG,

FTTG generates several topology alternatives and we select

the one with best APL value. While column eight shows the

APL increase brought by the FTTG algorithm, the last col-

umn shows the area overhead of FTTG against N-FTTG. The

negative values in column eight mean that FTTG generated

topologies have better APL values. When we calculate the

area overhead, we assume that the area of the network com-

ponents for N-FTTG consume 6% of the total chip area, as

suggested by Dally and Towles [2]. For example, when n = 8

and p = 4 in Table II, N-FTTG uses three routers. That means

each router consumes 2% chip area. On the other hand, FTTG

uses four routers, increasing the chip area by 2%, which is

shown in the last column of Table II. In this calculation, we

omit the area increase of the extra links as in [35] because the

area consumed by the links is negligible when compared to

the area consumed by the routers. The network area increase

can be calculated separately using the number of routers for

each topology.

As column 8 in Table II shows, FTTG generates topologies

with close or better APL values than N-FTTG counterpart.

When the number of nodes or the number ports of the

router increases, the APL gain of FTTG against N-FTTG also

increases. The importance of APL values is evident in the

mapping phase. When the APL value is smaller, the AHC

1504 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 34, NO. 9, SEPTEMBER 2015

TABLE II
APL AND AREA COMPARISON OF FTTG AGAINST N-FTTG WITH VARYING NUMBERS OF NODES AND PORTS

Fig. 8. Comparison of FTTG with N-FTTG. (a) APL value comparison with varying numbers of nodes. (b) Area-increase percentages
of FTTG against N-FTTG.

(and latency values) of the application will be smaller, which

results in a better performance.

As the last column in Table II shows, the area increase

brought by the FTTG algorithm is tolerable. For example,

using four port routers, the area increase compared to the

N-FTTG topologies is 2.41% on average. One important obser-

vation is that when the number of application nodes increases,

the area overhead decreases. This result shows that the area

increase for applications with large numbers of nodes and for

topologies with large numbers of routers will be very small.

As stated above, the range of nodes in our experiments

changes from 8 to 100. In Fig. 8, we illustrate how the APL

values and area-increase percentages scale with varying num-

bers of nodes for topologies that use four port routers. In

Fig. 8(a), we give the APL comparison for N-FTTG and

FTTG. For this comparison, we select the topologies with the

best APL values for N-FTTG and FTTG. As the APL values

for the two types of topologies show, for a small number of

nodes, our FTTG algorithm determines topologies with sim-

ilar APL values to the N-FTTG. After the number of nodes

exceeds 16, the FTTG determines better APL values than its

counterpart.

We give the maximum area overhead in percentages in

Fig. 8(b), comparing the area increase against N-FTTG. As

the graph shows, the area overhead is within tolerable limits.

In the area comparison, the fluctuation in part of the func-

tion is because the selected number of routers increases for

varying n values. We select the maximum number of routers

using (15), and because the log2(rmin) increases when the

number of nodes increases, fluctuations occur. As the graph

in Fig. 8(b) shows, when the number of nodes increases, the

area overhead decreases. For large numbers of nodes, the APL

value increase of FTTG compared to N-FTTG is within toler-

able limits. However, FTTG brings a fault-tolerance capability

with a small area increase. With diminishing technology size,

we can expect that the number of nodes for future applications

will be much higher than now; therefore, our FTTG method

will be much more effective in future while it still meets the

current fault-tolerant topology needs.

B. Evaluating the Mapping Algorithm

In this set of experiments, we evaluate the FTTG and

SA-based mapping algorithms on a set of multimedia bench-

marks and custom graphs. We select six video applications

from the literature as benchmarks, namely the video object

plane decoder and the MPEG-4 decoder from [37], the multi-

window display from [8], and the 263 decoder, 263 encoder,

and MP3 encoder from [9]. Since the number of nodes for

the selected benchmarks range between 12 and 16, we ran-

domly generate three application graphs with higher numbers

of nodes. We name these three graphs as G30, G40, and G50

and they have 30, 40, and 50 nodes, respectively.

For this set of experiments, we use four port routers. After

determining the number of routers and links, we generate two

TOSUN et al.: FTTG METHOD FOR APPLICATION-SPECIFIC NoCs 1505

TABLE III
ENERGY, AREA, AND LATENCY COMPARISONS FOR N-FTTG AND FTTG METHODS AND MAPPINGS

topology alternatives. For the N-FTTG and FTTG topologies,

we select the one with a minimum APL value. We then map

the applications onto the generated topologies using our SA

method. In the mapping process, we aim to minimize only

the dynamic energy consumption of the network components

(i.e., the total energy consumption of sending data over routers

and links). For our energy calculations, we use the energy

model given in Section IV-A. For energy consumption param-

eters, we adopt the energy consumption values for routers and

links for 45-nm technology given in [35] and we derive the

energy values for 22-nm technology using the scaling factors

from ITRS [38]. In 22-nm technology, we estimate the energy

consumption of the routers at 3.20 pJ/Kb and the link energy

consumption at 4.78 pJ/Kb/mm. We assume the length of the

links as 1 mm.

We present the results of these experiments in Table III.

In the first two columns, we give the name of the graph

and the number of nodes for the given graph, respectively.

Columns 3 and 4 give the energy consumptions of the map-

pings for the N-FTTG and FTTG, respectively. Column 5

shows the energy comparison of FTTG against N-FTTG. The

negative values in this column means that mappings on FTTG

topologies has better energy values than N-FTTG. Column 6

gives the area overhead of the FTTG topologies against

N-FTTG topologies. Finally, the last two columns show the

AHC value to compare the latency for the two mappings.

As the energy values for six benchmarks in Table III show,

our FTTG and the mappings obtain very close energy values

to the N-FTTG most of the time. In most of the cases, it

obtains better results than its counterpart. The energy gain

of FTTG against N-FTTG is 0.47% on average for this nine

application graphs. We should note here that when the number

of application nodes is small (i.e., less than 16) our FTTG

algorithm returns a ring topology as the topology with best

APL value. When the application nodes is high, it generates a

fault-tolerant irregular topology that is different than ring. We

show an example FTTG topology examples for MP3 encoder

benchmark in the next section.

The area increase of FTTG topologies against N-FTTG is

around 0.97% on average, which is in tolerable limits. The

AHC values of FTTG topologies are better than N-FTTG

most of the time. This means that the latency of the applica-

tion running on FTTG topologies will be better than N-FFTG

topologies.

The last three rows of Table III give the results of three

mappings for custom generated graphs G30, G40, and G50,

respectively. For all custom graphs, energy and AHC values

of FTTG are better than N-FTTG and the area increases are

less than 0.5%. This shows that FTTG performs better than

N-FTTG when the number of application nodes increases.

As the set of experiments on real benchmarks demonstrates,

our FTTG algorithms brings fault tolerance to NoC design,

with only a small area overhead. When the number of appli-

cation nodes increases, FTTG performs better than N-FTTG

and it determines topologies with lower energy consumption

than its counterpart. As we stated above, with diminishing

technology size, we can expect that the number of nodes for

future applications will be much higher than now; therefore,

our FTTG method will be much more effective in future while

it still meets the current fault-tolerant topology needs.

C. Case Study: MP3 Encoder

In this section, we illustrate the generated topologies and the

mapping results for the benchmark MP3 encoder using four

port routers. We give the generated topologies and the mapping

results in Fig. 9. Encircled numbers in this figure represent

the nodes of the MP3 encoder application. Note that the map-

pings may not be optimal because each mapping is obtained

using our SA-based mapping algorithm, and SA-based meth-

ods do not guarantee determining optimal solution. In this

figure, we illustrate the mapping on ring, N-FTTG, and two

FTTG topologies, respectively. We compare these mappings

based on area, energy consumption, and on AHC as the latency

parameter.

The area increases of the first FTTG (eight routers) against

the ring (seven routers) and N-FTTG (six routers) are 0.85%

and 2%, respectively, while they are 1.71% and 3% for the

second FTTG (nine routers). The AHC values for the four

topologies in Fig. 9 are 0.76, 1.07, 0.84, and 1.08, respec-

tively. The energy consumption of the ring and N-FTTG are

calculated as 0.254 and 0.241 mJ, while they are 0.257 and

0.269 mJ for the FTTGs. As the energy values illustrate,

the FTTG in Fig. 9(c) brings only 6.7442% energy overhead

against the N-FTTG. Our FTTG given in Fig. 9(d) brings a

11.27% energy increase against the N-FTTG. Therefore, the

designer’s preferred topology would be the one in Fig. 9(a)

because it achieves better energy values than the others and

results in less area increase and better AHC values.

1506 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 34, NO. 9, SEPTEMBER 2015

(a) (b)

(c) (d)

Fig. 9. Mappings of MP3 encoder application onto (a) ring, (b) N-FTTG, and (c) and (d) two FTTGs.

D. Routing

Routing is an important mechanism in NoC designs. For

healthy communication in the network, packets must be sent

and received on time. To achieve this goal, deadlocks must

be avoided and bandwidth requirements fulfilled. In our eval-

uations above, we used the shortest path routing as the

default routing. This routing is static and saved in the rout-

ing tables (RTs) of each router. However, when there is a link

failure on the default routing path, we cannot use the chip.

Therefore, there must be an alternative RT to cover a link

failure. As a consequence, we should have more than one RT

to cover all single link failures. The default routing ensures

the latency and bandwidth constraints and is optimized for

energy consumption, but alternative routings may not guar-

antee these constraints and the energy consumption may not

be optimal. Alternative RTs can be powered up by the chip’s

external pins. For example, with two external pins, we can

have four different static RTs for the application.

If we create an RT for each link failure, we end up with |L|

RTs, which needs ⌈log2 |L|⌉ external pins for the chip to select

the required RT. However, each RT may cover more than one

link failure since the topology may have more than one extra

links. A topology with r routers needs as least r − 1 links

to be fully connected. For example, the topology in Fig. 9(c)

has eight routers and nine links, which means that two extra

links (el) can be removed from the topology and the topology

can still be fully connected. In short, we can remove el =

l − r − 1 extra links from an FTTG topology without discon-

necting it. When we select the links to be deleted, we should

make sure that the remaining is a fully connected network and

energy increase of the alternative RT is minimum. After deter-

mining which links will be covered by the alternative RT, we

can use the shortest path routing algorithm to generate the RTs.

VIII. CONCLUSION

In this paper, we present a fault-tolerant application-specific

topology-generation algorithm and an SA-based mapping

algorithm. Our FTTG algorithm generates topologies such that

each router of the topology can be reached from any router

with at least two alternative paths. The generated topology

can be used to tolerate at least one link failure by applying

the packets’ alternative routings. We compare our method with

nonfault-tolerant topologies and show that with only a small

increase in area, our method brings fault tolerance capability

to NoC designs.

REFERENCES

[1] H. G. Lee, N. Chang, U. Y. Ogras, and R. Marculescu, “On-chip
communication architecture exploration: A quantitative evaluation of
point-to-point, bus, and network-on-chip approaches,” ACM Trans.

Design Autom. Electron. Syst., vol. 12, no. 3, Aug. 2007, Art. ID 23.

TOSUN et al.: FTTG METHOD FOR APPLICATION-SPECIFIC NoCs 1507

[2] W. J. Dally and B. Towles, “Route packets, not wires: On-chip
interconnection networks,” in Proc. IEEE Design Autom. Conf.,
Las Vegas, NV, USA, 2001, pp. 684–689.

[3] L. Benini and G. De Micheli, “Networks on chips: A new SoC
paradigm,” Computer, vol. 35, no. 1, pp. 70–78, Jan. 2002.

[4] S. Tosun, Y. Ar, and S. Ozdemir, “Application-specific topology
generation algorithms for network-on-chip design,” IET Comput. Digit.

Tech., vol. 6, no. 5, pp. 318–333, Sep. 2012.
[5] S. Tosun, “New heuristic algorithms for energy aware application

mapping and routing on mesh-based NoCs,” J. Syst. Archit., vol. 57,
no. 1, pp. 69–78, 2011.

[6] K. Srinivasan and K. S. Chatha, “A technique for low energy mapping
and routing in network-on-chip architectures,” in Proc. Int. Symp.

Low Power Electron. Design, San Diego, CA, USA, 2005, pp. 387–392.
[7] S. Tosun, “Cluster-based application mapping method for

network-onchip,” Adv. Eng. Softw., vol. 42, no. 10, pp. 868–874,
2011.

[8] K.-C. Chang and T.-F. Chen, “Low-power algorithm for auto-
matic topology generation for application-specific networks on chips,”
IET Comput. Digit. Tech., vol. 2, no. 3, pp. 239–249, May 2008.

[9] K. Srinivasan, K. S. Chatha, and G. Konjevod, “Linear-programming
based techniques for synthesis of network-on-chip architectures,”
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 14, no. 4,
pp. 407–420, Apr. 2006.

[10] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by
simulated annealing,” Science, vol. 220, no. 4598, pp. 671–680, 1983.

[11] G. Leary, K. Srinivasan, K. Mehta, and K. S. Chatha, “Design
of network-on-chip architectures with a genetic algorithm-based
technique,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 17,
no. 5, pp. 674–687, May 2009.

[12] W. J. Dally, L. R. Dennison, D. Harris, K. Kan, and T. Xanthopoulos,
“The reliable router: A reliable and high-performance communi-
cation substrate for parallel computers,” in Proc. Int. Workshop

Parallel Comput. Rout. Commun. (PCRCW), Seattle, WA, USA, 1994,
pp. 241–255.

[13] K. Constantinides et al., “BulletProof: A defect-tolerant CMP switch
architecture,” in Proc. 20th Int. Symp. High Perform. Comput.

Archit. (HPCA), Austin, TX, USA, 2006, pp. 5–16.
[14] S.-J. Pan and K.-T. Cheng, “A framework for system reliability analysis

considering both system error tolerance and component test quality,”
in Proc. Design Autom. Test Europe Conf. Exhibit. (DATE), Nice, France,
2007, pp. 1–6.

[15] D. Fick et al., “A highly resilient routing algorithm for fault-tolerant
NoCs,” in Proc. Design Autom. Test Europe Conf. Exhibit. (DATE), Nice,
France, 2009, pp. 21–26.

[16] C. J. Glass and L. M. Ni, “Fault-tolerant wormhole routing in meshes
without virtual channels,” IEEE Trans. Parallel Distrib. Syst., vol. 7,
no. 6, pp. 620–636, Jun. 1996.

[17] M. E. Gomez et al., “An efficient fault-tolerant routing methodology
for meshes and tori,” IEEE Comput. Archit. Lett., vol. 3, no. 1, p. 3,
Jan./Dec. 2004.

[18] C.-T. Ho and L. Stockmeyer, “A new approach to fault-tolerant worm-
hole routing for mesh-connected parallel computers,” IEEE Trans.

Comput., vol. 53, no. 4, pp. 427–438, Apr. 2004.
[19] V. Puente, J. A. Gregorio, F. Vallejo, and R. Beivide, “Immunet: A cheap

and robust fault-tolerant packet routing mechanism,” ACM SIGARCH

Comput. Archit. News, vol. 32, no. 2, p. 198, Mar. 2004.
[20] S. Rodrigo, J. Flich, J. Duato, and M. Hummel, “Efficient unicast and

multicast support for CMPs,” in Proc. Int. Symp. Microarchit. (MICRO),
Lake Como, Italy, 2008, pp. 364–375.

[21] J. Wu, “A fault-tolerant and deadlock-free routing protocol in 2D meshes
based on odd-even turn model,” IEEE Trans. Comput., vol. 52, no. 9,
pp. 1154–1169, Sep. 2003.

[22] J. Zhou and F. C. M. Lau, “Multi-phase minimal fault-tolerant worm-
hole routing in meshes,” Parallel Comput., vol. 30, no. 3, pp. 423–442,
Mar. 2004.

[23] E. Cannella et al., “Towards an ESL design framework for adaptive and
fault-tolerant MPSoCs: MADNESS or not?” in Proc. 9th IEEE Symp.

Embedded Syst. Real-Time Multimedia (ESTIMedia), Taipei, Taiwan,
Oct. 2011, pp. 120–129.

[24] E. Cannella, O. Derin, P. Meloni, G. Tuveri, and T. Stefanov, “Adaptivity
support for MPSoCs based on process migration in polyhedral process
networks,” VLSI Design, vol. 2, Jan. 2012, Art. ID 987209.

[25] M. Palesi, S. Kumar, and V. Catania, “Leveraging partially faulty
links usage for enhancing yield and performance in networks-on-chip,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 29, no. 3,
pp. 426–440, Mar. 2010.

[26] A. Vitkovskiy, V. Soteriou, and C. Nicopoulos, “A dynamically adjust-
ing gracefully degrading link-level fault-tolerant mechanism for NoCs,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 31, no. 8,
pp. 1235–1248, Aug. 2012.

[27] Y. F. Teh, Z. Qian, and C.-Y. Tsui, “A fault-tolerant NoC using combined
link sharing and partial fault link utilization scheme,” in Proc. IEEE/IFIP

19th Int. Conf. VLSI Syst. Chip (VLSI-SoC), Hong Kong, Oct. 2011,
pp. 296–301.

[28] K. Aisopos, A. DeOrio, L.-S. Peh, and V. Bertacco, “ARIADNE:
Agnostic reconfiguration in a disconnected network environment,”
in Proc. Int. Conf. Parallel Archit. Compil. Tech. (PACT), Galveston,
TX, USA, Oct. 2011, pp. 298–309.

[29] D. Fick et al., “Vicis: A reliable network for unreliable silicon,”
in Proc. 46th ACM/IEEE Design Autom. Conf. (DAC), San Francisco,
CA, USA, Jul. 2009, pp. 812–817.

[30] D. DiTomaso, A. K. Kodi, and A. Louri, “QORE: A fault
tolerant network-on-chip architecture with power-efficient quad-function
channel (QFC) buffers,” in Proc. 20th IEEE Int. Symp. High Perform.

Comput. Archit. (HPCA), Orlando, FL, USA, 2014, pp. 320–331.
[31] R. Parikh and V. Bertacco, “uDIREC: Unified diagnosis and reconfigura-

tion for frugal bypass of NoC faults,” in Proc. 46th Annu. IEEE/ACM Int.

Symp. Microarchit. (MICRO), New York, NY, USA, 2013, pp. 148–159.
[32] S. Tosun, V. B. Ajabshir, O. Mercanoglu, and O. Ozturk, “Fault-tolerant

irregular topology design method for network-on-chips,” in Proc. 17th

Euromicro Conf. Digit. Syst. Design (DSD), Verona, Italy, Aug. 2014,
pp. 631–634.

[33] A. Dharwadker and J. Tevet, “The graph isomorphism algorithm,”
in Proc. Struct. Semiot. Res. Group, Tallinn, Estonia, 2009, pp. 1–30.

[34] J. Edmonds and R. M. Karp, “Theoretical improvements in algorith-
mic efficiency for network flow problems,” J. ACM, vol. 19, no. 2,
pp. 248–264, Apr. 1972.

[35] H. Kim, P. Ghoshal, B. Grot, P. V. Gratz, and D. A. Jimenez,
“Reducing network-on-chip energy consumption through spatial local-
ity speculation,” in Proc. 5th IEEE/ACM Int. Symp. Netw. Chip (NoCS),
Pittsburgh, PA, USA, May 2011, pp. 233–240.

[36] C. A. M. Marcon, E. I. Moreno, N. L. V. Calazans, and F. G. Moraes,
“Comparison of network-on-chip mapping algorithms targeting low
energy consumption,” IET Comput. Digit. Tech., vol. 2, no. 6,
pp. 471–482, Nov. 2008.

[37] M. Janidarmian, A. Khademzadeh, and M. Tavanpour, “Onyx: A new
heuristic bandwidth-constrained mapping of cores onto tile-based net-
work on chip,” IEICE Electron. Exp., vol. 6, no. 1, pp. 1–7, Jan. 2009.

[38] (2015, Mar. 24). International Technology Roadmap for Semiconductors.
[Online]. Available: http://public.itrs.net/

Suleyman Tosun received the M.Sc. and Ph.D.
degrees in computer engineering from Syracuse
University, Syracuse, NY, USA, in 2001 and 2005,
respectively.

He is currently an Associate Professor with the
Department of Computer Engineering, Hacettepe
University, Ankara, Turkey. His current research
interests include electronic design automation, low-
power design, network-on-chips, and computer
architecture.

Dr. Tosun was a recipient of the Tubitak Career
Award. He is a Management Committee Member of EU COST actions IC0805
and IC1204.

Vahid B. Ajabshir received the B.Sc. degree from
the University College of Nabi Akram, Tabriz, Iran,
in 2008. He is currently pursuing the M.Sc. degree
with Ankara University, Ankara, Turkey, both in
computer engineering.

His current research interests include network-on-
chips, computer vision, radio-frequency identifica-
tion (RFID), and fuzzy control systems.

1508 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 34, NO. 9, SEPTEMBER 2015

Ozge Mercanoglu received the B.Sc. degree in com-
puter engineering from Ankara University, Ankara,
Turkey, in 2012, where she is currently pursuing the
M.Sc. degree.

Her current research interests include network-on-
chips and computer vision.

Ozcan Ozturk received the B.Sc. degree in
computer engineering from Bogazici University,
Istanbul, Turkey, the M.S. degree in computer engi-
neering from the University of Florida, Gainesville,
FL, USA, and the Ph.D. degree in computer science
and engineering from Pennsylvania State University,
State College, PA, USA, in 2000, 2002, and 2007,
respectively.

He is currently an Associate Professor with
the Department of Computer Engineering, Bilkent
University, Ankara, Turkey. He was with the Cellular

and Handheld Group, Intel, Santa Clara, CA, USA, and Marvell, Hamilton,
Bermuda. He also held positions with NEC Laboratories, Princeton, NJ, USA,
and Arizona State University, Tempe, AZ, USA. His research has been rec-
ognized by Fulbright, Portland, OR, USA, Turk Telekom, Ankara, Turkey,
IBM, Armonk, NY, USA, Intel, Tubitak, Gebze, Turkey, and EC FP7. His
current research interests include manycore architectures, parallel computing,
and computer architecture.

