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Abstract

Wait-free implementations of shared objects tolerate the failure of processes, but not
the failure of base objects from which they are implemented. We consider the problem
of implementing shared objects that tolerate the failure of both processes and base
objects.

We identify two classes of object failures: responsive and non-responsive. With
responsive failures, a faulty object responds to every operation, but its responses may
be incorrect. With non-responsive failures, a faulty object may also “hang” without
responding. In each class, we define crash, omission, and arbitrary modes of failure.

We show that all responsive failure modes can be tolerated. More precisely, for all
responsive failure modes F, object types T, and ¢ > 0, we show how to implement a
shared object of type T which is ¢-tolerant for F. Such an object remains correct and
wait-free even if up to ¢ base objects fail according to F. In contrast to responsive
failures, we show that even the most benign non-responsive failure mode cannot be
tolerated. We also show that randomization can be used to circumvent this impossibility
result.

Graceful degradation is a desirable property of fault-tolerant implementations: the
implemented object never fails more severely than the base objects it is derived from,
even if all the base objects fail. For several failure modes, we show whether this property
can be achieved, and, if so, how.

1 Introduction

1.1 Problem addressed

We consider concurrent systems in which asynchronous processes communicate via typed
linearizable shared objects. In such systems, complex (shared) objects, such as queues and
stacks, are implemented in software from simple objects, such as registers and test&sets,
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which are often supported in hardware. Traditional implementations (for example, [CHP71])
use lock-based techniques and are consequently not fault-tolerant: if any process crashes
while holding the lock, the other processes are effectively prevented from accessing the im-
plemented object. Wait-free implementations, which have been the focus of much recent
research, were introduced to overcome this drawback [Lam77]. An implementation is wait-
free if every access by a non-faulty process is guaranteed a response, regardless of whether
the other processes are slow, fast, or have crashed.

Wait-free implementations of shared objects tolerate the failure of processes, but not
the failure of base objects from which they are implemented. We consider the problem of
implementing shared objects that tolerate the failure of both processes and base objects.

We divide object failures into two broad classes: responsive and non-responsive. With
responsive failures, a faulty object responds to every operation, but its responses may be
incorrect. With non-responsive failures, a faulty object may also “hang” without respond-
ing.

We divide the responsive class into three failure modes: crash, omission, and arbitrary.
An object that fails by crash behaves correctly until it fails and, once it fails, it returns
a distinguished response L to every operation. Clearly, crash is the most benign failure
mode. The most severe responsive failure mode is the arbitrary mode. Objects experi-
encing arbitrary failures may “lie”, i.e., they may return arbitrary responses. In terms of
severity, omission falls between crash and arbitrary. When an object fails by omission, it
returns normal responses to some operations and L to others, and satisfies the following
property: the object would seem non-faulty if every operation that obtained the response
1 were treated like an incomplete operation that never obtained a response. Our study of
omission failures is motivated by the fact that implementations tolerating such failures can
be composed, but implementations tolerating the simpler crash failures cannot be.

Similarly, we divide the non-responsive class into NR-crash, NR-omission, and NR-
arbitrary failure modes. An object that fails by NR-crash behaves correctly until it fails
and, once it fails, it stops responding. An object that fails by NR-omission may fail to
respond to the operations of an arbitrary subset of processes, but continue to respond to
the operations of the remaining processes (forever). The behavior of an object that fails by
NR-arbitrary is completely unrestricted: it may not respond to an operation and, even if it
does, the response may be arbitrary.

An implementation 7 is t-tolerant for failure mode F if the implemented object remains
wait-free and correct even if at most ¢ base objects fail by F. (We use the term derived
object for the implemented object and the term base objects for the objects used in the
implementation.) The resource complexity of 7 is the number of base objects used in Z. 7
is a self-implementation if all base objects are of the same type as the derived object.

Consider a t-tolerant implementation for failure mode F. By definition, a derived
object of this implementation is guaranteed to behave correctly even if up to ¢ base objects
fail by F. But what happens if more than ¢ base objects fail by 7?7 In general, the derived
object may experience a more severe failure than F. In other words, implementations
may “amplify” failures: derived objects may fail more severely than base objects. This



undesirable behavior is prevented by implementations that are “gracefully degrading”. An
implementation is gracefully degrading for failure mode F if it has the following property:
if base objects only fail by F, then the derived object does not fail more “severely” than
F. Thus, if F is guaranteed to be the most severe failure mode that hardware objects may
experience, the graceful degradation property of an implementation makes it possible to
extend the same guarantee to software objects.

We study the problem of designing ¢-tolerant and/or gracefully degrading implementa-
tions for the various responsive and non-responsive failure modes. An independent work by
Afek, Greenberg, Merritt, and Taubenfeld [AGMT92] has the same general goal, but differs
in many respects. We present a comparison of the two works in Section 8.

1.2 Summary of results

The three main topics studied are: tolerating responsive failures, tolerating non-responsive
failures, and achieving graceful degradation. The following are the main conclusions: (1)
it is feasible to design deterministic implementations that tolerate even the most severe of
the responsive failures, viz., arbitrary failures, (2) Implementations cannot tolerate even the
simplest of non-responsive failures, viz., crash failures, without the use of randomization,
and (3) Of the two benign failure modes, wiz., crash and omission, it is feasible to design
gracefully degrading implementations for omission, but not for crash. Accordingly, we give
three fault-tolerant universal constructions — a deterministic one for arbitrary failures, a
randomized one for non-responsive arbitrary failures, and a deterministic one for omission
failures that also guarantees graceful degradation.

In the following, we say type T has an implementation from a set S of types if it is
possible to wait-free implement an object of type T from objects whose types are in S. (We
use the type-writer font for the names of types.)

Herlihy and Plotkin showed that every type has an implementation from {consensus,
register} [Her88, Her91b, Plo89].! Hence, if the types consensus and register have
t-tolerant implementations, then every type has a t-tolerant implementation. We therefore
focus on obtaining ¢-tolerant implementations of consensus and register.

1.2.1 Tolerating responsive failures

We give t-tolerant self-implementations of consensus for crash, omission, and arbitrary
failures. For crash and omission failures, our self-implementation is optimal requiring only
t + 1 base consensus objects. For arbitrary failures, our self-implementation is efficient
requiring O(tlogt) base consensus objects. We also give ¢-tolerant self-implementations
of register for crash, omission, and arbitrary failures. Combining the above results

!The type consensus supports two operations, propose 0 and propose 1, and has the following sequential
specification: if propose v is the first operation, then every operation gets the response v. The register
supports read and write operations with the standard specification that a read returns the most recently
written value.



with the universality results in [Her91b, Plo89], we conclude that every type T" has a t-
tolerant implementation (from {consensus, register}) for all responsive failure modes.
Moreover, if T' implements both consensus and register, then 7" has a t-tolerant self-
implementation. This implies that familiar types such as (2-process) fetch&add, queue,
stack, test&set, and (N—process) compare&swap, move, memory—-to-memory swap have
t-tolerant self-implementations even for arbitrary failures.

1.2.2 Tolerating non-responsive failures

An object that fails non-responsively may not respond to operations. Thus, if a process
invokes an operation on an object and waits for the response before proceeding further,
then a non-responsive failure of the object can result in the process waiting for the response
forever! To overcome this difficulty, we allow a process to have pending operations on
more than one object. In other words, we allow a process to invoke an operation on some
object O; and, without waiting for a response from Oj, to proceed to invoke an operation
on a different object Oo. Thus, it is conceivable that ¢ non-responsive failures can be
tolerated by invoking n operations in parallel and waiting for n—t responses. Unfortunately,
this is not the case. We show that there is no 1-tolerant implementation of consensus
even for NR-crash failures, the most benign of the non-responsive failure modes.? This
immediately implies that any type 7' that implements consensus, such as fetch&add,
queue, stack, test&set, compare&swap, move, sticky-bit, and memory-to-memory swap,
has no 1-tolerant implementation for NR-crash.

We ask whether randomization can be used to circumvent these impossibility results.
The answer is yes. Specifically, we show that register has a t-tolerant (deterministic)
self-implementation even for NR-arbitrary failures. Furthermore, randomized implementa-
tions of consensus from register are well-known (for example, see [Asp90]). These two
results, together with the universality results in [Her91b, Plo89], imply that every type has
a randomized t-tolerant implementation from register even for NR-arbitrary failures.

1.2.3 Achieving graceful degradation

If an implementation is gracefully degrading for failure mode F, the derived object never
fails more severely than F provided that base objects fail only by F (this property holds
even if all base objects fail). Graceful degradation is clearly desirable. In fact, it also
provides a method for automatically boosting the fault-tolerance of an implementation: We
show that, given a 1-tolerant gracefully degrading self-implementation of any type T' for
any failure mode F, one can construct a t-tolerant gracefully degrading self-implementation
of T for F.

Requiring graceful degradation may increase the cost of an implementation. For in-
stance, consider t-tolerant implementations of consensus for omission failures. We present

>The impossibility of implementing a fault-tolerant consensus object from any finite set of base objects,
one of which may fail by NR-crash, is shown using the impossibility of solving the consensus problem among
a finite number of processes, one of which may crash [FLP85, LAA87, DDS8T7].



two such implementations. One uses only t+1 base objects, but is not gracefully degrading.
The other is gracefully degrading, but requires 2¢+1 base objects. In fact, we show that for
all non-trivial deterministic types 7', any t-tolerant gracefully degrading implementation of
T for omission failures requires at least 2¢ + 1 base objects (no matter what the types of
the base objects are).

The main question, however, is whether graceful degradation can be achieved at all.
We answer this question for the crash and omission failure modes. We show that there is
a large class of types that have no gracefully degrading implementations for crash. This
class includes many common types, such as queue, stack, test&set, and compare&swap.
Intuitively, crash is so benign that it is impossible to ensure that the implemented object
does not fail more severely than crash even when base objects fail only by crash. In contrast,
we prove the following universality result for omission failures: Every type has a ¢-tolerant
gracefully degrading implementation from {consensus, register} for omission.

1.2.4 Miscellaneous results

We also study the problem of translating severe failures into more benign failures [NT90]. In
particular, given 3t+1 (base) consensus objects, at most ¢ of which may experience arbitrary
failures, we show how to implement a consensus object that can only fail by omission. We
prove that this translation from arbitrary to omission is resource optimal.

Finally, we show that NR-arbitrary failures can be viewed as having two orthogonal
components: NR-omission and arbitrary. Specifically, for any type T, given any t-tolerant
self-implementations Z’ and Z" of T for NR-omission failures and arbitrary failures, respec-
tively, we show how to construct a t-tolerant self-implementation of 7' for NR-arbitrary
failures. This decomposition simplifies the problem of tolerating NR-arbitrary failures.

1.3 Organization

In Section 2, we describe the model. In Section 3, we define the responsive and non-
responsive classes of failures, and the failure modes within each class. We define the concepts
of t-tolerant implementation and graceful degradation in Section 4. The three main topics
— tolerating responsive failures, tolerating non-responsive failures, and the feasibility of
graceful degradation for crash and omission failure modes — are studied in Sections 5, 6,
and 7, respectively. In Section 8, we present a comparison with the results in [AGMT92].
In Appendix A, we show how to translate arbitrary failures to omission failures for the type
consensus. In Appendix B, we define all the types that appear in this paper.

2 Model

Our model is similar to Herlihy’s [Her91b], but there are some differences due to the need
to model implementations that are both wait-free and tolerant of non-responsive object
failures. These differences will be pointed to as they arise.



2.1 I/0O Automaton

A concurrent system consists of processes and objects. We model processes and objects as
I/0 automata [LT88].

An I/0 Automaton A is a non-deterministic automaton with the following components:

1. States(A) is a finite/infinite set of states, including a distinguished set of starting
states.

2. In(A) is a set of input events.
3. Out(A) is a set of output events.
4. Int(A) is a set of internal events.

5. Step(A) is a transition relation given by a set of tuples (s,e,s’), where s and s are
states, and e is an event. Such a triple is called a step, and it means that an automaton
in state s can undergo a transition to state s’ and that transition is associated with
event e.

If (s,e, ') is a step, we say e is enabled in state s. I/O Automata (abbreviated hereafter
as automata) must additionally satisfy the requirement that input, output, and internal
events are disjoint, and every input event is enabled in every state. The latter captures the
fact that an automaton has no control over when input events occur.

An ezxecution of an automaton A is a finite sequence sg,€e1,S1,€2,82,...,€,,8, OF an
infinite sequence sg, €1, S1, €2, S2, . . . of alternating states and events such that sg is a starting
state and (s;,€;41,8;+1) is a step of A. A history of an automaton is the subsequence of
events in an execution.

A new automaton can be constructed by composing a set of compatible automata. A
pair A, B of automata is compatible if (i) the internal events of either automaton are disjoint
from the events of the other, and (ii) the output events of the two automata are disjoint;
that is, Int(A) N (In(B)U Int(B) U Out(B)) = 0, and Int(B) N (In(A)U Int(A)U Out(A)) = 0,
and Out(A) N Out(B) = §. A set of automata is compatible if every pair in the set is
compatible. We compose a new automaton S from compatible (component) automata as
follows. A state of S is a tuple of the components’ states, and a starting state of S is a
tuple of the components’ starting states. Out(.S), the set of output events of S, is the union
of the sets of output events of the component automata. Int(S), the set of internal events
of S, is the union of the sets of internal events of the component automata. In(S), the set
of input events of S, is IN— Out(S), where IN is the union of the sets of input events of the
component automata. A triple (s,e,s’) is in Step(S) if and only if, for all the component
automata A, one of the following holds: (1) e is an event of A and the projection of the
step onto A is in Step(A), or (2) e is not an event of A and the state of A is the same in s
and s'.
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Figure 1: Sequential specification of consensus

Let E be an execution of an automaton composed from Ai, As,..., Ay and H be the
corresponding history. The history of a component A; in E, denoted by H|A;, is the
subsequence of H consisting only of the events of A;.

2.2 Object type

Every object has a type. The type specifies the expected behavior of the object. More
precisely, a type T is a tuple (OP, RES, G, 7) where OP and RES are sets of operations
and responses respectively, G is a directed finite or infinite multi-graph in which each edge
has a label of the form (op,res) where op € OP and res € RES, and 7 is a history
transformation function. We refer to G as the sequential specification of T' and the vertices
of G as the states of T'. Intuitively, if there is an edge, labeled (op,res), from state s to
state s, it means that applying the operation op to an object in state s may change the
state to s’ and return the response res. We explain the history transformation function 7
later in Section 2.8.

A sequence o = (op1,res1), (op2,ressa), -, (opr,res;) is legal from state s of T if there
is a path labeled ¢ in G from the state s. T is deterministic if, for all states s of T" and
for all operations op € OP, there is at most one edge from s labeled (op,res) (for some
res € RES). T is non-deterministic otherwise. T is total if, for all states s of 7" and
for all operations op € OP, there is at least one edge from s labeled (op,res) (for some
res € RES). In this paper, we restrict our attention to total types. T is finite if it has only
a finite number of states. T is infinite otherwise.

The types consensus and consensus with safe-reset are central to this paper.
Their sequential specifications are presented in Figures 1 and 2. The sequential specifi-
cations of the remaining types mentioned in this paper are presented in Appendix B.
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Figure 2: Sequential specification of consensus with safe-reset

2.3 Objects and Processes

As already mentioned, objects and processes are modeled as automata. Each object O has
two attributes: a type T and a state s of T' to which O is initialized.

We assume that a process can be made to crash (by an invisible adversary) at any
point in an execution. We model this as follows. Every process P has a distinguished state
FAIL(P), an input event crash(P), and an output event crashed(P). From any state, the
input event crash(P) moves P to state FAIL(P) and, once in state FAIL(P), no event moves
P out of that state. The output event crashed(P) is enabled only in FAIL(P).

Unless mentioned otherwise, we assume that a process is deterministic. This implies
that, for every state s of a process and event e, there is no more than one s’ such that
(s,e,s') is a step of the process.

2.4 Clock

A clock is an automaton with a single state running, a single internal event tick, and a
single step (running, tick, running) in its transition relation. It has no input or output
events. Thus, a clock does no more than generating ticks.

2.5 Concurrent system

A concurrent system consisting of processes Py, Ps,. .., P, and objects O1,...,On, is defined
as the automaton composed from the process automata F;, 1 <7 < n, the object automata
0;,1 < j < m, and a clock automaton. We write (Py, P, ..., Pp;O1,...,0n) to denote
such a concurrent system. The reader should notice that we have departed from the model
in [Her91b] by including a clock as a component of a concurrent system, adding a FAIL
state for every process, and making a fairness assumption on executions (see Section 2.6).
These differences are motivated by the fact that our work introduces new concepts, such



as an implementation that is both wait-free and tolerant of non-responsive object failures.
The fairness assumption guarantees that every process that attempts to take a step will
eventually be able to do so. The clock ensures that, regardless of how processes and objects
are specified, the system has infinite executions. Notice that the ticks generated by a clock
are internal events of the clock. Thus, a process or an object cannot take advantage of the
presence of a clock.

Let O; be an object of type T = (OP, RES,G,7). The input and output events of
O; include invoke(P;,op,O;) and respond(P;, res,O;), respectively, where P; is a process
and op € OP. We call these events invocations and responses, respectively. The input and
output events of a process P; include respond(P;, res,O;) and invoke(P;, op, O;), respectively.

Let F be an execution of a concurrent system and H be the corresponding history. A
response r matches an invocation ¢ in H if 7 is the most recent invocation preceding r such
that the process and object names of ¢ and r agree. An operation in H is a pair of events,
an invocation and its matching response.® An incomplete operation in H is an invocation
with no matching response. History H is complete if it has no incomplete operations. We
define a relation <pg, which reflects the partial “real time” order of operations in H, as
follows. For any two operations oper and oper’ in H, oper <g oper’ if the response of oper
precedes the invocation of oper’. We say that oper precedes oper’ in H. Two operations
unrelated by <pg (i.e., neither operation precedes the other) are said to be concurrent in
H. History H is sequential if it has no concurrent operations.

We assume initially that a process is a single thread of control: after invoking an
operation on an object, it waits to receive the response before it invokes another operation
(on any object). We also assume that, for any process P; and object O;, the interaction
between P; and O; is proper: first P; invokes an operation on Oj, then O; responds, and
then P; invokes on Oj;, then O; responds, and so on. We model these assumptions as follows.
Let H be the history corresponding to an execution of a concurrent system. Recall that
H|A denotes the history of component A in H, i.e., the subsequence of events in H which
belong to the component A. Thus, (H|F;)|O; denotes the subsequence of events common
to Process P; and Object O;. These events are invocations on O; from P; and responses to
P; from O;. History H is well-formed if, for all processes P; and objects O;, the following
conditions hold: (i) no prefix of H|P; has more than one incomplete operation, and (ii)
(H|P;)|O; begins with an invocation and has alternating invocations and responses. Except
in Section 6 (where we study non-responsive failures), we restrict ourselves to well-formed
histories of a concurrent system.

When a process is restricted to be a single thread of control, it will block if an object
fails to respond to its invocation. Thus, it will be impossible to construct fault-tolerant
implementations in the presence of non-responsive object failures. Hence, in Section 6,
where such implementations are sought, we relax Condition (i) above and allow a process
to have multiple incomplete operations. We however continue to insist on Condition (ii)
which implies that a process can have no more than one incomplete operation on any one

3Thus, the term “operation” is overloaded. It will be however clear from the context whether a particular
use of this term refers to an element of OP of a type T' = (OP, RES, G, 7) or to a pair of events in a history.



object.

2.6 Fairness assumption

An execution E of a concurrent system is unfair if E is infinite and the following holds:
there is an internal or output event e and a suffix E' of F such that (i) for all states s in
E', e is enabled in s, and (ii) e is not in E’. This definition does not consider input events
since input events are, as mentioned before, enabled in every state of an execution. An
execution F of a concurrent system is fair if it is not unfair. We restrict our attention to
fair executions of a concurrent system.

The above fairness assumptions has two implications. First, every process that wishes
to take a step will eventually be able to do so. Second, the presence of a clock, together
with the fairness assumption, guarantees that every concurrent system, regardless of how
its processes are specified, has infinite executions. As we will see, the latter property leads
to simple definitions for a wait-free implementation and a wait-free implementation which
is tolerant of non-responsive failures.

2.7 Linearizability

The sequential specification of a type specifies how an object behaves in the absence of
concurrent operations. To characterize an object’s behavior in the presence of concurrent
operations, we additionally need the concept of linearizability [HW90]. Linearizability re-
quires that each operation, spanning over an interval of time from the invocation of the
operation to its response, must appear to take effect at some instant in this interval. We
make this more precise below.

Let H be the history of some object in an execution of a concurrent system. Let
T = (OP,RES,G,7) be a type and s be a state of T. A linearization of H with respect to
(T, s) is a complete sequential history S with the following properties:

1. S is legal from state s of T'.
2. S includes every complete operation in H.

3. Let invoke(PF;, op, O) be an incomplete operation in H. Then, either S does not include
this  incomplete operation or S includes a complete operation
(invoke(F;, op, O), respond(F;, res, O)) for some res € RES.

Intuitively, this captures the notion that some incomplete operations in H did not
take effect, while the others did.

4. S includes no operations other than the ones mentioned in 1 or 2.

5. For all operations oper, oper’ in S, if oper <y oper’' then oper <s oper’.

Thus, the order of non-overlapping operations in H is preserved in S.
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Notice that H may have no linearization or may have several different linearizations. H is
linearizable with respect to (T, s) if H has a linearization with respect to (T, s).

Let O be an object of type T, initialized to state s of T', and let H be the history of
O in an execution E of a concurrent system. We say that O is linearizable in E if H is
linearizable with respect to (7', s).

2.8 Well-behavedness

It is tempting to say that an object is well-behaved in an execution if and only if it is
linearizable in that execution. However some important objects that appeared in literature
are not linearizable. Here are some examples.

e Consider the type safe register, defined by Lamport [Lam86]. It supports read
and write operations and has the same sequential specification as register: every
read returns the value written by the most recent write. However, in the presence of
concurrent operations, a safe register extends fewer guarantees than a (linearizable or
“atomic”) register. In particular, if a read operation on a safe register is concurrent
with a write, then that read operation can return an arbitrary response. Thus, the
history H of a safe register does not have to be linearizable. However, H satisfies the
following weaker property [Lam86]: If H' is the result of removing all read operations
in H that are concurrent with a write, then H' is linearizable.

e Consider the type consensus with safe-reset [Her91b]. Figure 2 presents its se-
quential specification. In using an object of this type, if a reset operation is concurrent
with a propose or another reset operation, then the object is allowed to return arbi-
trary responses to all operations thereafter. Thus, the history H of an object of type
consensus with safe-reset does not have to be linearizable. However, H satisfies
the following weaker property [Her91b]: If H' is the maximal prefix of H in which no
reset operation is concurrent with any other operation, then H’ is linearizable.

e Consider the type 1-reader l-writer register. A history H of an object of this
type does not have to be linearizable if either more than one process reads or more
than one process writes. However, H satisfies the following weaker property: If H' is
the maximal prefix of H in which no more than one process reads and no more than
one process writes, then H’ is linearizable.

e Consider the type 1-reader 1-writer safe register. A history H of an object of
this type satisfies the following property. Let H' be the maximal prefix of H in which
no more than one process reads and no more than one process writes. Let H” be the
result of removing all read operations in H' that are concurrent with a write. Then,
H" is linearizable.

In all these examples, given a history H of an object of type 7', we required that

a transformation of H, not H itself, be linearizable with respect to 7. This is the mo-
tivation for including a history transformation function 7 as a component in the 4-tuple

11



defining a type. We are now ready to define well-behavedness. Let O be an object of type
T = (OP, RES, G, 7) which is initialized to state s of T. Let H be the history of O in
an execution E of a concurrent system. We say that O is well-behaved in E if 7(H) is
linearizable with respect to (7', s).

For most types considered in this paper, such as consensus, register, and queue,
the history transformation function is the identity function. Thus, for these types, well-
behavedness is the same as linearizability. The following types are the exceptions in this pa-
per: 1-reader l-writer register,l-reader l-writer safe register,and consensus
with safe-reset. The history transformation functions for these types should be obvious
from the above discussion.

2.9 Wait-freedom and correctness

Recall that every process automaton has a FAIL state. A process P crashes in an execution
E of a concurrent system if the state of P is FAIL(P) at any point in E. P is correct in
FE if it does not crash in E. An object O is wait-free in E if either E is finite or every
invocation on O by a correct process has a matching response. An object O s correct in E
if O is wait-free and well-behaved in E. Object O fails in E if O is not correct in E.

2.10 Implementation

Let T be a type and s be a state of T. Further, let £ = (71,75, --) be a list of types (the
list may be infinite and the types in the list need not be distinct) and ¥ = (s1,s2,--+) be
a list where s; is a state of type T;. An implementation of (T,s) from (L,X) for processes
Py, Py, -+, Py is a function Z(0O1, O2, - - ) satisfying the following properties:

1. There exist process automata Fi, Fo, -+, Fyy, known as the front-ends, such that if
O =7(01,0,---), then O is the automaton (Fy, Fa, -+, Fyx;01,02,- ).

2. Front-ends F; and Fj (i # j) have no common events.

3. Let O = Z(01,04,---). Each input event invoke(P;,op, O) of O is matched with
an input event of Fj; each output event respond(FP;,res,O) of O is matched with an
output event of F;.

4. Each output event crashed(P;) of Process P; is matched with the input event crash(F;)
of the front-end F;.

5. Let O1,09, - be distinct objects of types 71,75, -, initialized to states si,so,---,
respectively. Then, O = Z(01,02,---) is an object of type T', initialized to state
s, with the following property: for every execution E of the concurrent system
(P1,Py,---,Py;O), if 01,03, - are well-behaved in F, then O is well-behaved in
E.
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Informally, the front-end Fj is represented by a set of access procedures Apply(P;, op, O)
(op € OP(T)). Apply(PF;,op,O) specifies how process P; should “simulate” the operation
op on O in terms of operations on O1,02,---. We say that O is a derived object of the
implementation Z, and O1,02, - -- are the base objects of O. The resource complexity of 7
is the number of base objects required by Z to implement a derived object.

Condition 1 above states that a derived object is constituted by base objects and access
procedures (front-ends).

Condition 2 captures the notion that the execution of a step of the access procedure
by one process P; cannot affect the state of another process P;.

Condition 3 captures the notion that (i) invoking an operation on O by process F;
activates the front-end F; or, equivalently, begins the execution of an access procedure, and
(ii) the value returned by the front-end (access procedure) F; is the response of O.

Condition 4 captures our intuition that when a process P; crashes, the front end F; of
that process must stop executing.

Condition 5 ensures that a derived object is well-behaved whenever all its base objects
are well-behaved.

An implementation of (7, s) from (£,Y) is a self-implementation if every type in the
list £ is T'. Thus, in a self-implementation, base objects are of the same type as the derived
object.

We say that Z is an implementation of (T,s) from a set S of types for N processes if
there is a list £ = (T1,Th,---) of types and a list ¥ = (s1, s2, - - -) of states such that 7; € S,
s; is a state of T;, and 7 is an implementation of (7', s) from (£, X) for N processes. We say
that a type T has an implementation from a set S of types for N processes if, for all states
s of T', there is an implementation of (7, s) from S for N processes. Finally, we say that T’
implements T' if there is an implementation of 7" from {T}.

2.11 Wait-free implementation

An implementation for N processes is wait-free if every derived object O has the following
property: if E is an execution of (P, Ps,...,Py;O) in which all base objects of O are
wait-free, then O is wait-free in F.

Let us briefly examine how this definition captures our intuitive notion of what a
wait-free implementation is. Consider an infinite execution E of the concurrent system
(P1, P2, ..., Pyn;O). (As already mentioned, the clock and the fairness assumption, together,
guarantee that such an infinite execution exists.) Assume that all base objects are wait-free
in E. Thus, every base object returns a response to every operation from every correct
process. By the fairness assumption, every correct process succeeds in taking all the steps
that it attempts in E. Hence, if the implementation is wait-free, we expect every correct
process to succeed in completing every operation it attempts on the derived object O. In
other words, we expect that O is wait-free in E. That is precisely what the definition states.
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An implementation for N processes is k-bounded wait-free if it is wait-free and every
derived object O has the following property: For all executions of (Py, Pa,..., Py;O) and
for all P; 1 <1¢ < N, between an invocation on O by P; and its matching response, P; has
no more than k invocations on all base objects of O put together.

Intuitively, in a k-bounded wait-free implementation, a process completes its operation
on a derived object in no more than & steps.

In this paper, we are primarily interested in wait-free implementations. From now on,
we will therefore write “implementation” and “k-bounded implementation” as shorthand
for “wait-free implementation” and “k-bounded wait-free implementation”, respectively.

3 Failure modes

An object is only an abstraction with a multitude of possible implementations. For instance,
it may be built as a hardware module in a tightly coupled multi-processor system, or as
a server machine in a message passing distributed system. Whatever the implementation,
the reality is that hardware components sometimes fail and, when this happens, the object
fails to provide the intended abstraction.

Object failures lead to undesirable system behavior. Therefore, it is important to
implement derived objects that behave correctly even if some of the base objects of the
implementation fail. The complexity of such a fault-tolerant implementation depends on
the failure mode, i.e., the manner in which a failed object departs from correct behavior.
In this section, we define a spectrum of failure modes that fall into two broad classes:
responsive and non-responsive.

As we will see, a failed object @ may sometimes return a distinguished response L.
If a process P receives L from O, it can immediately infer that O is faulty. Thus, it is
reasonable to assume that P does not invoke operations on O thereafter. We restrict our
attention to executions in which this assumption holds.

3.1 Responsive failure modes

An object experiencing a responsive failure responds to every invocation, even though the
response may be incorrect. Thus, responsive failure modes share the property that objects
remain wait-free even if they fail. We describe below three increasingly severe responsive
failure modes.

3.1.1 Crash

crash is the most benign of all failure modes, responsive or non-responsive. Informally,
an object that fails by crash behaves correctly until it fails and, once it fails, it returns a
distinguished response L to every invocation. This failure mode is based on the premise
that an object detects when it becomes faulty and responds with L thereafter.
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Let O be an object of type T" = (OP, RES, G, 1), initialized to state s of T. Object O

fails in an execution E by crash if it is not well-behaved in F, but satisfies the following
properties:

1.

2.

O is wait-free in F.

Every response from O in F either belongs to RES or is L (where L is a distinguished
value not in RES). An operation that returns L is an aborted operation.

. Let H be the history of O in E, and let op and op’ be two completed operations in

‘H. If op precedes op’ and op is an aborted operation, then op’ is also an aborted
operation.

. Let H' be the history obtained by removing all aborted operations in H. Then, 7(H')

is linearizable with respect to (7', s).

Property 3 is the “once 1, everafter |” property of crash. Property 4 captures the notion
that O behaves correctly until it fails and that aborted operations do not take effect. Let
us consider some examples. Let R be an object of type register, initialized to 0.

o Consider the history H of R in Figure 3. (In the figure, a line segment represents

the duration of an operation, from invocation to response. A triple (P;, op,res) over
the line segment denotes that P; is the invoking process, op is the operation invoked,
and res is the response from R.) The failure of R is by crash, as verified below. Re-
moving aborted operations in H results in H' = e?, €3, €2, e%, e3,e3. (Event el denotes
the i** event of process P;.) Clearly, H' is linearizable with respect to (register,
0): e?,e3,¢e3,e3,¢e2,e? is a linearization. The history transformation function 7 for
register is the identity function. Thus, 7(H') = H’, and is linearizable with respect
to (register, 0). Thus, Property 4 holds in H. Other properties also hold and are
trivial to verify.

Consider the history H of R in Figure 4. Now H' = e%,e%,e%,eﬁ. Clearly, H' (and
hence, 7(H')) is not linearizable with respect to (register, 0). Thus, the failure of
R is not by crash.

3.1.2 Omission

We begin with the motivation for the omission failure mode. Consider an implementation
7, and a derived object O of Z. Even if the base objects of @ may only fail by crash, O
itself may experience a more severe failure than crash. To see this, suppose that a base
object o of O fails by crash. Consider a process P that invokes an operation op on O

and

executes Apply(P,op,O). If, during the execution of Apply(P,op, ), P accesses o, o

returns L to P. This may cause Apply(P,op,O) to terminate and also return L. Strictly
after this occurs, suppose that another process @ invokes some operation op’ on O, and that
Apply(Q,op', O) is not required to access o. Then, while executing Apply(Q,op’, O), Q does
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Figure 3: Register R, initialized to 0, fails by crash
| (P1, write 1, 1) I
et €
| (P, read, 0) I | (P, read, 1) I
el e €& €1

Figure 4: Register R, initialized to 0, fails by omission

} (P1, write 1, 1) }

el el

Figure 5: Register R, initialized to 0, fails by omission
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(P1, write 1, 1)

e} €3
| (P, read, 0) : | (P, read, 1) : | (P, read, 0) :
& g o L 2

Figure 6: Safe register R, initialized to 0, fails by omission

not notice the failure of 0. So Apply(Q,op’, O) terminates “normally” and returns a non-_L
response. Thus, O’s behavior violates the “once L, everafter |” property: O returned L
to P’s operation and a non-_| response to a strictly later operation by (). We conclude that
O’s failure is more severe than crash. Does this mean that O’s failure is arbitrary? We now
argue that this is not the case.

Recall that after P receives L, we assume that P refrains from accessing O again.
Thus, to @, the above scenario is indistinguishable from one in which P had crashed in
the middle of the procedure Apply(P, op, O), while accessing o. Since the implementation 7
(from which O is derived) is wait-free, O tolerates the apparent crash of process P. Thus,
O’s response to Q must be correct. We conclude that the failure of O is more severe than
crash, but is not completely arbitrary. Our model of omission, formally defined below,
captures this type of failure.

Let O be an object of type T = (OP, RES, G, ), initialized to state s of T". Object O
fails in an execution E by omission if it is not well-behaved in F, but satisfies the following
properties:

1. O is wait-free in F.
2. Every response from O in E either belongs to RES or is L.

3. Let H be the history of O in E. Let H' be the history obtained by removing the re-
sponse events associated with the aborted operations in H. Then, 7(H') is linearizable
with respect to (7}, s).

Suppose that an operation by process P receives the response | from O. Property 3
states that this aborted operation must appear like an incomplete operation to all processes
other than P.

Notice the subtle difference in the way we obtain H’ from H for crash and omission. For
crash, both invocation and response events associated with aborted operations are removed
to obtain H’. For omission, only the response events associated with aborted operations
are removed. Let us consider some examples.

e Let R be an object of type register, initialized to 0. Consider the history H of
R in Figure 4. The failure of R is by omission, as verified below. Removing the
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response events of aborted operations in H results in H' = e?,el,e3,e3,e3. (el is
removed from H to obtain H’.) The write operation by P; becomes an incomplete
operation in H'. H' is linearizable with respect to (register, 0): €2, ¢, e, ¢, e%, e? is
a linearization, where e is a response event returning ack. Thus, in the linearization of
H', the first read by P» takes effect first, then the write by P; (which is incomplete in
'H') takes effect, and then the second read by P, takes effect. Since 7 is the identity for
register, it follows that 7(H’') is linearizable with respect to (register, 0). Thus,
Property 3 of omission holds in H. Other properties also hold and are trivial to verify.

e Let R be an object of type register, initialized to 0. Consider the history H of
R in Figure 5. The failure of R is by omission, as verified below. Removing the
response event e} of the aborted operation results in H' = e%,e%,e%,e%,ez. H' (and
hence, 7(H')) is linearizable with respect to (register, 0): €%, e3,e},e,€,e? is a
linearization, where e is a response event returning ack. Thus, in the linearization of
H', the first read by P takes effect first, then the write by Py (which is aborted in H

and incomplete in H') takes effect, and then the second read by P» takes effect.

This example shows that an aborted operation may take effect a long time after it
completed.

e Let R be an object of type register, initialized to 0. Consider the history H of R
in Figure 6. Now, H' = €2, e}, €3, eg, e, e%, eg. It is easy to verify that H' (and hence,
7(H')) is not linearizable with respect to (register, 0). Thus, the failure of R is not
by omission.

e Same as the above example, but suppose that R is of type safe register. Re-
call that the function 7 for safe register removes all read operations that overlap
with a write. Thus, 7(H') = ei, and is obviously linearizable with respect to (safe
register, 0). (The empty sequence is a linearization of 7(H’).) Thus, Property 3 of
omission holds. Other properties also hold and are trivial to verify. Thus, R fails by
omission in H.

3.1.3 Arbitrary

An object O fails in an execution E by the arbitrary failure mode if it is not well-behaved in
FE, but is wait-free in F. Informally, O responds to every invocation in E, but the responses
may be arbitrary.

3.2 Non-responsive failure modes

With responsive failure modes, a faulty object remains wait-free. Non-responsive failure
modes do not have this property.
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3.2.1 NR-crash

NR-crash is the most benign of all non-responsive failure modes. Informally, an object that
fails by NR-crash behaves correctly until it fails (Property 1 below) and, once it fails, it
never responds to any invocation (Property 2 below).

An object O fails in an execution E by NR-crash if it is not wait-free in E, but satisfies
the following properties:

1. O is well-behaved in F.

2. The total number of non-_1 responses from O in E is finite.

3.2.2 NR-omission

An object O fails in an execution E by NR-omission if it is not wait-free in F, but is
well-behaved in F.

NR-omission is more severe than NR-crash. In particular, an object that fails by NR-
omission does not necessarily satisfy Property 2 of NR-crash. Thus, the object may not
respond to invocations from some processes and always respond to invocations from others.

3.2.3 NR-arbitrary

An object O fails in an execution E by NR-arbitrary if it fails in E.

Thus, the behavior of an object that experiences an NR-arbitrary failure is completely
unrestricted. Such an object may not respond to an invocation; even if it does, the response
may be arbitrary.

4 Fault-tolerance and graceful degradation — definitions
and properties

In the following, let Z be an implementation of (T, s) from (£, X) for processes Py, Ps, ..., Py,
where £ = (Tl,Tg, .- ) and ¥ = (81, 89, )

We say that 7 is t-tolerant for failure mode F if it satisfies the following:
Let 01,09, - be distinct objects of types 71,75, - -, initialized to states si,s2,---,
respectively. Then, O = Z(01,02,---) is an object of type T, initialized to state
s, with the following property: for every execution E of the concurrent system

(P1, Pa,---, Py;O), if at most ¢ objects among O1,03,--- fail, and they fail by F,
then O is correct.

We say that 7 is gracefully degrading for failure mode F if it satisfies the following:
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Let O1,09,- - be distinct objects of types 71,75, -, initialized to states si,s2,-- -,
respectively. Then, O = Z(01,02,---) is an object of type T, initialized to state
s, with the following property: for every execution E of the concurrent system
(P1,Py,---,Py;O), if all faulty objects among Oj,0a,--- fail by F, then either O
is correct or O fails by F.

Let O be a derived object of an implementation that is both ¢-tolerant and gracefully
degrading for failure mode F. The above definitions imply that: (i) if at most ¢ base objects
of O fail, and they fail by F, then O does not fail, and (ii) if more than ¢ base objects of O
fail, and they fail by F, then O may fail, but it does not experience a more severe failure
than F. Property (i) is guaranteed by t-tolerance and property (ii) by graceful degradation.

4.1 Composing fault-tolerant implementations

Gracefully degrading implementations can be composed as stated by the following lemma.
Given a list L of integers and an integer n, let MinSum(n, L) be the sum of the n smallest
integers in L. If L; and Lo are lists, let L; - Ly denote the concatenation of Ly and L.

In the lemma below and in the rest of this paper, if we do not specify the number of
processes for which an implementation is intended, it should be assumed that the implemen-
tation is for N processes, where N is arbitrary. Also, we say that a type T has a t-tolerant
gracefully degrading implementation if, for all states s of T', there is a t-tolerant gracefully
degrading implementation of (T, s). The lemma is illustrated in Figure 7.

Lemma 4.1 (Compositional Lemma) Suppose that T' has a t-tolerant implementation
from L for failure mode F, where L = (T1,Ts,...,Ty) is a list of types. Furthermore,
suppose that each T; has a t;-tolerant gracefully degrading implementation from L; for failure
mode F. Then we have:

1. T has a t'-tolerant implementation from L' for failure mode F, where
L'=Ly Lo ... Ly and t' = MinSum(t+1,{t; + 1,00+ 1,...,t, + 1)) — 1.

2. If the t-tolerant implementation of T' from L is gracefully degrading for F, then T has
a t'-tolerant gracefully degrading implementation from L' for failure mode F.

Proof Sketch Let s be any state of 7. By the statement of the lemma, (7', s) has a t¢-
tolerant gracefully degrading implementation Z from (£,X) for failure mode F, for some
Y = (s1,82,...,5n) such that s; is a state of T;. For all ¢, let £; = (Tj1,Ti2,. .., ;). By the
statement of the lemma, each (7}, s;) has a t;-tolerant gracefully degrading implementation
Z; from (L;, ;) for failure mode F, for some ¥; = (si1, 8i2, - - -, S4j;) such that s;; is a state
of le

Let 011,...,015,5-+-50n1,...,04j, be objects of types Th11,...,T1j,. . Ta1, ..., Tnj,s
initialized to states si1,...,S1j15--55nl,- -, Snj,, respectively. Define an implementation 7’
. ! — —
as follows: 7' (011, ce 30157545001y Onjn) = I(Ol, P ,On), where O,L = Ii(oila 0424 ... ,Oi]'i).
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T
Ty - Tvj, . To1 . Tnji,
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Figure 7: Illustration of the Compositional Lemma
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Assume that each oy, if it fails, only fails by F. Since 7; is t;-tolerant, O; fails only
if at least ¢; + 1 objects among o0;1,...,01; fail. Furthermore, since Z; is gracefully de-
grading, O; can only fail by F, no matter how many base objects of O; fail. From
this and the fact that 7 is t-tolerant for F, it follows that Z(Oj,...,0,) fails only if
at least ¢t + 1 objects among Oj,...,0, fail. Thus, for Z7(O1,...,0,) to fail, at least
MinSum(t+1, (t1+1,t2+1,...,t,+1)) = t'+1 objects among o11,...,01j,,---,0n1,-- -, 0nj,
must fail. In other words, Z’ is a t'-tolerant implementation of (7}, s) from (£',¥'), where
¥ =3%1-35-...-3,. This completes the proof of the first part of the lemma.

Assume that the implementation 7 is gracefully degrading for F. Thus, if O1,...,0,
(which are the base objects of Q) only fail by F, then O, if it fails, only fails by . We
have already argued that if objects o011,...,01j,,...,0n1,...,0n;j, only fail by F, then each
0, if it fails, only fails by 7. We conclude that if objects 011,...,04j, only fail by 7, then
O, if it fails, only fails by F. Thus, Z’ is gracefully degrading for F. This completes the
proof of the second part of the lemma. O

We now state a special case of the compositional lemma, obtained by setting ¢ = 0 and
V1 <i<mn:t; =t. This lemma is used frequently in later sections.

Corollary 4.1 Suppose that T has a (0-tolerant) implementation from (T1,Ts,...,T,).
Furthermore, suppose that each T; has a t-tolerant gracefully degrading implementation from
L; for faitlure mode F, where L; ts some list of types. Then we have:

1. T has a t-tolerant tmplementation from L1 - Lo - ... Ly for failure mode Fl

2. If the (0-tolerant) implementation of T from (T1,Ta,...,Ty) is gracefully degrading
for F, then T has a t-tolerant gracefully degrading implementation from L1-Lo-...-Ly
for failure mode F.

The compositional lemma can also be used to enhance the fault-tolerance of a self-imple-
mentation. This is the substance of the following corollary, obtained by setting 7; = T,
L; =L, and t; =t in Lemma 4.1. Below, we say that T' has an implementation of resource
complexity n if, for all states s of T, (T, s) has an implementation of resource complexity n.

Corollary 4.2 If T has a t-tolerant gracefully degrading self-implementation T of resource
complexity n for failure mode F, then T has a (t2 + 2t)-tolerant gracefully degrading self-
implementation I' of resource complexity n? for F.

Recursive application of the above corollary boosts the fault-tolerance of self-imple-
mentations.

Corollary 4.3 (Booster Lemma) If T has a 1-tolerant gracefully degrading self-imple-
mentation of resource complexity k for failure mode F, then T has a t-tolerant gracefully
degrading self-implementation of resource complezxity O(t'°82*) for F.

“This part holds even if the implementation of each T} is t-tolerant, but not gracefully degrading.
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4.2 Graceful degradation for arbitrary failures

We show that if 7" has a t-tolerant k-bounded implementation, then 7' has a t-tolerant
gracefully degrading k-bounded implementation for arbitrary failures. Thus, if we know
how to obtain a bounded implementation, graceful degradation for arbitrary failures comes
automatically and at no extra cost.

Observe that if an implementation guarantees that the derived object is wait-free when-
ever the base objects are wait-free, the implementation is gracefully degrading for arbitrary
failures. The lemma below is based on this observation.

Lemma 4.2 IfT has a t-tolerant k-bounded implementation from L for arbitrary failures,
then T has a t-tolerant gracefully degrading k-bounded implementation from L for arbitrary
failures.

Proof Sketch Let s be any state of T. By the statement of the lemma, (7',s) has a t-
tolerant k-bounded implementation Z from (£, X)), for some sequence X of states. Define the
implementation Z' as follows. In Z’, a process applies an operation op on the derived object
O by first setting a local counter count to 0, and then proceeding as in the implementation Z.
As the process executes the steps of Z, it increments count each time it applies an operation
on a base object of O. If count reaches k and the implementation Z has not yet returned a
response, the process deduces that more than ¢ base objects have failed (this deduction is
sound since 7 is a t-tolerant k-bounded implementation), and returns an arbitrary value as
the response from O to its operation op.

Since 7 is a correct t-tolerant implementation, it follows that 7' is also a correct t-
tolerant implementation. Clearly, Z' has the property that, if all base objects are wait-free,
the derived object is also wait-free. Hence 7’ is gracefully degrading for arbitrary failures.
We conclude that 7' is a t-tolerant gracefully degrading k-bounded implementation of (T, s)
from (£, X) for arbitrary failures. Hence the lemma. a

5 Tolerating respomnsive failures

Herlihy [Her91b] and Plotkin [Plo89] showed that one can implement a (wait-free) object of
any type using only consensus and register objects. Therefore, if consensus and register
have t-tolerant implementations, then every type has a t-tolerant implementation. Hence
we focus on fault-tolerant implementations of consensus and register.

5.1 Fault-tolerant implementation of consensus

In this section, we present a self-implementation of consensus that is ¢-tolerant for both
crash and omission failures. This implementation requires t+1 base consensus objects and is
thus resource optimal. Following that, we present an efficient ¢-tolerant self-implementation
of consensus for arbitrary failures.
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Achieving consensus among processes, some of which may fail, is a widely studied
problem in the literature ([PSL80, LSP82, FLM86, Coa87, ST87, BGP89, DRS90, CW92],
to cite a few). The reader may notice some similarity between this problem and the one
studied here, namely, obtaining t-tolerant implementations of consensus. We therefore
begin by contrasting these two problems. The existing solutions to the consensus problem
are for synchronous message passing systems. In such systems, processes communicate by
passing messages to each other; furthermore, bounds on message delays and bounds on the
relative speeds of processes are assumed to be known. In contrast, we study the consensus
problem for asynchronous shared-memory systems. The asynchrony in the system rules out
the common paradigm in which a correct process “waits” until every process has either
crashed or taken a step. We require solutions to be wait-free: a process should be able to
decide regardless of how fast or slow the other processes are. Also, in synchronous message
passing systems, solutions to the consensus problem, where processes are subject to arbitrary
failures, assume that fewer than a third of the processes fail (without this assumption, the
problem cannot be solved). In contrast, our solutions tolerate the crash failure of any
number of processes and, in addition, the arbitrary failure of up to ¢ shared objects. As a
result of these differences, the problem of ¢-tolerant implementation of consensus does not
reduce to any previous problem considered in the literature.

The “State Machine” approach [Lam78, Sch90] of replicating objects, applying an op-
eration to all objects, and returning the majority response is not useful in deriving ¢-tolerant
implementations of consensus. For example, consider the following implementation which
uses 2t + 1 base consensus objects (01,02, ...,02+1) to tolerate the crash failure of any ¢
of them. A process p proposes a value v, to the derived consensus object O by proposing
vp to each of O1,0,,...,09241. At the end of this, p will have obtained the response 0
from, say, ng base objects, the response 1 from n; base objects, and the response L from
2t + 1 — ng — nq base objects. p returns 0 (as the response of O) if ng > ny. Otherwise, it
returns 1. Unfortunately, this implementation is not ¢-tolerant for crash. The following is
a counterexample.

Let t = 2. Suppose that processes p and ¢ wish to propose 0 and 1, respectively, to
the derived consensus object @. Suppose that the steps of p and ¢ interleave in the order
specified below. Process p proposes 0 to O1, Oz, and O3, and all three return 0 to p. Objects
01 and O3 then fail by crash. Process ¢ proposes 1 to all of O1,0s,...,0Os5; Objects O1 and
O3 return 1 to ¢, O3 returns 0, and O4 and Oy return 1. Process p resumes and proposes
0 to O4 and Os, and both these objects return 1 to p. Thus, p obtained three 0’s and two
1’s, and ¢ obtained two 1’s and one 0. By the above implementation, p returns 0 and ¢
returns 1. This implies that the derived object O did not satisfy the agreement property
despite the fact that only two base objects failed by crash. Thus, the implementation is not
2-tolerant for crash.

In the following, we first state the properties of a consensus object and then present
the implementations. We use the properties in proving our implementations correct.
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5.1.1 Properties of consensus

consensus supports two operations, propose 0 and propose 1, and has the sequential spec-
ification given in Figure 1. We will refer to the states S, Sg, and S; of consensus as the
uncommitted, 0-committed, and 1-committed states, respectively. In this section, we state
the properties that a consensus object satisfies in executions. To state these properties,
we need the following definitions. Let O be an object of type consensus and let E be an
execution of (Py, Ps,..., Py;O).

e Object O satisfies integrity in F if and only if every response from O in F is either 0
or 1.

e Object O satisfies weak integrity in F if and only if every response from O in F is
either 0, 1, or L.

e Object O satisfies validity in E if and only if the following holds in E. If there is a
response of v from @ and v € {0,1}, then there is an invocation of propose v on O
preceding this response.

e Object O satisfies agreement in E if and only if the following holds in E. If O returns
v1,v2 t0 two invocations, and v1,v2 € {0,1}, then v; = vy. (By this definition, if O
returns 0 to some processes and _L to all others, it still satisfies agreement.)

The propositions below follow easily from the sequential specification of consensus
and the definitions of linearizability and omission failures.

Proposition 5.1 Let O be an object of type consensus, initialized to the uncommitted
state. Let E be an execution of (P1, Pa,...,Pyx;0). Object O is correct in E if and only if
it is wait-free in E and satisfies integrity, validity, and agreement in E.

Proposition 5.2 Let O be an object of type consensus, initialized to the uncommitted
state. Let E be an execution of (Py,Pa,...,Py;O) in which O fails. Object O fails by
omisston tn E if and only if it s wait-free in E and satisfies weak integrity, validity, and
agreement in E.

In the following sections, we present several fault-tolerant implementations of consensus.
In describing these implementations, we write loc := Propose(P,v,0)° to denote that pro-
cess P invokes propose v on O and stores the response in its local variable loc.

Implementing a consensus object O initialized to the 0-committed (respectively, 1-
committed) state is trivial: Propose(P,v,0) simply returns 0 (respectively, 1). Thus, the
only interesting case is to implement a consensus object initialized to the uncommitted
state. Consequently, throughout this paper, we use the phrase “Z is an implementation of
consensus” to mean “Z is an implementation of (consensus, uncommitted state)”.

®Throughout this paper, we write Propose (with upper case “P”) if the operation is on a derived object,
and propose (with lower case “p”) if it is on a base object.
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5.1.2 Tolerating crash and omission failures

We present a t-tolerant self-implementation of consensus for omission failures. The resource
complexity is £+ 1 and is therefore optimal. Since omission failures are strictly more severe
than crash, this self-implementation is also correct for crash.

Figure 8 presents a t-tolerant self-implementation of consensus for omission failures.
(In all our algorithms, we use indentation to convey the scope of an if statement or a for
statement.) This implementation uses ¢ + 1 base objects. A process p proposes to the
derived object O by accessing each of O1,0a,...,0;11, in that order. At any point in the
algorithm, p holds an estimate of the eventual return value in estimate,. When p proposes
its current estimate to a base object Oy, if Oy returns a non-_L response w different from
p’s current estimate, p changes its estimate to w. After accessing all ¢ + 1 base objects, p
returns its estimate as the response of the derived object O.

01,09,...,0;41 : consensus objects, initialized to the uncommitted state

Procedure Propose(p, vp, O) /* vy € {0,1} */
estimate,, w, k : integer local to p
begin
estimate, 1= vp
fork:=1tot+1
w := propose(p, estimate,, O)
if w # L then estimate, := w
return(estimatey)
end

Figure 8: t-tolerant self-implementation of consensus for omission

Theorem 5.1 Figure 8 presents a t-tolerant self-implementation of consensus for omis-
sion failures. The resource complexity of the implementation is t + 1 and is optimal.

Proof Let O be a derived object of the implementation, and O1,Oa,...,0O:41 be its base
objects. Consider an execution E in which at most ¢ base objects fail by omission, and the
remaining objects are correct. We show that O is correct in E.

1. O satisfies validity: An easy induction on k, the variable in Figure 8, shows that if
estimate, equals some value u at any point in F, then there was a prior invocation
(from some process ¢) of Propose(q, u, O). The induction will use Proposition 5.2,
and the fact that p does not change estimate, if a base object returns L.

6Recall our convention that, if we do not mention the number of processes for which an implementation
is intended, then the implementation is for N processes, where N is arbitrary.
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2. O satisfies agreement: Since at most ¢ base objects fail, there is an O (1 < k <t+1)
that is correct. So Oy returns the same response w € {0,1} to every process that
accesses it. This implies that for all p that access Oy, estimate, = w when p completes
the k** iteration of the loop. Since each base object in Oy1,...,0s41 is either correct
or fails by omission in E, by Propositions 5.1 and 5.2, each of these base objects
satisfies validity. From these facts, it is easy to conclude from the implementation
that estimate, never changes value from the (k + 1)st iteration onwards. Thus O
returns the same response w to every p.

3. O satisfies integrity: Obvious.

Since a base object that fails by omission remains wait-free, it is clear that O is wait-free
in E. By Proposition 5.1, O is correct in E. It is obvious that the resource complexity of
t+ 1 of our self-implementation is optimal. O

We remark that the above implementation is not gracefully degrading. To see this,
suppose that v, = 0 and v, = 1, and all the ¢ + 1 base objects fail by crash initially. It
is easy to see that O returns 0 to p and 1 to ¢. Thus, O does not satisfy agreement and,
by Proposition 5.2, the failure of O is more severe than omission. Later, in Section 7, we
will present a t-tolerant self-implementation of consensus that is also gracefully degrading
(for omission). This implementation uses 2¢ + 1 base objects. We will also prove that
2t + 1 is a lower bound on the resource complexity of any t¢-tolerant gracefully degrading
implementation of consensus for omission. Interestingly, as we will prove later in Section
7, consensus has no t-tolerant gracefully degrading implementation for crash.

5.1.3 Tolerating arbitrary failures

In this section, we present a t-tolerant self-implementation for arbitrary failures whose
resource complexity is O(tlogt). This self-implementation uses the divide-and-conquer
strategy. The base step obtains a 1-tolerant self-implementation, and the recursive step
obtains a t-tolerant self-implementation from a ¢/2-tolerant self-implementation.

Figure 9 presents the base step, the 1-tolerant self-implementation of consensus for
arbitrary failures. This implementation uses six base objects O1,---,Og, divided into two
groups. The first group consists of Oy, Oa, and Oz, and the second group consists of Oy,
Os, and Og. To propose a value v to the derived consensus object O, process p proceeds
as follows: it proposes v to the first group; then, it proposes the response of the first group
to the second group; it regards the response of the second group to be the response of O.
To propose a value v to a group, p simply proposes v to all three objects in the group
and obtains their responses. p regards the majority response from these objects to be the
response of the group.

Since a consensus object that experiences an arbitrary failure may return a non-binary
response, we always “filter” the responses to get binary responses. We do this using the
procedure f-propose(p,v, Q) which calls propose(p,v,0O) and returns the response if it is
0 or 1, and returns 0 otherwise.
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01,09, --,0¢ : consensus objects, initialized to the uncommitted state

Procedure Propose(p, v, O)

begin
v := Majority(p, O1,02,03,v)
v := Majority(p, O4,Os,06,v)
return(v)

end

Procedure Majority(p,01,02,03,v)
countp|0..1], w: integer local to p

begin
count,[0..1] := (0,0)
fort::=1t03
w := f-propose(p,v,0;)
county[w] = countpy[w]+1
if count,[0] > count,[1] then
return(0)
else return(1)
end

Figure 9: 1-tolerant self-implementation of consensus for arbitrary failures
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Lemma 5.1 Let i be either 1 or 4. If at most one object among O;, O;y1, and O;qo
fails, then Majority(p, Q;, Oit1,Oita,v) returns v only if there is a concurrent or preceding
execution of Majority(q,O;,0;41,0i4+2,7).

Proof Clear from the algorithm. a

Lemma 5.2 Let i be either 1 or 4. If no object among O;, O;11, and O;yo fails,
then, for all p and ¢, Majority(p,O;, Oit1,0;42,vp) returns the same wvalue as
MajoritY(Q>Oi7Oi+170i+27vq)'

Proof Clear from the algorithm. a

Theorem 5.2 Figure 9 presents a 1-tolerant gracefully degrading self-implementation of
consensus for arbitrary failures.

Proof Since the implementation is bounded, by Lemma 4.2, it is gracefully degrading for
arbitrary failures. We now prove that the implementation is 1-tolerant.

Consider an execution £ in which at most one of O1,0a,...,O¢ fails by the arbitrary
failure mode and the remaining are correct. Lemma 5.1 implies that O satisfies validity in
E. Clearly, either all of O1,02, and O3 are correct in E, or all of Oy, Os, and Og are correct
in E. In the latter case, Lemma 5.2 implies that O satisfies agreement in E. In the former
case, Lemmas 5.1 and 5.2 together imply that O satisfies agreement in F. It is obvious that
O satisfies integrity and is wait-free in £. Thus, by Proposition 5.1, O is correct in £. O

Given this 1-tolerant self-implementation, by Booster Lemma (Corollary 4.3) we obtain
a t-tolerant self-implementation of consensus for arbitrary failures. However, the resulting
resource complexity is O(#!°826),

A more efficient recursive algorithm is presented in Figure 10. This algorithm imple-
ments a t-tolerant consensus object O from O, a (%]—tolerant consensus object, Os, a
L%J—toleram consensus object, and 10t + 3 (0-tolerant) consensus objects — Ag[l...3t +
1], A1[1...3t + 1], and B[l...4¢t + 1]. Figure 11 illustrates the order in which the base
objects of O are accessed by a process proposing 0 on O (the access pattern for a process
proposing 1 on O is symmetric). Before presenting a formal correctness proof, we provide
some intuition for the implementation.

Consider an execution in which at most ¢ base objects fail by the arbitrary failure mode.
Since Oy is [51]-tolerant and Oz is |5 ]-tolerant, at least one of O; and O is correct.
The algorithm is based on this key observation.

The high level intuition behind the implementation of Propose(p, v, O) is as follows.
Process p proposes v, to O1 and then checks if there is evidence to believe that O has
failed. If there is no such evidence, p adopts the value returned by O; as the return value
of Propose(p, vp, O). Otherwise, p proposes to O and adopts the value returned by O3 as
the return value of Propose(p, vy, O).
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Process p uses objects Ag[l...3t+ 1], A1[1...3t + 1], and B[1...4¢ + 1] to determine
whether O has failed. O; can fail in one of three ways: (i) by returning a value outside
{0,1}, (ii) by returning a value v € {0,1} that was not proposed by any process, and (iii)
by returning 0 to some processes and 1 to other processes. The first case is overcome by
using f-propose as a “filter”. The second and third cases are detected with the help of
Ao[l...3t+1], Aj[1...3t+1], and B[1...4t +1].

The failure detection provided by Ag[l...3t+1], A1[1...3t+1], and B[1...4¢+1] is not
perfect: if O; fails, some processes may not detect the failure. (However, it is never the case
that, if O is correct, some process believes that O; is faulty.) Thus, a process p may detect
that O; failed, but a different process ¢ may not. Then, ¢ decides the value, say v, returned
to it by O1. Process p, on the other hand, proposes to O; and decides the value returned by
O2. To avoid disagreement between the decisions of p and ¢, our implementation ensures
that p proposes v (and not 7) to Oz. Since O; is correct (this follows from the fact that O
is faulty), O returns v and, thus, p also decides v.

We state below two properties of our algorithm which are central to understanding its
correctness.

P1. If Oy is correct and O; returns 0 to process p, then count,[0] > 2t+1. (The symmetric
property, resulting from replacing 0 by 1, also holds.)

If Oy is correct and O; returns 0, then some process ¢ proposed 0 to O; before any
process got a response from Oj. It follows from our implementation that (i) process ¢
had proposed 0 to each of Ag[l...3t+1] before it proposed 0 to Oy, and (ii) no process
proposed 1 to any of Ag[1...3t+ 1] before ¢ proposed 0 to O1. Thus, when p accesses
the objects Ag[l...3t + 1], every correct object in Ag[l...3¢+ 1] returns 0. Since at
least 2t + 1 of the objects in Ag[1...3t + 1] are correct, we have count,[0] > 2¢ + 1.

P2. If Oy is correct and O returns v, then, for all processes p, WitnessCounty[v] > 3t+1.

If Oy is correct and O;p returns v to some process, then O; returns v to every pro-
cess. By the implementation, every process proposes v to every object in B[1...4t+1].
Since at least 3t + 1 of the objects in B[l...4t 4+ 1] are correct, we have
WitnessCounty[v] > 3t + 1.

Thus, if a process p receives v from Oq, county[v] > 2t + 1, and WitnessCounty[v] >
3t + 1, then O; appears correct to p and, by line 13, p decides v. It is still possible
that some process ¢, using the above properties, detected O; to be faulty. However, since
Ay[l...3t+ 1] and BJ[1...4t + 1] are consensus objects and no more than ¢ of them fail,
we have county[v] > t+ 1 and WitnessCounty[v] > 2t + 1. Thus, lines 12 through 18 of the
implementation ensure that ¢ proposes v to Oq. Since Os is correct (this follows from the
fact that Oj is faulty), Oz returns v and, thus, ¢ also decides v.

We now provide a more rigorous proof of correctness for the implementation.

Theorem 5.3 Figure 10 presents a t-tolerant gracefully degrading self-implementation of
consensus for arbitrary failures of resource complezity O(tlogt).
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Ag[l...3t+ 1], A1[1...3t+ 1], B[1...4t + 1] : (0-tolerant) consensus objects,
initialized to the uncommitted state

O; : [42]-tolerant consensus objects, initialized to the uncommitted state

O, : |35} ]-tolerant consensus objects, initialized to the uncommitted state

Procedure Propose(p, v,, 0O)
count,[0..1], WitnessCount,[0..1], belief,, ansl,, ans2,, vy, i, w : integer local to p
begin

1 count,[0..1], WitnessCount,[0..1] := (0,0)
2 Phase 1: for i :=1to 3t +1
3 w := f-propose(p, vp, A, [7])
4 if w = v, then count,[v,] := count,[vy]+1
5 Phase 2: ansl, := £-propose(p, vy, O1)
6 Phase 3: for i :=1to 4¢t+1
7 w := f-propose(p, ansl,, B[i])
8 Witness County[w] := WitnessCount,[w]+1
9 Phase 4: for ¢ :=1to 3t +1
10 w := f-propose(p, vp, A5[i])
11 if w = v, then count,[v,] := count,[v,]+1
12 Phase 5: Choose belief, such that WitnessCount,[belief,] > WitnessCount,[belief,]
13 if WitnessCounty[belief,] > 3t + 1 and count,[belief,] > 2¢ + 1 then
14 return(belief,)
15 if WitnessCounty[belief,] > 2t + 1 and count,[belief,] > t+ 1 then
16 vy = belief,
else

17 vy, 1= Vp
18 ans2, := propose(p, v, 02)
19 return(ans2,)

end

Figure 10: Efficient t-tolerant self-implementation of consensus for arbitrary failures
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Ay . . Ay

Figure 11: Execution trace of a process proposing 0 on O
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Proof Since the implementation is bounded, by Lemma 4.2, it is gracefully degrading for
arbitrary failures. We now prove that the implementation is ¢-tolerant.

Consider an execution F in which at most ¢ base objects fail by the arbitrary failure
mode, and the remaining are correct. We show below, through a series of lemmas, that O
is correct in E; or equivalently (by Proposition 5.1), that O satisfies validity, agreement,
and integrity, and is wait-free in F. Proposition 5.1 is used very often in this proof. For
brevity, we omit references to it.

Lemma 5.3 If Oy fails in E, then O3 is correct in F.

Proof Suppose both O; and O, fail in E. Since Oy is derived from a [%5!]-tolerant
implementation, at least [%1 + 1 base objects of O; must fail in £. Similarly, at least
|552] + 1 base objects of O must fail in E. Thus a total of [52] + [52] 4+ 2 > ¢ base
objects of O fail in F, a contradiction to the definition of E. O

Lemma 5.4 If O is correct in E, O satisfies validity and agreement in E.

Proof Suppose Oj is correct. Thus, O; satisfies validity and agreement. By the agreement
property of O1, ansl, = ansl, for all p,q. Let v = ansl,. Thus, every process proposes
the same value v to every BJ[i] in Phase 3. Since at most ¢ objects in B[1...4¢ + 1] fail,
belief, = v and WitnessCounty|belief,]> 3t + 1 (for every p).

By the validity property of Oj, some process ¢ will have invoked propose(q,v,0O1)
before any process gets the response v from O;. This implies that ¢ will have finished Phase
1 before any process begins Phase 3. Since at least 2¢ + 1 objects in A,[1...3t + 1] are
correct, it follows that, for all p, county[v]> 2t + 1 by the end of Phase 4 of p. Thus, we
have WitnessCounty[belief,] > 3t+1 and countp|belief,] > 2t+1 (for every p). Hence, every
p decides v (the proposal of ¢) by line 14. O

Lemma 5.5 If O fails in E, O satisfies validity and agreement in E.

Proof Suppose O; fails. Then by Lemma, 5.3, Oy is correct, and thus satisfies validity and
agreement. We need to consider two cases.

CASE 1 Suppose some process p returns by line 14. This implies that WitnessCounty[belief,)]
> 3t+1 and county[belief,] > 2t+1. Since at most ¢ base objects fail, it follows that, for ev-
ery g, WitnessCounty[belief,] > 2t+1 and count,[belief,] > t+1. By line 12, this implies that
belief, = belief,. Let V = belief,. Since WitnessCount,|belief,] > 2t + 1 and count,|belief,]
> t+1, either g returns belief, = V' by line 14 and we have agreement between p and ¢, or
q sets v, to belief, by line 16, making vy equal to V. Thus every ¢, that does not return by
line 14, proposes v,’l =V on Os. By the validity property of O2, ans2, = V, and ¢ returns
V by line 19. Again we have agreement between p and gq.

To see that O satisfies validity, note that count,[belief,] > 2t + 1 implies that some
process proposed belief, =V on at least ¢ + 1 objects in Abelief [1...3t+1].
2
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CASE 2 Suppose no process returns by line 14. Then every ¢ returns ans2, by line 19.
By the agreement property of Oa, for all p,q, we have ans2, = ans2,. Thus, O satisfies
agreement. In the following, let ans = ans2,.

By the validity property of Oz, some process p must have proposed ans to Oz. That

is v, = ans. In the algorithm, v, equals either v, or belief,. If vj, = v, then clearly O

satisfies validity. If U;o = belief,, # vp, then p must have executed line 16. It follows that

countp[belief,|> t + 1. Since at most ¢ objects in Abelz'ef [1...3t+ 1] fail, some process ¢
P

proposed v, = belief, on some object in Abeh'ef [1...3t+1]. Thus, process ¢ proposed v,
V4
on 0. Thus, O satisfies validity. O

Lemma 5.6 The resource complexity of the implementation in Figure 10 is O(tlogt).

Proof Denoting the resource complexity of the ¢-tolerant self-implementation of consensus
for arbitrary failures by f(¢), we have the following recurrence: f(t) =2f(¢/2)+2(3t+1)+
(4t+1) and f(1) = 6. O

It is obvious that O satisfies integrity and is wait-free in £. By Lemmas 5.4 and 5.5,
O satisfies validity and agreement in . Thus, by Proposition 5.1, O is correct in £. This
completes the proof of Theorem 5.3. O

As we will see later, to obtain fault-tolerant implementations of generic types, it is
useful to have a fault-tolerant implementation of consensus with safe-reset, not just
of consensus. Let us first recall the type consensus with safe-reset. The sequential
specification of this type is in Figure 2 and its history transformation function is explained in
Section 2.8. Intuitively, an object of this type is like a consensus object, but it also supports
the reset operation. Applying reset causes the object to move to the uncommitted state.
Thus, the object can be used for multiple rounds of consensus by resetting it between rounds.
However, the reset operation is guaranteed to work only if it is executed in “isolation”: that
is, if it is not concurrent with another reset operation or a propose operation. Otherwise
the object may behave in an unrestricted manner.

Figures 10 and 12, with the following modifications, present a t-tolerant gracefully
degrading self-implementation of consensus with safe-reset. In Figure 10, assume that
objects Ag[l...3t + 1], Ay[1...3t + 1], and B[l...4¢ + 1] are no longer just consensus
objects, but are consensus-with-safe-reset objects, initialized to the uncommitted state.
Also, assume that O; and O, are [*51]-tolerant and |%5!]-tolerant consensus-with-safe-
reset objects, initialized to the uncommitted state.

Theorem 5.4 Figures 10 and 12 present a t-tolerant gracefully degrading self-implemen-
tation of consensus with safe-reset for arbitrary failures.

Proof Sketch Let E be an execution in which a reset operation on O is not concurrent with
any other operation on O. It is obvious that at the end of an execution of Reset(p, O),
all correct objects among Oy, O, Ag[l...3t+ 1], A1[1...3t+ 1], and B[1...4¢t+ 1] are in
the uncommitted state. The implementation of Propose(p,vp, O), as well as its proof of
correctness, is the same as before. O
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Procedure Reset(p, O)
7 : integer local to p
begin
reset(p,O1)
reset(p, O2)
fori:=1to3t+1
reset(p, Aoli])
reset(p, A1[i])
fori:=1to4t+1
reset(p, Bli])
return(ack)
end

Figure 12: Reset procedure of the t¢-tolerant self-implementation of consensus with
safe-reset for arbitrary failures

5.2 Fault-tolerant implementation of register

The type n-valued register supports the operations read and write v (0 < v < n), and has
a simple sequential specification: read returns the last value written. We write unbounded
register for co-valued register, and boolean register for 2-valued register. If a
result holds for n-valued register, for all finite n and for n = oo, in stating that result we
simply write register without qualifying it as n-valued. The main result of this section
is that register has a t-tolerant gracefully degrading self-implementation for arbitrary
failures.

First, we present a t-tolerant gracefully degrading self-implementation of 1-reader
1-writer safe register in Figure 13.” The implementation uses 2¢ + 1 base registers.
To read the derived register, the reader process P, reads all 2¢+ 1 base registers and collects
their responses in S. It then returns mode(S), a value that occurs at least as many times
in S as any other value. To write a value v into the derived register, the writer process P,
simply writes v to all 2¢ 4+ 1 base registers.

Lemma 5.7 Figure 13 presents a t-tolerant gracefully degrading self-implementation of
l-reader l-writer safe register for arbitrary failures.

Proof Sketch Since the implementation is bounded, by Lemma, 4.2, it is gracefully degrading

"Recall that this type has the same sequential specification as register, but has a different history
transformation function, as explained in Section 2.8. Intuitively, if a read operation on an object of this
type overlaps with a write, then that read operation is allowed to return any value [Lam86]. Furthermore,
the object’s behavior is unrestricted if either more than one process invokes read operations or more than
one process invokes write operations.
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R1,Ro, -+, Roty1: 1-reader 1-writer safe registers, initialized to
the initial value of the derived register

Apply(P:, read,R) Apply(Py, write v,R)
val, 1 : integers, local to P, ¢ : integer, local to P,
S : multi-set of integers, local to P,
begin begin
S:=10 fori:=1to2t+1
fori:=1to2t+1 apply(Py, write v, R;)
val := apply(P,, read, R;) return ack
S = S U{wval} end
return mode(S)
end

Figure 13: t-tolerant self-implementation of 1-reader 1-writer safe register for
arbitrary failures

for arbitrary failures. We now prove that the implementation is ¢-tolerant.

Let R be a derived register of the implementation, and Ri,---, Roi+1 be its base reg-
isters. Let E be an execution in which at most one process, call it P,, reads R, and at
most one process, call it P, writes R. Also, assume that at most ¢ base registers fail in £
and they fail by the arbitrary failure mode. Consider a read operation r on R by P, that
is not concurrent with any write operation on R by P,. Let Apply(Py, write v, R) be the
latest write operation that precedes r. It is clear from the implementation that all correct
base registers return v during the operation r. Since there are at least ¢ 4+ 1 correct base
registers, it follows that P, receives v from at least ¢+1 base registers, and returns v. Hence
the correctness of the implementation. |

There are many results presenting bounded implementations of one type of register
from another [Pet83, Lam86, VA86, Blo87, BP87, NW87, PB87, SAG87, Sch88, Vid8s,
Vid89, HV91]. Some of them (for example, [Lam86, SAG87, Sch88]) can be combined to
implement a multi-reader, multi-writer, atomic register using 1-reader, 1-writer, safe reg-
isters. In our terminology, this means that register has a bounded implementation from
1-reader l-writer safe register. This implies, by Lemma 4.2, that register has a
O-tolerant gracefully degrading implementation from 1-reader 1-writer safe register
for arbitrary failures. Using this result and Lemma 5.7, and applying Corollary 4.1, we con-
clude that register has a t-tolerant gracefully degrading implementation from 1-reader
l-writer safe register for arbitrary failures. This trivially implies the following theo-
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rem.

Theorem 5.5 register has a t-tolerant gracefully degrading self-implementation for
arbitrary failures.

5.3 Fault-tolerant implementations of generic types

In this section, we describe how to obtain fault-tolerant gracefully degrading implementa-
tions of generic types for arbitrary failures. Since arbitrary failures are more severe than
the benign crash and omission failures, these implementations tolerate such benign failures
as well. They are however not gracefully degrading for crash or omission. We study the
feasibility of gracefully degrading implementations for benign failure modes in Section 7.

The theorems of this section depend on the universality results due to Herlihy and
Plotkin [Her91b, Plo89]. These results are stated below.

Theorem 5.6 (Herlihy) For all types T, there is a k such that T has a (0-tolerant)
k-bounded implementation from {consensus with safe-reset, unbounded register}.

Herlihy’s universal construction requires unbounded registers even to implement finite types.
Plotkin’s construction, on the other hand, requires only boolean registers in such a situation
[Plo89]. (Jayanti and Toueg achieve the same result as Plotkin, but with a more intuitive
construction [JT92].)

Theorem 5.7 (Plotkin) For all finite types T', there is a k such that T has a (0-tolerant)
k-bounded implementation from {consensus with safe-reset, boolean register}.

From Plotkin’s theorem and Lemma 4.2, it follows that every finite type has a
(0-tolerant) gracefully-degrading implementation from {consensus with safe-reset,
boolean register} for arbitrary failures. Using this, together with Theorems 5.4, 5.5,
and Lemma 4.1, we obtain:

Corollary 5.1 Let T be any finite type.

e T has a t-tolerant gracefully degrading implementation from
{consensus with safe-reset, boolean register} for arbitrary failures.

e If each of consensus with safe-reset and Dboolean register has a 0O-tolerant
gracefully degrading tmplementation from T for arbitrary failures, then T has a t-
tolerant gracefully degrading self-implementation for arbitrary failures.

From Theorem 5.6 and Lemma 4.2, it follows that every type has a
(0-tolerant) gracefully-degrading implementation from {consensus with safe-reset,
unbounded register} for arbitrary failures. Using this, together with Theorems 5.4, 5.5,
and Lemma 4.1, we obtain:
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Corollary 5.2 Let T be any type.

o T has a t-tolerant gracefully degrading implementation from
{consensus with safe-reset, unbounded register} for arbitrary failures.

e If each of consensus with safe-reset and unbounded register has a O-tolerant
gracefully degrading implementation from T for arbitrary failures, then T has a t-
tolerant gracefully degrading self-implementation for arbitrary failures.

We now apply the above corollaries to show that several common types have t-tolerant
self-implementations for arbitrary failures. However, to do this, we have to first show that
common types implement both consensus with safe-reset and register.

It is known that fetch&add, queue, stack, and test&set implement consensus with
safe-reset for two processes, and that compare&swap, move, and memory-to-memory swap
(henceforth m-m swap) implement consensus with safe-reset for any number of pro-
cesses [Her91b, KM93].8 These are all bounded implementations and, by Lemma 4.2, are
gracefully degrading for arbitrary failures.

We claim that compare&swap, move, m-m swap, and test&set implement 1-reader
l-writer boolean safe register, and that fetch&add, queue, and stack implement
l-reader l-writer unbounded safe register. We will show a bounded implementation
of 1-reader 1-writer boolean register from test&set, and this trivially implies that
test&set implements 1-reader 1-writer boolean safe register. The other implemen-
tations claimed above are also bounded and are easy to obtain. We have therefore omitted
their descriptions. As already mentioned, it is known that register has a bounded imple-
mentation from 1-reader 1-writer safe register. From these results, we conclude that
boolean register has a bounded implementation from each of compare&swap, move, m—m
swap, and test&set, and that unbounded register has a bounded implementation from
each of fetch&add, queue, and stack. By Lemma 4.2, these implementations are gracefully
degrading for arbitrary failures.

In Figure 14, we implement a l-reader 1-writer boolean register R from a test&set
object T'S. To complement the value in R, the writer flips the state of T'S. It does this by
applying the test&set operation on 7'S. If this operation returns 0, the writer knows that
it has flipped the state of T'S. Otherwise, the writer applies the reset operation to flip the
state of T'S. To read R, the reader obtains the current state of TS by applying the test&set
operation on it. If the state of 7S is 0, the reader deduces that, since its last read, the
writer complemented the value of R an odd number of times. Therefore, the reader returns
the complement of the last value it returned. We omit the proof of correctness.

From the above, we have

8Qur definition of the types move and m-m swap are weaker than the corresponding ones given by Herlihy
[Her91b]. In our definition (see Appendix B), an object of either type consists of only a pair of cells whose
contents can be moved or swapped. In [Her91b], a move/swap operation can move/swap the contents of
any cell into any other cell in an infinite array of cells. Kleinberg and Mullainathan showed that, even with
the weaker definitions, move and m-m swap can implement consensus with safe-reset for any number of
processes [KM93|.
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TS : test&set object, initialized to state 1

LastValueReturned : boolean, local to the reader process F;, initialized to
the initial value of the implemented register R

LastValue Written : boolean, local to the writer process P, initialized to
the initial value of the implemented register R

state, : boolean, local to the reader process P,, uninitialized

state, : boolean, local to the writer process P,, uninitialized

Apply(P:, read,R) Apply( Py, write v, R)
state, = test&set(P,, TS) if (v # LastValue Written) then
if (state, = 0) then LastValue Written := v
LastValueReturned := — Last ValueReturned state,, = test&set(Py, T5)
return LastValueReturned if (state, = 1) then
reset(Py, T5)
return ack

Figure 14: 1-reader 1-writer boolean register from testé&set
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Corollary 5.3 compare&swap, move, and m-m swap have t-tolerant self-implementations
for arbitrary failures.

Corollary 5.4 queue, stack, test&set, and fetch&add have t-tolerant self-implementations
for arbitrary failures. These tmplementations are for two processes.

6 Tolerating non-responsive failures

So far we have considered objects that remain responsive (i.e., wait-free) even if they fail.
Thus, after invoking an operation, a process could afford to wait for a response before
proceeding to invoke the next operation. Consequently, there has been no need so far for
a process to have more than one incomplete operation at any time. With non-responsive
failures, the situation is different. Since a failed object may not respond, waiting for a
response could block the process forever. To overcome this difficulty, we allow a process to
access base objects “in parallel”. In other words, a process can have multiple incomplete
operations at any time. However, we still restrict a process to have no more than one
incomplete operation on any particular object.

The ability to access base objects in parallel allows us to build a ¢-tolerant implementa-
tion of register, even for NR-arbitrary failures. In contrast, we show that consensus does
not have an implementation that can tolerate the failure of a single base object, even if we
assume that the faulty object can only fail by NR-crash and even if we do not restrict the
number or the type of base objects that can be used in the implementation. Consequently,
test&set, compare&swap, queue, stack, and several other common types, which can im-
plement consensus, have no fault-tolerant implementations for any non-responsive failure
mode. However, we show that randomization can be used to circumvent this impossibility
result. Fwvery type has a t-tolerant randomized implementation from register, even for
NR-arbitrary failures. These results are the subject of this section.

6.1 Impossibility of fault-tolerant implementation of consensus

In this section, we first prove that consensus has no 1-tolerant implementation for NR-
crash. We then define an extremely weak non-responsive failure mode, called unfairness to
a known process, and prove that consensus has no 1-tolerant implementation even for this
failure mode.

In each case, to prove that a certain implementation Z does not exist, we show that if
7 exists, it would violate well-known the impossibility result due to Loui and Abu-Amara
[LAAS87] and Dolev, Dwork, and Stockmeyer [DDS87]. This result is about the consensus
problem for n processes, defined informally as follows. Each process F; is initially given an
input v; € {0,1}. Each correct process P; must eventually decide a value d; such that (i)
d; € {v1,v2,---,vn}, and (ii) for all processes P; and P; that decide, d; = d;.

Theorem 6.1 (Loui and Abu-Amara, Dolev, Dwork, and Stockmeyer)
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The consensus problem for n processes has no solution if processes may communicate only
via registers and at most one process may crash.

Theorem 6.2 There is no 1-tolerant itmplementation of consensus, even for two processes,
for NR-crash.

Proof Suppose, for contradiction, there is a finite list £ = (73,753, ...,T;) of types and a list
Y = (s1,82,...,51) of states such that there is a 1-tolerant implementation Z of consensus
from (L£,X), for two processes, for NR-crash. We will use this implementation to obtain
a protocol for the consensus problem for [ + 2 processes. This protocol will require only
registers for communication between processes and solves the consensus problem even if at
most one process may crash.

Consider the concurrent system S consisting of [ + 2 processes, named {p1,p2} U {g; |
1 < j <}, and 4] + 1 registers, named {invocation(i,j), response(j,i) | 1 <i <2,1 <j <
1} U{decision}. We claim that the consensus problem for processes in S is solvable, even if
at most one process may crash and processes communicate exclusively via the registers in
S. The following is the protocol. Let v; € {0,1} be the initial input of p;. The basic idea
consists of two steps:

1. Let O1,0s,...,0; be objects of type 11,75, ...,T}, initialized to states s1, s2,..., s,
respectively. Let O = Z(O1,...,0;). Thus, O is a consensus object that can be shared
by two processes. Moreover, by definition of Z, O remains correct even if one of its
base objects fails by NR-crash.

2. In system S, process ¢; (1 < j < I) simulates the base object O;, and process p;
(i = 1,2) simulates the execution of Propose(p;,v;, @) on the derived object O.

The details of the protocol are given below. Here, decision is used as a multi-writer
multi-reader register. All other registers are used as 1-reader 1-writer registers: p; writes
invocation(i, j) and g; reads it; g; writes response(j,i) and p; reads it.

Initialize all 41 4 1 registers to L. Process p; simulates Propose(p;,v;, O) as follows. If
Propose(p;,v;, O) requires p; to invoke some operation op on O;, p; appends op to the con-
tents of invocation(i, j). (Since p; is the only process that writes invocation(i, j), appending
op to the previous contents can be performed in one step.) If Propose(p;, v;, O) requires p;
to check if a response to some outstanding invocation on O; has arrived, p; checks if a re-
sponse has been appended by ¢; (which simulates O;) to response(j,). If Propose(p;,v;, O)
returns a value v, p; first writes v in decision register, and then decides v. In addition to
(and concurrently with) the above, p; periodically checks if the register decision contains a
non-_| value. If so, it decides that value.

Process ¢; simulates the base object O; as follows. Periodically ¢; checks the registers
invocation(l, j) and invocation(2,j), in a round-robin fashion. If ¢; notices that some op-
eration op has been appended to invocation(i, j), g; simulates the application of op to O;
(using the sequential specification of the type 7};) and appends the corresponding response
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to response(j,i). In addition to (and concurrently with) the above, ¢; periodically checks if
the register decision contains a non-_L value. If so, it decides that value.

The above simulation protocol solves the consensus problem among the [ 4+ 2 processes
in the concurrent system S, even if one of them crashes. To see this, consider any execu-
tion E of the concurrent system S in which at most one process crashes. Let E' be the
corresponding “simulated” execution of the derived object O. Note that the crash of one
process in S corresponds to the NR-crash of at most one (simulated) base object of the
(simulated) derived object O in E'. Since 7, the consensus implementation from which O
is derived, is 1-tolerant for NR-crash, O is correct in E' (despite the NR-crash of one of
its base objects). Thus, by Proposition 5.1, O satisfies integrity, validity, and agreement,
and is wait-free in E’. Since O is wait-free (in E'), if p; does not crash, Propose(p;, v;, O)
eventually returns some value v (in E'). Since O satisfies integrity, v € {0,1}. Since O
satisfies validity, v is either vy or ve. Since O satisfies agreement, Propose(pi,v1,0) and
Propose(ps2, v2, O) never return different values. Thus, from the protocol, p; and ps do not
write different values in register decision. Since at most one process crashes, at least one
of p1 and pe will eventually write a binary value v in register decision. Since all correct
processes periodically check the decision register, they eventually decide v.

We showed that we can use Z to solve the consensus problem in system S. This
contradicts Theorem 6.1. Thus, 7 cannot exist. O

We can strengthen the above result as follows. Suppose that at most one base object
may fail and that it can only do so by being “unfair” (i.e., by not responding) to at most
one process. Furthermore, suppose that the identity of this process is a priori “common
knowledge” among all the processes. Even with this extremely weak failure mode, called
unfairness to a known process, we can prove the following:

Theorem 6.3 There is no 1-tolerant implementation of consensus, even for two processes,
for unfairness to a known process.

Proof Sketch Suppose, for contradiction, there is a finite list £ = (71,73, ...,T;) of types
and a list ¥ = (s1, s2,...,5;) of states such that there is a 1-tolerant implementation Z of
consensus from (£, X), for two processes, for unfairness to, say, process p1. Consider the
concurrent system S, as defined in the proof of Theorem 6.2. Suppose processes in S run
the same simulation protocol as in that proof. There are two cases:

1. No process g crashes. In this case, it is easy to see that processes in S solve the
consensus problem (exactly as before).

2. Some process ¢ crashes. In this case, processes in S may fail to solve the consensus
problem for the following reason. The crash of g corresponds to the NR-crash of the
simulated base object O. This object is now potentially unfair to both p; and po.
But 7 tolerates unfairness to only p;. So the derived consensus object O of 7 is not
necessarily correct.
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To circumvent the problem that arises in Case 2, we modify the simulation protocol
as follows: If Propose(pz,v2,0) requires pp to invoke some operation op on some O;, p2
appends op to the contents of invocation(2,j), as before, but now it also waits until a
corresponding response is appended to response(j,2) by process g;. The rest of the simu-
lation protocol remains exactly as before. We now reconsider the above two cases with the
modified simulation protocol.

1. No process ¢ crashes. As before, it is easy to see that processes in S solve the
consensus problem.

2. Some process qr crashes. If po attempts to access Oy after the crash of g, it will
simply wait for the response forever.? Therefore, at worst, it appears to process p;
that Oy is unfair to p; and that po is extremely slow. Since 7 tolerates the unfairness
of one base object to p;, O remains correct. Since p; does not crash (we assumed that
only one process in S crashes, and this is ¢ ), Propose(p1,v1, Q) returns a value that
p1 writes into decision. The rest of the proof is as in Theorem 6.2.

Again, we have a contradiction to Theorem 6.1. m|

From the above two theorems we have:

Corollary 6.1 If a type T implements consensus for two processes, then T has mo 1-
tolerant tmplementation, for two processes, for NR-crash or for unfairness to a known
process.

As mentioned in Section 5.3, consensus has an implementation, for two processes, from
each of the following types: compare&swap, fetch&add, move, queue, stack, sticky-bit,
m-m swap, and test&set. Thus, we have:

Corollary 6.2 None of the following types has a 1-tolerant implementation, for two pro-
cesses, for NR-crash or for unfairness to a known process: compare&swap, fetch&add,
move, queue, stack, sticky-bit, m-m swap, and testé&set.

6.2 Fault-tolerant implementation of register

In contrast to the above impossibility results, we show in this section that register has a
t-tolerant self-implementation even for NR-arbitrary failures.

First, we present a t-tolerant self-implementation of 1-reader l-writer safe register
in Figure 15. The implementation uses 5t + 1 base registers. To read the derived register,
the reader process P, invokes read on each base register (P, delays this read if its previous
read on the base register is still incomplete). When P, gets responses from 4¢ + 1 base reg-
isters, which are collected in the multi-set Responses, it returns mode( Responses). (Recall

°0f course, it also continues to read the decision register periodically and decides if a non-1 value is
found there.
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Ri, Ry, +, Rs:41: l-reader 1-writer safe registers, initialized to
the initial value of the derived register

Pending,: set, local to the reader process P., initialized to )
Pending,,: set, local to the writer process P,, initialized to 0

Apply(P,, read, R) Apply(P,, write v, R)
Invoked.: set, local to P, Invoked,,: set, local to P,
Responses,: multi-set, local to P, Responses,,: multi-set, local to P,
val, i : integers, local to P, val, 1 : integers, local to P,
begin begin
Invoked, := 0 Invoked,, := 0
Responses, := 0 Responses,, :=
1:=0 t1:=0
Loop Loop
i:= (tmod 5t + 1)+ 1 t:= (tmod 5t +1)+1
if R; € Pending, then if R; € Pending,, then
Check if R, responded Check if R; responded
if (yes) then if (yes) then
Pending, := Pending, — {R;} Pending,, = Pending, — {R:}
Let val be the response Let val be the response
if R; € Invoked. then if R; € Invoked, then
Responses, := Responses, U {val} Responses,, := Responses,, U {val}
if (R; ¢ Pending,) A (R; ¢ Invoked,) then if (R; ¢ Pending,) A (R; ¢ Invoked,,) then
Invoke read on R; Invoke write v on R;
Invoked, := Invoked, U {R;} Invoked,, := Invoked, U {R;}
Pending, := Pending, U {R;} Pending,, := Pending, U {R;}
Until |Responses,| = 4t + 1 Until |Responses, | = 4t + 1
return mode(Responses,) return ack
end end

Figure 15: t-tolerant self-implementation of 1-reader l-writer safe register for NR-
arbitrary failures

that mode(S) is a value that occurs at least as many times in S as any other value.) To
write a value v into the derived register, the writer process P, invokes write v on each base
register (again, the writer delays invoking this write if its previous write on the base register
is still incomplete). The writing of the derived register completes when the writer receives
the response ack from 4t + 1 base registers.

In the implementation, the reader and the writer maintain three sets each in their
local memory. Pending is the set of base registers on which the process has incomplete
operations. Invoked is the set of base registers on which the process has already invoked
operations in the current execution of the operation on the derived object. Responsesis the
set of responses, from base registers, to the invocations made during the current execution
of the operation on the derived object.
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Lemma 6.1 Figure 15 presents a t-tolerant self-implementation of 1-reader 1-writer
safe register for NR-arbitrary failures.

Proof Sketch Let R be a derived register of the implementation, and Ry, - -, Rs;4+1 be its
base registers. Let E be an execution in which at most one process P, reads R, and at
most one process P, writes R. Also, assume that at most ¢ base registers fail in £ and that
they fail by the NR-arbitrary mode. Consider a completed read operation » on R by P,
that is not concurrent with any write operation on R by P,. Let Apply(P,, write v,R) be
the latest write operation that precedes r. We will refer to this operation as w. From the
implementation, it is clear that, of the base registers on which write v was invoked during
w, 4t + 1 base registers responded. Let S,, denote the set of these 4t + 1 base registers.
Similarly, it is clear that, of the base registers on which read was invoked during r, 4¢+1 base
registers responded. Let S, denote the set of these 4¢ + 1 base registers. Let S = S5, N S,,.
Clearly, |S| > 3t + 1. Since we assumed that at most ¢ base registers fail in £, there are
at least 2¢ + 1 correct base registers in S. From the implementation, it is clear that each
correct base register in S responds with v to the invocation of read by P, during . Thus,
at the end of r, v occurs at least 2¢ + 1 times in the multi-set Responses,. This implies that
r returns v. Hence the correctness of the implementation. O

As mentioned in Section 5.2, it is known that register has an implementation from
l-reader l-writer safe register. Using this result and Lemma 6.1, and applying
Corollary 4.1,19 we conclude that register has a t-tolerant implementation from 1-reader
l1-writer safe register for NR-arbitrary failures. This implies the following theorem.

Theorem 6.4 register has a t-tolerant self-implementation for NR-arbitrary failures.

6.3 Randomized fault-tolerant implementations of generic types

So far we assumed that processes are deterministic. Suppose instead that processes have
access to “fair coins”. A process can toss a coin and, based on the outcome of the toss,
choose its step. Furthermore, let us informally define a randomized implementation as
an implementation in which every correct process completes its operation on the derived
object in a finite expected number of operations on the base objects. Interestingly, every
type has a randomized implementation from register [Her91a], but most types have no
(deterministic) implementations from register [Her91b]. In the following, we present a
generalization of the former result.

consensus with safe-reset has arandomized implementation from register [Asp90].
Together with Theorem 6.4, this implies that consensus with safe-reset has a ¢-tolerant
randomized implementation from register for NR-arbitrary failures. Combining this with
Theorem 6.4, and Theorems 5.6 and 5.7 of Herlihy and Plotkin, we have

100bserve that every implementation is automatically gracefully degrading for NR-arbitrary failures. Thus,
we are able to apply Corollary 4.1.
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Theorem 6.5 Every finite type has a t-tolerant randomized implementation from boolean
register for NR-arbitrary failures. Every infinite type has a t-tolerant randomized imple-
mentation from unbounded register for NR-arbitrary failures.

Thus, if a finite (respectively, infinite) type T implements boolean register (respec-
tively, unbounded register), then 7" has a t-tolerant randomized self-implementation for
NR-arbitrary failures. As mentioned in Section 5.3, each of test&set, compare&swap, move,
and m-m swap implements boolean register, and each of fetch&add, queue, and stack
implements unbounded register. Thus, each of the above types has a t-tolerant random-
ized self-implementation even for NR-arbitrary failures.

6.4 Decomposability of NR-arbitrary failures

The final result of this section concerns the nature of NR-arbitrary failures. It states that the
problem of tolerating NR-arbitrary failures can be reduced to two strictly simpler problems:
tolerating arbitrary failures and tolerating NR-omission failures.

Lemma 6.2 (Decomposability of NR-arbitrary failures) A type T has a t-tolerant self-
implementation for NR-arbitrary failures if and only if T has t-tolerant self-implementations
for arbitrary failures and for NR-omission failures.

Proof Sketch  The “only if” direction is obvious. We now sketch the proof for the
“if” direction. Let s be any state of 7. Let Z, be a t-tolerant self-implementation of
(T, s) for arbitrary failures and Z, be a t-tolerant self-implementation of (7, s) for NR-
omission failures. Let m and n be the resource complexity of the implementations Z, and
T,, respectively. Define an implementation 7, of resource complexity m - n, as follows:
(01,02, y0nm) = Zo(Za(01,---,0m), -, Za(0(n—1)ym+1s- - - »Onm)). We will verify below
that Z is a t-tolerant self-implementation of (7, s) for NR-arbitrary failures.

Let O be a derived object of Z and 01, 02, . . ., 04m be the base objects of O. Thus, O =
Z,(01,02,...,0,) where Or = Zo(0(k—1)m+1) O(k—1)m+2s - - s Okm) (1 < k < n). Assume
that at most ¢ objects among 01,09, .. ., 0nm fail, and they fail in an arbitrary manner. This
trivially implies that, for each Oy, at most ¢ base objects of Oy, fail. Since Oy is not derived
from an implementation that tolerates NR-arbitrary failures, Or may not respond to an
invocation; however, if it does respond, since it is derived from an implementation that is
t-tolerant for arbitrary failures, its response is correct. We conclude that, if Oy, fails, it
fails by NR-omission. We also conclude that at most ¢ objects among O1,0a,...,0, fail

(this follows from the fact that at most ¢ objects among 01, 02,...,0nm fail). From these
conclusions and the fact that 7, is ¢-tolerant for NR-omission, it follows that O is correct.
Hence the lemma. O
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7 Graceful degradation for benign failure modes

Graceful degradation is a desirable property of implementations: it ensures that an imple-
mented object never fails more severely than any of its components. Furthermore, if fault-
tolerant implementations are gracefully degrading, then they can be composed (Lemma
4.1) and their degree of fault-tolerance can be automatically boosted (Lemma 4.3). In this
section, we investigate the cost and the feasibility of achieving graceful degradation for the
benign crash and omission failure modes. As one might expect, graceful degradation comes
at a cost: for omission, consensus has a t-tolerant self-implementation of resource complex-
ity t+1, but it has no ?-tolerant gracefully degrading implementation of resource complexity
less than 2¢+ 1. With respect to feasibility, our results are as follows. We identify a class of
“order sensitive” types that includes many common types such as queue, stack, test&set,
and compare&swap. We prove that no type in this class has a fault-tolerant gracefully de-
grading implementation for crash. Thus, when an object of such a type is implemented in
software from a set of hardware objects, the software object can fail more severely than
crash even if the underlying hardware objects only fail by crash. In contrast, we show that
graceful degradation for omission is achievable in a strong sense: For omission, every type
has a t-tolerant gracefully degrading implementation from every universal set of types. (A
set S of types is universal if every type has an implementation from S.)

7.1 Cost of achieving graceful degradation

We have seen that, for omission, consensus has a t-tolerant self-implementation of re-
source complexity ¢t + 1 (see Figure 8). But this implementation is not gracefully degrading
for omission. In this section, we describe a self-implementation of consensus that is both
t-tolerant and gracefully degrading for omission. The resource complexity of this implemen-
tation is 2¢ + 1. We will then prove that, for any “non-trivial” type (such as consensus),
2t 4+ 1 is a lower bound on the resource complexity of any ¢-tolerant gracefully degrading
implementation. From these results, we conclude that graceful degradation comes at a cost.

First, let us recall why the implementation in Figure 8 is not gracefully degrading.
Suppose that v, = 0 and v, = 1, and all the ¢ + 1 base objects O1,0a2,...,0;41 fail by
crash initially. It is easy to see that O returns 0 to p and 1 to ¢. Thus, O does not satisfy
agreement and, by Proposition 5.2, the failure of O is more severe than omission.

In Figure 16, we present a t-tolerant gracefully degrading self-implementation of
consensus for omission.!! The implementation uses 2t + 1 base consensus objects. A
process p proposes to the derived object O by accessing each of O1,0s,...,0211, in that
order. At any point in the algorithm, p holds an estimate of the eventual return value
in estimate,. When p proposes its current estimate to a base object O, if O returns a
non-_ response different from p’s current estimate, p deduces that all of O1,02,...,0_1
have failed. Accordingly, p sets each location in its local vector Vp[1...(k —1)] to L and
changes its estimate to the response it received from Oy. This deduction by p is the most

1 As will be shown later in Theorem 7.4, there is no t-tolerant gracefully degrading implementation of
consensus for crash (for £ > 0).
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01,03,...,09:41 : consensus objects, initialized to the uncommitted state

Procedure Propose(p, vy, O) /* vy, €{0,1} */
Vp[1..2t + 1], estimate,, k: integer local to p
begin
1 estimate, 1= vp
2 for k:=1to2t+1
3 Vplk] := propose(p, estimate,, O)
4 if (Vp[k]# L)A(Vplk]# estimate,) then
5 estimate, := Vp[k]
6 Vpll...(k=1)] := (L, L,...,1)
7 if V}, has more than ¢t L’s then
8 return(L)
else
9 return(estimate,)

end

Figure 16: t-tolerant gracefully degrading self-implementation of consensus for omission

important step in the algorithm and is intuitively justified as follows. Suppose that some Oy
(1 <1< k—1) were correct. By the integrity and agreement property of Oy, every process
would receive the same non-_1 response, call it est, from O;. Thus, every process will have
the same estimate est, at the end of accessing O;. Furthermore, since even objects that
fail by omission satisfy validity and agreement, if a base object in Oj41...O241 returns a
non-_| response, the response must be est. Thus, we conclude that, if O returns a response
in {0,1} which is different from p’s current estimate, objects O1,0q,...,Or_1 are faulty.
At the end of accessing all 2¢+1 base objects, if p believes that no more than ¢ base objects
failed, it returns its current estimate. Otherwise it returns L.

Lemma 7.1 For every k, 1 < k < 2t + 1, at the end of the kt* iteration of the for loop
of Propose(p, vy, O) in Figure 16, estimate, € {0,1}, and V,[1..k] contains only L’s and
estimatep’s.

Proof By an easy induction on k. O

Theorem 7.1 Figure 16 presents a t-tolerant gracefully degrading self-implementation of
consensus for omisston. The resource complexity of the implementation is 2t + 1.

Proof Let O be a derived object of the implementation, and Oy, O2,...,0941 be its base
objects. Consider an execution E in which all base objects that fail, fail by omission. (Note
that we do not restrict the number of base objects that may fail in E.)
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1. O is wait-free: Obvious since base objects that fail by omission remain wait-free.

2. O satisfies validity: An easy induction on k, the loop variable in Figure 8, shows that,
if estimate, equals some value v at any point in F, then there is an invocation (from
some process q) of Propose(q, u, O) earlier in E. The induction will use Proposition
5.2, and the fact that p does not change estimate, if a base object returns L.

3. O satisfies agreement: Suppose, for a contradiction, there exist two processes p and ¢
such that Propose(p,vp, O) returns 0 and Propose(q, vy, O) returns 1. From Lemma
7.1 and lines 7, 8, and 9 of the algorithm, it follows that V), has at least ¢+1 0’s at the
end of the execution of Propose(p, vp, O) and V; has at least t+1 1’s at the end of the
execution of Propose(q, vy, O). This is possible only if thereis a k (1 < k < 2¢+1) such
that propose(p, estimatep, Oy) returned 0 and propose(q, estimateq, Oy) returned 1.
Thus Oy, does not satisfy agreement. By Proposition 5.2, the failure of O in F is not
by omission, a contradiction.

4. O satisfies weak integrity: Obvious.

5. O satisfies integrity if at most ¢ base objects fail: Let Og,,Of,,---,0k, (k1 < k2 <
... < k) be all the correct base objects. Since at most ¢ fail, we have [ > ¢t + 1. By
Proposition 5.1, Oy, satisfies integrity and agreement. Thus, there is a v € {0,1} such
that, for all p, propose(p, estimate,, Oy, ) returns v. Thus, for all p, estimate, = v at
the end of k; iterations of the for-loop in Propose(p, vp, O). Using this and Proposition
5.2, it is easy to verify that, at the end of the execution of Propose(p,vp, O), Vp[k;]= v
and estimate, = v for all p and for all 4, 1 <4 < [. This implies, by lines 7, 8 of the
algorithm, that Propose(p,vp, O) returns v.

From 1, 2, 3, and 4 above and Proposition 5.2, we conclude that either O is correct in
E or O fails by omission in £. From 1, 2, 3, and 5 above and Proposition 5.1, we conclude
that if at most ¢ base objects of O fail in F, O is correct in E. Thus, Figure 16 is a ¢t-tolerant
gracefully degrading self-implementation of consensus for omission. O

We now prove a general lower bound on the resource complexity of gracefully degrading
implementations of any non-trivial type for omission. Informally, a type is trivial if each
operation has a fixed response. More precisely, T' = (OP, RES, G, ) is trivialif, for all states
s of T', there is a function f : OP — RES such that for all finite sequences op1,0pa,. .., 0pk

of operations, (op1, f(op1)), (op2, f(0p2)),- - ., (opk, f(opr)) is legal from state s of T'. A type
is nmon-trivial if it is not trivial. The following proposition is immediate.

Proposition 7.1 Let T = (OP,RES,G, 1) be a deterministic non-trivial type. Then, there
exists o state s of T and operations op1,0p2 € OP with the following property. Let f :
OP — RES be the function such that, for all op € OP, (op, f(op)) is legal from state s.

Then, (op1, f(op1)), (op2, f(0p2)) is not legal from s.

For an illustration of the proposition, consider consensus, which is clearly a deter-
ministic and non-trivial type. Let s be the uncommitted state, and op; and ops be propose
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0 and propose 1, respectively. Then, the function f is as follows: f(propose 0) = 0 and
f(propose 1) = 1. Now, as the proposition claims, the sequence (propose 0, f (propose 0)),
(propose 1, f(propose 1)) is not legal from the uncommitted state.

Theorem 7.2 Let T = (OP,RES, G, ) be any deterministic non-trivial type such that, for
all sequential histories H, 7(H) = H. The resource complexity of any t-tolerant gracefully
degrading implementation of T, for two processes, for omisston s at least 2t + 1.

Proof Let s,o0p1,0p2, f be as in Proposition 7.1. Assume that the theorem is false. Then,
(T, s) has a t-tolerant gracefully degrading implementation Z from (£, X), for two processes,
for omission, where £ = (11,75, ..., T5) is some list of types and ¥ = (s1, $2, ..., S2¢) is a list
of states. Let O1,04,...,09; be objects of type 11,75, ..., Th, initialized to s1, s2,. .., Sot,
respectively. Let O = Z(01,0a2,...,02;) be the derived object of type T, initialized to
state s. We will describe a scenario S in which two processes P and @) apply operations on
the derived object O. At the start of Scenario S, assume that all base objects of O fail, as
described below.

Objects O; (1 < i < t) fail as follows: Whenever P invokes an operation on O;,
O; returns a correct response to P and undergoes an appropriate change of state; but
whenever @) invokes an operation on O;, O; returns L and does not undergo any change of
state. Objects O; (t+ 1 < j < 2t) fail in a symmetric manner, as follows: Whenever P
invokes an operation on Oj, O; returns L and does not undergo any change of state; but
whenever Q invokes an operation on O;, O; returns a correct response to (2 and undergoes
an appropriate change of state.

Scenario S

1. Process @ applies the operation op; on O. Let v; be the response of O.

2. Process P applies the operation ops on O.

(When we describe a scenario as above, we mean that all steps in Item 1 strictly precede
every step in Item 2.) Note that:

1. The failure of each base object is by omission.

2. The scenario S is indistinguishable to @ from a scenario S’ in which O1,0s,...,0;
fail exactly as in S, but O¢41,0¢42,...,092 are correct. Since O is derived from a
t-tolerant implementation, the response of O to Q in $' must be correct. By definition
of f, it follows that this response is f(op1). Since S and S’ are indistinguishable to Q,
Q returns f(op1) as the response of O also in S.

3. When P applies opz on O (in Scenario S), the manner in which base objects have failed
makes it impossible for P to know whether @ previously executed any operations on
O. Thus, Scenario S is indistinguishable to P from a scenario S” in which (i) P is
the first process to invoke an operation on O, and (ii) objects Osy1, 0442, ..., O fail
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exactly as in Scenario S, but objects O1,03,...,0O; are correct. Since O is derived
from a t-tolerant implementation, the response of O to P in S” must be correct. By
definition of f, it follows that this response is f(op2). Since S is indistinguishable to
P from S”, P returns f(op2) as the response of O also in S.

By Proposition 7.1, (op1, f(op1)), (op2, f(op2)) is not legal from state s. So, the history
H of object O in Scenario S is not linearizable with respect to (7', s). Since H is a sequential
history, by the premise of the theorem, 7(H) = H. Thus, 7(H) is not linearizable with
respect to (7', s). In other words, O does not satisfy Property 3 of omission. We conclude
that the failure of O is not by omission, even though the base objects of O have failed
only by omission. This implies that Z, the implementation from which O is derived, is not
gracefully degrading for omission. O

Corollary 7.1 Let T be any t-tolerant gracefully degrading implementation of consensus,
for two processes, for omission. The resource complexity of T s at least 2t + 1.

7.2 Feasibility of achieving graceful degradation

In this section, we study the feasibility of achieving gracefully degrading implementations
for the crash and omission failure modes. We identify a large class of types and prove that
no type in this class has a fault-tolerant gracefully degrading implementation for crash. In
contrast, we show that graceful degradation for omission is achievable in a strong sense:
every type has a t-tolerant gracefully degrading implementation from every universal set of
types for omission.

7.2.1 Graceful degradation for crash

Consider a system that supports a given set S of “hardware” objects. Assume that these
objects may fail but, if they do, they are guaranteed to only fail by crash. Suppose that we
wish to implement an object O of type T using objects in S. We do not require O to be
fault-tolerant. However, if O fails because one or more objects in S fail by crash, we would
like O to fail only by crash. This last requirement is desirable for two reasons:

e The benign failure semantics of crash are desirable.

e Such an object O appears like any other hardware object of the system. In other
words, with this “software implementation” of O, the system would be no different,
in functionality and failure semantics, from one that directly supports the objects in
S U{O} in hardware.

In our terminology, we are seeking a gracefully degrading implementation of T" for crash
from the types (of the objects) in S. Unfortunately, as we show shortly, many types do
not have such implementations, even from very powerful types. This negative result implies
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that, in many cases, the simple and desirable failure semantics of crash cannot be achieved.
Our negative result applies to the class of order-sensitive types, defined below.

A type T = (OP, RES,G, 1) is order-sensitive if it is deterministic, 7 is the identity,
and there is a state s with the following property. There exist operations op, op’ (not
necessarily distinct) in OP and values u,v,u’,v’ in RES such that each of (op,u), (op’,u')
and (op’,v"), (op,v) is legal from state s of T, and u # v and ' # v'. Intuitively, when an
object O of type T is in the state s, and two processes p and ¢ invoke operations op and op’,
respectively, concurrently on O, they can both determine, based on the return values, the
order in which their operations are linearized. It is easy to see that every order-sensitive
type implements consensus for two processes.

queue is an example of an order-sensitive type. To see this, let s be the state in which
there are two elements 5 and 10 in the queue (5 at the front), and let both op and op’
be deq. Now we have u = 5, v/ = 10, v' = 5, and v = 10. Thus u # v and v’ # v/,
as required. compare&swap, consensus, stack, and test&set are some other examples of
order-sensitive types.

A type is non-order-sensitive if it is deterministic and is not order-sensitive. Examples
of non-order-sensitive types include register, sticky-bit, move, and m-m swap. Thus,
while every order-sensitive type implements consensus for two processes, not every type
that implements consensus for two processes is order-sensitive. In other words, the set of
order-sensitive types is a proper subset of the set of types that implement consensus for
two processes. (Hereafter we will refer to the latter set as CONS2.)

We now present two theorems for crash. To prevent their long proofs from interrupting
the flow, we state both theorems and discuss their implications before presenting the proofs.

Theorem 7.3 Let T be any order-sensitive type and S be any set of non-order-sensitive
types. T has no gracefully degrading implementation from S for crash.

This negative result is significant in two ways. First, it holds even though we are not
requiring the implementation to be fault-tolerant. Second, the set of non-order-sensitive
types includes some universal types, such as sticky-bit, move, and m—m swap. The above
result holds despite including such powerful types in S.

Requiring a derived object to inherit the crash failure semantics of its base objects
is even more difficult if we add the requirement that the derived object be 1-tolerant:
Even if we do not restrict the types of primitives available in the underlying system, such
implementations do not exist for many objects of interest. This is the substance of the next
theorem.

Theorem 7.4 There is no 1-tolerant gracefully degrading implementation of any order-
sensitive type for crash.

The above two theorems raise serious concerns about the “practicality” of the crash
mode: Even if “hardware” objects are designed to fail only by crash, “software” objects
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usually don’t. The omission mode does not have this severe limitation. In fact, we show
in the next subsection that, for any ¢ > 0, every type has a t-tolerant gracefully degrading
implementation from every universal set of types for omission. In other words, implementa-
tions preserving the omission failure semantics of the underlying system always exist. This
is a formal justification for adopting the omission failure mode.

We remark that there are no obvious ways to strengthen Theorem 7.4. For instance,
consider the statement “There is no 1-tolerant gracefully degrading implementation of any
type in CONS2 for crash”.1? This statement is false. In fact, even the weaker version “There
is no 1-tolerant gracefully degrading implementation of any type in CONS2 from any set
of non-order-sensitive types for crash” does not hold: We can show that sticky-bit has
a t-tolerant gracefully degrading implementation from {sticky-bit, register} for crash.
Since sticky-bit belongs to CONS2, and both sticky-bit and register are non-order-
sensitive, such an implementation is a counter-example to the above statement. The details
of this implementation are long and tedious, and are therefore omitted.

We now end Section 7.2.1 with the proofs of Theorems 7.3 and 7.4.

Proof of Theorem 7.3

Suppose that the theorem is false. Then, there is an order-sensitive type 71" which
has a gracefully degrading implementation from some set of non-order-sensitive types for
crash. For type T, let op,op’,s,u,v,u’,v’' be as in the definition of an order-sensitive type.
It follows that there is a list £ = (T1,T5,...,T,) of non-order-sensitive types and a list
Y = (s1,82,...,8,) of states (s; is a state of T;) such that (7, s) has a gracefully degrading
implementation Z from (£,X) for crash. We arrive at a contradiction after a series of
lemmas involving bivalency arguments [FLP85] and indistinguishable scenarios.

Let O = 7(01,04,...,0,), where O1,03,...,0, are objects of type T1,T5s,..., Ty,
initialized to states si,sa,...,sn, respectively. Thus, O is a (derived) object of type T,
initialized to state s. Consider the concurrent system consisting of processes p, ¢ and
the object O. In the following, we will refer to a state of the concurrent system as a
configuration. Let Cy denote a configuration in which O is in state s and processes p, g are
about to execute Apply(p,op, O) and Apply(q,op’, ), respectively.

Lemma 7.2 Suppose all base objects are correct. For any interleaving of the steps in the
complete executions of Apply(p,op,O) and Apply(q,op’, O), either Apply(p,op, O) returns

u and Apply(q,op’,O) returns u', or Apply(p,op, Q) returns v and Apply(q,op’, O) returns
!

v,

Proof 1In the linearization of the history of object O, either Apply(p,op, O) immediately
precedes Apply(q,op’, O), or Apply(q,op’,©) immediately precedes Apply(p,op,®). This,
together with the definitions of u,u’, v,v’, and the fact that T is a deterministic type, implies
the lemma. a

12This statement is stronger than Theorem 7.4 since, as remarked earlier, the set of order-sensitive types
is a proper subset of CONS2.
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Let C denote a configuration reached from Cj after some interleaving of (partial) exe-
cutions of Apply(p,op,©) and Apply(q,op’,©O). We say C is X -valent if, in the absence of
base object failures, Apply(p,op, O) returns X, no matter how the steps of Apply(p,op,O)
and Apply(g,op’,O) interleave when execution resumes from C. By Lemma 7.2, if C is
X-valent, either X = u or X =wv. C is monovalent if C is either u-valent or v-valent. C is
bivalent if it is neither u-valent nor v-valent.

Lemma 7.3 Cy is bivalent.

Proof Starting from Cp, if p completes all the steps of Apply(p,op,O) before ¢ starts
Apply(g,op’, O), then Apply(p,op, O) returns u. Thus Cy is not v-valent.

Similarly, starting from Cp, if ¢ completes all the steps of Apply(g, op’, O) before p starts
Apply(p, op, O), then Apply(q,op’, O) returns v'. Thus, by Lemma 7.2, when Apply(p, op, O)
completes, it returns v. Thus Cj is not u-valent.

Since C is neither u-valent nor v-valent, it is bivalent. O

We say C' is a reachable configuration from C if, starting from the configuration C,
there is some interleaving of the steps of p and ¢ such that C’ is the configuration at the
end of that interleaving. Given a configuration C, let C(p) denote the configuration that
results when p takes a single step of Apply(p,op, O) from C. C(q) is similarly defined.

Lemma 7.4 There is a bivalent configuration Cepyy reachable from Cy such that Cepit(p)
and Cerit(q) are both monovalent.

Proof Interleave the steps of Apply(p,op,O) and Apply(q,op’, O) as shown in Figure 17.
Since O is wait-free, the repeat ... until loop in the figure must terminate after a finite
number of iterations. Let C..;; be the value of C just when the loop terminates. It is easy
to verify that C..;; satisfies the properties required by the lemma. O

C :=Cy
repeat
if C(p) is bivalent then
C:=C(p)
if C(q) is bivalent then
C:=C(q)
until (C(p) is monovalent)A(C(gq) is monovalent)

Figure 17: Reaching a critical bivalent configuration

Since Cipit is bivalent, Cerit(p) and Cerit(g) cannot both be X-valent for the same X.
Thus, either Cgpi;(p) is u-valent and Cip.i1(q) is v-valent, or Cepiz(p) is v-valent and Cipit(q)
is u-valent. Without loss of generality, we will assume the former.
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Lemma 7.5 The enabled steps of p and q in Ceriz access the same base object.

Proof Suppose not. Then (Cerit(p))(g) and (Cerit(q))(p) are identical configurations, and
yet, the former is u-valent and the latter v-valent. This is impossible since u # v. |

Assume that Oy, is the base object mentioned in the above lemma, and Apply(p, oper, Og),
Apply(q,oper’, Oy) are the enabled steps of p and ¢ respectively in Cep;;. Since Oy is an ob-
ject of a non-order-sensitive type, either Apply(q,oper’, O) returns the same value whether
applied in Cgpiz or Cerit(p), or Apply(p, oper,Of) returns the same value whether applied in
Cerit O Cerit(q). In the following, we will deal with the former case. The latter case can be
handled similarly and is omitted.

Lemma 7.6 Consider

Scenario S1 (Starts from the configuration Ce.t)

1. Process q takes the step Apply(q,oper’,O).
2. Process p completes the execution of Apply(p,op, Q).
3. All base objects 01,02, ...,0, fail by crash.

4. Process q resumes and completes the execution of Apply(q,op’, O).
Then Apply(p,op,O) returns v and Apply(q,op’, O) returns v'.

Proof Since ¢ takes the step from Cepit, and Ceriz(¢) is v-valent, and no base object failures
occur before p completes the execution of Apply(p,op, Q) in Item 2, Apply(p, op, O) returns
v in Item 2 of the scenario.

Suppose Apply(g,op’, O) returns L. Since 7 is gracefully degrading, O must either be
correct or fail by crash. Given that Apply(p,op, Q) returns a non-_L response, this requires
that Apply(p, op, O) precedes Apply(gq,op’, O) in the linearization order. Doing so, however,
implies that (op,v) is legal from state s of 7. This is false since (op,u) is the only sequence
legal from state s of T', and v # u. Thus Apply(q,op’, O) cannot return L.

Suppose Apply(g,op’, O) returns w, where | # w # v'. Since in the linearization, either

Apply(p,op, O) precedes Apply(q,op’,O), or Apply(q,op’, O) precedes Apply(p,op,0), it
follows that either (op,v),(op’,w) or (op’,w),(op,v) is legal from state s of T. This is false
since (op,u),(op’,u’) and (op',v'),(op,v) are the only sequences legal from state s of T', and

u#v, w#v £
We conclude that Apply(q, op’, ©) must return v'. O

Lemma 7.7 Consider

Scenario S2 (Starts from the configuration Ceyt)

1. Process p takes the step Apply(p,oper,Og).
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2. Process q takes the step Apply(q,oper’,Oy).
3. Process p resumes and completes the execution of Apply(p,op,O).

4. All base objects 01,04, ...,0y fail by crash.

5. Process q resumes and completes the execution of Apply(q,op’, O).

Then Apply(p,op, Q) returns v and Apply(q,op’, O) returns v'.

Proof Since p takes the step from Ceriz, Cerit(p) is u-valent, and no base object failures
occur before p completes the execution of Apply(p,op,O) in Item 3, Apply(p, op, O) returns
v in Item 3 of the scenario. Since S2a2,S1, Apply(g,op’, O) returns v’ as in S1. O

Neither (op,u),(op’,v") nor (op’,v'),(op,u) is legal from state s of T. Hence, the exe-
cution in Lemma 7.7 is not linearizable. Thus, the failure of O in S2 is not by crash. We
conclude that Z is not a gracefully degrading implementation for crash, a contradiction.
This concludes the proof of Theorem 7.3. O

Proof of Theorem 7.4

Suppose that the theorem is false. Then, there is an order-sensitive type 7" which has a
1-tolerant gracefully degrading implementation for crash. For type T, let op, 0p’, s, u,v,u', v’
be as in the definition of an order-sensitive type. It follows that there is a list £ =
(T1,Ts,...,Ty) of types and a list A = (s1,82,...,8,) of states (s; is a state of T;) such
that (T, s) has a 1-tolerant gracefully degrading implementation Z from (£, A) for crash.
We arrive at a contradiction after a series of lemmas involving indistinguishable scenarios.

Let O = 7(01,03,...0,), where O1,03,...,0, are objects of type T1,Ts,..., T,
initialized to states si,s2,...,sn, respectively. Thus, O is a (derived) object of type T,
initialized to state s. Consider the concurrent system consisting of processes p, ¢ and the
object O. Suppose that O is in state s, and p, ¢ are about to execute Apply(p,op,O) and
Apply(q,op’, O), respectively.

Lemma 7.8 Suppose all base objects are correct. For any interleaving of the steps in the
complete executions of Apply(p,op,O) and Apply(q,op’, O), either Apply(p,op, O) returns
u and Apply(q,op’,O) returns u', or Apply(p,op, Q) returns v and Apply(q,op’, Q) returns

v

Proof Same as Lemma 7.2. O

Lemma 7.9 There exists a (possibly empty) sequence X of steps of p and a step o of p
such that the following Scenarios S1 and S2 are possible.

Scenario S1 (scenario starts with O in state s)

1. Process p initiates and partially executes Apply(p,op, O) by completing the steps in
3.
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2. Process q initiates and completes (all the steps of) Apply(q,op’, O), returning v'.

3. p completes the remaining steps of Apply(p,op,O), returning v.
Scenario S2 (scenario starts with O in state s)

1. p initiates and (partially) ezecutes Apply(p,op, Q) by completing the steps in X - 0.
2. q initiates and completes (all the steps of) Apply(q,op’, O), returning u'.

3. p completes the remaining steps of Apply(p,op, O), returning .

Proof Clearly, if process p executes no steps of Apply(p,op, Q) before process ¢ initiates
and completes Apply(q,op’, O), then Apply(q, op’, ©) must return v'. Further, if p initiates
and completes all the steps of Apply(p,op,O) (let T' be this sequence of steps) before ¢
initiates and completes Apply(q,op’,0), then Apply(g,op’,O) must return u'. Together
with Lemma 7.8 by which Apply(g,op’, ©) must return either u' or v, the above implies
that there exists a sequence X of steps and a step o such that X - ¢ is a prefix of I" for which
the lemma holds. O

Hereafter we will assume Oy, is the base object accessed by p in step o.

Lemma 7.10 Consider

Scenario S3 (scenario starts with O in state s)

1. p initiates and (partially) ezecutes Apply(p,op,O) by completing the steps in X - o.
2. q initiates and completes (all the steps of) Apply(q,op’, O), returning v’ (as in S2).
8. 01,0, ...,0, fail by crash.

4. p completes the remaining steps of Apply(p,op, O).
Then Apply(p,op, O) returns u.

Proof Suppose Apply(p,op,O) returns L. Since 7 is gracefully degrading, O must either be
correct or fail by crash. This requires, given that Apply(q, op’, O) returns a non-_L response,
that Apply(q,op’, O) precedes Apply(p, op, Q) in the linearization order. Doing so, however,
implies that (op', ') is legal from state s of T'. This is false since v’ # v/, T is deterministic,
and (op’,v') is legal from state s of T. Thus Apply(p,op,O) cannot return L.

Suppose Apply(p,op, O) returns w where L # w # u. Since in the linearization, either
Apply(p, op, O) precedes Apply(q,op’,O) or Apply(q,op’,O) precedes Apply(p,op, ), it
follows that either (op,w),(op’,u') or (op',u’),(op,w) is legal from state s of T'. This is false
since (op,u),(op’,u') and (op’,v'),(op,v) are the only sequences legal from state s of T', and

w#u, u #v.

We conclude that Apply(p, op, O) must return w. m|
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Lemma 7.11 Consider
Scenario S4 (scenario starts with O in state s)
1. p initiates and (partially) executes Apply(p,op, Q) by completing the steps in X - o.
2. Oy, fails by crash.
3. q initiates and completes (all the steps of) Apply(q,op’, O).
4. O1,...,0k_1 and Ogy1,...,0n also fail by crash.

5. p completes the remaining steps of Apply(p,op, O).

Then Apply(p, op, O) returns u and Apply(q,op’, O) returns u'.

Proof Clearly, S4~,S3. Therefore, as in S3, Apply(p, op, O) returns u in S4. Since 7 is 1-
tolerant, and since only Oy, has failed by the completion of Apply(q, op’, O), Apply(q, op’, O)
must return a non-L response. From the definitions of u,u',v, and v/, it is easy to verify
that the only non-_L response that satisfies linearizability is u’'. O

Lemma 7.12 Consider

Scenario S5 (scenario starts with O in state s)

1. p initiates and partially executes Apply(p,op, O) by completing the steps in X.
2. Oy, fails by crash.

3. q initiates and completes (all the steps of) Apply(q,op’, O).

4. O1,...,0k_1 and Ogy1,...,0n also fail by crash.
5.

p completes the remaining steps of Apply(p,op, O).

Then Apply(p,op, O) returns u.

Proof Clearly S5~,S4. Therefore Apply(q,op’,O) returns «’ as in S4. By arguments
similar to those in Lemma, 7.10, it can be shown that Apply(p, op, O) returns u. a

Lemma 7.13 Consider

Scenario S6 (scenario starts with O in state s)

1. p initiates and partially executes Apply(p,op, D) by completing the steps in X.
2. q initiates and completes (all the steps of) Apply(q,op’, O).
3. All base objects O1,0a, ...,0, fail by crash.

58



4. p completes the remaining steps of Apply(p,op,O).
Then Apply(p,op, Q) returns u, and Apply(q,op’, O) returns v'.

Proof Since S6 ~,, S5, Apply(p, op, O) returns u as in S5. Since S6 ~, S1, Apply(g,op’, O)
returns v’ as in S1. O

Neither (op,u),(op’,v") nor (op',v'),(op,u) is legal from state s of T. Hence the ex-
ecution in Lemma 7.13 is not linearizable. Thus the failure of O in S6 is not by crash.
We conclude that 7 is not a gracefully degrading implementation for crash, a contradiction
which concludes the proof of Theorem 7.4. O

7.2.2 Graceful degradation for omission

In this subsection, we study the feasibility of achieving gracefully degrading implementations
for omission. In this subsection, if we make a statement and omit to mention the failure
mode in consideration, the failure mode is understood to be omission.

A set S of types is universal if every type has an implementation from S. An example
of such a set is {consensus with safe-reset, register} [Her91b]. The main result of
this section is the graceful degradation theorem for omission, stated as follows: Every type
has a t-tolerant gracefully degrading implementation from every universal set of types for
omission. We prove this result through three key lemmas. Below, we list these lemmas and
explain how they are used in proving the main result.

e Lemma 7.1} Every O-tolerant implementation can be transformed into a 0-tolerant
implementation which is gracefully degrading for omission.

e Lemma 7.18 register has a t-tolerant gracefully degrading self-implementation for
omission.

e Lemma 7.19 consensus with safe-reset has a t-tolerant gracefully degrading
implementation from {consensus with safe-reset, register} for omission.

We now explain the steps involved in obtaining the graceful degradation theorem for omis-
sion. Figures 18 and 19 depict these steps.

Step 1. Every type has a 0-tolerant implementation from {register, consensus with
safe-reset}.

This follows from Herlihy’s universality result [Her91b].

Step 2. Every type has a 0-tolerant gracefully degrading implementation from {register,
consensus with safe-reset}.

This follows from Step 1 and Lemma 7.14.
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generic type generic type

e

register consensus with safe-reset register consensus with safe-reset
Step 1: O-tolerant Step 2: 0O-tolerant gracefully degrading
register consensus with safe-reset
register register consensus with safe-reset
Step 3: t-tolerant gracefully degrading Step 4: t-tolerant gracefully degrading
imply

generic type

register consensus with safe-reset

t-tolerant gracefully degrading

Figure 18: First steps in the derivation of the graceful degradation theorem for omission
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generic type

register consensus with safe-reset

t-tolerant gracefully degrading

register consensus with safe-reset
universal set of types universal set of types
Step 5: 0-tolerant gracefully degrading Step 6: O-tolerant gracefully degrading
imply

generic type

universal set of types

t-tolerant gracefully degrading

Figure 19: Later steps in the derivation of the graceful degradation theorem for omission
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Step 3. register has a t-tolerant gracefully degrading self-implementation. This is
Lemma 7.18.

Step 4. consensus with safe-reset has a ¢-tolerant gracefully degrading implemen-
tation from {register, consensus with safe-reset}. This is Lemma 7.19.

From Steps 2, 3, and 4, and Corollary 4.1, we conclude that every type has a t-tolerant
gracefully degrading implementation from {register, consensus with safe-reset} for
omission. From this conclusion, Steps 5 and 6 below, and the compositional lemma (Lemma
4.1), we have the main theorem: Every type has a t¢-tolerant gracefully degrading imple-
mentation from every universal list of types for omission.

Step 5. register has a O-tolerant gracefully degrading implementation from any uni-
versal set of types.

By definition of a universal set of types, register has a O-tolerant implementation
from such a set. This, together with Lemma 7.14, implies Step 5.

Step 6. consensus with safe-reset has a O-tolerant gracefully degrading implemen-
tation from any universal set of types.

The reasoning is the same as for Step 5.

We now prove the three lemmas mentioned above.

A transformation to realize graceful degradation

We present a transformation G such that if 7 is any 0-tolerant implementation, then G(Z) is
a 0-tolerant implementation which is gracefully degrading for omission. For all implementa-
tions Z, G(Z) is obtained as follows. Let O be a derived object of G(Z). A process P applies
an operation op on O as in the implementation 7. However, as P executes the procedure
to apply op on O, if some base object of O returns | to P, P immediately terminates its
operation on O and returns L as the response of O to op.

Lemma 7.14 Let T be a type, s be a state of T', and Z be a 0-tolerant implementation of
(T,s) from (L,X), for processes Py, ..., Py. Then, G(Z) is a O-tolerant gracefully degrading
implementation of (T,s) from (L,X), for processes Py, ..., Py, for omission.

Proof Sketch In the absence of base object failures, it is obvious that a derived object of
G(Z) behaves identically as a derived object of Z. Since 7 is a 0O-tolerant implementation of
(T, s), it follows that G(Z) is also a O-tolerant implementation of (7, s). We now show that
G(Z) is gracefully degrading for omission. In the following, let T'= (OP, RES,G,T).

Let O be a derived object of G(Z). Let E be an execution of (Pi,..., Py; Q) in which
(i) one or more base objects of O fail, (ii) each base object that fails, fails by omission, and
(iii) if a process gets the response L from O, that process does not subsequently invoke an
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operation on O. We claim that if O fails in F, it fails by omission. This claim implies that
G(Z) is gracefully degrading for omission. To prove the claim, we must show that all three
properties stated in the definition of omission hold for O in the execution E. Property 2,
that every response of O is from RESU{L}, is obvious. We verify Properties 1 and 3 below.

Let H(FE) denote the history in execution E. Let Hppoe = H(E)|{P1,..., Py}, the
subsequence of H (E) consisting of the events of processes. Thus, Hpoc contains the internal
events of processes, invocations of processes on O and on the base objects of O, and the
responses from O and from the base objects of 0.3 Construct a sequence Hy, e from Hyproc
as follows: for all response events e which correspond to a base object O returning L to a
process P, replace e with Crash(P) and remove all events of P following e. Intuitively, by
transforming Hpyoe t0 H,,o, We “shift the blame” from the base object O, by stopping O
from returning | to P, to the process P, by crashing P after P’s invocation on O. We claim
that there exists an execution E' of (Py, ..., Py; O) such that H,,,. = H(E')|{P1,...,Py}.
(We leave the proof of this claim to the reader.)

We make two claims below which, together, imply that each base object of O is correct
in the execution E’. The justification of each claim follows its statement. We write H (F, O)
to denote the subsequence of events in F, consisting of only invocations on O and responses
from O.

e Each base object O is well-behaved in E’.

We assumed earlier that either O is correct in E or O fails by omission in £. Suppose
that O is correct in E. Then, from the definition of E', H(FE,O) = H(E',O). Thus,
O is correct also in E’. In particular, O is well-behaved in E’.

Suppose that O fails by omission in E. Let H'(E,O) be the history obtained by
removing response events associated with the aborted operations in H(F,O). By
Property 3 of omission, 7(H'(E,O)) is linearizable with respect to (7”,s'), where T" is
the type of O and s’ is the state of T" to which O was initialized. From the definition of
E', observe that H(E',O) = H'(E,O). It follows that 7(H (E’,0)) is also linearizable
with respect to (77, s'). That is, O is well-behaved in E'.

e Each base object O is wait-free in E'.

We assumed earlier that either O is correct in E or O fails by omission in E. Suppose
that O is correct in E. Then, from the definition of E', H(F,0) = H(E',0). Thus,
O is correct also in E'. In particular, O is wait-free in E’.

Suppose that O fails by omission in E. By Property 1 of omission, O is wait-free in
E. From the definition of E’, observe that if O responds to an invocation by a process
P in E, but does not respond to the corresponding invocation by process P in E’,
then P is crashed in E’'. From the above, we conclude that O is wait-free in E’.

3Recall that O = (Fi,..., Fn;O1,...,0uM) where Fi,. .., Fy are the front-ends and O1,...,Ox are the
base objects of O. Thus, strictly speaking, if Hyroc = Hg|{P1,..., Pn}, Hproc does not contain invocations
on O;’s or responses from O;’s. However, in this proof sketch, we will refer to the events of F; as the events
of P;. Thus, Hp,o. contains the events of P;’s and also the events of F;’s.
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Thus, all base objects are correct in E’. Tt follows that O is correct in E'. In particular,
O is wait-free and well-behaved in E'.

We now argue that O is wait-free in F. Assume, for a contradiction, that it is not.
Then, £ is infinite and there is a process P such that P is correct in £ and P has an
incomplete operation on O in E. We claim that, in £, P did not receive the response L
from any base object of O. Because, if it did, P would return L as the response of O
and would not subsequently invoke an operation on O; thus, P would have no incomplete
operation on O in F, a contradiction. Thus, in F, P is correct, P never receives | from any
base object of O, and P has an incomplete operation on O. From this and the definition
of E', P is correct in E' and P has an incomplete operation on @ in E'. Furthermore,
since F is infinite, so is E’'. The above two facts imply that O is not wait-free in E’. This
contradicts the conclusion reached in the previous paragraph. Thus, O is wait-free in £
and, consequently, Property 1 of omission holds for O in E.

Let H'(E,O) be the history obtained by removing response events associated with
the aborted operations in H(E, ). From the definition of E’, observe that H(E',O) =
H'(FE,0). We already concluded that O is well-behaved in E’'; that is, 7(H(E',O)) is
linearizable with respect to (T,s). It follows that 7(H'(E,Q)) is also linearizable with
respect to (7, s). The latter implies that Property 3 of omission holds for @ in E. This
completes the proof of the lemma. O

Graceful degradation for register

We show that register has a t-tolerant gracefully degrading self-implementation for omis-
sion. The following are the steps involved.

S1. We present a 1-tolerant gracefully degrading self-implementation of 1-reader 1-writer
safe register.

S2. As mentioned before, it is known that there is a 0-tolerant implementation of register
from 1-reader 1-writer safe register. It follows from Lemma 7.14 that there is a
0-tolerant gracefully degrading implementation of register from 1-reader 1-writer
safe register.

S3. Combining the results in Steps S1 and S2 with Corollary 4.1, we obtain a 1-tolerant
gracefully degrading self-implementation of register. By Booster Lemma, this can
be turned into a ¢-tolerant gracefully degrading self-implementation of register.

Figure 20 presents a 1-tolerant gracefully degrading self-implementation of 1-reader
l-writer safe register. The implementation uses four base registers. The reader pro-
cess P, maintains a local variable FAILED, to remember the faulty base registers it has so
far encountered. The writer process P, similarly maintains FAILED,,. To read the derived
register, P, reads each base register that has so far not appeared faulty to it. It adds base
registers that return | to the set FAILED, and collects the responses from other base reg-
isters in the multi-set ValuesRead. If, at the end, P, has detected two or more base registers

64



Ri, Ry, R3, R4: 1-reader 1-writer safe register, initialized to
the same value as the initial value of the derived register
FAILED,,: set, local to the writer process P, initialized to 0
FAILED,: set, local to the reader process P,, initialized to
ValuesRead: multi-set, local to P,

Apply(P,,read, R) Apply(Py, write v,R)
ValuesRead := 0 fori:=1to4
for i :=1to4 if R, ¢ FAILED,, then
if R, ¢ FAILED, then resp := write(Py, v, R;)
resp := read(P,, R;) if resp = L then
if resp = L then FAILED,, := FAILED, U{R;}
FAILED, := FAILED, U {R;} if |[FAILED,| > 2 then
else ValuesRead := ValuesRead U {resp} return L
if |FAILED,| > 2 then else return ack
return L

else return mode( ValuesRead)

Figure 20: 1-tolerant gracefully degrading self-implementation of 1-reader 1-writer safe
register for omission
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to be faulty, it returns L. Otherwise it returns mode( ValuesRead), a value that occurs at
least as many times in ValuesRead as any other value. To write a value v in the derived
register, the writer process P, writes v in each base register that has so far not appeared
faulty to it. Like P,, P, also adds base registers that return L to the set FAILED,,. If, at
the end, P, has detected two or more base registers to be faulty, it returns L. Otherwise
it returns ack.

We now prove that the implementation is correct. Consider the concurrent system
S = (P, Py;R), where R is a derived object of the implementation. Let Rj, R2, R3, and
R4 be the base objects of R. We present two lemmas below. The first proves that it
is a gracefully degrading implementation of 1-reader 1-writer safe register, and the
second proves that it is 1-tolerant.

Lemma 7.15 Let FE be any execution of S which satisfies the following.

A1l. P, invokes only Read operations on R and P, invokes only Write operations on R.

A2. If a process (P, or P,) gets the response L from R, it does not subsequently invoke
an operation on R.

A3. If a base object of R fails, it fails by omission.
Then, if R fails in E, it fails by omission.

Proof 'To prove the lemma, it suffices to show that R satisfies Properties 1, 2, and 3 of
omission in F. By A3, each base object of R either fails by omission or is correct in E. It
follows that each base object is wait-free in F. From this and the implementation, it is easy
to see that R is wait-free in E. Thus, R satisfies Property 1 of omission in . Property 2
of omission, that every response from R is either L or from RES, is obvious. Below, we
verify that R satisfies Property 3 of omission in E.

Let H be the history of R in E. Let H' be obtained by removing response events in
H that return L. (As a result, a read operation r and a write operation w, which are not
concurrent in H, may become concurrent in H'. This will happen if w returned L and w
preceded r in H.) To verify that R satisfies Property 3 of omission in E, it suffices to show
that, in the history H', every complete read operation, which is not concurrent with a write
operation, returns the most recent value written.

Let r be any complete read operation in H' that is not concurrent with a write operation
in H'. Let V be the response returned by r. Let Apply(P,, write V', R), denoted by w, be
the latest write operation in H' that precedes r. By construction of H' and the fact that r
and w are complete operations in H', we have (i) V # L and (ii) w returned ack (as opposed
to L). Let F; be the value of FAILED, at the end of the read operation r in E. Since r
returned V' # L, it follows from the implementation that |Fy| < 1. Let F be the value of
FAILED,, at the end of w. Since w returned ack, it follows from the implementation that
|Fw| < 1. Let S = {R1, R, R3, R4} — (Fr U Fy). The above implies that either [S| > 2 or
F: =1 and |S| = 2. Also, when the reader P, reads a register R € S during the execution
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of r, it is obvious that R returns V'. Therefore, at the end of r, either V' occurs at least
three times in ValuesRead, or V' occurs exactly twice in ValuesRead and Fy = 1. In either
case, at the end of r, mode( ValuesRead) = V'. Hence r returns V'. We conclude that
V = V'. In other words, every complete read operation in H', which is not concurrent with
a write operation in H', returns the most recent value written. This verifies that R satisfies
Property 3 of omission in £. Hence the lemma. O

Lemma 7.16 Let E be any execution of S which satisfies conditions A1, A2, and A3
listed in the previous lemma. Additionally, assume that at most one base object of R fauls
m E. Then, R is correct in E.

Proof We have to show that R is well-behaved and wait-free in £. Consider any complete
read operation r in F that is not concurrent with a write operation. Let Apply(P,, write V,R)
be the latest write operation in E that precedes r. Since at most one base object fails, it is
obvious that P, reads V from at least three base registers during the execution of r. Hence
the value returned by the read operation r is V. This implies that R is well-behaved in FE.

Each base register R; either fails by omission or is correct in E. In either case, R; is
wait-free in F. From this and the implementation, it is obvious that R is wait-free in £. O

Lemma 7.17 Figure 20 presents a 1-tolerant gracefully degrading self-tmplementation of
l-reader l-writer safe register for omission.

Proof Immediate from Lemmas 7.15 and 7.16. O

By the reasoning presented in Steps S1, S2, and S3 earlier, we have:

Lemma 7.18 register has a t-tolerant gracefully degrading self-implementation for omais-
ston.

Graceful degradation for consensus with safe-reset

We present a t-tolerant gracefully degrading implementation of consensus with safe-reset
from {consensus with safe-reset, register} for omission. This implementation is sim-
ilar to, but more complex than, the ¢-tolerant gracefully degrading self-implementation of
consensus presented earlier in Figure 16. The added complexity is due to the fact that a
reset operation has to be supported.

To understand the difficulty in supporting the reset operation, we first extend the
implementation in Figure 16 in the obvious manner and show why it does not work. First,
assume that the base objects O1,02,...,021 are not just consensus objects, but are
consensus-with-safe-reset objects. Second, implement Reset (P, D), a reset of the derived
object O by Process P, by resetting each base object of O. If no more than ¢ base objects
return |, P returns ack; otherwise, P returns 1. Assume that the implementation of the
propose operation on O remains as in Figure 16. Unfortunately, the above implementation is
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not correct. To see this, suppose that the steps of processes P and () interleave in the order
described below. Process P wishes to reset O and begins the execution of Reset(P,0). As
P resets each base object of O, assume that each of 0103, ...,09; is correct and returns ack
to P, but Og41 fails by omission and returns L to P. P completes Reset(P, O), returning
ack. Process @ wishes to propose 0 to O and begins the execution of Propose(P,0,0). As
Q@ proposes 0 to each base object, each of O1,0a3,...,09, being correct, returns 0 to P.
Therefore, at the end of 2¢ iterations of the for-loop in Figure 16, estimate; = 0. Thus, in
the last iteration of the for-loop, @) proposes 0 to Os:+1. Since O2;41 has failed by omission,
it behaves as if the aborted reset operation of P on Og;4+1 were an incomplete operation (see
Property 3 of omission failure). Thus, from Og;1’s point of view, the propose operation
by @ on Og;41 is concurrent with the “incomplete” reset operation by P on Ogz;11. Recall
that a consensus-with-safe-reset object may return arbitrary responses to operations if any
operation is concurrent with a reset. Thus, the response from Og;41 to the propose operation
by @ is arbitrary. Assume that this response is 1. From Figure 16, it is clear that estimateg
changes to 1 and @ terminates Propose(P,0,0), returning 1. This violates the validity
property of O: O returned 1 to Q even though no process proposed 1 to O. We conclude
that the implementation is not even 1-tolerant.

Before presenting the correct implementation, we state two propositions that charac-
terize the type consensus with safe-reset. These propositions will be useful when we
prove the correctness of our implementation. For ease of stating the propositions, we need
some definitions.

In the following, let O be an object of type consensus with safe-reset, initialized to
the uncommitted state. Let E be an execution of (Py, P, ..., Py;O). As just mentioned, if
a reset overlaps with any other operation, including another reset operation, O can behave
in an unrestricted manner, though still responsive. This leads us to define ¢(F) to be the
maximal prefix of £ in which a reset operation is not concurrent with any other operation.

e Object O satisfies integrity in F if and only if every response from O to a propose
operation in ¢(F) is either 0 or 1, and every response from O to a reset operation in
o(E) is ack.

e Object O satisfies weak integrity in E if and only if every response from O to a propose
operation in ¢(E) is either 0, 1, or L, and every response from O to a reset operation
in ¢(E) is either ack or L.

An epoch of O in E is any of the following: (i) a subsequence of ¢(F) beginning with
the event immediately following the response of a reset operation to the event immediately
preceding the invocation of the next reset operation, or (ii) the prefix of ¢(E) up to the
event immediately preceding the first invocation of reset, or (iii) the suffix of ¢(F) ranging
from the the event immediately following the response of the last reset in @¢(FE). Notice
that there may be several epochs of O in E. An epoch is clean if every operation (reset
or propose) that precedes the epoch returns a non-_L response. Thus, all operations which
complete before the start of a clean epoch return non-_1 responses. Notice that if O satisfies
integrity in E, then every epoch of O in F is clean.
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e Object O satisfies epoch-validity in F if and only if the following holds. If O returns
a response v to a propose operation in some clean epoch and v € {0,1}, then there is
an invocation of propose v on O, in the same epoch, preceding this response.

e Object O satisfies epoch-agreementin E if and only if the following holds. If O returns
v1,v2 t0 two propose operations in some clean epoch and vy,v € {0,1}, then v1 = va.
(By this definition, if O returns 0 to some processes and L to all others, it still satisfies
epoch-agreement.)

Notice how these definitions generalize the ones in Section 5.1.1. The propositions below
follow easily from the specification of consensus with safe-reset, and the definitions of
linearizability and omission failures. These propositions are similar to Propositions 5.1 and
5.2.

Proposition 7.2 Let O be an object of type consensus with safe-reset and let E be an
execution of (Py, Pa,...,Py;O). Object O is correct in E if and only if O is wait-free in E
and satisfies integrity, epoch-validity, and epoch-agreement in E.

Proposition 7.3 Let O be an object of type consensus with safe-reset and let E be an
execution of (Pi, Pa,...,Pn;O) in which O fails. Object O fails by omission in E if and
only if it 1s wait-free in E and satisfies weak-integrity, epoch-validity, and epoch-agreement
m E.

Figure 21 presents a t-tolerant gracefully degrading implementation of consensus with
safe-reset from {consensus with safe-reset, register} for omission. The implemen-
tation uses 2t + 1 consensus-with-safe-reset objects (01,02, ...,0241) and 2t + 1 t-tolerant
gracefully degrading boolean registers (Ri1,Ra,...,Rort+1). (By Lemma 7.18, R;’s can be
implemented from registers.) The register R; is set to 1 if any process detects O; to be
faulty, i.e., if any process obtains the response L from O,. The following is an important
running feature of our implementation: If, during the execution of an operation on the de-
rived object O, a process P gets a response of L from any R;, P returns L as the response
of O. This is justified on the basis that R; is t-tolerant, and thus, more than ¢ base objects
of R; must have failed for R; to fail. Since O needs to be only ¢-tolerant, @ may fail and
return L if more than ¢ base objects of O fail, or equivalently, if any R; fails. We now
describe the procedures Reset(P;, O) and Propose(F;, v;, 0).

To reset O, a process P; first reads all Ry’s and collects the identities of the faulty ob-
jectsamong {O1,0a,...,021}. P; then resets each non-faulty object in {O1,0Os,...,0241}.
If, during this resetting, an object Oy responds with L to P;, P; writes 1 in Ry to record
the fact that Oy is faulty. At the end of this, P; returns with the response ack.

To propose v; to O, a process P; first reads all R;’s and collects the identities of the
faulty objects among {O71,03,...,024+1}. With a few minor differences, the rest of the
implementation parallels the one in Figure 16. At any point in the algorithm, P; holds an
estimate of the eventual return value in estimate;. To start with, estimate; is set to v;.
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Ri1,Ray...,Ratt1: t-tolerant gracefully degrading boolean registers, initialized to 0
01,03,...,02:41: (0-tolerant) consensus-with-safe-reset objects

Procedure Propose(P;, v;, O)
Vi[l...2t + 1], estimate;, resp, k,
set-of-failed: local to P;
begin
estimate; := v;
set-of-failed :== ()
for k:=1to2t+1
resp := Read(P;, Rx)
if resp = L then
return 1
else if resp = 1 then
set-of-failed := set-of-failed U {O}
for k:=1to2t+1
if Oy € set-of-failed then
Vilk] := L
else
resp := propose(FP;, estimate;, O)
if resp = L then
resp := Write(P;, 1, Rx)
if resp = L then
return L
else if resp # estimate; then
estimate; := resp
Vil...(k—1)] :== (L, L,...,1)
if V; has more than ¢ L’s then
return L
else return estimate;
end

Procedure Reset(P;,O)
set-of-failed, resp, k: local to P;
begin
set-of-failed :== ()
for k:=1to2t+1
resp := Read(P;, Ri)
if resp = L then
return L
else if resp = 1 then
set-of-failed := set-of-failed U {O}
fork:=1to2t+1
if Oy, ¢ set-of-failed then
resp := reset(P;,O)
if resp = L then
resp := Write(P;, 1, Rx)
if resp = L then
return L
return ack
end

Figure 21: t-tolerant gracefully degrading implementation of consensus with safe-reset
for omission

P; then goes through O1,03,...,0241, in that order, and performs the following steps on
each of them. If Oy is known to be faulty, P; does not access Oy; it simply pretends that
Oy, returned L. Otherwise, P; proposes its current estimate to Oy. If O returns a non-_L
response, P; proceeds exactly as in Figure 16. If O returns L, P; writes 1 in Ry to record
the fact that Oy is faulty. After going through all of O1,0a,...,094+1, P; applies the same
rules as in Figure 16 to compute the return value.

Lemma 7.19 Figure 21 presents a t-tolerant gracefully degrading implementation of
consensus with safe-reset from {consensus with safe-reset, register} for
0MiSSION.

Proof Let R; (1 < i < 2t+ 1) be a derived object of the ¢-tolerant gracefully degrad-
ing implementation of register (such an implementation exists by Lemma 7.18). Let
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R;1,R;2,...,R;m be the base registers of R;. Let O be derived from the implementation
in Figure 21 using O1,02,...,09:41 and R1,Ra,...,Ratr1. Thus, O1,09,...,09:41 and
Rij (1 <i<2t+1,1<j < m)are the base objects of O. Consider an execution E of
(P1, Ps,...,Py;0O) in which all base objects that fail, fail by omission. Let £ be a clean
epoch of O in E. Let FAILED(E) be the set of all O; (1 < j < 2t + 1) such that some
process had written 1 in R; before epoch £ started. Thus, FAILED(E) is the subset of
{01,0a4,...,09:11} that failed before the start of £. We make the following observations.

O1. For each base object O € {O1,04,...,094+1} — FAILED(E), £ is a clean epoch of O.
02. In epoch &, no process invokes an operation on a base object in FAILED(E).

03. In the execution of Propose(P;,v;, D), at the end of the kt* iteration of the for-loop
(1< k<2t+1), estimate; € {0,1}, and V;[1..k] contains only L’s and estimate;’s.

We now use these observations to show that O satisfies the required properties in F.

1. O is wait-free: Recall that base objects that fail by omission remain wait-free. From
this and the implementation, it is obvious that O is wait-free.

2. O satisfies epoch-validity: Suppose that an execution of Propose(P;,v;, Q) in epoch
€ returns v € {0,1}. (Let e, denote the event of completion of this execution.) It
follows that, during this execution, some base object O; returns v to P; when P; per-
forms propose(P;, estimate;, O;). Let ef denote the first response event in £ in which
a base object among {O1,Os,...,0241} returns the response v. Let O be the base
object associated with the event e;. By 02, Of € {O1,02,...,02:41} — FAILED(E).
By O1, £ is a clean epoch of Of. Since Oy either is correct or fails by omission, by
Propositions 7.2 and 7.3, Oy satisfies epoch-validity. That is, there is an invocation of
propose(FP;,v,05) in £ before the response event e¢. From the implementation and
the definition of e, this invocation of propose(F;,v,Oy) is possible only during the
execution of Propose(P;,v,0). Thus, the invocation of Propose(FP;,v,O) precedes
the invocation of propose(P;,v,0f), which, in turn, precedes ef. Furthermore, e
precedes ee;. This implies that the invocation of Propose(F, v, O) precedes e,.;. We
conclude that O satisfies epoch-validity in F.

3. O satisfies epoch-agreement: Suppose that, in £, there is an execution of Propose(F;, v;, O)
and one of Propose(Pj,v;,0), which return 0 and 1, respectively. We will refer to
these executions as exec! and ezec2. From O3 and the implementation, it follows that
V; has at least ¢ + 1 0’s at the end of execl. Similarly, V; has at least ¢t +1 1’s at the
end of ezec2. This implies that there is a k& (1 < k < 2¢ + 1) such that O returns 0
when P; performs propose(F;, estimate;, Oy) in ezecl and returns 1 when P; performs
propose(P;, estimate;, Og) in exec2. By 02, Oy € {O1,0a,...,0011} — FAILED(E).
It follows from O1 that £ is a clean epoch for Oy. Since Oy, either is correct or fails
by omission, by Propositions 7.2 and 7.3, Oy, satisfies epoch-agreement. This contra-
dicts the earlier conclusion that Oy returns 0 to P; and 1 to P;. We conclude that O
satisfies epoch-agreement in E.
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4. O satisfies weak integrity: Obvious.

5. O satisfies integrity if at most ¢ base objects fail: Suppose that no more than ¢ base
objects of O fail. For all j, 1 < j <2t + 1, since R; is t-tolerant, R; will be correct.
It follows from the implementation that every reset operation on O in E returns ack.
We now make some observations to show that every propose operation on O in ¢(E)
returns either 0 or 1. In the following, let £ be any (not necessarily clean) epoch of
Oin E.

(a) Let O, ,0ky,-..,0k (k1 < k2 < ... < ki) be all the base objects among
{01,0a3,...,02441} which are correct in E. Since at most ¢ fail, we have [ > ¢t+1.

(b) From the fact that Oy, is correct in F, it is easy to verify that £ is a clean epoch
for O,. Since Oy, is correct and & is a clean epoch for Og,, by Proposition
7.2, Oy, satisfies integrity and epoch-agreement in epoch £. Thus, there is a
v € {0,1} such that every propose operation on Oy, in epoch & returns v. This
implies that, for every execution of Propose(F;,v;,0) in &, estimate; = v at the
end of k; iterations of the for-loop.

(c) Forall 1 < j <, Oy, is correct in E. From this, it is easy to verify that £ is
a clean epoch for Ok].. Since Ok]. is correct and £ is a clean epoch for Ok]., by
Proposition 7.2, Oy, satisfies integrity, epoch-validity, and epoch-agreement in
epoch €. In particular, if every process that proposes to O, in epoch £ proposes
the value v, then Ok]. returns only v in €.

(d) Let 0Oj € {01,02,...,0241} — {Ok,, Ok, . . -,Okl}- By definition, Oj fails by
omission in F, returning | to some process. Let P be the first process to receive
L from O; and let oper denote the execution of P’s operation on the derived
object O during which P received L from O;. Consider the following two cases.
In the first case, assume that O; returned L to P before epoch £ started. Since £
is a clean epoch, it follows that oper completed before £ started. This implies that
P wrote 1 in R; before the start of epoch £. It follows from the implementation
that no process invokes an operation on O; in epoch £. In the second case,
assume that O; never returned L to any process before the start of epoch &£.
Then, it is easy to see that £ is a clean epoch for O;. Thus, by Proposition 7.3,
if every process that proposes to O; in epoch &£ proposes the value v, O; returns
either v or L in &.

Consider any execution of Propose(PF;, v;,O) in epoch £. We claim that estimate; = v
at the end of k; iterations of the for-loop and the value of estimate; does not change
in the subsequent iterations. The claim follows directly from the above observations
and the fact that a process does not change its estimate if a base object O; returns
L. This claim, together with the fact that Og,,Og,, ..., Oy, are correct, implies that,
at the end of the execution, (i) estimate; = v and (ii) for all 1 < j < [, Vi[k;] = v.
From the implementation, it follows that Propose(F;,v;, O) returns v. We conclude
that O satisfies integrity.
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From 1, 2, 3, and 4 above, and Proposition 7.3, we conclude that either O is correct
in E or O fails by omission in £. Thus, the implementation is gracefully degrading for
omission. From 1, 2, 3, and 5 above, and Proposition 7.2, we conclude that if at most ¢
base objects of O fail in F, and they fail by omission, then O is correct in E. Thus, the
implementation is ¢-tolerant for omission. This completes the proof of the lemma. O

Graceful degradation theorem for omission

From the previous three lemmas, and the argument presented at the beginning of Section
7.2.2, we have

Theorem 7.5 Every type has a t-tolerant gracefully degrading implementation from every
universal set of types for omission.

8 Related work

In an independent work, Afek et al. consider the problem of coping with shared memory
subject to memory failures [AGMT92]. Informally, each failure is modeled as a faulty write.
The following failure modes are considered:

A. There is a bound m on the total number of faulty writes.

B. There is a bound f on the total number of data objects that may be affected by memory
failures, and a bound k£ on the number of faulty writes on each faulty object. A
different failure model is obtained for k = co.

In our terminology, these failure modes are responsive. The second one, with & = oo,
corresponds to our arbitrary failure mode.

[AGMT92] focuses on fault-tolerant implementations of the following types of ob-
jects: safe, atomic, binary, and V-valued register from various types of registers; N-
process test&set from N-process test&set and bounded register; and N-consensus
from read-modify-write (RMW). [AGMT92] also gives a universal fault-tolerant imple-
mentation from unbounded RMW, based on Herlihy’s universal implementation. The main
differences between [AGMT92] and this paper are as follows:

1. [AGMT92] does not consider any non-responsive failure mode.

2. Amongst the responsive failure modes, benign ones, such as crash and omission, are
also not considered in [AGMT92].

3. This paper does not consider failure modes that bound the number of times faulty
objects can fail (in [AGMT92], each “faulty write” is counted as a failure).
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4. The two approaches to modeling failures appear to be fundamentally different. There
is no direct way to model benign failures, such as crash and omission failures, with
“faulty writes”. On the other hand, our approach—defining how each faulty object
deviates from its type—is not suited to handle Model A above.

5. This paper introduces the concept of graceful degradation, and presents several re-
lated results, in particular, for crash and omission failure modes. For arbitrary fail-
ures, graceful degradation reduces to the “strong wait-freedom” concept introduced in
[AGMT92].

6. In the Open Problems section of [AGMT92] it is stated:

“It would be particularly interesting to implement memory-fault tolerant
data objects directly from similar, faulty objects, such as test-and-set from
test-and-set, without using atomic registers, or read-modify-write from read-
modify-write, without using an unbounded universal construction.”

It is interesting to note that both of these types do have fault-tolerant self-implementa-
tions. For bounded RMW, this is a direct consequence of Corollary 5.1. For
N-process test&set, one can combine the fault-tolerant implementation of test&set
from {test&set, bounded register} [AGMT92], with the implementation of bounded
register from test&set presented in Figure 14.

7. The existence of a fault-tolerant selfimplementation of consensus, shown in this
paper, does not follow from the results in [AGMT92].

8. The fault-tolerant implementation of N-process test&set from {test&set, bounded
register}, shown in [AGMT92], does not follow from our results (when N > 2).

Acknowledgements

We thank Vassos Hadzilacos for many interesting discussions. The comments of Vassos
Hadzilacos, Jon Kleinberg, Sendhil Mullainathan, Gil Neiger, King Tan, and the anonymous
referees on earlier drafts helped us improve the presentation.

A Translation from arbitrary failure mode to omission fail-
ure mode

In this section, we define the notion of a translation between failure modes. We also present
a t-tolerant translation from arbitrary failure mode to omission failure mode for the type
consensus. We prove that its resource complexity of 3t + 1 is optimal. This transla-
tion can be used along with the ¢-tolerant self-implementation of consensus for omission
(presented in Section 5.1.2) to obtain a t¢-tolerant self-implementation of consensus for
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arbitrary failures. However, the resource complexity of the resulting implementation will
be (3t + 1) - (t + 1), which is more than the O(tlogt) complexity achieved by the direct
implementation presented earlier in Figure 10.

A t-tolerant translation of (T, s) from failure mode F to failure mode F' is a self-imple-
mentation Z with the following property:

Let O be a derived object of 7 and E be an execution. If at most ¢ base objects of O
fail in F, and they fail by F, then either O is correct in E or O fails by F' in E.

A type T has a t-tolerant translation from failure mode F to failure mode F' if, for all
states s of T', (T, s) has a t-tolerant translation from F to F'.

The motivation for translation is as follows. Suppose that the hardware of a system
supports objects of type T'. Suppose further that these objects, if they fail, fail by (a severe
mode) F. If the translation defined above is available, then it is easy to make it seem as
if the system supported objects of type T' which, if they fail, will fail by (the less severe
mode) F'.

A[l...2t+1], B[1...t] : consensus objects, initialized to the uncommitted state

Procedure Propose(p,vp, O)
countp[0..1], w, i, belief, : integer local to p
begin
Phase 1: count,[0..1] := (0,0)
for¢:=1to2t+1
w = f-propose(p, vp, A[i])
countyw] 1= countplw] + 1
Phase 2: Choose belief, such that
county|belief,] > count,|belief,).
fori:=1tot
if belief, # f-propose(p, belief,, B[i]) then
return(.L)
return(belief,)

U B W N~

Nelie o B e

end

Figure 22: t-tolerant translation from arbitrary to omission for consensus

In Figure 22, we present a t¢-tolerant translation of consensus from arbitrary failure
mode to omission failure mode. Below, we prove its correctness through a series of lem-
mas. Let O be a consensus object, initialized to the uncommitted state, derived from this
translation. The base objects of O are A[1...2¢t+ 1], B[1...%].
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Lemma A.1 O satisfies integrity in any execution in which all base objects of O are correct.
Proof Clear from the algorithm. a
Lemma A.2 O is wait-free in any execution in which all base objects of O are wait-free.

Proof Clear from the algorithm. a

In the following lemmas, let £ be an execution in which at most ¢ base objects experience
arbitrary failures, and the remaining are correct.

Lemma A.3 O satisfies weak integrity in E.
Proof Clear from the algorithm. a
Lemma A.4 O satisfies validity in E.

Proof Suppose O returns v € {0,1} to the invocation Propose(p,vp, O) (from process p).
Then v = belief, (by line 9), and count,[v] = count,|belief,] > t+1 (by line 5). So there is at
least one correct base object A[z] such that propose(p,vp, A[i]) returned v. By Proposition
5.1, A[i] satisfies validity. It follows that some process ¢ invoked propose (g, v, A[]) where
vg = v. This implies that ¢ invoked Propose(q,v,0). O

Lemma A.5 O satisfies agreement in F.

Proof Suppose O fails to satisfy agreement by returning 0 to some process p and 1 to
a different process g. Since O returns 0 to p, it follows that belief, = 0 at the end of E.
Similarly, belief, = 1. Thus, belief, # belief,. 1t is easy to verify that if all of A[1...2¢+ 1]
are correct, then belief, = belief,. It follows that at least one of A[1...2¢ + 1] fails.

Further, since O returns 0 to p, it follows that, for all 1 <4 < ¢, propose(p, belief,, Bi])
returns 0 to p. Similarly, for all 1 < 4 < ¢, propose(q, belief,, B[i]) returns 1 to g. Thus
all ¢ base objects BJ[1...t] fail by not satisfying agreement. Counting the failed A[#]’s and
BJi]’s, we have more than ¢ failed base objects, a contradiction. a

From the above lemmas, and Propositions 5.1 and 5.2, we conclude that: (i) O is
correct in every execution in which all base objects of O are correct; and (ii) O is either
correct or it fails by omission in every execution in which at most ¢ base objects of O fail
by the arbitrary failure mode, and the remaining base objects are correct. Thus,

Theorem A.1 Figure 22 presents a t-tolerant translation from arbitrary failures to omis-
ston failures for consensus. The resource complexity of the translation is 3t + 1.

Theorem A.2 The resource complexity of any t-tolerant translation T from arbitrary to
omisston for consensus is at least 3t + 1.
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Proof For a contradiction, assume the resource complexity of 7 is n < 3t. We prove
the theorem through a series of lemmas, involving “indistinguishable” scenarios. Let O =
Z(01,039,...,0,). In the following, we say that a process p accesses a base object O; if,
during the execution of Propose(p,vp, O), p executes propose(p, *,0;).

Lemma A.6 Suppose p erecutes Propose(p,0, ) to completion (and no other process in-
terleaves with p). If all base objects are correct, then p accesses at least t + 1 base objects.

Proof Suppose the lemma is false, and p accesses only O;,,0;,,...,0; (m < t) before
completing Propose(p,0,0). Since all base objects are correct, O satisfies validity and
integrity. Hence Propose(p,0,0) returns 0. Now consider the following two scenarios. In
these and other scenarios, unless mentioned otherwise, assume that objects are correct.

Scenario S1

1. p executes Propose(p,0,0) to completion accessing only O;,,0;,,...,0; .
Propose(p,0,O) returns 0.

2. ¢ executes Propose(q,1,0) to completion.
Scenario S2

1. Each of O;,,0,,,...,0;,  fails and spontaneously gets into the same state as it is in
at the end of Item 1 in Scenario S1.

2. g executes Propose(q,1,0) to completion; objects O;,,0;,,...,0;  behave exactly
as they do in Item 2 of Scenario S1.

Since no base objects fail in S1, O must be correct in S1. By Proposition 5.1, O satisfies
integrity and agreement. Thus Propose(g,1,0) returns 0 in S1. Clearly S1 =, S2. So
Propose(q,1,0) returns 0 in S2 also, violating validity. By Propositions 5.1 and 5.2, O is
neither correct nor does it fail by omission. Since at most ¢ base objects fail in S2, and they
fail by the arbitrary failure mode, the translation 7 is incorrect, a contradiction. O

Lemma A.7 Consider

Scenario S3

1. p executes Propose(p,0,O) up to the point where it has accessed exactly t base objects
0,,,04,...,0;,.

2. q executes Propose(q,1,0) to completion.

Then Propose(q,1,0) returns 1.
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Proof Let S = {base objects accessed by ¢} — {O;;,0;,,...,0;,}. Let O;,,0j,,...,0j, be
all the base objects in S arranged in the order in which they are first invoked by ¢. Note
that k <n—1t < 2¢.

Let S2' represent the scenario obtained by textually substituting ¢ for m in Scenario
S2. Since at most ¢ base objects fail in S2/, and they fail by the arbitrary failure mode, O
must either be correct or fail by omission. Hence, by Propositions 5.1 and 5.2, O satisfies
validity and weak integrity in S2'. So Propose(g,1,0) returns 1 or L in S2'. Since S2' =,
S3, we conclude Propose(gq,1,0) returns 1 or L in S3. Since no base object fails in S3, O
must be correct. By Proposition 5.1, O satisfies integrity in S3. So Propose(g, 1, O) returns
either 0 or 1 in S3. Together with the above conclusion, this implies the lemma. O

Lemma A.8 Consider

Scenario S4

1. p ezxecutes Propose(p,0,O) up to the point where it has accessed exactly t base objects
0,,,04,...,0;,.

2. Let 0;,,0;,,...,0j, and S be as defined above (note k < 2t). ¢ exzecutes Propose(g,1,0)
up to the point where, of the objects in S, it has accessed exactly {O;,,0,,-..,0j,_,}.

3. p completes the execution of Propose(p,0,Q).

Then Propose(p,0, O) returns 0.

Proof Consider

Scenario S5

1. p executes Propose(p,0,O) up to the point where it has accessed exactly ¢ base objects
0,,,0i,,...,0;,.

2. Each of 0;,,0;,,...,0;,_, fails and spontaneously gets into the same state as it is in

at the end of Item 2 in Scenario S4.

3. p completes the execution of Propose(p,0,O).

We claim that S4 ~, S5. The only subtlety in verifying this claim is to understand
why objects O;,,0,,,...,0;, cannot help p distinguish S4 from S5. This is explained below.
Objects O;,,0;,,...,0;, are consensus objects and are correct in both scenarios. Further,
p is the first process to access these objects in both scenarios. Thus, the response from each
of these objects is identical in both scenarios.

Since k < 2¢, the number of base objects that fail in S5 = k£ —¢ < ¢. Since they
fail by the arbitrary failure mode in S5, either O is correct in S5, or O fails by omission
in 85. Thus, by Propositions 5.1 and 5.2, O satisfies validity and weak integrity in S5.
So Propose(p,0,0) returns either 0 or L in S5. Since S4 =, S5, Propose(p,0, 0) returns
either 0 or L in S4 also. However since no base object fails in S4, O is correct in S4, and
by Proposition 5.1, it satisfies integrity in S4. Thus Propose(p,0, O) returns 0 in S4. O
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Lemma A.9 Consider

Scenario S6

1. p executes Propose(p,0,O) up to the point where it has accessed exactly t base objects
0;,,0iy,...,0;,.

2. q executes Propose(q,1,0) to completion, returning 1, by Lemma A.7.

3. Let O;,,04,,...,0j, be as defined above (note k < 2t). Each of {Oj,_,..,0j,_,.5,---,05.}
fails and behaves as though it was never accessed by q.

4. p completes the execution of Propose(p,0,0).

Then Propose(p,0, O) returns 0.

Proof  Note that S4 ~, S6. By Lemma A.8, Propose(p,0,0) returns 0 in S4. So
Propose(p,0,O) returns 0 in S6. a

From the above lemma, it is clear that O does not satisfy agreement in S6. Hence, by
Propositions 5.1 and 5.2, O fails in S6, but not by omission. Since at most ¢ base objects
fail in S6, and they fail by the arbitrary failure mode, the translation Z is incorrect, a
contradiction. This completes the proof of Theorem A.2. O

B Type definitions

In this section, we specify the types mentioned in the paper. Recall that a type is defined
as a 4-tuple (OP, RES,G, 7). For all types specified here, 7 is the identity function. We
describe the graph G with a set of procedures.
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OP = {urite(v)| 0 < v < n}U{read()}
RES = {v|0<v<n }U{ack}
State:

X e{0,1,...,n—1}

read()
return(X)

write(v)

X =
return(ack)

Figure 23: n-valued register

OP = {compare&swap(v1,v2)|v1,v2 € {0,1,2}}
RES = {0, 1, 2}
State:

X €{0,1,2}

compare&swap(vi,v2)
if X = v1 then
X = (%)
return(X)

Figure 24: compare&swap

80



OP = {test&set(), reset()}
RES = {0,1, ack}
State:

X €{0,1}

test&set()
y:=X
X =1
return(y)

reset()
X =0

return(ack)

Figure 25: test&set

OP = {fetch&add(v)|v is an integer}
RES = Set of integers

State:
X, an integer

fetch&add(v)
X=X+
return(X)

Figure 26: fetch&add
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OP = {enq(v)|v is integer} U {deq()}
RES = {v| v is integer} U {nil, ack}
State:

X, a sequence of integers

enq(v)
X=X v
return(ack)

deq()
if X is empty then
return(nil)
else if X = v - X' then
X=X
return(v)

Figure 27: queue

OP = {push(v)|v is integer} U {pop()}
RES = {v| v is integer} U {nil, ack}
State:

X, a sequence of integers

push(v)
X=X-v
return(ack)

pop()
if X is empty then
return(nil)
else if X = X' - v then
X =X
return(v)

Figure 28: stack
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OP = {read(i),write(v,),move(i)|v,i € {0,1}}
RES = {0,1, ack}
State:

Xo, X1 €{0,1}

read(i)
return(X;)

write(v,1)
Xi =
return(ack)

move(7)

Xzf = Xz'
return(ack)

Figure 29: move

OP = {read(i),write(v,t),swap()|v,7 € {0,1}}
RES = {0,1, ack}
State:

Xo,X1 € {07 1}

read(i)
return(X;)

write(v,1)

Xi =

return(ack)
swap()

temp = Xj

Xo = X1

X1 :=temp

return(ack)

Figure 30: memory-to-memory swap
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OP = {write(v)|v € {0,1}} U {read()}
RES = {0,1, ack}

State:

X €{0,1, 1}, initially |

read()

return(X)

write(v)

if X = 1 then
X :=w
return(ack)

Figure 31: sticky-bit
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