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ABSTRACT: Fault zone properties are incorporated in production flow simulators
using transmissibility multipliers. These are a function of properties of the fault zone
and of the grid-blocks to which they are assigned. Consideration of the geological
factors influencing the content of fault zones allows construction of high resolution,
geologically driven, fault transmissibility models. Median values of fault permeability
and thickness are predicted empirically from petrophysical and geometrical details of
the reservoir model. A simple analytical up-scaling scheme is used to incorporate the
influence of likely small-scale fault zone heterogeneity. Fine-scale numerical model-
ling indicates that variability in fault zone permeability and thickness should not be
considered separately, and that the most diagnostic measure of flow through a
heterogeneous fault is the arithmetic average of the permeability to thickness
ratio. The flow segregation through heterogeneous faults predicted analytically is
closely, but not precisely, matched by numerical results. Identical faults have
different equivalent permeabilities which depend, in part, on characteristics of the
permeability field in which they are contained.
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INTRODUCTION

Faults influence flow in a reservoir simulation model in two
ways. First, they alter the connectivity of sedimentological flow
units. Displacements across faults can cause partial or total
juxtaposition of different flow units, possibly connecting strati-
graphically disconnected high permeability units, as well as
juxtaposing high against low permeability units. For faults
incorporated discretely in flow simulation models, these effects
are captured as a function of the relative depths of the corners
of the grid-blocks separated by a fault. Faults generally increase
the overall vertical connectivity of a reservoir and decrease the
overall horizontal connectivity, but the precise influence of
fault displacements on reservoir connectivity is complex, as
seismic data cannot resolve details of fault structure: what
appears to be a single fault on seismic often comprises multiple
fault strands which can have a significantly different effect on
flow unit connectivity than a single strand (e.g. Childs et al.
1997; Knipe 1997). This paper does not address these relatively
large-scale connectivity effects which can be analysed with Allan
diagrams (Allan 1989), with sequence/throw juxtaposition dia-
grams (e.g. Bentley & Barry 1991; Knipe 1997) or with
aggregate connectivity plots (e.g. Childs et al. 1997). Instead we
focus on the second influence of faults on flow, arising from
the petrophysical properties of the fault-rock.

The effects of the fault-rock properties are conventionally
incorporated in a flow simulator using transmissibility multi-
pliers. Lia et al. (1997) found fault transmissibility to present
by far the greatest uncertainty in reserves estimates for the
Veslefrikk Field (Norwegian North Sea), and this uncertainty is
due, in part, to the lack of a method for calculating transmissi-
bilities. In this paper we outline and discuss a new, geologically
driven method for determining fault transmissibility multipliers
as a function of known properties of the reservoir model. The

proposed method aims to predict fault zone properties and to
capture the influence of unresolved fault zone structure in
sandstone/shale sequences using a simple algorithm. Inevitably
the method requires assumptions and approximations, and few
quantitative data exist to condition the resultant model. The
model, therefore, needs calibration against dynamic reservoir
data but considerable uncertainty will always be associated with
the fault transmissibility determinations due to the natural
unpredictability of fault zone structure and content.

Fault permeability and thickness are physically observable
properties of fault zones, whilst transmissibility multipliers are
numerical devices used in lieu of these properties. As the
permeability and thickness of sub-surface faults can be esti-
mated, albeit imprecisely, it seems sensible that these estimates
be used to determine the transmissibility multipliers for faults in
reservoirs for which no dynamic data are available. The use of
dynamic data in conditioning faulted simulation models is
beyond the scope of this contribution, which aims only to
present a method for determining transmissibility multipliers
based on a static geological prediction. Dynamic information,
where available, provides the only firm indication of the
behaviour of any particular fault in a reservoir and must
therefore be the prime data conditioning the overall transmis-
sibility assigned to the fault. Nonetheless, an appreciation of the
dependencies contained within fault transmissibility multipliers
is necessary if the dynamic information is used to construct
models which not only match the production and pressure
history, but are also geologically palatable.

FAULT ZONE MODEL

Faults in reservoirs are sampled either at low resolution by
seismic or at a high resolution by wells. Seismic interpretation
provides information about the locations and displacements of
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large faults, but cannot resolve the small-scale structure within
the fault zone. Wells sample faults at a particular point in a
reservoir, and cored faults provide direct samples from which
fault zone properties can be measured. Fault zones are complex
heterogeneous and anisotropic volumes of varying composition
and thickness, and a well samples only a single line through a
zone. Predicting flow through a fault requires a model of fault
zone structure at a resolution which cannot be obtained from
either data source. The conceptual model we consider for the
determination of fault transmissibility multipliers is shown in
Fig. 1.

At the smallest scale, the fault is conceptualized as a volume
of a particular thickness and shale content (Fig. 1a), and the
proportion of shale in the volume is assumed to be the main
control on the fault permeability. The shale content of the fault
zone is calculated as a function of the faulted sequence using
the Shale Gouge Ratio method (described in the following
section). The displacement of a fault is assumed to be the main
control on fault zone thickness, and a secondary control on
fault zone permeability. At an intermediate scale (Fig. 1b),
thickness and permeability are assumed to be log-normally
distributed with 75% of the values covering two orders of
magnitude around the median value. The correlation-lengths of
this heterogeneity are assumed to be substantially smaller than
the simulation grid-block size. At the simulation grid-block
scale (Fig. 1c), the transmissibility multiplier assigned to each
grid-block fault-face is an appropriately up-scaled represen-
tation of this heterogeneous fault zone. We do not attempt to
capture effects of cement seals, which are the least predictable
fault seal type.

Fault zone permeability anisotropy or the influence of fault
zones on two-phase flow have not been considered, as neither
can be incorporated in a production flow simulation model
which uses only transmissibility multipliers to represent fault
zone properties. Fault zones can have permeability anisotropies
of about 2–3 orders of magnitude (e.g. Evans et al. 1997) which,
dependent on the pressure gradient, can result in preferential
flow parallel to the fault, but the multiplier acts only on flow
perpendicular to the fault. The multiplier modifies the absolute
grid-block permeability, yet the characteristics of fault gouge
will also influence the capillary pressure and relative per-
meability curves of the up-scaled volume. Neglecting two-phase
flow properties of fault zones will suppress capillary trapping
behind faults (e.g. Manzocchi et al. 1998), as using a transmis-
sibility multiplier to represent the fault increases the overall
viscous/capillary ratio of the system. These flow aspects would
require that the fault be incorporated using discrete grid-blocks,
which would greatly increase the complexity of faulted reservoir
models and is therefore not standard practice.

The remainder of this section describes in more detail the
background and assumptions of the methods used, which are

based on empirical geological observations of static reservoir
and outcrop analogue data. The nomenclature used throughout
is given in Table 1.

Fault zone permeability

Over recent years a methodology has emerged for the analysis
of the seal capacity of faults in sandstone/shale sequences (e.g.
Bouvier et al. 1989; Gibson 1994; Fristad et al. 1997; Yielding
et al. 1997). These methods do not try to resolve precise details
of the structure of fault zones, but instead use proxy-properties
to make inferences about the behaviour of a fault, through
empirical correlations with other faults of known behaviour in
the same hydrocarbon province. The most versatile proxy-
property is the Shale Gouge Ratio (SGR). SGR is the pro-
portion of phyllosilicate which has been displaced past any
particular point on a fault (e.g. Yielding et al. 1997). The
minimum SGR on the fault surface is assumed to have the
lowest capillary entry pressure, and databases comparing pres-
sure difference supported across faults, with SGR mapped onto
the fault surface, are used to assess the integrity of unproven
fault traps. These studies suggest that an SGR greater than
about 15–20% results in a membrane seal (Watts 1987) capable
of separating fluids of different phases. This cut-off is sup-
ported by outcrop characterization which shows that faults with
SGRs in excess of this value have at least one shale layer within
the fault zone which is continuous over the outcrop (e.g.
Lindsay et al. 1993; Foxford et al. 1998). Cut-off values

Fig. 1. Conceptual up-scaling
hierarchy. (a) At the sub-metre scale,
the fault-rock permeability is a function
of its shale content. (b) At the
sub-grid-block scale, the fault zones are
considered heterogeneous in
permeability and thickness. (c) At the
grid-block scale each grid-block
connection is assigned a uniform
transmissibility.

Table 1. Nomenclature

Symbol Meaning

A Grid-block area perpendicular to L (m2)
D Fault displacement (m)
k Permeability (mD)
L Grid-block length (m)
P Pressure (bars)
q Flow rate parallel to L (m3 s"1)
SGR Fractional shale gouge ratio
t Thickness (m)
T Transmissibility (or permeability) multiplier
Trans Transmissibility (mDm"1)
Vshale Fractional phyllosilicate content
µ Viscosity (cp)
Subscripts
a Arithmetic average
f Fault
h Harmonic average
i, j, k Particular grid-blocks
m Grid-block
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also appear to be transferable between different hydrocarbon
provinces (Yielding et al. 1997).

We make the assumption suggested by Yielding et al. (1997),
that SGR is equivalent to the shale content (Vshale) of the fault
gouge. This assumption is useful as, although it is possible to
calculate the SGR for a sub-surface fault zone, the precise shale
content of the zone cannot be predicted directly. Available plug
permeability data, on the other hand, are recorded as a function
of the volumetric shale fraction of the core plugs which are
taken as representative of the fault zone.

Figure 2 shows plug and probe permeability data for various
reservoir and out-crop fault-rock samples (Antonellini & Aydin
1994; Knai 1996; Gibson 1998; Ottesen Ellevset et al. in press).
The data show a general decrease in fault zone permeability
with increasing shale content, and large variations in per-
meability at a particular shale content. At very low shale content
there is an apparently bimodal distribution governed by fault
displacement, demonstrated by the data from Antonellini &
Aydin (1994). These data are probe permeameter measure-
ments from samples of the Moab (Vshale=0) and Slickrock
(average Vshale=0.09) members of the Entrada Sandstone
formation. The clean Moab Sandstone shows a clear distinction
between the permeability of deformation bands (displacements
in the range 1 mm to a few centimetres and average fault-rock
permeabilities of about 10 mD) and slip surfaces (displace-
ments greater than about 1 m, and average permeabilities of less
than 0.01 mD). In the more shaley Slickrock member, the
permeabilities of deformation bands and slip surfaces are
similar to each other, with average values around 0.8 mD. A
decrease in the influence of displacement on fault permeability
with increasing shale content is caused by these differences in
deformation style. In pure sandstone, cataclastic intensity in-
creases with displacement (e.g. Crawford 1998), ultimately
resulting in highly polished, intensely cataclastic slip surfaces
with exceptionally low permeabilities. Deformation bands in
more shaly sandstone are less cataclastic, as displacement is
accommodated by small-scale smearing of the phyllosilicates
(e.g. Antonellini et al. 1994), and the main control on fault
permeability is the shale content of the fault.

The curves on Fig. 2 show an empirical prediction of
fault zone permeability as a function of shale content and
displacement. The curves are given by the equation:

where kf is fault permeability (in mD) and D is fault displace-
ment (in metres). We assume that the value of kf obtained is the
median value of a log-normal permeability distribution covering
about two orders of magnitude. Therefore, for D=20 m,
SGR=0.2, predicted kf lies in the range 0.012 mD<kf<
1.2 mD, and the median value is 0.12 mD. The influence of
displacement on fault zone permeability in this relationship is
not as great at very low shale content as the data on Fig. 2
suggest. Therefore Equation 1 does not provide a reliable
estimate of permeability as SGR]0.

Fault zone thickness

Predicting fault zone thickness for sub-surface faults has been
addressed recently by Childs et al. (1997) and Walsh et al.
(1998a), so is not discussed in detail here. Fault zones comprise
portions where two or more slip surfaces bound volumes of
more or less deformed rock; and portions where the entire
displacement is accommodated on single slip surfaces (lacunae).
The thickness of the fault zone is defined as either the

separation between the outermost slip surfaces (where more
than one are present) minus the thickness of undeformed
lenses, or the thickness of the slip-surface itself in a lacuna.
Compilations of fault outcrop data (e.g. Robertson 1983; Hull
1988) demonstrate an approximately linear relationship
between fault zone displacement and fault rock thickness (tf)
over several decades of scale-range with thickness values
distributed over about two orders of magnitude for a particular
displacement.

Figure 3 summarizes the data compiled by Hull (1988), and
data from faults in mixed sandstone/shale sequences in
Sinai (Knott et al. 1996), SE Utah (Foxford et al. 1998) and
Lancashire, UK (Walsh et al. 1998a). Also plotted for several
displacements are synthetic thickness values generated using the
relationship:

tf=D/66, (2)

to define a median thickness value, and a standard deviation for
logtf of 0.9 to define a log-normal thickness distribution. The
data populate closely the envelopes defined by the outcrop
studies for displacements over about 1 m. Equation 2 tends to
under-predict the thickness of smaller faults but, as fault
displacements less than 1 m are seldom incorporated in pro-
duction flow simulation models, there is no need to predict
accurately their thickness for this application.

Fault zone heterogeneity correlation-lengths

Fault zone properties are variable and unpredictable over short
distances. Foxford et al. (1998) characterized the well-exposed
Moab Fault in SE Utah over short sections at various locations

Fig. 2. Log permeability (mD) vs. volumetric shale fraction for
fault-rock. Large data points are plug permeability measurements
from core and outcrop samples from a variety of locations
(Gibson 1998). Filled circles: cataclastic deformation bands. Open
circles: solution deformation bands. Filled squares: clay gouge.
Small data points are probe-permeability measurements of
deformation bands (open circles) and slip surfaces (crosses) from
sandstones in SE Utah (Antonellini & Aydin 1994). Boxes are
summaries of data from the Sleipner Field (Ottesen Ellevset et al.
1998). (i) Cataclastic deformation bands. (ii) Framework
phyllosilicate fault rocks. (iii) Shale smears. The line labelled ‘K’
represents average values, based on core samples from the
Heidrun Field, used in a full-field flow simulation (Knai 1996).
The curves (Equation 1) represent the relationship used in this
work for permeability as a function of SGR (assumed equivalent
to the fault-rock volumetric shale fraction) and displacement.
Curves are given for D=1 mm (dashed line), D=10 cm, D=1 m,
D=10 m and D=1 km (heavy line).
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along its 40 km trace and concluded that it is impossible to
extrapolate predictions of the structure of the fault zone over
distances greater than about 10 m. Similar fault zone thickness
variability has been observed either in samples of different
faults from the same sequence (e.g. Knott et al. 1996) or
samples at different positions on the same fault trace (e.g.
Blenkinsop 1989). The limited evidence available suggests that
fault zone permeability is at least as heterogeneous as thickness
(e.g. Fig. 2; Antonellini & Aydin 1994; Fowles & Burley 1994).

There are modelling advantages to fault zone structure being
unpredictable over extremely small distances. The represen-
tative elementary volume (REV) of a correlated random field is
about four times larger than the range of the semivariogram
defining the field (Anguy et al. 1994). If the correlation length of
fault zones is assumed to be in the order of 10–20 m, then the
REV is in the order of 40–80 m. A typical reservoir simulation
grid-block is about 100 m wide, and therefore contains a
representative portion of a fault if the correlation length is as
small as qualitative estimates suggest. As noted by Lopez &
Smith (1996), correlation lengths of fault zones are extremely
speculative, as the data necessary to address the issues fully do
not exist. This is an area requiring further research, and for the
purposes of this paper we assume a REV for fault zones exists,
and that it is smaller than a reservoir grid-block. We make this
assumption because it is convenient to do so: many aspects of
fault zones, such as relay ramps, are likely to have correlation-
lengths much larger than a grid-block. The implications of this
discussion are addressed later in the paper.

In this section the relationships required for predicting the
median permeability and thickness values of faults as a function
of known details of the reservoir simulation model have been
discussed. In the following section we discuss methods for
incorporating the two orders of magnitude of variability of
these values, at the sub-grid-block scale, into a single, up-scaled
fault transmissibility value.

ANALYTICAL TRANSMISSIBILITY
DETERMINATION

Fluxes in reservoir simulation models are calculated as a
function of transmissibilities between pairs of grid-blocks.
Transmissibilities are obtained by dividing the equivalent per-
meability of the blocks by the distance separating their centres
(this assumes an intersection area of 1 and ignores grid-block
dips – the precise details of calculating transmissibility differs
between simulators – see, for example, Schlumberger Geo-
Quest 1995). For the pair of blocks illustrated in Fig. 4a, the
transmissibility, Transij, is

where T is a transmissibility multiplier included to capture the
effects of fault-rock between the two grid-blocks.

The properties of the fault-rock can be considered explicitly.
If the fault has a thickness tf and a permeability kf (Fig. 4b),
then the equivalent permeability between the centres of blocks
i and j is:

and the transmissibility over this distance is:

Equating 3 and 5 gives the transmissibility multiplier as a
function of the dimensions and permeability of the grid-blocks
and the thickness and permeability of the fault:

Fig. 3. Log thickness vs. log displacement (both in metres).
Summaries of out-crop measurements are given as envelopes
containing measurements from a variety of sources (Hull 1988),
from faults in Nubian Sandstone in Western Sinai (Knott et al.
1996), from the Moab Fault in SE Utah (Foxford et al. 1998) and
from faults in a Westphalian sandstone/shale sequence from
Lancashire, UK (Walsh et al. 1998a). 200 log-normally-distributed
thickness data (small diamonds) have been generated at various
displacements with median value following the relationship
tf=D/66. The harmonic averages of these data (large circles)
follow the relationship tf=D/170.

Fig. 4. Representation of a fault between grid-blocks i and j. (a)
The transmissibility multiplier (T) acts on the transmissibility
(Transij) between two grid-block centres. Transij is a function of
grid-block permeabilities and lengths. (b) To calculate the value
of the multiplier, the thickness of low permeability fault-rock
is considered explicitly. (c) A transmissibility multiplier assigned
between blocks i and j modifies only Transij. (d) A permeability
multiplier applied to block j modified both Transij and Transjk.
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For the special case where Li=Lj=L and ki=kj=km, T
becomes:

which is equivalent to the transmissibility factor defined by
Walsh et al. (1998a). For a case where Li|Lj or ki|kj,
Equation 7 can be used as a multiplier on the permeability of
one of the grid-blocks adjacent to the fault, effectively assigning
the entire thickness of fault-rock to this cell. This provides the
same transmissibility across the fault as applying Equation 6 to
the interface between the two grid-blocks, but also modifies the
transmissibility on the other side of the grid-block to which the
permeability multiplier has been assigned. Therefore, the trans-
missibility multiplier (Equation 6, Fig. 4c) provides a numeri-
cally more robust representation of the fault than the
permeability multiplier (Equation 7, Fig. 4d).

The dependencies implicit in a transmissibility multiplier are
shown using a simplified Brent permeability sequence (after
Walsh et al. 1998b). Two identical columns of grid-blocks are
separated by an 80 m fault juxtaposing Tarbert and Ness
against Rannoch, Etive and Broom (Fig. 5a). Implications of
the practice of assigning a constant transmissibility multiplier to
the entire fault are illustrated in Fig. 5b. Fault permeability has
been back-calculated (using Equation 6) assuming a transmis-
sibility multiplier of 0.3, a fault thickness of 1.2 m, and two
model resolutions. This results in the geologically implausible
situation in which the fault permeability depends on the
permeabilities of the rock only immediately adjacent to the
fault. Additionally, the back-calculated fault permeabilities have
a meaningless dependence on the sizes of the grid-blocks (L).

Figure 5c illustrates the Shale Gouge Ratio method. Shale
Gouge Ratio is calculated from the shale content of the faulted
sequence, and provides a continuous log down the fault. SGR
is converted to permeability, which is combined with the other
variables in Equation 6 to calculate the fault transmissibility
multipliers. The values of these multipliers are highly variable
over short distances, but this variability reflects primarily the
vertical heterogeneity of the original sequence: the fault per-
meability changes smoothly on the fault surface, reflecting the
properties of the entire sequence which has moved past each
particular grid-block.

Fault zone structure at a scale smaller than the vertical
grid-block resolution is not captured by the SGR algorithm, and
therefore SGR profiles which are based on the shale content of
grid-blocks are more homogeneous than might be natural. We
have discussed in the previous section that we expect at least
two orders of magnitude variation in fault permeability at any
particular SGR. This variability is intended to compensate for
details in fault zone structure which are beyond the resolution
of the model. Below, flow across a fault is considered ana-
lytically to determine the transmissibility of a representative
portion of a heterogeneous fault. The implications of assump-
tions made in these determinations are investigated numerically
using fine-scale flow simulation models in the following section.

Permeability and thickness averaging

The volumetric flow rate (q) across a homogeneous fault zone
of cross-sectional area A, thickness tf and permeability kf is
given by Darcy’s Law:

where ÄP is the pressure drop across the fault, and µ is the fluid
viscosity. Assume that the fault is separated into elements A1,
A2 . . . Ai . . . An, each of permeability kf1, kf2 . . . kfi . . . kfn
(Fig. 6a). Assume also that the pressure drop (ÄP) is identical
across all elements. The volumetric flow rate in any element of
the fault is:

and the total flow through the fault is given by:

Fig. 5. Transmissibility multipliers for a simplified Brent
sequence. The Mid-Ness shale is highlighted. (a) Sequence
permeability (after Walsh et al. 1998b) is identical on both sides of
the fault. (b) Fault permeability calculated as a function of a
constant transmissibility multiplier T=0.3, fault thickness tf=1.2 m,
and L=50 m and 200 m. (c) Fault transmissibility multiplier
calculated using the SGR method for tf=1.2 m, and L=100 m.
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Equating 8 and 10 gives:

which is, by definition, the area-weighted arithmetic average
permeability.

Consider a similar situation to the one discussed above, with
the difference that each fault element Ai now has a constant
permeability kf but a variable thickness tfi. Again, the total
pressure drop across each fault element is considered constant
(Fig. 6b). In this case the total volumetric flow is given by:

Equating 8 and 12 gives:

which is the area-weighted harmonic average thickness.
Equations 11 and 13 give the permeability and thickness

input required to up-scale the transmissibility of heterogeneous
faults.

Transmissibility determination from geological input

We have defined the variables which influence fault transmis-
sibility, methods for estimating the median values of these
variables as a function of the reservoir model, and have defined
analytically the appropriate averages for representing the het-
erogeneity in these variables. Below we calculate these thickness
and permeability averages as a function of their median values.

We assume that both thickness and permeability vary over
the area of a grid-block according to a log-normal distribution.
The median value of a log-normal distribution is the mean of
the normal distribution of the log-variable. For a log-normal
distribution with a log-variable mean, µ, and standard deviation,
ó, the arithmetic average of the distribution is 10(µ+ó2/2), and
the harmonic average is 10(µ"ó2/2). For any particular SGR
and displacement, we assume that the median permeability and
thickness values are given by Equations 1 and 2, in each case
with ó=0.9. This standard deviation is equivalent to about 75%
of the values lying within &one order of magnitude of the
median, and 90% lying within &1.5 orders of magnitude
(Fig. 3). For thickness, µ=log(D/66),ó=0.9 gives the harmonic
average thickness as a function of displacement:

tfh=D/170. (14)

For permeability,

and ó=0.9 gives the arithmetic average permeability as a
function of SGR and displacement:

Incorporating Equations 14 and 15 into Equation 6 gives the
appropriately up-scaled transmissibility multiplier for each grid-
block fault-face, and into Equation 7 gives a permeability
multiplier for each grid-block on one side of the fault.

Application to a full-field simulation model

The method has been applied to calculate fault multipliers to a
full-field (Eclipse) flow simulation model of a North Sea Brent
reservoir. The 24 000 grid-block model contains 96 000 vertical
grid-block faces, of which over 14 000 are faulted. Code has
been written which reads in the Eclipse format corner-point
geometry and directional grid-block permeability files, along
with another file listing the phyllosilicate (or Vshale) content of
each grid-block. The latter file is the only input which is not
also an input into the flow simulator. Phyllosilicate content was
used while building the stochastic sedimentological reservoir
model, and therefore generation of this file does not add to the
overall workflow. These files between them contain all the
information necessary to calculate individual transmissibility
multipliers for each fault-face, via intermediary calculations of
fault displacement and SGR, and the output of the program can
be input directly into the simulator. Figure 7 shows fault surface
maps for one fault in the model, with the output as either
permeability multipliers (Equation 7) or transmissibility
multipliers (Equation 6).

The thickness of the fault is calculated as a function of the
displacement at each cell centre (Fig. 7b). Flow between each
pair of connected grid-blocks is a function of the permeability
of these grid-blocks (Fig. 7c,d) and the area of each grid-block
to grid-block intersection. Figure 7e shows the transmissibility
(normalized by intersection area) for the fault surface, based on
grid-block connections and assuming no fault properties. The
fault properties are calculated as a function of the shale content
of the grid-block (Fig. 7f and g) to provide an SGR map
(Fig. 7h) which is combined with fault displacement to obtain a
fault permeability map (Fig. 7i). Fault permeability multipliers
acting on the hangingwall grid-block permeabilities (Fig. 7c) are
shown on Fig. 7j, and fault transmissibility multipliers acting on
block to block transmissibilities are shown on Fig. 7k. The
transmissibility multiplier requires greater definition than the
permeability multiplier, as a value must be calculated for each
connection.

Heterogeneity in the value of either multiplier reflects
both the smooth variation in fault zone properties and the
rapid variation in grid-block permeabilities. The first influence
provides the overall trends in the multiplier. For instance, in the
area of the fault surface between the hangingwall and footwall
cut-offs of the Mid-Ness shale, SGR is high, fault permeability
is low and the multipliers are generally low. More rapid
variation in grid-block permeabilities locally overprints the
relatively smooth variation caused by the fault zone properties,
for instance in the area with high transmissibility multipliers
two grid-blocks above the hangingwall cut-off of the Mid-Ness
shale. Fault permeability is low in this area, but the value of the

Fig. 6. Calculation of the equivalent permeability of
heterogeneous faults. (a) Variable permeability, constant thickness.
(b) Variable thickness, constant permeability. In each case the
pressure drop across the fault is considered constant. See text for
discussion.
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Fig. 7. Fault transmissibility and permeability multipliers for a fault in a Brent sequence reservoir simulation model. The 20 layer model is 195 m thick, and the fault is
1833 m long (10 cells). The fault has an out-of-plane footwall splay. The inactive Mid-Ness shale is black. (a) Summary of the fault surface. All hangingwall cut-offs (blue) and
some footwall cut-offs (red) are shown. The yellow area represents the region over which the active grid-cells are juxtaposed. (b) Fault thickness (blue) is calculated at
grid-block centres from the fault displacement (red). (c) Hangingwall permeability (mD, log scale). (d) Footwall permeability (mD, log scale). (e) Transmissibility/area,
assuming no fault properties (mD m"1, log scale). (f ) Hangingwall phyllosilicate content (fraction). (g) Footwall phyllosilicate content (fraction). (h) Fault surface SGR
calculated for the hangingwall grid-blocks (fraction). (i) Fault permeability calculated for the hangingwall grid-blocks (mD, log scale). ( j) Fault permeability multiplier calculated
for the hangingwall grid-blocks (linear scale). (k) Fault transmissibility multiplier (linear scale). See text for discussion.
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multiplier is responding to a locally low permeability in the
hangingwall section of Upper Ness.

The method provides fault multiplier models of much higher
resolution than is usual. This high resolution is necessary as the
permeability of the grid-blocks is more heterogeneous than
the predicted fault properties, and both determine the values of
the multiplier. The method is based on a geological model
of the faults, and the factors which most influence fault zone
content are fault displacement and details of the faulted
sedimentary succession, both of which change rapidly at the
resolution of a simulation model. As fault zone content
depends on the sedimentology, any stochastic realization of the
reservoir sedimentology requires a new generation of the fault
permeabilities, but more importantly requires a new set of
multipliers, as these depend additionally on the grid-block
permeabilities.

Fault zone permeability and thickness prediction is imprecise
and there is potential for changing the predictors (Equations 14
and 15) systematically to match the particular behaviour
observed during the production history of a field (e.g. Fulljames
et al. 1997). The advantage of the proposed method is that it is
based on a geological model of fault zone content, and
therefore any change in fault transmissibility values needed,
effects an improvement in the understanding of the fault
characteristics in the reservoir. In the following section we
investigate some of the assumptions involved in up-scaling fault
transmissibility, using fine-scale numerical flow simulations.

NUMERICAL VALIDATION

Several assumptions were made in the analytical up-scaling
solution for fault transmissibility, and we use numerical flow
simulation to illustrate the significance of two of them. The first
assumption is that fault zone permeability and thickness can be
considered independently. Fault growth models (e.g. Childs
et al. 1996) and field data (e.g. Knott et al. 1996) suggest
that fault zone thickness varies as a function of the faulted
lithologies, which is also the primary control on permeability.
Therefore spatial variations in fault zone permeability and
thickness are not necessarily independent. The second
assumption made is that there is a constant pressure drop
across each fault element. A third assumption, that the REV of
a fault zone is smaller than a full-field simulator grid-block, is
also discussed.

Figure 8 shows a cartoon of the flow simulation scheme
used. The models are 3D with matrix permeability constant in
any model (but variable between models), and a heterogeneous
fault zone crossing the centre of the model. As matrix per-
meability is constant, Equation 7 is appropriate for calculating
the transmissibility multiplier. The fault comprises 2500 ele-
ments (each 10 cells wide) assigned uniformly, log-uniformly,
normally or log-normally distributed permeability and thickness
values arranged randomly. As the spatial distributions of fault
zone properties is random, the REV of the fault zone is much
smaller than the model cross-sectional area. Fault thickness in
the simulation model is held constant as a modelling simplifi-
cation, but the influence of thickness is one we wish to
examine. By manipulating Equation 7, we calculate a new
permeability for each fault element, which incorporates the
influence of both the permeability and thickness assigned to it.
Therefore the model fault contains the desired variability in
both permeability and thickness. Constant flow rate boundary
conditions are imposed between the two faces parallel to the
fault, and periodic boundary conditions are applied on the other
four faces. The equivalent permeability of the entire model
parallel to the flow direction is calculated from the observed

pressure drop, and the equivalent fault permeability is deter-
mined using the harmonic average. This value is used to
calculate an equivalent transmissibility multiplier for the entire
50#50#25 m region of the model up-stream of the fault.

Spatial correlation of permeability and thickness

Figure 9a compares transmissibility derived analytically
using the appropriate thickness and permeability averages in
Equation 7 with transmissibility determined from numerical
simulation. Transmissibility is predicted well by the analytical
solution only if there is no spatial correlation between fault
permeability and thickness. If derived analytically, transmissibil-
ity is over-estimated if there is a positive correlation between
thickness and permeability, and under-estimated for a negative
correlation. This error arises because a positive correlation will
tend to reduce the variability of qi, as the flow rate across a thin
element of low permeability might be similar to the flow rate
through a thicker, more permeable element. Therefore, use of
the arithmetic and harmonic averages tends to overcompensate
for the variability. Conversely, when thickness and permeability
are inversely correlated, the variability in flow rate is much
greater than is predicted by the simple averages. Equation 9
shows that through a homogeneous element of a fault
containing variability in both thickness and permeability,

Therefore, if the permeability/thickness ratio is calculated in
each region of the fault, and the area-weighted arithmetic
average of this ratio is taken, then this average incorporates the

Fig. 8. Cartoon of the flow simulation scheme, highlighting the
discretization used in the flow direction. The matrix is
homogeneous, and the fault is composed of 2500 fault elements
with randomly arranged permeability and thickness values.
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effects of both variables irrespective of the correlation between
them. Hence the equivalent transmissibility should be deter-
mined as a function of the arithmetic average of the fault
permeability/thickness ratio (kf/tf)a. Equations 6 and 7, how-
ever, have no solution as a function of this ratio. The
approximation to Equation 7:

may be made, but this includes the kfa term independently of
the tf term. Equation 16 indicates that to calculate correctly
the flow response through a fault in which thickness and
permeability variations are correlated, these variables should
not be separated. Nevertheless, Fig. 9b shows that Equation 17
provides a considerably more accurate estimate of trans-
missibility than is achieved by considering each variable
separately.

Flow segregation through a heterogeneous fault

The second assumption in the analytical transmissibility
solution is that the pressure drop across each fault element is
constant (Fig. 6), and that the flow through each fault element
is given by Equation 9. The suitability of the assumption is
examined by comparing the distribution in flow through each
element predicted analytically, with that obtained numerically.

Based on Equation 9, which relies on the constant pressure
drop assumption, the fraction of the total flow through the
fault which passes through any fault element is:

We consider a fault with permeability and thickness values
each distributed over two orders of magnitude. Figure 10 shows
a plot of cumulative flow fraction (qi/q) vs. cumulative fault
area for this fault. This plot is similar to the Lorenz curve and
reflects flow heterogeneity (e.g. Lake & Jensen 1991). The curve
indicates that extreme flow segregation must occur within the
fault if the equivalent fault transmissibility matches that pre-
dicted analytically. For this fault, the least transmissible 30% of
the fault surface area contributes less than 1% of the total flow,
90% of the total flow occurs through the most transmissible
30% of the fault and 50% of the flow occurs through less than
6% of the fault. If the flow segregation observed in flow
models closely approximates that predicted using Equation 18,
then the assumption of a constant pressure drop across the
fault is acceptable.

On Fig. 11 the flow segregation obtained through hetero-
geneous faults in two numerical flow simulations is compared

with the curves calculated according to Equation 18. A fault
with log-normally distributed values of kf and an arithmetic
average permeability of 0.0512 mD is placed in a 10 mD and
10 D matrix. Figure 11a shows that in the low matrix per-
meability (high fault transmissibility) case, there is more flow
through most of the fault surface than is predicted analytically.
The difference becomes significant however, when the
numerical/analytical flow is plotted as a function of the
cumulative flow through the fault (Fig. 11b). This represen-
tation shows that the 95% of fault surface through which there
is more flow than predicted accounts for only 60% of the total
flow. In the 5% of fault surface which controls 40% of the total
flow there is less flow than predicted.

There is less flow segregation through this fault than the
analytical result predicts, and this reduces the equivalent fault
permeability. The numerical equivalent fault permeabilities are
0.0355 mD in the low matrix permeability case and 0.0505 mD
in the high matrix permeability case. For the high matrix
permeability case (curve (ii) on Fig. 11) the modest reduction in
permeability with respect to the analytical estimation is caused
by the slight dip in the curve at the highest flux element, but on
the whole the numerical curve matches well with the analytical
one, and the equivalent permeability is close to the analytical
estimate.

The fault is identical in both models, only the matrix
permeability in which the fault is contained is different, so the
differences in the equivalent fault permeability are a function of
the matrix permeability. In order to satisfy the assumption of a
constant pressure drop across the fault, there must be sufficient
transmissibility up-stream and down-stream of the fault for the
flow paths to become optimally arranged to accommodate the
flow segregation which must occur. If the model dimensions or
the matrix permeability are increased, the equivalent fault
permeability is larger, as more tortuous flow is possible outside

Fig. 9. Flow simulation results for a
variety of heterogeneous faults in a
homogeneous matrix. (a) Analytical
transmissibility calculated with Equation
7, vs. transmissibility determined from
numerical simulation results. Crosses:
no thickness/permeability correlation;
filled circles: positive correlation; open
circles: negative correlation. (b) As (a),
except the analytical transmissibility has
been calculated using Equation 17.

Fig. 10. Fraction of flow through a fault vs. fraction of fault
surface. Data are sorted in terms of increasing flow fraction. See
text for discussion.
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the fault to accommodate an ideally heterogeneous distribution
of flow through the fault. If the permeability of the fault is high
compared to the permeability of the matrix, then the fault
heterogeneity is influential on flow paths for greater distances
outside the fault.

These examples have shown that the assumption of a
constant pressure drop across a heterogeneous fault is
incorrect, and that analytically derived transmissibility will
systematically over-estimate the fault transmissibility at high
transmissibility and/or for a highly heterogeneous kf/tf fault
structure. However, the errors are not large (Fig. 9b), and the
values calculated according to the arithmetic average of the
permeability/thickness ratio provide a reasonable approxi-
mation of fault transmissibility multipliers calculated using
numerical simulation models.

Fault zone representivity and boundary conditions

In the examples discussed above, the equivalent fault per-
meability of identical faults is shown to vary as a function of the
permeability of the matrix in which the fault is contained. This
is a different effect to the one discussed by Walsh et al. (1998a),
who showed that the transmissibility of statistically identical
faults decreases as the correlation-lengths of the fault increases.
In their models, the matrix permeability and model dimension
are constant, and the differences in permeability are a function
of sampling an area which is smaller than the fault’s REV. If
a larger portion of the fault had been modelled, then the
equivalent fault permeability would have been higher. If a
fault’s REV is larger than a simulator grid-block, then the
transmissibility of a particular fault-face will be different to the
transmissibility of a representative portion of the fault. As
discussed for an analogous situation by Begg et al. (1989), the
overall transmissibility of the fault is adequately represented by
assigning the REV-scale equivalent property to each fault-face,
although this results in a more homogeneous fault model than
is actually present at the resolution of the simulation model.

In the models described in this paper, the area considered is
larger than the REV, and the differences in equivalent fault
permeability are caused by different model boundary conditions
in the flow direction, rather than by the no-flow boundary
conditions on the other four faces, as they are in the models
described by Walsh et al. (1998a). The control of boundary
conditions of the kind influencing the modelling described here
are relevant in the sub-surface, as they are controlled by the
overall permeability structure of the reservoir.

SUMMARY

This paper has presented and discussed a geologically driven
method for calculating fault transmissibility multipliers for

reservoir flow simulation models as a function of known details
of the simulation model. Transmissibility multipliers for grid-
block fault-faces vary as a function of the dimensions and
permeabilities of the grid-blocks to which they are attached,
and of the fault permeability and thickness. Fault permeability
and thickness values vary by at least two orders of magnitude
over short distances, and their median values can be estimated
using empirical relationships linking fault permeability to fault
displacement and Shale Gouge Ratio (SGR), and fault thickness
to displacement. Analytical considerations show that these
empirical relationships must be modified to incorporate the
influence of sub-grid-block scales of property variability, and
these modifications are supported by numerical flow simula-
tion. The method allows fault properties for every grid-block
fault-face to be calculated as a function of:

+ the phyllosilicate content of the grid-blocks,
+ the grid-block permeabilities and
+ the grid geometry.

Fault properties are incorporated in the simulation model
either as directional permeability multipliers assigned to the
grid-blocks on one side of the fault or, more rigorously, as
transmissibility multipliers defined explicitly for each grid-block
to grid-block connection. The method has been applied to a
full-field reservoir simulation model.

CONCLUSIONS

We have incorporated geological conceptualizations of fault
zone structure and content into a predictive method for
calculating fault zone transmissibility multipliers. This method
is based on poorly defined empirical correlations which can
only be improved when more data become available.

Numerical and analytical considerations of flow through
realistically heterogeneous faults have highlighted the following:

+ Flow through a representative portion of a heterogeneous
fault can be approximated as a function of the harmonic
average of the fault zone thickness and the arithmetic
average of the fault zone permeability, provided there is no
spatial correlation of permeability and thickness.

+ Where there is spatial correlation of permeability and thick-
ness, the transmissibility of the fault is a function of the
arithmetic average of the permeability/thickness ratio. There
is, however, no analytical solution to transmissibility as a
function of this ratio.

+ Extreme flow segregation occurs through realistically het-
erogeneous faults. This flow segregation is accommodated
by tortuous flow in the matrix.

+ The analytical determination systematically overestimates
fault transmissibility at higher fault transmissibilities and

Fig. 11. Comparisons of numerical
with analytical flow as a function of (a)
the fault surface area, and (b) the
analytical flow distribution (see Fig. 10).
The arithmetic average fault
permeability is 0.0512 mD. Curve (i):
low matrix permeability; equivalent fault
permeability is 0.0355 mD. Curve (ii):
high matrix permeability; equivalent
fault permeability is 0.0505 mD.
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higher fault heterogeneities. The extent of this over-
estimation is a function of the permeability structure to
significant distances down-stream and up-stream of the
fault, as this determines the ease of tortuous flow in the
matrix.

+ Statistically identical faults do not necessarily have the
same transmissibility even if an area larger than the REV is
being modelled. In a system containing statistically identical
heterogeneous faults, the more closely spaced faults will
have a lower transmissibility.

This work was carried out during projects funded by the DTI
Hydrocarbon Reservoir Link Programme (Project 7246), the
DTI/OGPSO Programme (Project 7234) and the EU
Hydrocarbon Reservoir Research Programme (Contract
JOF3-CT95-0006). The simulation model was built in conjunction
with G. Aadmodt, O. Lia and H. Omre from the Norwegian
Computing Centre and K. Geel from TU Delft. We thank these
colleagues, two anonymous reviewers, and members of the Fault
Analysis Group, particularly J. Watterson and C. Childs, for useful
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