B Loughborough
University

This item was submitted to Loughborough’s Institutional Repository by the
author and is made available under the following Creative Commons Licence
conditions.

@creative
ommon

COMMONS D E E D

Attribution-NonCommercial-NoDerivs 2.5
You are free:
» to copy, distribute, display, and perform the waorlk

Under the following conditions:

Attribution. ¥ou rmust attribute the wark in the manner specified by
the author or licensor,

MWoncommercial. vou may not use this work for commercial purposes,

Mo Derivative Works, vou may not alter, transform, or build upon
this work,

& For any reuse or distribution, vou must make clear to others the license terms of
this work,

» Any of these conditions can be waived if you get permission from the copyright
holder,

Your fair use and other rights are in no way affected by the above.

This is a hurman-readable summary of the Legal Code (the full license).

Disclaimer BN

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

Fault Tree Analysis and Binary Decision Diagrams

Roslyn M. Sinnamon * Loughborough University ® Loughborough

John D. Andrews * Loughborough University ® Loughborough

Key Words: Fault Trees, Binary Decision Diagrams

SUMMARY & CONCLUSIONS

Fault tree analysis is now commonly used to assess the
adequacy, in reliability terms, of industrial systems. For
complex systems an analysis may produce thousands of
combinations of events which can cause system failure
(minimal cut sets). The determination of these minimal cut
sets can be a very time consutning process even on modern
high speed digital computers. Also if the fault tree has many
minimal cut sets calculating the exact top event probability
will require extensive calculations. For many complex fault
trees this requirement is beyond the capability of the available
machines, thus approximation techniques need to be
introduced resulting in loss of accuracy.

This paper describes the use of a Binary Decision Diagram for
Fault Tree Analysis and some ways in which it can be
efficiently implemented on a computer. The work to date
shows a substantial improvement in computational effort for
large, complex fault trees analysed with this method in
comparison to the traditional approach. The Binary Decision
Diagram method has the additional advantage that
approximations are not required, exact calculations for the top
event parameters can be performed.

1. INTRODUCTION

The fault tree diagram itself is an excellent way of deriving the
failure logic for a system and representing it in a form which is
ideal for communication to other managers/
designers/operators etc. The fault tree is discussed in detail in
Andrews and Moss (Ref. 1). Since the method was first
conceived in the early sixties, algorithmns to derive the minimal
cut sets have worked directly with the fault wee diagram itself
using either bottom-up, Semanderes (Ref. 2), or top-down,
Fussell and Vesely (Ref. 3), approaches. Computerised
methods to conduct this analysis are now so well developed
that further refinement is unlikely to resuolt in vast reductions
in computer time. Tackling this problem to improve
computational efficiency has been the maim concern over the
years for many fault tree researchers, Bemnetts (Ref. 4) and
Bengiamin et al. (Ref. 5) have both addressed this problem.
Usually by modifying the established, conventional
approaches such as MOCUS (Ref. 3).

It is felt that substantial improvement in computer utilisation
will only result from a completely new approach. Such an
approach would involve specifying the logic equation in a
form which is easier to manipulate than a fault tree. A recent
paper by Rauzy (Ref. 6) has indicated that an alternative

approach using a Binary Decision Diagram may provide a
faster and more efficient means of analysing fault trees.

2. NOTATION

P(Top) — Probability of Top Event of a tault tree.

G — Minimal Cut Set.

Prp(Top) — Rare Event Approximation of Top Event
Probability.

Pycsup(Top) - Minimal Cut Set Upper Bound of Top
Event Probability.

X — Boolean Variable.

f(x)/f1/£2 -~ Boolean Functions.

ite — If-Then-Else structure for Binary
Decision Diagram.
<op> — Boolean operation (- or +).
Fi — Nodes/Vertices in a Binary Decision
Diagram.
Ql‘.yl‘. — Probability of occurrence of top event of
fault tree.

W(, t) — Expected number of top event
ocecurrences.

Wiys ~ System Unconditional Failure Intensity.

Gi(q) — Criticality Function for component i

3. ABBREVIATIONS

$.0.p - sum of products expression.
BDD - Binary Decision Diagram.

4. FAULT TREE ANALYSIS

The analysis of the fault tree is generally undertaken in two
stages: qualitative analysis and quantitative analysis.
Qualitative analysis involves obtaining the various
combinations of events which cause system failure (minimal
cut sets) and quantification then deals with calculating the
probability or frequency that system failure will occur.

4.1 Qualitative Analysis

The conventional approach to obtain the minimal cut sets is to
take the Boolean logic expression for the Top Event and
transform it into a sum of products (s.0.p) torm. One way of
doing this is to vse a Bottom-Up procedure such as that of
Semanderes (Ref. 2). To obtain the s.o.p form for the Top
Event of the fault tree, the inputs to the lowest gates are

0-7803-3112-5/96/$5.00 © 1996 IEEE

1996 PROCEEDINGS Annual RELIABILITY and MAINTAINABILITY Symposium

215

represented as logic equations. Once the lower gates have been
expressed in this way higher gates are then treated similarly.
The final s.0.p form should be in terms of basic events only.

If the fault tree contains repeated events then the resulting
s.0.p will not be minimal and the minimal cut sets can not be
directly obtained. If this is the case Boolean Reduction Rirles
must first be applied to the s.0.p form to obtain the minimal
cut sets. The task of obtaining the minimal cut sets of a fault
tree can become computationally intensive if the logic
equations produce many cut sets, due to the number of
comparisons that are needed to make the expression minimal.
Also the expansion procedure can make extensive demands on
Memory space.

To overcome these problems various techniques have been
employed to reduce the number of comparisons (Ret. 7). Some
methods only produce the most important minimal cut sets.
One of these techniques is referred to as culling, which means
that cut sets of a certain order, say 4 and above, are ignored or
deleted trom the expression, Rasmuson and Marshall (Ref. 8)
employ this technique in their paper. The justification for
doing this is that cut sets of a high order tend to have a low
probability of occurrence and therefore do not make a
significant contribution to the Top Event probability. However
the disadvantage of this is that when common cause failures
are involved this method results in considerable inaccuracies.
Probabilistic culling can also be applied, in this case a ct set
whose probability of occurrence is below some threshold limit
will again be ignored.

4.2 Quantitative Analysis
The conventional approach (see¢ Henley and Kumamoto in

Ret. 9) to obtain the exact probability of the Top Event is to
use the formula:

ne ne i—1
P(Top) =Y. P(C)=3.D P(C;NC))+
i=1 i=2 j=1 (D
+ .. G G,
Where Ci, i=1,......... nc are the minimal cut sets of the Top

Event, i.e. product terms.

Clearly if the fault tree has many minimal cut sets calculating
P(Top) will require extensive calculations to evaluate each
term in the expression, for many complex fault trees the
requirement is beyond the capability of the available
machines. To simplity the calculation the Rare Event
Approximation, Ppp(Top). can be used which is:

e
PRE(T()]7) = Z P(CI) 2)
=1

However a more accurate approximation is the Minimal Cut
Set Upper Bound, Ppsegpyp(Top), which is:

216

ne
Pycsup(Top)=1-T] (1-P(C)) &)

=]
5. BINARY DECISION DIAGRAM METHOD

The Binary Decision Diagram (BDD) method, developed by
Rauzy (Ref. 6), first converts the fault tree to a binary decision
diagram which encodes an If-Then-Else (ite) structure. The
attractive thing about the BDD method is that the ite structure
derives from Shannons' tormula (Ret. 10), such that it £(x) is
the Boolean Function for the top event of a fault tree then the
Shannon formula can be written as;

X1 f1+ XL f2 (4)

and the corresponding ite structure is ite(X1, {1, 12), tor a
detailed account of this procedure refer to Ret. 11 and Ref. 12.
From this diagram both the qualitative and quantitative
analysis can be achieved.

The size of the resulting BDD is determined by the ordering
that has to be given to the basic events in the fault tree before
the BDD is constructed. This ordering has turther implications
for the analysis. If the BDD is not in a minimal form, then the
BDD must first undergo a minimising algorithm before the
minimal cut sets can be obtained, this minimising technique is
discussed in section 6. The quantitative analysis must be
performed on the unminimised diagram. The reason being that
the minimising procedure produces a new BDD which only
encodes the minimal cut sets. However if the ordering of the
basic events produces a minimal BDD then both the
quantitative and qualitative analysis is straight forward. It is
therefore beneficial to achieve an ordering which is optimal in
terms of the resulting size of the BDD. The ordering of basic
events to produce a minimal diagram is considered in (Ref. 11)
and discussed in section 7.

To illustrate the method of obtaining the minimal cut sets and

probability of occurrence of the top event using the BDD
method refer to the example fault tree in figure 1.

A
® ® © ©

Figure 1. Example Fault Tree.

Assume an ordering for the basic events which is derived by
considering those events at higher levels in the tree structure
firse:

1996 PROCEEDINGS Annual RELIABILITY and MAINTAINABILITY Symposium

X1<X2<X3<X4

To obtain the ite structures for each gate in the fault (ree the
following procedures are used:

(1) Taking X<Y;

Let J=ite(X, F1, F2) and H=ite(Y, GG1, (G2) then;
J<op>H=ite(X, Fl<op>H, F2<op>H) (5)

(2) Taking X=Y;

ie., I=ite(X, F1, F2) and H=ite(X, G1, G2) then;
J<op>H=ite(X, Fl<op>G1, F2<op>(G2) (6)

where <op> corresponds to the Boolean operation of the logic
gates in the fault tree. For an AND gate <op> will be the dot
or product symbol and for an OR gate <op> will be the
addition symbol.

Also it is evident that;

1<op>H=1 if <op> is an OR gate
1<op>H=H if <op> is an AND gate
O<op>H=H if <op> is an OR gate
O<op>H=0 if <op> is an AND gate

Therefore the BDD calculations for the fault tree in figure 1
are the following:

G2 =ite(X3, 1, O)+ite(X4, 1, 0)
=ite(X3, 1, ite(X4, 1, 0))
Gl =ite(X2, 1, 0)+ite(X3, 1,)
=ite(X2, 1, ite(X3, 1, 0))
Top =GLG2X1
=ite(X2, 1, ite(X3, 1, 0).ite(X3, 1, ite(X4, I, O)).
ite(X1, 1,)
= ite(X2, ite(X3, 1, ite(X4, 1, 0)), ite(X3, 1,).
ite(X3, 1, ite(X4, 1, O).ite(X1, 1, 0)
=ite(X2, ite(X3, 1, ite(X4, 1, O), ite(X3, 1, 0))
dte(X1, 1, 0)
Top =ite(X1, ite(X2, ite(X3, 1, ite(X4, 1, 0)), ite(X3, 1, 0)),)

This top event ite structure corresponds to the BDD shown in
figure 2.

1996 PROCEEDINGS Annual RELIABILITY and MAINTAINABILITY Symposium

Fl1

@ Root Vertex

Terminal
(} Vertex

Terminal
1 Vertex

Figure 2. BDD for ite(X1, ite(X2, ite(X3, 1. ite(X4, 1, 0)).
ite(X3. 1. 1)), 0).

To obtain the cut sets of the fault tree the paths through the
BDD are traced from the top or root vertex to a terminal 1
vertex. Only the basic events that lie on a 1 branch (indicating
the failure of that basic event) on the way to a terminal 1
vertex are included in a path. Therefore the paths through the
BDD which correspond to the cut sets of the fault tree are:

(H X1.X2.X3
2) X1.X2.X4
(3) X1.X3

Clearly the resulting BDD for this ordering is not minimum as
it produces one redundant cut set. The minimising procedure
tor the BDD which will produce the minimal cut sets directly
is discussed in section 6.

5.1 Top Event probability

To obtain the probability of occurrence of the top event of the
fault tree (Q‘\.y.‘,) the probability of the sum of the disjoint
paths through the BDD are calculated. The disjoint paths
through the BDD are found by simply including in a path the
basic events that lie on a 0 branch and indicating these as Xi,
i.e., 'Not' Xi, meaning basic event i does not occur. Disjoint
paths through the BDD are:

(D X1.X2.X3

(2) X1.X2.X3.X4

(3 X1X2.X3

s the basic
events in the fault tree need to be assigned probabilities, which
for this example are given in table 1.

Before continuing with the calculation of Q

217

basic qj A _
event i ; ' Wi = }\'(l-q)
X1 0.01 1.0E-6 9.9E-7
X2 0.02 4.0E-6 3.92E-6
X3 0.03 20E-4 | 1.V4E-4
X4 0.04 3.0E-5 | 2.88E-5

Table 1. Basic Event Data.

Where;

qi - Unavailability of component i.

Aj — Conditional failure intensity of component i.
wi - Unconditional failure intensity of component i.

Since Q,, can be obtained from the probability of the sum of
the disjoint paths through the BDD then:

Qs = P(X1.X2.X3+ X1.X2.X3. X4 + X1.X2.X3)

=qx1-9x2-9x3 T dx1-dx2-A = dxa)-qxq +
gx1-(L—gx2)-qx3
=(.01(0.02)(0.03) + 0.0 10.02)(L = .03)
(0.04) +0.01(1 - 0.02)(0.03)
Oy = 30TT6E -4

The algorithm used by Rauzy for calculating the probability is
given in Ref. 6.

5.2 Unconditional System Failure Intensity
For some systems it is the unreliability which is required for
the top event i.e., the probability it will not work continuously

over a given time period. An upper bound for this is the
Expected number of top event occurrences W(0),):

13
WO,0) = [wydr)
0

Wiy, 18 the system unconditional failure intensity:
Wes = X, Gilg)-w; (&)
i

where G;(¢) is the criticality function for each component.

The criticality function G;(¢) is defined as the probability
that the system is in a critical state with respect to component i
and that the failure of component i will then cause the system
to go from the working to the failed state, 1.e., the probability
that the system fails only if component i fails. Therefore:

Gi(q) = 0;.q) - Q;.¢) ©)

Where;

218

Q(;,q) - is the probability of system failure with ¢; = 1.
Q(0;.g) - is the probability of system tailure with ¢; = 0.

Evaluating each of the two terms Q(1;,¢) and Q(0;,q) for
each component could be achieved by first substituting ¢; = 1

and then ¢; =0, i.e., the probability that component i equals 1
and O respectively, and re-running the system failure
probability calculations. This would require the equivalent of
2n evaluations of the top event probability to deduce all terms
required in the expression for wy, . ineq (8).

Consider the variable Xi which occurs at two nodes in the
BDD (Figure 3) then:

7/ \
/ AY
/ N
' N
/7 AY
4 A
Node a @ @ Node b
/
1/ N 1, \ 0
/ \ /7 N\
/ N // \\
/ \\ V4 Al

Figure 3. Considering variable Xi.

QL) = (pra(@)-poy (@) +Z(g))

00;.q) = Z (pra(@).posi(@)+ Zg) (D

n

where:

pri(g) ~1is the probability of the path section from the root
node to node xi.
p()i,- (¢) -is the probability of the path section from
node xi to the terminal 1 node after the 1 branch
from node xi.
0, . . . Lo .
POy (q) — is the probability of the path section trom node xi

to the terminal 1 node after the (0 branch from
node xi1.

Z(q) — is the probability of paths from the root node to
the terminal 1 nodes which do not go through a
node for variable xi.

n — All nodes for variable xi on the BDD.

Therefore:

G =Y, pra@)|pokitg) - poli(@)]

n

(12)

1996 PROCEEDINGS Annual RELIABILITY and MAINTAINABILITY Symposium

A more efficient way to calculate W, is to make one pass of

the BDD to calculate pr;(g), 1”);,'(‘1) and 1)().(\.),- (¢g) for
each node. With this information each G;(¢) can be easily

evaluated from eq (12) and Wy, formed.

The algorithm Probpost to calculate p()_{.i(q) and 17(’_(\-)1' (q) is
given in figure 4. The calculation of pr;(¢) can be achieved
by the algorithm Probprev given in figure S. The criticality
function G;(g) for each basic event is calculated as shown in
figure 6.

Probpost(F) =
Do for all F, end vertices to Root Vertex
F=ite(x, G, H)
ReProbtable(x, prob(G), prob(H))
QIlp(x).prob(G)
Q2(1-p(x)).prob(H)
insert - in - computation - table ({<prob, F, ->, Q1+(2})
return R
return Q1 and Q2
next F

Figure 4. Probpost Algorithm.

Probprev(F) =
start at Root Vertex, F
Probprev(F)=1
Add Probprev(F) to Probtable, i.e.,
Probtable(Probpost(F), Probprev(F))
Do for all F, Root Vertex to end vertices
F=ite(x, H1, H2)
if HI=0or 1 Goto [A]
Proprev(HI)=p(x).Probprev(F)
Add Probprev(HI) to Probtable
[A] ifH2=00r 1 next F
Probprev(H2)=(1-p(x)). Probprev(F)
Add Probprev(H2) to Probtable
next F.

Figure S. Probprev Algorithm.

Set G(xi)=0 for all i
Do forall F
if F=Probtable(x, 1, 42, 43)
G(x)=G(x)+¢3(ql-¢42)
insert - in Criticality table G(x)
next F.

Figure 6. Algorithm for Calculating the Criticality
Function, G,;.

Example

Applying these algorithins to the example BDD given in figure
2 illustrates the application of this method.
The ite table for the BDD in figure 2 is:

1996 PROCEEDINGS Annual RELIABILITY and MAINTAINABILITY Symposium

ITE

Node Variable 1branch 0 branch
Label- pointer pointer
Fl X1 F2 0
F2 X2 F3 F4
F3 X3 1 FS
F4 X3 1 0
F5 X4 1 0

Performing one pass of the BDD to evaluate p()i.l-(q) and

0 . - .
Do, (g) for each node using Probpost gives:

Probpost(FS)
Fi=ite(X4, 1, 0)
R« Probtable(X4, 1, ()
Qle—pX4)=0.04
Q2=0
Probpost(F4)
F4=ite(X3, 1, 0)
R« Probtable(X3, 1, ())
Qlep(X3)=0.03
02=0
Probpost(F3)
F3=ite(X3, 1, F5)
ReProbtable(X3, 1, prob(F5))«—(X3, 1, 0.04)
Qlp(X3)=0.03
Q2¢(1-p(X3)N(0.04)=0.0388
Probpost(F2)
F2=ite(X2, F3, F4)
R« Probtable(X2,prob(F3), prob(F4))«(X2,(1.0688, (1.03)
QLe-p(X2)(0.0688)=1.376E-3
Q2 (1-p(X2))(0.03)=0.0294
Probpos(F1)
Fl=ite(X1, F2, 0)
R« Probtable(X1, prob(F2), 0)«—(X1, 0.030776, ()
QlpX1)(0.030776)=3.0776E-4
Q2=0

In performing this one pass, the top event probability can be
calculated by;

P(Top)=Q1+Q2 (13)

for the top event node.

The values of Probpost 1 branch and Probpost () branch for
each node are entered mto the node probability table,
PROBTABLE (see figure 7).

Next calculating the probability of the BDD path to
each node is established using Probprev and entered into the
4th column of the PROBTABLE.

Probprev:
Probprev(F1)=1

Fl=ute(X1, F2,)
Probprev(IF2)=P(X1).Probprev(F1)
=0.01(1)=0.01
H2=0
F2=ite(X2, F3, F4)
Probprev(F3)=p(X2).Probprev(F2)

219

=0.02(0.01)=2.0E-4
Probprev(F4)=(1-p(X2)).Probprev(F2)
=(1-0.02)(0.01)=9 .8E-3
F3=ite(X3, 1, F5)
Hi=1
Probprev(F5)=(1-p(X3)).Probprev(EF3)
=(1-0.03)(2.0E-4)=1.94E-4
Fd=ite(X3, 1, 0)

Hi=1
H2=0
F5=ite(X4, 1, 0)
Hil=1
H2=0
Node | Variable post ‘1’ post probprev
Label PROBTABLE
F1 X1 0.030776 0 1
F2 X2 0.0688 0.03 0.01
F3 X3 1 0.04 2.0E-4
F4 X3 1 0 9.8E-3
FS X4 1 0 1.94E-4

Probtable(i, 1)=Basic event of node Fi
Probtable(i, 2)=Probability of post '1' branch
Probtable(i, 3)=Probability of post () branch
Probtable(i,4)=Probability of previous

Figure 7. PROBTABLE Array.

Calculation of the criticality function is then straight forward
using the algorithm provided in figure 6.

Criticality Algorithmn:
G(X1)=G(X2)=G(X3)=G(X4)=0

Fl=Probtable(X1, 0.030776, 0, 1)
GX1D=0+1(0.030776-0)
=(.030776
F2=Probtable(X2, 0.0688, 0.03, 0.01)
G(X2)=0+0.01(0.0688-0.03)
=3.88E-4
F3=Probtable(X3, 1, 0.04, 2.0E-4)
G(X3)=0+2.0E-4(1-0.04)
=1.92E-4
Fd=Probtable(X3, 1, (), 9.8E-3)
G(X3)=1.92E-4+9.8E-3(1-0)
=9 992E-3
FS=Probtable(X4, 1, 0, 1.94-4)
G(X4)=1.94E-4(1-0)
=1.94E-4

Since we have calculated the criticality function for each
component, Wy, can now be evaluated using the frequency
data from table 1 using eq (8).

220

W = G(XDwy; + G(X2)wyy + G(X3)wys +
G(Xd)wyy
=0.030776(9.9E-7) + 3.88 F—4(3.92E—0) +
9.992 E-3(1.94E—4) + .94 E~4(2.88 E-5)
= 1.9760244 E~6

Using eq (7) the expected number of top event occurrences in
time, t, can be obtained.

6. MINIMISING THE BDD

In the example fault tree (figure 1) the resulting BDD (figure
2) was not minimum as it produced a redundant cut set. To
obtain only minimal cut sets the BDD must first undergo a
minimising procedure. From the unminimised BDD the
minimising algorithm of Rauzy (Ref. 6) creates a new BDD
that symbolises only the minimal cut sets of the fault wee. If
F=ite(x, G, H) then let 6 be a minimal solution of GG which is
not a minimal solution of H, then clearly the intersection of §
and x will be a minimal solution of F. Lastly, the set o of all
the minimal solutions of F, sol;, (F), will also include the

minimal solutions of H so:

So ‘min (F) = {G}

where;

c= [{5} s .x][S()lmm (H>]

Raunzy (Ref. 6) has detined a 'without' operator which removes
from Gmin all the paths included in a path of H. Applying this

algorithm to the BDD in figure 2 where each node is

considered in turn:

Fl=ite(X1, F2, 0) - Here there are no solutions on the O branch
so the paths of F2 remain unchanged.

F2=ite(X2, F3, F4) - Here X3 is included in a path on both the
1 branch (F3) and the 0 branch (F4), therefore X3 is removed
from the 1 branch by replacing the terminal 1 vertex with a 0.
[Refer to figure 8]

F3=ite(X3, 0, F5) - FS does not contain any paths that are
included in the 1 branch as this is a terminal vertex.

F4=ite(X3, 1, 0) - The without operator does not apply as both
0 and 1 branches are terminal.

F5=ite(X4, 1, 0) - Same applies as F4.
The minimised BDD is drawn in figure 8.

1996 PROCEEDINGS Annual RELIABILITY and MAINTAINABILITY Symposium

Figure 8. Minimised BDD.

Tracing the paths through the minimised BDI) we obtain the
minimal cut sets:

(D X1.X2.X4
(2) X1.X3

7. VARIABLE ORDERING SCHEME

The ordering of basic events will determine the size of the
resulting BDD. BDD's produced using a simple "top-down”
ordering of the variables are frequently inefficient since they
produce a large number of non-minimal cut sets. An
alternative ordering scheme is presented here which focuses
on those basic events which are repeated in the fault tree

structure. It is the repeated events which cause the problem of

non-minimal cut sets, and by considering these events first
simplifies the resulting BDD structure and therefore makes it
more optimal.
The alternative ordering scheme again considers the basic
events in a top-down ordering (after the fault tree structure is
contracted into an alternating sequence of AND and OR
gates). However as each gate is considered the basic events
which are inputs to the gate are taken in order of those which
occur most frequently in the fault tree and placed in the
ordering list. When gate input cvents are encountered which
are already entered in the ordering list due to the occurrence at
a higher level in the tree then they are ignored and the
rémaining input events are ordered.

Applying the new ordering here to the example fault tree
(tigure 1) with repeated event X3, we get the ordering
X1<X3<X2<X4. The resulting BDD for this alternative
ordering is minimum so the minimising technigue is not
needed, this is advantageous in terms of reduced computation
time, Work carried out to date indicates that the new ordering
appears to produce more optimal BDD's compared to other
orderings. Bryant (Ref.
computing an ordering that minimises the size of the BDD and
for some trees it may not be possible to produce a minimal
BDD whatever the ordering.

1996 PROCEEDINGS Annual RELIABILITY and MAINTAINABILITY Symposium

13) recognised the problem of

8. MODULARISING

Further improvements in terms of computational efficiency
can be made for the more complex fault trees by modularising
the fault tree before the analysis takes place. Khoda et al. (Ref.
14) define a module of a fauit tree as having no inputs which
appear elsewhere in the tree and no outputs to the rest of the
tree except from its output event. For example consider the
fault tree in figure 9. Modules which have the properties
defined above are gates G2, G3 and Top.

Gi G2

(G3 — Module, M1
(G2 - Module, M2
(G1 - Not a Module
Top — Module Top

Figure 9. A Fault Tree which can be modularised.

Top
()
|
Gl [m2] [mi |

XD

Figure 10. Modularised fault tree.

The modularised fault tree is shown in figure 10. By then
using the BDD method to analyse this tree in terms of the
modules and then each module in turn the results can be
combined to provide an etficient means of analysing the whole
fault tree.

9. CONCLUSION

Conventional top-down and bottom-up techniques can lead to
many redundant cut sets and calculating exact top event
probability can become impossible. To improve these analysis
procedures the aim has been to represent the system failure
logic in a mode which lends itself to the mathematical
manipulation.

221

Representing the Boolean failure logic equation in the form of
a BDD provides an alternative technique which gives
significant savings in the computational efficiency and lends
itself to manipulation. Also the BDD produces exact
quantified results and top event parameters such as failure
probability and the system unconditional failure intensity and
the expected number of occurrences can be obtained with ease.

To simplify the analysis even further the fault tree may be
modularised prior to the analysis. An alternative ordering of
the basic event variables has also shown itself to significantly
improve efficiency.

The trade off for the advantages described is the effort taken 1o
convert the logic from the fault tree structure to the BDD
form. However early work indicates that for large, complex
trees this can produce a substantial reduction in computational
effort.

10. REFERENCES

1 ID. Andrews and T.R. Moss, "Reliability and Risk
Assessment,” Longman Scientific and Technical, 1993,

2 S.N. Semanderes, "ELRAFT," A computer program for
the efficient logic reduction analysis of fault trees,” IEEE
Trans. Nuclear Science, vol NS-18, 1971 Feb, pp 481-487.

3 I.B. Fussell, W.E. Vesely, "A new methodology for
obtaining cut sets for fault trees,” Trans. An. Nucl. Soc., vol
15, 1972 Jun, pp 262-263.

4 R.G. Bennetts, "On the analysis of fault trees." [EEE
Trans. Reliability, vol R-24, No. 3, 1975 Aug, pp 175-185.

5 N.N. Bengiamin, B.A. Bowen, K.F. Schenk, "An
efficient algorithm for reducing the complexity of computation
in fault tree analysis,” IEEE Trans. Nuclear Science, vol NS-
23, No. 5, 1976 Oct, pp 1442-1446.

6 A. Rauzy, "New algorithms for fault tree analysis,”
Reliability Engineering and System Safety, vol 40, 1993,
pp203-211.

7 N. Liminios, R. Ziani, "An algorithm for reducing the
minimal cut sets in fault tree analysis,” [EEE Trans.
Reliability, vol R-35, No. 5, 1986 Dec, pp 559-561.

8§ D.M. Rasmuson, N.H. Marshall. "FATRAM-A core
efficient cut-set algorithm," IEEE Trans. Reliability, vol R-27,
No. 4, 1978 Oct, pp 250-253.

9 E.I. Henley and H.Kumamnoto, "Reliability Engineering
and Risk Assessment," Englewood Cliffs, 1981.

10 W. G. Schneeweiss, "Boolean Functions with
Engincering Applications and Computer Programs,” Springer-
Verlag, 1989.

11 R.M. Sinnamon and 1.D. Andrews, "New Approaches
to Evaluating Fault Trees," Proceedings of Esrel'9S
Confercnce, June, 1995 pp241-254.

12 A. Rauzy et al., "Computation of prime implicants of
a fault tree within Aralia,” Proceedings of Esrel'9s
Conference, Tune, 1995 pp190-202.

13 R. E. Bryant, "Graph-Based algorithms for Boolean
tunction manipulation,” IEEE Trans. Computers, vol C-35,
No. 8, 1986 Aug, pp677-691.

14 T. Khoda, E. J. Henley and K. Inoue, "Finding
Modules in Fault Trees," IEEE Trans. Reliability, vol 38, No.
2, 1989 Jun, ppl65-176.

222

BIOGRAPHIES

Roslyn M. Sinnamon, BSc

Department of Mathematical Sciences
Loughborough University of Technology
Loughborough, Leicestershire LE11 3TU, UK.
Internet (e-mail) : RM.Sinnamon1@lut.ac.uk

Ros Simmamon is a second year PhD student working with Dr
John Andrews on Reliability Theory, mainly Fault Tree
Analysis. She also tutors in Reliability, Statistics and
Mathematics for Engineers at Loughborough University. Her
BSc Joint Honours is in Mathematics, Physical Education and
Sports Science and was gained at Loughborough. She is a
member of the Satety and Reliability Society.

John D. Andrews, PhD, BSc¢

Departinent of Mathematical Sciences
Loughborough University of Technolog
Loughborough, Leicestershire, LE11, 3TU, UK
Internet (e-mail): 1.D.Andrews @lut.ac.uk

Dr Andrews currently lectures in Risk and Satety Assessment
Techniques in the Department of Mathematical Sciences at
Loughborough University of Technology. Prior to this
appointment he was a Senior Lectarer in the Department of
Mechanical and Production Engineering at Birmingham
Polytechnic and has also had two periods of employment as a
Senior Scientist Engineer in the Research and Development
Division at British Gas.

His industrial work has involved research into methods of
assessing the safety and risk of potentially hazardous industrial
activities. This research is now continuing at Loughborough
University. Dr Andrews is currently a member of committees
of the Institution of Mechanical Engineers and the Safety and
Reliability Society which focus on Risk, Satety and Reliability
issues.

1996 PROCEEDINGS Annual RELIABILITY and MAINTAINABILITY Symposium

