
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2023, No. 2, pp. 212–240. DOI:10.46586/tches.v2023.i2.212-240

FaultMeter: Quantitative Fault Attack
Assessment of Block Cipher Software

Keerthi K and Chester Rebeiro

Indian Institute of Technology Madras, India
{keerthi,chester}@cse.iitm.ac.in

Abstract. Fault attacks are a potent class of physical attacks that exploit a fault
injected during device operation to steal secret keys from a cryptographic device. The
success of a fault attack depends intricately on (a) the cryptographic properties of
the cipher, (b) the program structure, and (c) the underlying hardware architecture.
While there are several tools that automate the process of fault attack evaluation,
none of them consider all three influencing aspects.

This paper proposes a framework called FaultMeter that builds on the state-of-art
by not just identifying fault vulnerable locations in a block cipher software, but also
providing a quantification for each vulnerable location. The quantification provides a
probability that an injected fault can be successfully exploited. It takes into consid-
eration the cryptographic properties of the cipher, structure of the implementation,
and the underlying Instruction Set Architecture’s (ISA) susceptibility to faults. We
demonstrate an application of FaultMeter to automatically insert optimal amounts
of countermeasures in a program to meet the user’s security requirements while
minimizing overheads. We demonstrate the versatility of the FaultMeter framework
by evaluating five cipher implementations on multiple hardware platforms, namely,
ARM (32 and 64 bit), RISC-V (32 and 64 bit), TI MSP-430 (16-bit) and Intel x86
(64-bit).
Keywords: Fault Attack, Automatic Fault Attack Evaluation, Quantification Coun-
termeasures

1 Introduction
Cipher implementations are highly vulnerable to a potent class of physical attacks known as
fault attacks. These attacks exploit faults injected during the cipher’s execution, causing an
error that propagates to the output. The flawed output, called faulty ciphertext, is then used
to extract the secret key using differential, impossible differential, or algebraic properties
of the cipher. Several block ciphers including the AES [TMA11], PRESENT [BEG13],
Simon [TBM14b], Speck [HZFW15], and CLEFIA [AM13] are vulnerable to fault attacks.
A single precisely injected fault in any of these ciphers is sufficient to substantially reduce
the entropy of its key.

For software implementations of block ciphers, faults are typically injected in memory
components such as registers, flash memory [CN10], SRAM [ZZJ+20], and DRAM [KGGY20].
Alternatively, faults are injected in the processor pipeline, for instance, causing instructions
to be skipped [KSV13]. Most faults are injected using glitches in the voltage or clock
source of the device or by using optical or electromagnetic radiation. Other faults are
injected by exploiting physical properties and the structure of device components. For
example, Rowhammer [KDK+14], RAM-Jam [ATG+19], SPOILER [IMB+19], RAM-
Bleed [KGGY20], TRRespass [FVH+20] and Blacksmith [JvdVF+22] utilize the physical
properties of memory to inject faults.

Licensed under Creative Commons License CC-BY 4.0.
Received: 2022-10-15 Accepted: 2022-12-15 Published: 2023-03-06

https://doi.org/10.46586/tches.v2023.i2.212-240
mailto:keerthi@cse.iitm.ac.in, chester@cse.iitm.ac.in
http://creativecommons.org/licenses/by/4.0/

Keerthi K and Chester Rebeiro 213

load r0, #key
load r1, #p1
xor r0, r1
and r0, 0x0f
and r0, r3
store r0, c0

Identification

Vulnerable Instruction

Fault Exploitability

Quantification

Countermeasure

Addition

Margin

User Specified Security

Low

Medium

Mild

High

0.5

0.2

0.0

0.8

1.0

BackEnd Pass

Executable

Instructions

FrontEnd Pass

Source Code

Vulnerable

Non−Vulnerable

Success Score

Hardware Dependent

InputC3

Vulnerable Instructions

C2

C1

FaultMeter

Figure 1: The FaultMeter framework, to quantify the vulnerability of block cipher implementations. It
has two main modules. The Vulnerable Instruction Identification Module detects vulnerable instructions,
while the Fault Exploitability Quantification module quantifies the exploitability. The figure also shows
an application of FaultMeter to automatically insert countermeasures into the implementation. The
countermeasures are tuned to meet the user’s security requirement.

While there are a large number of locations in a program where faults can be injected
during its execution, only a small portion of these faults are exploitable. There are three
requirements that a fault should satisfy to be successfully exploited.

• Fault should impact vulnerable operations. The fault should target the small
subset of vulnerable operations in the cipher. For instance, prior works such
as [KRR+20] show that only 4.98% of instructions in an AES implementation1
are vulnerable. Faults injected elsewhere in the program cannot be exploited.

• Corrupt instruction output. Most fault attacks require that the fault modifies
an instruction output and not halt execution. For example, a fault that alters an
instruction’s opcode can lead to an illegal instruction exception causing the program
to terminate. Such a fault is not exploitable because it does not provide the attacker
with the faulty ciphertext, which is essential for the attack.

• Propagate to the output. The fault at the target instruction should propagate
to the ciphertext. This may not always be the case. For instance, if register r2 is
affected by a fault in the instruction mul r2, r1, the fault will not propagate if r1
= 0x0. Such a fault may not be exploitable2.

The success of a fault attack is intricately dependent on the cipher algorithm, its im-
plementation, and the underlying hardware. While the vulnerable operations depend
on the cipher algorithm, corrupting an instruction output depends considerably on the
Instruction Set Architecture (ISA) of the microprocessor, and propagating the fault to the
ciphertext depends on the program structure. Understanding the extent to which these
factors influence a fault attack would help develop metrics that can be used to compare
and evaluate implementations for fault attack resistance. It would help in designing
efficient countermeasures and tools that could automatically patch software for fault attack
vulnerabilities.

1OpenSSL (version 3.0) implementation with 1 lookup table occupying 2048 bytes: https://github.
com/openssl/openssl/blob/master/crypto/aes/aes_x86core.c

2This paper does not consider SIFA [DEK+18] which target faults that do not affect the output.
Incorporation of SIFA in FaultMeter is left as future work

https://github.com/openssl/openssl/blob/master/crypto/aes/aes_x86core.c
https://github.com/openssl/openssl/blob/master/crypto/aes/aes_x86core.c

214 FaultMeter: Quantitative Fault Attack Assessment of Block Cipher Software

The current practice to evaluate fault attack resistance is by empirically subjecting
the device to faults. Unfortunately, this is largely a manual process, requiring expensive
instruments and considerable time. Recently researchers have introduced tools to automate
the process of finding vulnerable instructions in cipher implementations. While tools
such as [ABMP13,KRR+20] work on C implementations, [BHL18,HBZL19] operate on
assembly code. Many of these tools fail to assess the extent to which an injected fault is
exploitable. The output of these tools is binary: either an instruction is exploitable or
it is not. Few works like, TADA [HBZL19] additionally identify attacks from vulnerable
fault instructions. Most of the tools fail to consider cryptographic properties of the
cipher [TMA11,CN10,DFL11] that can significantly impact the attack success. Further,
most tools do not consider the impact of the underlying hardware in the fault attack.

Our Contributions. In this paper, we introduce an automated framework, called
FaultMeter, that not just identifies vulnerable instructions in ciphers but quantitatively
evaluates the success with which an injected fault can be transformed into an attack.
Figure 1 depicts the flow of FaultMeter. Given a block cipher implementation, FaultMeter
(C1) first uses existing tools such as [KRR+20], to identify the vulnerable instructions
taking into consideration the cipher’s cryptographic properties. Only faults injected in any
of these vulnerable instructions are exploitable and can be used to retrieve information
about the cipher’s key. (C2) Then, for each vulnerable instruction, it quantifies the
probability that an injected fault can corrupt the instruction’s output. To perform this
quantification, it captures the sensitivity of the underlying microprocessor’s instruction
opcodes and data to faults and quantifies the probability of successful instruction skips.
(C3) It then performs static analysis to capture the probability with which an injected
fault can propagate to the program output resulting in a faulty ciphertext. Steps (C2)
and (C3) are performed by the Fault Exploitability Quantification module in FaultMeter.
The output of this module is a success score for every vulnerable instruction. The success
score quantifies the fault attack vulnerability of an instruction. A fault injected in an
instruction with a high success score is more likely to yield a successful fault attack
compared to a fault in an instruction with a low success score. This quantification is
different from contemporary fault attack tools [BHL18,HBZL19,KRR+20] that provide the
list of vulnerable instructions from cipher implementation. We demonstrate the application
of FaultMeter in a compiler that generates executables with directed countermeasures
automatically inserted to meet user-specified security margins. In addition to the input
program, the compiler accepts a user input that specifies the desired security level. The
compiler uses the success score from FaultMeter to quantify the fault attack threat in
the program at an instruction granularity, then applies appropriate countermeasures
to minimize performance overheads while adhering to the desired security level. Our
contributions can be summarized as follows.

• We present FaultMeter, the first automated framework that can quantify the fault
attack vulnerability of instructions in block cipher implementations. The vulnera-
bility not just depends on the cipher algorithm and its crypto-properties, but the
implementation as well as the underlying hardware.

• We study how the processor’s Instruction Set Architectures (ISA) have an influence
on a fault attack. For the study, we consider six microprocessors, namely, Intel x86
(64 bit), RISC-V (32-bit and 64-bit), ARM (32-bit and 64-bit), and TI’s MSP-430
(16-bit).This results in interesting observations, such as TI’s MSP-430 and Intel
x86 having highest success score compared to other processors, and RISC-V(32-bit)
having the lowest success score.

• To demonstrate that the fault attack vulnerability depends on the implementation, we
consider three AES-128 implementations that include a lightweight implementation,

Keerthi K and Chester Rebeiro 215

a T-table implementation, and a bitsliced implementation [RSD06]. We also evaluate
two other cipher implementations, CLEFIA-128 and CAMELLIA-128, to demonstrate
the scalability of FaultMeter across ciphers.

• We present an application of FaultMeter by using it in a compiler that can au-
tomatically tradeoff between security and performance to meet the user’s security
requirements.

Structure of the Paper. The paper is organized as follows: Section 2 provides the
necessary background. Section 3 includes the recent works for automated fault vulnerability
detection tools. Section 4 discusses the requirements for a successful fault attack and the
FaultMeter framework, expanding on steps C2 and C3. Section 5 describes the implemen-
tation and evaluates the FaultMeter framework on different block cipher implementations
and processors. Section 6 provides an application of FaultMeter framework, where it
used to automatically insert countermeasures based on the user’s security requirement.
Section 7 provides the limitations of FaultMeter. Section 8 includes the discussion and
future work. Section 9 concludes the paper.

2 Background
2.1 Fault Attacks
A fault attack has two phases. In the first phase, the attacker injects a fault during the
cipher execution that corrupts the output of an operation, causing an error that propagates
to the output, resulting in a faulty ciphertext. In the second phase, the attacker uses the
faulty ciphertext to reduce the entropy of the secret key. The cipher algorithm critically
determines the success of a fault attack. For example, AES is far more vulnerable to
fault attacks compared to ciphers like CLEFIA and PRESENT. It takes a single fault
during an AES execution to completely reveal its secret key [TMA11], while 8 [AM13] and
18 [BEG13] faults are needed for CLEFIA and PRESENT, respectively. Within a cipher,
too, not all operations are equally vulnerable. For example, a fault in the 8-th round of
AES reveals the entire secret key, while a fault in the 9-th round only reveals 32-bits of
the key. Faults injected before the 7-th round are not exploitable.

Implementations of the cipher also influence the fault attack surface. Keerthi et
al. [KRR+20] for instance, showed that the percentage of vulnerable instructions in seven
different implementations of AES-128 varies from 4.2% to 11.4%. A fault in any of these
vulnerable instructions can potentially be exploited. In this paper, we provide quantification
for the success of a fault attack. We show how the exploitability of a fault injected in a
vulnerable instruction can depend not just on the cipher algorithm and the implementation
but also on the underlying Instruction Set Architecture of the microprocessor.

2.2 Countermeasures for Fault Attacks
Several countermeasures [BG13,GST12,LRT12,GK13,TBM14a,ML08] have been intro-
duced to protect cipher implementations from fault attacks. Most countermeasures detect
fault injection using techniques like redundancy, parity, or error correction codes [BBK+03,
GK12,KWMK02,KKG03,WKKG04]. If a fault is detected, the countermeasure either
aborts the encryption operation or masks the output of the operation to make the fault
unexploitable. Other countermeasures makes use of infection techniques that diffuse faults,
making them unexploitable [LRT12,GST12,BG13,TBM14a]. Naïvely inserting either of
these countermeasures has considerable overheads, often degrading performance by over
two times. In the paper we show how FaultMeter can be used to automatically insert
targeted countermeasures during compilation. The countermeasures are tuned to meet the
application’s security and performance requirements.

216 FaultMeter: Quantitative Fault Attack Assessment of Block Cipher Software

Table 1: Comparison with the state-of-the-art fault attack automation tools. FaultMeter is the only tool
that works at the implementation level and considers the cryptographic properties, different hardware to
quantify the vulnerability.

Tools Output Tools Output Input Type Crypto Hardware
Detect Quantify Detect Quantify Properties Fault Analysis

Algorithm Software
XFC [KRH17] X X DATAC [BHL18] X 7 Assembly N/A N/A

ExpFault [SMD18] X 7 TADA [HBZL19] X X Assembly N/A N/A
FaultDroid [RRHB21] X X FEDS [KRR+20] X 7 Source Code X N/A

Hardware Lazart [PMPD14] X X IR N/A N/A
SOLOMON [SSR+20] X 7 ARMORY [HSP21] X 7 Assembly N/A ARM

SoFi [WLR+21] X 7 [RPL+14] X X Source Code
and Assembly N/A N/A

Verfi [AWMN20] X 7 [RBLC15] X X IR N/A N/A
FIVER [RSS+21] X X [LFB+21] X X IR N/A N/A

[DPdC+15] X X [BHE+19] X X Binary N/A ARM
[GJL20] X X IR N/A N/A

[HKR+15] X X Assembly N/A ARM

FaultMeter
(This Work) X X

Source Code
and IR
Analysis

X

ARM (32/64)
RISC-V (32/64)

TI-MSP430
Intel x86(64bit)

2.3 Intermediate Representation (IR)
The LLVM compiler converts the high-level representation to machine code using dif-
ferent compiler passes. The transformation pass converts the high-level representation
to Intermediate Representation (IR) instructions. FaultMeter uses LLVM’s generated
IR instructions for the analysis. These instructions are represented in the Static Single
Assignment form as defined below.

Definition 1. [Static Single Assignment] Static Single Assignment (SSA), is a format
for program representation, where variables in every assignment are used only once [RWZ88].

Below are a few examples of IR instructions.

%t0 = load %i8, i8 ∗%p0 : read from memory pointed by %p0 to variable %t0
%xor = xor i8 %x0, %x1 : %xor← %x0⊕%x1 (works on 8 bit integers (i8))
store i8 %xor, i8 ∗%s0 : write %xor to memory pointed by %s0
%a = alloca i8 : allocate a 8 bit integer on the stack
br i1 %cond, label %L1, label %L2 : if condition %cond is true jump to %L1, else %L2

3 Related Work
3.1 Automated Fault Attack Vulnerability Detection
Evaluating the security of cipher implementations against fault attacks is a tedious
and manual task. Recently a few tools were introduced to automate the fault attack
assessment process. Tools like [KRH17,SKMD17,RRHB21] work at the algorithm level to
determine vulnerable operations in a cipher and compute the attack complexity. These
tools work directly on the algorithm and do not consider implementation aspects, which
can significantly influence the attack success.

Another class of tools [SSR+20,AWMN20,GJL20,RSS+21,WLR+21] work on hardware
implementations of ciphers, typically taking RTL or netlist of the design as input to detect
fault vulnerable gates. Any fault injected in these vulnerable gates can result in a successful
fault attack. FIVER [RSS+21], for instance, determines effective and ineffective faults on
a gate-level netlist while [GJL20] bridges the gap between hardware and software faults.

The third set of tools [BHL18,HBZL19,HSP21,KRR+20,PMPD14,RPL+14,RBLC15,
LFB+21,HKR+15,BHE+19] detects fault attack vulnerable locations in software implemen-
tations. Software tools work either at the assembly level [BHL18,HBZL19,HSP21,HKR+15],
at the source code [KRR+20] or at a compiler-generated intermediate representation of the
program [PMPD14,RPL+14,RBLC15,LFB+21]. Some of these tools [HBZL19,PMPD14,

Keerthi K and Chester Rebeiro 217

Table 2: Comparison with automated fault attack countermeasure insertion tools. Unlike the other
tools, only FaultMeter can work with optimized code and tune the countermeasure to trade off between
performance and security.

Tools Work Optimized
Code

Provide
Security × Performance

Trade offs
Security Estimate

SAFARI [RRHB20] 7 X X
FEDS [KRR+20] X 7 7

FaultMeter(This work) X X X

RPL+14, RBLC15, LFB+21] quantify the vulnerability and can determine the attack
success based on specific fault models. They, however, do not consider cryptographic
properties of the cipher, such as its differential [TMA11] impossible differential [DFL11],
and algebraic properties [CN10]. A cipher’s cryptographic properties significantly abet
fault attacks. FaultMeter, on the other hand, builds on existing tools and can evaluate
cipher implementations considering complex cipher properties.

The underlying Instruction Set Architecture of the platform greatly affects fault
induction. Except for [HSP21], [BHE+19], and [HKR+15], none of the other software
tools take into consideration the impact of the fault in the underlying processor. While
[HSP21,BHE+19,HKR+15] evaluates faults in the ARM processor, FaultMeter considers
a range of processors from 16-bit to 64-bit, RISC and CISC architectures. This analysis
brings out interesting results, such as some ISAs are more vulnerable to fault attacks
compared to others. Further, FaultMeter computes the probability that a disturbed
instruction output can propagate to the ciphertext. Such quantification helps to customize
countermeasures as per the user’s requirement.

3.2 Automated Fault Attack Countermeasure Insertion

Automatic countermeasure insertion was first proposed in SAFARI [RRHB20], which
synthesized hardware and software programs based on a high-level specification of the
cipher algorithm and a user-defined security margin. While the generated programs had
fault-attack countermeasures inserted automatically, the programs were generic and could
not be optimized to suit specific platforms and requirements. For example, SAFARI would
synthesize the same code for an IoT edge device as well as a server.

Rather than synthesizing countermeasures like SAFARI, FEDS [KRR+20] can insert
countermeasures in any cipher implementation, thus supporting optimized codes in hand-
written assembly. However, FEDS cannot tune countermeasures to meet the user’s
security requirements. For example, a user developing a highly sensitive application such
as an electronic voting machine would require high security guarantees and would not
mind the additional performance overheads. On the other hand, less security critical
applications, such as a smart-clock, would value performance and energy consumption over
security. FEDS would be ignorant of the difference in requirements and provides the same
countermeasures for both applications.

Similar to FEDS, FaultMeter can produce highly optimized implementations of block
ciphers, however unlike FEDS, it can support countermeasures that can be added automat-
ically based on the user’s security requirements. Thus FaultMeter would likely provide a
stronger countermeasure for the electronic voting machine and weaker countermeasures for
the smart clock. The weaker countermeasures would result in lower performance overheads
and energy requirements. A critical aspect in FaultMeter that enables such application-
specific operations is the ability to quantify the success of converting an injected fault into
an attack.

218 FaultMeter: Quantitative Fault Attack Assessment of Block Cipher Software

C2

ARM32

MSP430

ARM64

RISCV64

RISCV32

0.44

0.48

0.40

0.38

FT

Vulnerable Instructions

Faulty Ciphertext

C3

C1

ProbabilityISA

0.60x86_64

0.60

if b 6= 0

swap(S0,S1)

b=a & 0x80

a = a ≪ 1

a = a⊕0x1b

S0 = P0 ⊕ K0

S1 = P1 ⊕ K1

t = S0 ⊕ S1

S0=MUL(S0)⊕t

S1=MUL(S1)⊕t

S0 = S0 ⊕ K0

S1 = S1 ⊕ K1

if b 6= 0

MUL(a)

a ← a ⊕ 0x1b

b ← (a & 0x80)

a ← a ≪ 1

MUL2(a) {

}

S0 ← P0 ⊕ K0

S1 ← P1 ⊕ K1

swap(S0,S1)

t ← S0 ⊕ S1

S0 ← MUL(S0)⊕t
S1 ← MUL(S1)⊕t
S0 ← S0 ⊕ K0

S1 ← S1 ⊕ K1

}

Enrypt() {

L1

L2

L3

L4

L5

L10

L11

L12

L9

L8

L7

L6

Figure 2: The pseudo-code of a toy cipher, where (P0,P1) and (K0,K1) are pairs of plaintext and secret
key bytes, respectively. The output of the cipher is the ciphertext bytes (S0, S1). The figure also shows
the Control Flow Graph (CFG) for the code with vulnerable nodes with respect to K0 highlighted. The
vertices in the CFG represent the operations of the cipher, and the edges represent the program control
flow. A fault in vulnerable instructions can potentially alter its output. The probability that this happens
intricately depends on the underlying hardware.

4 Quantifying the Success of Injected Fault
The probability that an injected fault can be exploited to create a successful attack depends
on the (1) cipher algorithm, (2) its implementation, and (3) the underlying hardware.

FaultMeter uses FEDS, to detect instructions in a program that are vulnerable to
fault attacks. In this section, we provide a quantification of the vulnerability that can
be used to distinguish between less vulnerable and more vulnerable fault injections. The
quantification depends considerably on the underlying hardware architecture and program
structure. In this section, we provide the basis for the quantification.

Fault Model. Fault injection can either modify the data flow or control flow of the
program. We consider a single transient fault injected in the device during the cipher’s
execution. The fault either corrupts an instruction or the associated data during the
program execution. Alternatively, the fault can be inserted in the program counter altering
the sequence of instructions executed, i.e. the control flow. After the fault is injected, it
propagates towards the output. The fault model considered is a fault injected in code,
data, or program counter to randomly alter it.

Requirements for a fault attack exploit. To exploit the fault, requires three conditions
to be satisfied. We discuss these requirements using a toy cipher shown in Figure 2.

C1. [Fault in vulnerable instructions] Only faults injected in certain locations can
yield a successful attack. For example, only faults inserted in the shaded nodes in
the Control Flow Graph (CFG) in Figure 2 can be used to recover key K0. These
are the vulnerable instructions with respect to K0. Faults injected anywhere else in
the program do not yield any information about K0. FaultMeter identifies these
vulnerable instructions with the help of existing tools in the Vulnerable Instruction
Identification module (refer Figure 1).

Keerthi K and Chester Rebeiro 219

...

Non−vulnerable Nodes

Vulnerable Nodes

FEDSLLVM

if b 6= 0

%1 = load i8, i8* %k0

%xor = xor i8 %0, %1

store i8 %xor, i8* %s0

%3 = load i8, i8* %k1

%xor5 = xor i8 %2, %3

store i8 %xor5, i8* %s1

%4 = load i8, i8* %s0

%5 = load i8, i8* s1

store i8 %5, i8* %s0

store i8 %4, i8* %t

%6 = load i8, i8* %t

store i8 %6, i8* %s1

%7 = load i8, i8* %s0

%8 = load i8, i8* %s1

%xor9 = xor i8 %7, %8

store i8 %xor9, i8* %t

%16 = load i8, i8* %k1

%xor26 = xor i8 %15, %16

store i8 %xor26, i8* %s1

I1

I2

I4

I3

I5

I6

I7

I8

I9

I10

I11

I12

I13

I14

I15

I16

I17

I18

I52

I53

I2

I3

I4

I5

I6

I7

I1 I8

I9

I11

I12

I13

I14

I15

I18

I19

I20

I21

I23I16

I24I17

I25

I26

I27

I28

I10

I36

I30

I32

I34

I28

I37

I38

I39

I41

I42

I22

I31

I33

I35

I43

I44

I48

I49

Pseudo Code

%0 = load i8, i8* %p0

%2 = load i8, i8* %p1

I54

%15 = load i8, i8* %s1

I51

a ← a ⊕ 0x1b

b ← (a & 0x80)

a ← a ≪ 1

MUL2(a) {

}

S0 ← P0 ⊕ K0

S1 ← P1 ⊕ K1

swap(S0,S1)

t ← S0 ⊕ S1

S0 ← MUL(S0)⊕t
S1 ← MUL(S1)⊕t
S0 ← S0 ⊕ K0

S1 ← S1 ⊕ K1

}

Enrypt() {

I50

I51

I53

I54

I46

I45 I52

I40 I47

Vulnerable Instrutions

IR Instrutions

Figure 3: Vulnerable Instruction Identification. The Intermediate Representation obtained from the LLVM
compiler for the pseudo code is used by FEDS to identify vulnerable instructions.

C2. [Corrupting the output of vulnerable instructions] When a fault is injected
in the instruction, it causes bits in the opcode to toggle. Similarly, faults injected
in data can change the values stored in memory or registers, and faults injected
in the program counter can alter the sequence of instructions executed. However,
not all faults would result in a wrong output. For example, the fault may result in
an undefined instruction or get interpreted as another instruction. In the former
case, the undefined instruction would result in an exception, causing the program
to terminate. Such faults cannot be exploited because the faulty ciphertext is not
available. In the latter case, there is a chance that the output of the instruction is
not affected by the fault. For example, if a fault in the swap(S0, S1) instruction
transforms it to swap(S1, S0), the output of the instruction is unaffected. The
opcode encoding significantly impacts the probability that an instruction is corrupted
by a fault. Figure 2 shows the probability that a randomly injected fault corrupts
the output of the instruction a = a� 1 in the six different platforms namely, ARM
(32-bit and 64-bit), RISC-V (32-bit and 64-bit), TI’s MSP-430 (16-bit) and Intel
x86 (64-bit) microcontroller. FaultMeter learns these probabilities offline for each
microprocessor. Section 4.2 provides further details about how these probabilities
are computed.

C3. [Fault propagation to the ciphertext.] The structure of the program can
influence if the fault propagates to the ciphertext. For example, consider the
instruction L6 (Figure 2) resulting in a non-zero value for b. If a fault induced in this
instruction changes the value of the byte b to another non-zero value, then the fault
will not propagate to the ciphertext byte due to the condition statement in L8. Thus,
only a fault that changes b to zero would propagate to the output. FaultMeter uses
the Fault Exploitable Quantification module (refer Figure 1) to compute the fault
propagation probabilities. Section 4.3 provides more details.

4.1 Identifying Vulnerable Instructions in an implementation (C1)
Only faults injected in vulnerable instructions can yield a successful attack. The percentage
of vulnerable instructions varies based on the algorithm as well as the implementation
characteristics. Recently, researchers introduced tools [BHL18,HBZL19,KRR+20,HSP21]
that could automatically identify vulnerable instructions in implementations. The tools

220 FaultMeter: Quantitative Fault Attack Assessment of Block Cipher Software

Valid Opcode

.

Program Completes
Program Completes

Fault does not Corrupts Output

of the Instructionof the Instruction

Fault Corrupts Output

Invalid Opcode

with Faulty Output (F1)

with Corret Output (F2)

Program Terminates (F4)

Program Terminates (F3)

Fault Injetion in Instrution/Register/Data Memory

Figure 4: Manifestation of a fault injected in instruction or data may either alter or leave unaltered the
instruction output. It may also result in a program termination.

take as input block cipher implementation either in the form of assembly or in a high-level
language like C and outputs the list of instructions that are vulnerable to fault attacks.
Typically, each tool handles a subset of fault attacks. For example, [KRR+20] can detect
regions of an implementation that are vulnerable to Differential Fault Analysis [TMA11]
and Impossible Differential Fault Analysis [DFL11]. Similarly, the DATAC [BHL18] tool
identifies locations that are vulnerable to instruction skip fault injections.

The first stage of FaultMeter (Figure 1) uses one of these tools to determine vul-
nerable instructions in a program. Only a few instructions in a cipher implementation
are exploitable by a fault attack. In this paper, we make use of the open-source tool
FEDS3 [KRR+20] that uses the LLVM Intermediate Representation (IR)4 of the program
to identify vulnerable program instructions. FEDS takes the source code of a block cipher
as input and outputs the list of exploitable instructions in the implementation by mapping
the known vulnerable instructions as shown in Figure 3. A fault in any of these ‘vulnerable
instructions’ is exploitable.

The input to FEDS is a compiler generated Intermediate Representation (IR) obtained
from the LLVM compiler. FEDS converts the IR to a Control Flow Graph (CFG), where the
instructions form the vertices of the graph and edges are added based on the program flow.
To perform the analysis, FEDS performs backward dataflow analysis on the CFG to identify
the vulnerable nodes in the graph. Figure 3 depicts the list of vulnerable instructions (I1
to I18) that can induce a fault in the output of the operation t ← S0 ⊕ S1.

The result from FEDS is binary. Either an instruction is vulnerable, or it is not. For
each vulnerable instruction identified by FEDS, FaultMeter provides a score between 0
and 1. A score close to 1 indicates that a fault injected in that instruction is more likely
to result in a successful attack. For non-vulnerable instructions (not identified by FEDS),
FaultMeter results a score of 0.

4.2 Quantifying the probability of fault-induced instruction corruption
(C2)

When a single fault is transiently injected during an instruction execution, it can manifest
by either altering or leaving unaltered the instruction output, or terminating the program,
as shown in Figure 4. A fault due to the altered instruction output may propagate,
resulting in a faulty ciphertext. We classify the fault manifestations into four classes:

F1. Fault is activated: The induced fault alters the instruction execution resulting in
an incorrect instruction output.

3https://bitbucket.org/casl/faultanalysis/src/master/FEDS/
4https://llvm.org/

https://bitbucket.org/casl/faultanalysis/src/master/FEDS/
https://llvm.org/

Keerthi K and Chester Rebeiro 221

F1 F2 F3 F4

Outcomes of Fault Injection

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y
of
 E
ve

nt
s

ARM(32-bit)
ARM(64-bit)
TI MSP-430(16-bit)
RISC-V(32-bit)
RISC-V(64-bit)
Intel x86(64-bit)

(a) Outcome of a fault injection in instructions on different
architectures.

Arithmetic Branch Load/Store Logic Overall
Instruction Types

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y
of
 O
ut
pu

t C
or
ru
pt
ed

1-bit
2-bit
3-bit
4-bit

(b) Probability of producing an incorrect output for different
fault models in RISC-V (32-bit)

Arithmetic Branch Load/Store Logic Overall
Instruction Types

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y
of
 F
au

lt
Ac

tiv
at
io
n
(F

1
)

ARM(32-bit)
ARM(64-bit)
TI MSP-430(16-bit)
RISC-V(32-bit)
RISC-V(64-bit)
Intel x86(64-bit)

(c) Probability of producing incorrect output on different
instruction classes.

F1 F2 F3

Outcomes of Fault Injection

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y
of
 E
ve

nt
s

8-bit
16-bit
32-bit
64-bit

(d) Probability of events when a transient fault is injected
in a register or data memory operand

Figure 5: Probability on different microprocessors of instructions producing incorrect outputs when a
transient fault is injected during execution.

F2. Fault is not activated: The induced fault alters the instruction execution but does
not change the instruction output. For example, a fault in the instruction swap(S0,
S1) which swaps the contents of registers S0 and S1.

F3&F4. Program is terminated: The induced fault leads to an illegal operation causing
the program to terminate.

The faults in set F2, F3 and F4 cannot induce a successful fault attack, as the outcomes
do not provide the faulty ciphertext that is necessary to carry out the attacks. In this
section, we quantify the probability that an injected fault leads to a faulty output. We
consider three types of fault injections. First, we consider faults injected in an instruction
affecting the opcodes. Second, faults injected in operands (for example registers), and
third, faults injected in the program counter affecting the flow of the program. Each
subsection considers one of these fault injections.

4.2.1 Fault Injection in instructions

When an injected fault changes bits in an opcode, it can result in a valid or invalid
instruction (see Figure 4). An invalid instruction opcode results in program termination
(F4), while a valid instruction can have any of the remaining three (i.e. F1, F2, or F3)
outcomes. The probability of these outcomes depends not just on the type of instruction
but also on the encoding. They are thus unique to each Instruction Set Architecture. To
understand these probabilities, we consider six microprocessors, namely, Intel x86 (64-bit),

222 FaultMeter: Quantitative Fault Attack Assessment of Block Cipher Software

TI’s MSP-430 (16-bit)5, ARM (32-bit and 64-bit)6and RISC-V(32-bit and 64-bit)7, to
identify the reliance of fault injection on the underlying architecture. For each of these
microprocessors, we generate random programs8, cross compile and execute the binary
multiple times in a simulator9. In each execution, faults are injected in an instruction
using simulation tools, such as by modifying the instruction memory and then observing
the instruction output. The result of the fault falls in one of the four classes i.e. F1, F2, F3,
or F4. Figure 5 shows the results from the simulation. These probabilities were computed
based on 50 randomly generated programs, with over 25,000 instructions and about a
million injected faults in each platform. Figure 5a shows the probability of each fault class
on the six microprocessors. Of the four classes, the probability that the fault is activated,
i.e. F1, is interesting for evaluating fault attacks. Figure 5b shows the impact of 1-bit,
2-bit, 3-bit, and 4-bit fault injections on an instruction. We observe that the probability of
F1 occurring, does not vary much based on the fault model. Thus, to simplify evaluation,
we consider only 1-bit fault injections.

Instruction encoding and fault outcome. The instruction encoding plays a critical
role in the outcome when a fault is injected. Reduced Instruction Set Computing processors
have fixed length instructions. Most instructions have two components: an opcode and
operands. The opcode defines if the instruction is an arithmetic, logic, branch, or a
memory operation. Instructions have zero or more operands. The operands, if present, in
an instruction can hold registers, immediate values, or memory addresses. In the following,
we evaluate the outcome of faults injected in the opcodes and operands.

Fault resulting in program termination due to invalid opcode (F4). A fault in the opcode
can either change the instruction or result in an invalid opcode. This depends on the
density of instructions in the instruction set. An instruction set is considered dense if a
fault injected in the opcode transforms it to another valid instruction with a significant
probability. Among the five processors considered, TI MSP-430 has the highest instruction
density. Thus for TI MSP-430, the probability of program termination due to an invalid
opcode (F4) is the lowest. For instance, the most significant four bits of double operand
instructions in TI MSP-4305 holds the opcode of the instruction. There are 15 valid
opcodes and one invalid opcode. Thus, a fault in any of these four bits is more likely to
change the opcode to a valid opcode than an invalid one.

Among the 32-bit processors considered, RISC-V has a lower instruction density
compared to ARM. This is because RISC-V has considerably large number of unused
opcodes compared to ARM, hence low density and higher chances that F4 occurs. RISC-V
64-bit has a higher instruction density compared to the 32-bit variant. This is because
of the additional instructions supported in the 64-bit and not 32-bit. This marginally
increases instruction density, lowering the chances that F4 occurs.

Fault resulting in a valid opcode but the program terminates (F3). In most cases, these
appear due to faults in the operand of branch and memory instructions. For example, a
fault changes the branch offsets stored as part of a branch instruction leading to an illegal
branch target. Similarly, faults may modify the address of load/store instructions leading
to an invalid memory operation. Arithmetic and logic instructions can also experience
these events. For example, the fault changes the destination register to either stack pointer
or program counter, potentially setting illegal values to these registers. In a few cases,
faults in the opcode of instructions can also trigger the event F3. For example, a fault
changing an arithmetic/logic opcode to a branch instruction.

5https://www.ti.com/tool/MSP430-GCC-OPENSOURCE
6https://developer.arm.com/architectures/instruction-sets
7https://riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf
8Random programs generated using Csmith https://embed.cs.utah.edu/csmith/
9QEMU (https://www.qemu.org/) is used for ARM and RISC-V, GDB5 is used for MSP-430 and x86

https://www.ti.com/tool/MSP430-GCC-OPENSOURCE
https://developer.arm.com/architectures/instruction-sets
https://riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf
https://embed.cs.utah.edu/csmith/
https://www.qemu.org/

Keerthi K and Chester Rebeiro 223

Faults that result in program completion (events F1 and F2). A fault that results in
program completion can either produce a correct output or a faulty output. For such
faults, the correct output is produced in 25% of the cases on average across all processors.
Some examples where the output of the program does not change in spite of fault injection
are provided here:

• ARM supports conditional execution of instructions, where an instruction is executed
only if certain conditional flags are set. We found that in many cases, a fault injected
in the condition bit present in the instruction did not alter the output.

• Often, multiple registers may hold the same data. Few bits in the instructions specify
the operands to be used for the source and destination registers. A fault that changes
the source register to another holding the same data would not affect the output.

• Certain faults were observed to change the arithmetic and logic opcodes in a way
that does not alter the outputs. For example, a fault that changes the opcode for
add to the signed equivalent adds in ARM may not always alter the output.

• Compare operations have outputs of True or False; hence with high probability, the
output remains the same even after fault injection.

• Faults that alter the memory address of load instructions in a way that the new
address holds the same data as the original do not alter the program output.

4.2.2 Fault in data memory and registers

Faults injected in data memory, or registers can influence the output of an instruction.
With respect to Figure 4, a disturbance in data memory or registers can cause in instruction
to provide a wrong output (F1) or cause program termination (F3). In some cases, the
fault would go unaffected (F2). However, such faults in data or registers cannot result in
an invalid opcode (i.e. F4). The probability of the events F1, F2, and F3 depend not just
on the type of instruction but also on the width of the registers.

To understand the probabilities of these events, we consider faults injected in 8-bit,
16-bit, 32-bit, and 64-bit registers. For each register size, we generate random C programs,
compile, simulate random fault injections in registers, and observe the outputs of each
instruction. The event F3 is observed when the fault modified registers are used to hold
addresses for branch, load, or store instructions. The modified registers result in invalid
instructions causing program termination.

In arithmetic and logic instructions, these faults result in either a wrong output (i.e.
F1), and in some cases do not affect the output (i.e. F2). For example, in a conditional
branch such as ’if (a < b)’ a fault in either a or b does not alter the output in half of the
executions. Arithmetic instructions like multiplication mul a,b do not alter the output if
one of the operands is zero. Similarly, in 32-bit platforms, the output of and a,b is not
altered when one of the operands is 0×FFFFFFFF.

4.2.3 Faults in the Program Counter

Unlike faults in instruction and data, the effect of a fault in the Program Counter (PC) is
influenced by the control flow graph of the program. If the fault modifies the PC in such
a way that the new address falls outside the control flow graph, i.e. an address outside
the program, then the program is likely to terminate (F3) (refer Figure 4). On the other
hand, if the fault modifies the PC such that the new address lies in the control flow graph,
then either events F1 or F2 are likely. These faults either skip instructions or repeat the
execution of instructions. The former generally occurs when the fault causes the PC to be
incremented, while the latter generally occurs when the fault decrements the PC. Not all

224 FaultMeter: Quantitative Fault Attack Assessment of Block Cipher Software

< 3114 >

< 3118 >

< 311C >

< 311E >

< 3166 >

< 316A >

< 3172 >

< 316E >

< 31B8 >

< 31BA >

< 31BC >

< 31BE >

< 317C >

.
.
.

< 3176 >

.
.
.

< 310A > < 313C >

...

I48

I4

I5

I6

I7

I27

I30

I29

I28

I26 I51

I52

I53

I54

I1 I18

Figure 6: Control Flow Graph (CFG) with addresses (〈 · 〉) for the intermediate representation of the
pseudo-code given in Figure 2. The addresses correspond to an implementation on TI’s MSP-430, while
the shaded nodes are vulnerable. A fault in the program counter can skip instructions or repeat the
execution of instructions as shown by the dashed lines.

F1 faults are exploitable. The exploitable F1 faults are restricted to those where one or
more vulnerable nodes in the program are skipped or executed more than the expected
number of times.

To understand the probabilities of these events for a given cipher implementation, we
generate the control flow graph of the program with vulnerable nodes marked. These nodes
are identified by the Vulnerable Instruction Identification module (Section 4.1). Fault
injections are simulated in the PC for each node of the CFG and the flow of the program
is observed after the fault injection. The events F1, F2, and F3 are counted to compute
the probabilities of occurrence.

The Control Flow Graph (CFG) for the LLVM intermediate representation (IR) in
Figure 3 is depicted in Figure 6. The cipher is implemented in the 16-bit TI MSP-430
and the address of each IR instruction is also shown in Figure 6. If a single bit fault
is injected in the program counter, for instance in node I6 with the address is <311C>,
the PC can take 16 possible values due to the fault injection, 11 of these values result
in a PC outside the program causing the program to terminate. The valid PCs after
fault injection are <3114>, <3118>, <311E>, <313C>, and <319C> as these addresses fall
within the CFG. Of these addresses, <311E>, <313C>, and <319C> result in a forward
jump, skipping vulnerable nodes (shaded in Figure 6). These faults result in exploitable
F1 events. The addresses <3114> and <3118> result in a backward jump, causing the
re-execution of vulnerable nodes. These too result in exploitable F1 events. There are no
F2 events in this example. Hence the probability of F1, F2, and F3 events for the fault
in the PC corresponding to node I6 are: 0.31, 0.0, and 0.69 respectively. In a similar
way, faults injected in the PC corresponding to the I53 results in probabilities 0.06, 0.25,
and 0.69 respectively. Among all faults, only one that modifies the PC from <31BC> to
<313C> resulting in the re-execution of the vulnerable instruction I18 which is a vulnerable
instructions and hence marked exploitable.

4.2.4 Computing the probability that an injected fault causes for an instruction

Of the four events, F1, F2, F3, and F4, only event F1 is useful in a fault attack because
only in this case the fault induces an error in the program and does not terminate it. We
denote the probability that the output of the j-th instruction can be faulted by

P(C∗
2,j) = P(F1) , (1)

Keerthi K and Chester Rebeiro 225

I 1

I 2

I 3

I 4

I 5

I 6

I 7

I 8

I 9

I 1
0

I 1
1

I 1
2

I 1
3

I 1
4

I 1
5

I 1
6

I 1
7

I 1
8

I 1
9

I 2
0

I 2
1

I 2
2

I 2
3

I 2
4

I 2
5

I 2
6

I 2
7

I 2
8

I 2
9

I 3
0

I 3
1

I 3
2

I 3
3

I 3
4

I 3
5

I 3
6

I 3
7

I 3
8

I 3
9

I 4
0

I 4
1

I 4
2

I 4
3

I 4
4

I 4
5

I 4
6

I 4
7

I 4
8

I 4
9

I 5
0

I 5
1

I 5
2

I 5
3

I 5
4

Nodes in the Control Flow Graph

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y
of

 O
ut

pu
t C

or
ru

pt
ed

(C i
2, j)-Fault in the Instruction (Cd

2, j)-Fault in the Register/DataMemory (Cp
2, j)-Fault in the Program Counter

Figure 7: The probability of a fault corrupting the output of instructions given in Figure 3 on an TI
MSP-430 processor. Faults can be induced either in the instruction, memory, or in the program counter.

where P(F1) is the probability of event F1 occurring when a fault is injected and ‘∗’ denotes
any of the fault injections i.e. in the instruction, memory, or program counter.

Figure 7 depicts these probabilities for each IR instruction for the pseudo-code shown
in Figure 3 with the three fault injections corresponding to a fault in the instruction,
data/register, or the program counter. These probabilities are represented as P(Ci

2,j),
P(Cd

2,j), and P(Cp
2,j) respectively. To generate these probabilities, the source code writ-

ten in C is first compiled using the LLVM compiler to generate a binary and also the
Intermediate Representation (IR).

Using the probabilities obtained in Section 4.2.1 and 4.2.2, each instruction and
the operands in the generated executable are analyzed to determine the corresponding
P(C∗

2,j) (where ∗ is either i or d). These probabilities are at the instruction level and is
the only hardware dependent step. We map these probabilities onto the corresponding
machine-independent IR instructions generated by the LLVM compiler. Unlike opcodes
and operands, faults in the PC are directly evaluated using the control flow graphs (CFGs)
generated from the IR instructions as discussed in Section 4.2.3.

The graph in Figure 7 shows that the faults injected in registers or memory have a
higher probability of corrupting the instruction output compared to the faults injected in
the opcode or the program counter. This is because faults injected in opcodes and the
program counter are more likely to terminate the program due to invalid opcodes F4 or an
invalid program counter.

4.3 Fault propagation from the instruction to the ciphertext (C3)
The output of an instruction in the program can be corrupted either by a fault injected in
that instruction (discussed in Section 4.2.1) or a fault injected in a previous instruction
that propagates to the given instruction. The latter depends on the program structure.
For example, consider the instruction L6 (refer Figure 2) resulting in a non-zero value of b.
If a fault induced in this instruction changes the value of the byte b to another non-zero
value, then the fault will not propagate to the ciphertext due to the conditional statement
in L8. Thus, only a fault that changes b to zero would propagate to the output. We denote
the probability that the fault propagates through a sequence of instructions Ii, Ii+1, . . . ,
Ii+n as P(C3,(i,i+1,···,i+n)).

Fault propagation can be done in two ways. The first is through registers, where the
output of one instruction is used as an input to another. Alternatively, faults can propagate
through memory operations. For instance, by a store of faulted data to memory, followed
by a subsequent load from the same address. To compute P(C3,(∗)), FaultMeter classifies
instructions into three different classes based on the model proposed by Guanpeng et al.

226 FaultMeter: Quantitative Fault Attack Assessment of Block Cipher Software

in [LPH+18]. The first class considers fault propagation through registers. The second
class considers fault propagation from a corrupted store to a subsequent load, while the
third class considers control flow instructions.

I1
I2

%xor = xor %0 %1 I3

store %xor, %s0 I4

%1 = load k0

%0 = load p0

P(Ci
2,4),

P(Ci
2,3) × P(Cd

2,4),

P(Ci
2,1) × P(Cd

2,3) × P(Cd
2,4),

P(Ci
2,2) × P(Cd

2,3) × P(Cd
2,4)

P(C3,(4)) = max

(a)

.
.
.
.

.
.
.
.

P(Ci
2,48) × P(Cd

2,49) × P(Cd
2,50)

P(Ci
2,50)

P(Ci
2,49) × P(Cd

2,50)

P(Ci
2,47) × P(Cd

2,48) × P(Cd
2,49) × P(Cd

2,50)

%t13 = load %s0 I47

store %xor22, %C0

I50

P(C3,29)

P(Ci
2,47)

P(C3,(50)) = max

P(C3,(47)) = max

I29store %xor, %s0

(b)

Figure 8: The instructions in (a) shows fault propagation data dependant instruction sequence corresponding
to IR instructions implementing S0 ← P0 ⊕ K0 in Figure 3. For instance, at I4, a fault could occur at I4
or one of the previous nodes, and propagate forward. (b) shows fault propagation in memory dependent
load and store instructions. A corrupted store in I29 will propagate to the load in I47, which propagates
further to influence the output in I50.

Fault propagation through registers. We consider a sequence of instructions, where
the output of instruction is the input to another, and the data is transferred through
registers. This data-dependent sequence of instructions has two properties: (a) it ends
with a store or a control flow instruction, and (b) the output of every instruction in the
sequence flows to the input of a subsequent instruction in the sequence. As an example
the first four IR instructions (I1, I2, I3, and I4) from Figure 3 have two data-dependent
sequences, namely, (I1, I3, I4) and (I2, I3, I4) as shown in Figure 8a. Note that I4 is a
store instruction that marks the end of the data sequence.

For each control flow or store instruction, FaultMeter computes the maximum proba-
bility that the output of the instruction is corrupted. To do this, it identifies all possible
data-dependent sequences that terminate with the given control flow or store instruction,
and computes the maximum probability that the output of the instruction is corrupted.
The choice of maximum probability gives the highest success with which the output of an
instruction can be corrupted. For instance, the maximum probability that I4 (Figure 8a)
is corrupted is given by

P(C3,(4)) = max
(
P(Ci

2,4),P(C3,(3,4)),P(C3,(1,3,4)),P(C3,(2,3,4))
)

. (2)

P(Ci
2,4) is the probability that a fault injected in instruction I4 and corrupts its output.

All other probabilities correspond to a fault injected in a predecessor instruction (either I1,
I2, or I3) that propagates, corrupting the output of I4. To compute these probabilities, we
take an example of the sequence of instructions I1, I3 and I4. If a fault is injected in the
instruction I1 then, assuming independence between instructions, the fault propagation
probability at the end of the sequence is computed as

P(C3,(1,3,4)) = P(Ci
2,1)× P(Cd

2,3)× P(Cd
2,4) , (3)

where P(Ci
2,1) is the probability of a fault injected in instruction I1 (refer Section 4.2.1).

This fault propagates through I3 and I4 due to the data dependent path. We quantify
this by considering the fault in the data in the corresponding instructions, i.e. P(Cd

2,3)
and P(Cd

2,4) (refer Section 4.2.2). In a similar manner we quantify the fault propagation
probability in each instruction sequence P(C3,(3,4)) and P(C3,(2,3,4)).

Fault propagation in memory dependent instructions. To compute the fault
propagation through memory operations, we keep track of load and store dependencies.

Keerthi K and Chester Rebeiro 227

.
.
.

P(Ci
2,29)

P(Ci
2,28) × P(Cd

2,29)

P(Ci
2,27) × P(Cs

2,28) × P(Cd
2,29)

P(C3,(29)) = max

P[T26 | P(Ci
2,26)] + P[NT26 | P(Ci

2,26)]

P(T26) × P(Ci2,21) × P(Ci2,27) × P(Ci2,28) × P(Ci2,29)

I28

I29
store %xor, a

%xor = xor %5 27

br then else

T26
NT26

%5 = load %a

I21
%a= alloa i8

I27

I26

Figure 9: Fault propagation across the control flow instruction can corrupts the store instruction I29 either
through data-dependent sequence (marked in red) or by a fault in branch I26.

For example, in Figure 8b, the store in I29 and the subsequent load in I47 are to the
same address. Thus a corrupted store in I29 corrupts the load in I47. From the corrupted
load, the fault propagates through registers in data-dependent instruction sequences. For
example, the next data dependant instruction sequence is from I47 to I50, which produces
an output. It should be noted that the current version of the work assumes that the
addresses can be resolved statically. The support for load and store operations that can
only be resolved at runtime is left as future work.

Fault propagation in control flow instructions. Instructions such as branch and
call, can propagate the fault to another location or change the control flow path of the
program. For example, in Figure 9, if a fault is injected in instruction I21, it can influence
the instructions within the control flow path of the program (I27 to I29) only if the branch
is taken. On the other hand, if a fault is injected in I26, it can change a taken branch to a
not-taken branch or vice-versa. We analyze these two cases separately.

Fault does not change the control flow path. For example, the fault in I21 can influence
the store in I29 only if the branch is taken. Thus, the probability of fault propagation
from I21 to I29 also depends on the probability that the branch is taken. To compute
these probabilities, we determine all the store instructions along the control flow path and
then evaluate fault propagation to the stored memory location using the data-dependant
sequence (discussed earlier in this section). Thus, the probability that a fault injected in
I21 can propagate to the memory location used in the store in I29 is computed as follows:

P(C3,(21,27,28,29)) = P(T26)× P(Ci
2,21)× P(Cd

2,27)× P(Cd
2,28)× P(Cd

2,29) , (4)

where T26 is the probability that the branch in I26 is taken. To generalize this approach
when there are multiple stores in both taken as well as not-taken branches, we independently
compute probability of fault propagation to each store using the data-dependant sequence
analysis as discussed earlier, and then consider the maximum probability.

Fault changes the control flow path of the program. For example, a fault in instruction
I26 can cause the taken branch to be not-taken (or vice-versa) and can result in the
store instruction at I29 to be illegally executed (or not executed). In either case, the
corresponding memory operation in the store instruction is corrupted. To compute the
fault propagation probability from the control flow instruction to the corrupted store, we
would need to consider the conditional probability that the branch is illegally taken or
not-taken due to the fault in the branch instruction. The probability that the branch is

228 FaultMeter: Quantitative Fault Attack Assessment of Block Cipher Software

illegally not-taken due to the fault in the control flow instruction that alters the output of
the instruction and is given by

P[NT26 | F1] = P(T26)× P(Ci
2,26) . (5)

This fault corresponds to the event F1 defined in Section 4.2, where the fault is activated.
In Equation 5, P(T26) is the probability that a branch is taken, and P(Ci

2,26) is the
probability that the output of the 26-th instruction (the branch) is corrupted by the
fault. The probability of the branch taken or not taken is determined empirically. For
example, a corrupted output of a branch instruction could make a not-taken branch taken
or vice-versa. Similarly, we can compute the probability that the branch is illegally taken
due to the fault, i.e. P[T26 | F1], in a similar manner.

Considering Figure 9, the probability that the memory location used in the store
instruction I29 is corrupted due to a fault in I26 can either result in execution or non
execution of the store. Assuming that the branch at I26 is taken, the fault can force the
branch to be not-taken, resulting in the execution of the instruction I29 corrupting the
corresponding stored memory. On the other hand, assuming that the branch at I26 is
not-taken, the fault can force the branch to be taken, skipping the store instruction at I29.
This too corrupts the corresponding memory. Thus, the probability that the memory used
in the store is corrupted is given by

P(C3,(26,27,28,29)) = P
(

T26
∣∣ (Ci

2,26)
)

+ P
(

NT26
∣∣ (Ci

2,26)
)

= P(NT26)× P(Ci
2,26) + P(T26)× P(Ci

2,26)

= (1− P(T26))× P(Ci
2,26) + (P(T26)× P(Ci

2,26) = P(Ci
2,26) .

(6)

4.3.1 The FaultMeter Algorithm

The FaultMeter algorithm (Algorithm 1) takes three parameters. The first parameter,
CFG is the control flow graph of the implementation under test (IUT). The second is
V_list, which is a list of vulnerable instructions in the IUT. These vulnerable instructions
are obtained from the Fault Vulnerable Identification module and the only locations in the
IUT where an injected fault can be exploited. The third parameter is a processor specific
lookup table, TPF, comprising of instructions and the fault activation probabilities that were
obtained empirically as discussed in Section 4.2. The fault can be injected in instruction,
memory/register, or in the program counter. Without loss of generality, Algorithm 1
considers faults injected only in instructions. The algorithm assigns a probability to each
node in V_List. This probability, SuccessScore, denotes the success with which injected
faults propagate to the output.

The algorithm starts executing from Main(Line 1-7). For each vulnerable location
(i.e. each element in V_List), it creates a data-dependent graph (DDG). These graphs
are acyclic and show the propagation of a fault from Il to the output. For example, in
Figure 3, 18 out of the 54 instructions present are vulnerable, hence the algorithm would
have 18 different DDGs. For each of these graphs DDG[Il], function ComputeP is invoked.
The second parameter passed to ComputeP holds the fault activation probability for the
instruction Il. The function returns the probability with which a fault in instruction Il

propagates to the output.
The ComputeP function extracts the path from Il to In such that In is a store, a

branch instruction, or an output instruction. If there exists a branch between Il and In

in the CFG, then the probability of In being executed is determined (Line 11-14). This
depends on the probability that the branch is taken or not-taken. For example, in Figure 9,
the data dependant path is I21, I27, I28 and I29. The probability that I29 executes is
the probability that the branch at I26 is taken. Line 15, computes the fault propagation
probability from Il to In.

Lines 16-28 identify the next sequence of instructions to evaluate. If In is a branch,
it identifies the probability that store instructions in the taken and not-taken paths are

Keerthi K and Chester Rebeiro 229

Algorithm 1: The FaultMeter Algorithm
Input: CFG: Control Flow Graph of Implementation and V_List : List of the vulnerable

instructions and TPF: Processor dependent fault activation probability table
Output: SuccessScore : Success Score of the vulnerable instructions

1 Function Main():
2 begin
3 Create the Data Dependent Graph (DDG) for each node in V_List
4 for each graph with Il as the start node do
5 p← Fetch P(Ci

2,l) of Il from TPF
6 SuccessScore[Il] ←ComputeP(DDG[Il], p)

7 return SuccessScore

8 Function ComputeP(DDG[Il], p):
9 begin

10 SScore ← ∅
11 〈Il, · · · , In〉 ← Extract path from Il to In of DDGl, where In is the first be store, branch,

or output instruction in the path.
/* instruction sequence 〈Il, Il1 , Il2 · · · , In〉 */

12 b← T rue, if ∃ a branch between Il and In in CFG, else b← F alse
13 if b = True then
14 p← p × (Probability of In being executed)

/* Computing fault propagation probability of data-dependent sequence. */
15 p← p× P(Cd

2,l1
)× · · · × P(Cd

2,n)
16 if In is a branch then
17 〈store〉 ← Find all stores in the taken and not-taken path of branch In.
18 for each Is in 〈store〉 do
19 〈Is, ps〉 ← (Is, p)
20 for each 〈Is, ps〉 do
21 Mem ← Find the memory location in the store instruction
22 SScore[Mem]← ComputeP(DDG[Is], ps)
23 P(C3,(Il,···,In)) ← max(SScore[Mem])
24 else if In is output then
25 P(C3,(Il,···,In)) ← p

26 else if In is a store then
/* Instruction In to Il has the Store to Load Dependency */

27 Il ← Next Memory Dependent instruction of store (In) in the DDG[Il]
28 P(C3,(Il,···,In)) ← ComputeP(DDG[Il], p)
29 return P(C3,(Il,···,In))

corrupted as described in Equation 6. For each of these store instructions, the algorithm
recursively invokes ComputeP with Is as the start node of the DDG (DDG[Is]) and ps the
probability of the fault corrupting the output of Is (Line 20-22). The maximum probability
of all the stores is returned if there is a write to the same memory locations. ComputeP
terminates if In is an output instruction then P(C3,(Il,···,In)) is assigned with a probability
p (Line 25).

Suppose the instruction In is a store, then a store to load dependency (In to Il)
is determined to propagate the fault further (described in Section 4.3). ComputeP is
recursively invoked (Line 28) with the load instruction Il as the fault activation location
of the DDG[Il] and p, the probability of fault corrupting the output of Il (refer example in
Figure 8b). The function returns with the value of the fault propagation probability for Il,
when it finds an output instruction.

Figure 10 shows the fault propagation for 2 locations I1, I15 for two processors TI MSP-
430(16-bit) and RISC-V(32-bit) for the toy cipher given in Figure 3. The SuccessScore for
these locations is computed using Algorithm 1. The x-axis highlights the IR instructions
I1 to I54, and the y-axis shows the fault propagation probability. The graph shows that

230 FaultMeter: Quantitative Fault Attack Assessment of Block Cipher Software

I 1

I 2

I 3

I 4

I 5

I 6

I 7

I 8

I 9

I 1
0

I 1
1

I 1
2

I 1
3

I 1
4

I 1
5

I 1
6

I 1
7

I 1
8

I 1
9

I 2
0

I 2
1

I 2
2

I 2
3

I 2
4

I 2
5

I 2
6

I 2
7

I 2
8

I 2
9

I 3
0

I 3
1

I 3
2

I 3
3

I 3
4

I 3
5

I 3
6

I 3
7

I 3
8

I 3
9

I 4
0

I 4
1

I 4
2

I 4
3

I 4
4

I 4
5

I 4
6

I 4
7

I 4
8

I 4
9

I 5
0

I 5
1

I 5
2

I 5
3

I 5
4

Nodes in the Control Flow Graph

0.0

0.1

0.2

0.3

0.4

0.5

Fa
ul
t P

ro
pa
ga
tio

n
Pr
ob
ab
ilit
y

I1 I15 TI-MSP430(16-bit) :I1
RISC-V(32bit) :I1
TI-MSP430(16-bit) :I15
RISC-V(32bit) :I15

Figure 10: The fault propagation probability of instructions I1, I15 for the processors TI MSP-430(16-bit)
and RISC-V(32-bit) for the toy cipher implementation given in Figure 3.

Table 3: We invoke FEDS [KRR+20] in the Vulnerable Instruction Identification module for the five
implementations considered. This step is hardware independent.

Block Cipher #IR Instruction
in the CFG

% of Vulnerable
Instructions Time (in Secs)

AES-128(LookUp Table) 7206 6.56 38.2
AES-128(T Table) 4299 4.2 15.5
AES-128(BitSliced) 8256 11.45 215.7
CAMELLIA-128 1475 23.2 99.3
CLEFIA-128 1024 6.54 105.5

the fault propagation probability varies based on the processor and the location of fault
activation.

5 Implementation and Evaluation
In this section we provide details about the implementation of FaultMeter and present
the results on the cipher implementations. We consider five cipher implementations.
Three implementations are realizations of AES-128 based on LookUp Tables, where the
SubBytes operation is implemented using a single 256 byte look-up table10, T-Tables,
where the operations SubBytes, ShiftRows, and MixColumns are merged and replaced
with look-ups11, and BitSliced [RSD06], where all the operations are bitsliced. We also
consider implementations of CLEFIA-128 [SSA+07] and CAMELLIA-128 [AIK+00]. The
FaultMeter framework is implemented as transformation passes in the LLVM Clang
compiler4 Version 7.0.

The probability that the output of an instruction is corrupted due to an injected fault,
event F1, is computed beforehand on the ARM (32 and 64 bit), RISC-V(32 and 64 bit),
TI MSP-430 (16 bit), and Intel x86(64-bit) architectures. Next, we discuss the results at
the output of each stage of FaultMeter.

5.1 Vulnerable Instruction Identification
The Vulnerable Instruction Identification module (refer Figure 3) takes the block cipher
source code as input and marks the fault vulnerable instructions from the implementation.

FaultMeter uses the FEDS [KRR+20] framework for this stage. FEDS determines
all the exploitable instructions from IR instructions that are susceptible to fault attack.
The Vulnerable Instruction Identification module works by converting the IR instructions
to control flow graph and also finds the dependencies between the instructions using a
reverse data flow analysis on the control flow graph (refer Section 4.1). Table 3 shows the

10https://github.com/BrianGladman/aes/blob/master/aestab.c
11https://github.com/openssl/openssl/blob/master/crypto/aes/aes_core.c

https://github.com/BrianGladman/aes/blob/master/aestab.c
https://github.com/openssl/openssl/blob/master/crypto/aes/aes_core.c

Keerthi K and Chester Rebeiro 231

ARM(32-bit) ARM(64-bit)

RISC-V(32-bit)

TI MSP-430(16-bit)

RISC-V(64-bit)

Intel x86(64-bit)

Figure 11: SuccessScore of vulnerable instruction from an AES(LookUp Table) based implementation on
six different processors. Each cell represents an instruction and the color code represents the SuccessScore.

output of the Vulnerable Instruction Identification module. The percentage of exploitable
instructions varies from 6.56% AES-128(LookUp Table) to 23.2% (CAMELLIA-128) from
the total instruction in the control flow graph. As an example, the AES (T-Table)
implementation has 4.2% instructions that are exploitable to fault attack from the total of
4299 IR instructions present. A fault induced in any of these vulnerable instructions can
result in a successful fault attack. These results just depend on the cipher implementation
and are agnostic of the underlying hardware used.

5.2 Fault Exploitability Quantification
Fault Exploitability Quantification module takes the Control Flow Graph with marked vul-
nerable nodes as input and processor dependent fault activation probability and quantifies
the vulnerability using Algorithm 1. The module considers faults injected in instruction
opcodes, memory, registers, and in the program counter. In each case, the probability of
the injected fault propagating to the output is computed. This probability depends on the
underlying hardware architecture and the program structure.

FaultMeter evaluation on different architectures. To demonstrate that the fault
propagation varies based on program structure, we have considered five cipher implemen-
tations (given in Table 3) and five RISC microprocessors: ARM (32 and 64 bit), RISC-V
(32 and 64 bit), and TI MSP-430 (16 bit). We also considered the Intel x86 (64-bit)
CISC architecture. Figure 11 shows the memory layout of exploitable instructions for
the AES-128 LookUp Table based implementation (Table 3). Each colored cell shows
the exploitable instructions, with the color indicating the probability that a fault in that
instruction can corrupt the ciphertext and result in a successful attack. Notice that on each
processor architecture, the vulnerable instructions are the same. However, the difference
in color across the architectures indicates that the exploitability of the instruction differs
from one architecture to another. TI’s MSP430 (16-bit) RISC processor and Intel x86
(64-bit) processor have instructions with high fault susceptibility. This means that a fault
injected in these processors have a high chance of disturbing the execution compared to
a fault in the same instruction in the other processors. This is because, comparatively,
TI MSP430 has a densely packed instruction set (refer Section 4.2); therefore, there is a
smaller probability of obtaining an invalid opcode. This results in high P(C2). Similarly,
the large number of instructions in Intel’s x86 platforms, owing to the CISC architecture,
provides a similar impact.

232 FaultMeter: Quantitative Fault Attack Assessment of Block Cipher Software

93 94 95 96 97 98 99 100
Percentage(%) of Instructions

0.0

0.1

0.2

0.3

0.4

0.5

0.6
Su

cc
es

s
Sc

or
e

ARM(32-bit)
ARM(64-bit)
RISC-V(32-bit)
RISC-V(64-bit)
TI MSP-430(16-bit)
Intel x86(64-bit)

(a) AES-128 (LookUp Table)

95 96 97 98 99 100
Percentage(%) of Instructions

0.0

0.1

0.2

0.3

0.4

0.5

Su
cc

es
s
Sc

or
e

ARM(32-bit)
ARM(64-bit)
RISC-V(32-bit)
RISC-V(64-bit)
TI MSP-430(16-bit)
Intel x86(64-bit)

(b) AES-128 (T-Table)

88 90 92 94 96 98 100
Percentage(%) of Instructions

0.0

0.1

0.2

0.3

0.4

0.5

Su
cc

es
s
Sc

or
e

ARM(32-bit)
ARM(64-bit)
RISC-V(32-bit)
RISC-V(64-bit)
TI MSP-430(16-bit)
Intel x86(64-bit)

(c) AES-128 (BitSliced)

75 80 85 90 95 100
Percentage(%) of Instructions

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Su
cc

es
s
Sc

or
e

ARM(32-bit)
ARM(64-bit)
RISC-V(32-bit)
RISC-V(64-bit)
TI MSP-430(16-bit)
Intel x86(64-bit)

(d) CAMELLIA-128

94 95 96 97 98 99 100
Percentage(%) of Instructions

0.0

0.1

0.2

0.3

0.4

0.5

Su
cc

es
s
Sc

or
e

ARM(32-bit)
ARM(64-bit)
RISC-V(32-bit)
RISC-V(64-bit)
TI MSP-430(16-bit)
Intel x86(64-bit)

(e) CLEFIA-128

75 80 85 90 95 100
Percentage(%) of Instructions

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Su
cc

es
s
Sc

or
e

AES-128(lookup)
AES-128(t-table)
AES-128(bitsliced)
CAMELLIA-128
CLEFIA-128

(f) All Ciphers on TI MSP-430

Figure 12: Percentage of vulnerable instructions for different cipher implementations. To understand these
graphs, consider for example in Figure (d), when x = 85%, y = 0.38 on TI MSP-430(16-bit). This means
that 85% of CAMELLIA-128 instructions have SuccesScore ≤ 0.38.

FaultMeter evaluation on different software implementations. Figures 12a to 12e
shows the output of the Fault Exploitability Quantification module for the five cipher
implementations on the six processors. For AES-128 cipher implementations (Figures 12a
to 12c), the percentage of vulnerable instructions varies based on how the cipher is
implemented, and the final SuccessScore of vulnerable instructions varies based on the
program structure and the underlying architecture. For example, for AES-128 (LookUp
Table), Figure 12a, 0.5% of instructions (≈ 72) instructions have maximum SuccessScore
is 0.5 across different architecture, whereas for AES-128 (T-Table) Figure 12b and AES-128
(BitSliced) Figure 12c, the percentage of vulnerable instructions with similar SuccessScore
is 0.4% (≈ 18) and 1.5%(≈124) respectively. Of the three AES implementations, the
BitSliced implementation is most prone to fault attacks because it has the highest percentage
of vulnerable instructions (Table 3), and it has a higher fault propagation probability
across all the architectures (Figure 12). Similarly, the T-Table implementation is the most
secure of the AES-128 implementations considered.

Figure 12f compares the fault propagation probability of the cipher implementations
(given in Table 3) on the TI MSP-430 (16-bit) processor. From the figure, it is clear
that CAMELLIA-128 is more vulnerable to fault injection attacks as it has the highest
percentage of vulnerable instructions. For CAMELLIA-128, ≈ 85% of instructions have
SuccesScore ≤ 0.4. AES-128 (T-Table) is least vulnerable on TIs MSP-430, where ≈ 96%
of vulnerable instructions have SuccesScore ≤ 0.4.

6 Applying FaultMeter to automatically insert counter-
measures based on User Specified Security Input (Uin)

Incorporating fault attack countermeasures is expensive. It can increase run time overheads
by over 100% and memory requirements by over 800%. These overheads are unacceptable
for several applications, especially where time and resources are critical. One approach to
address this issue is to provide just sufficient countermeasures to meet an application’s
security requirement. This is motivated by the fact that a program’s security requirements
vary considerably based on the application. For instance, a block cipher used in critical

Keerthi K and Chester Rebeiro 233

Uin = 0.8 Uin = 0.4Uin = 0.8 Uin = 0.8Uin = 0.4
RISC-V (64-bit)

RISC-V (64-bit)

Uin = 0.4
TI MSP-430(16-bit)

TI MSP-430(16-bit)

ARM (32-bit)ARM (32-bit)

Figure 13: SuccessScore of vulnerable instructions (AES-128 (LookUp Table)) after inserting counter-
measures on three processors with Uin 0.4 and 0.8. Each cell represents an instruction.

infrastructure would require much more secure implementations compared to an application
in a consumer device. Thus for such applications, designers typically would want to
prioritize security in lieu of performance. Such trade-offs would be less acceptable for the
consumer device, especially in a resource-constraint device, where each byte and each clock
cycle is valuable.

Table 4: Comparison of unprotected and naïvely protected implementations with FaultMeter based
countermeasure addition. The table shows the percentage increase in code size, clock, along with fault
coverage. The comparison is made on a TI MSP-430 (16-bit) and ARM(64-bit) processors with different
user requirements.

Block Cipher
Original Naive

Approach User
Input
(Uin)

FaultMeter
(TI MSP430(16-bit)) Coverage

(%)

FaultMeter
(ARM (64-bit)) Coverage

(%)
Code
Size

Clock
Cycles

% Increase
in Code Size

% Increase in
Execution Time
(Clock Cycles)

% Increase
in Code Size

% Increase in
Execution Time
(Clock Cycles)

% Increase
in Code Size

% Increase in
Execution Time
(Clock Cycles)

AES-128
(LookUp Table) 936 95347 886.12 157.80

0.8 110.68 23.01 84 110.03 20.00 84
0.6 108.54 18.75 82 80.05 15.12 75
0.4 102.56 10.40 79 75.32 10.27 74

AES-128
(T-Table) 1089 79141 590.02 25.75

0.8 173.55 3.54 90 173.00 3.50 90
0.6 165.47 2.65 89 150.00 2.50 84
0.4 120.75 2.48 86 100.00 2.40 80

AES-128
(BitSliced) 2606 643348 288.14 91.73

0.8 64.08 48.98 91 64.02 48.00 91
0.6 60.85 48.80 90 59.32 44.32 88
0.4 58.36 48.39 86 47.12 40.00 81

CAMELLIA-128 1045 108996 831 42.05
0.8 21.05 13.21 95 21.03 13.20 95
0.6 15.86 12.14 83 13.23 10.30 81
0.4 10.35 12.05 80 5.25 10.01 75

CLEFIA-128 895 81311 679.01 21.40
0.8 40.11 5.25 85 40.05 5.20 85
0.6 34.07 3.20 83 30.12 3.12 80
0.4 29.21 2.17 81 20.18 1.5 70

In this section, we demonstrate the use of FaultMeter to cater to the diverse security
requirements of applications. We use FaultMeter to automatically insert countermeasures
based on the user’s input, which is a number between 0 and 1 defining the extent to
which security is important in the application. A value close to 1 implies that the user
prioritizes security over performance, while a value close to 0 implies that performance
is critical. The SuccessScore produced by FaultMeter is used to tune between security
and performance. For instance, if the user input is Uin, then all the instructions where
SuccessScore ≥ (1− Uin) are protected by automatically inserting countermeasures only
in these locations. All other locations with lesser SuccessScore are not protected.

To demonstrate automatic countermeasure insertion, we use the spatial redundancy
countermeasure as a case study. The countermeasure addition module (Figure 1) works
at the IR level. It takes the vulnerable instructions along with the SuccessScore of
each instruction and replicates instructions where SuccessScore ≥ (1− Uin). Additional
variables are defined as required, and instructions are inserted to compare with redundant
results.

234 FaultMeter: Quantitative Fault Attack Assessment of Block Cipher Software

0.4 0.5 0.6 0.7 0.8 0.9 1.0
User-Specified Security Input (Uin)

0

1

2

3

4

5

6
Pe

rc
en

ta
ge

 o
f V

ul
ne

ra
bl

e
In

st
ru

ct
io

ns
 P

ro
te

ct
ed

ARM(32-bit)
ARM(64-bit)
RISC-V(32-bit)
RISC-V(64-bit)
TI MSP-430(16-bit)
Intel x86(64-bit)

(a) AES-128 (LookUp Table)

0.4 0.5 0.6 0.7 0.8 0.9 1.0
User-Specified Security Input (Uin)

2

3

4

5

6

Pe
rc

en
ta

ge
 o

f V
ul

ne
ra

bl
e

In
st

ru
ct

io
ns

 P
ro

te
ct

ed

ARM(32-bit)
ARM(64-bit)
RISC-V(32-bit)
RISC-V(64-bit)
TI MSP-430(16-bit)
Intel x86(64-bit)

(b) AES-128 (T-Table)

0.4 0.5 0.6 0.7 0.8 0.9 1.0
User-Specified Security Input (Uin)

0

2

4

6

8

10

12

Pe
rc

en
ta

ge
 o

f V
ul

ne
ra

bl
e

In
st

ru
ct

io
ns

 P
ro

te
ct

ed

ARM(32-bit)
ARM(64-bit)
RISC-V(32-bit)
RISC-V(64-bit)
TI MSP-430(16-bit)
Intel x86(64-bit)

(c) AES-128 (BitSliced)

Figure 14: Percentage of vulnerable instructions protected for different user input (Uin) across six different
processors.

Table 4 shows the percentage increase in code size and clock cycles for different ciphers
realized in the TI MSP-430 (16-bit) and ARM (64-bit) processors for a naïvely protected
executable and an executable generated with FaultMeter based countermeasures. We
observe that (a) the percentage increase in code size and execution clock cycles is far less
with FaultMeter based protection. Unlike the naïve approach where all instructions in the
executable are protected, with the FaultMeter based protection, only instructions with
a SuccessScore ≥ (1− Uin) are protected. (b) The increase in code size and execution
varies directly with the value of Uin and inversely with fault coverage.

The TI MSP-430(16-bit) is the most vulnerable processor compared to other archi-
tectures, hence the percentage increase in code size is higher compared to ARM (64-bit)
processor. From the table it is evident that the performance overhead after the countermea-
sure addition varies depends on the implementation as well as the underlying architecture.
Figure 13 shows the heat map of vulnerability of instructions for two different User

Input (Uin) values for the AES-128(Look-Up Table) (Table 3) on three platforms after
the countermeasure is inserted. From the figure, it is evident that a higher Uin results in
more protected implementations. The countermeasures inserted too is different in each
platform. The measure of SuccessScore after the countermeasure inserted is computed
independently of the previous experiments.

Figure 14 shows the percentage of instructions protected for different user inputs. For
example, for AES-128 (T-Table) on a TI MSP-430, when Uin = 0.7, 4% of vulnerable
instructions are protected, while for an ARM 64-bit, only 1% of vulnerable instructions
are protected

7 Limitations
In its current form, there are two limitations of FaultMeter.

• Fault Vulnerable Identification module used in FaultMeter identifies the vulnerable
instructions, while FaultMeter quantifies the vulnerability. If an instruction is
identified incorrectly as not vulnerable by the Fault Vulnerable Identification module,
FaultMeter will not be able to quantify it. Similarly, if an instruction is marked
incorrectly as vulnerable, the output of FaultMeter is also incorrect.

• FaultMeter currently works with unprotected implementations of block ciphers. It
needs to be extended to support implementations where the protection is already
incorporated. In order to do this, FaultMeter would need to distinguish instructions
that are present due to the countermeasure. Distinguishing these countermeasure re-
lated instructions from other instructions is challenging at the compiler’s intermediate
representation level and therefore left as future work.

Keerthi K and Chester Rebeiro 235

8 Discussion
Non-Cryptographic Applications: Besides cryptography, FaultMeter can be used
for other security applications, such as information flow analysis [SM03], safety-critical
applications etc. The major challenge is to find the sensitive locations from the application
software.

9 Conclusion
FaultMeter is an automated framework that can quantify the success with which an
injected fault can be exploited. We show that this success probability depends on the
cipher algorithm, its implementation, as well as the Instruction Set Architecture (ISA) of
the processor. Our evaluation of five cipher implementations on six hardware platforms
brings out interesting observations. For instance, TI MSP 430 (16-bit) and Intel x86
(64-bit) are the most vulnerable to fault attacks. Comparing the 32-bit RISC processors,
ARM is more vulnerable to fault injection than RISC-V. On the other hand, the 64-bit
variant of RISC-V is more vulnerable than the equivalent ARM variant. Further, the
smaller TI MSP-430 processor is the most vulnerable amongst all processors considered.
Comparing different implementations of AES, the T-table implementation is the most
secure against fault attacks. The quantification that FaultMeter provides can be used to
strategically used to choose the right countermeasure in block cipher implementations to
meet the application’s security requirements as we demonstrated in the paper.

References
[ABMP13] Giovanni Agosta, Alessandro Barenghi, Massimo Maggi, and Gerardo Pelosi.

Compiler-based side channel vulnerability analysis and optimized counter-
measures application. In The 50th Annual Design Automation Conference
2013, DAC ’13, Austin, TX, USA, May 29 - June 07, 2013, pages 81:1–81:6,
2013.

[AIK+00] Kazumaro Aoki, Tetsuya Ichikawa, Masayuki Kanda, Mitsuru Matsui, Shiho
Moriai, Junko Nakajima, and Toshio Tokita. Camellia: A 128-bit block
cipher suitable for multiple platforms - design and analysis. In Selected Areas
in Cryptography, 7th Annual International Workshop, SAC 2000, Waterloo,
Ontario, Canada, August 14-15, 2000, Proceedings, pages 39–56, 2000.

[AM13] S. Ali and D. Mukhopadhyay. Improved Differential Fault Analysis of CLEFIA.
In FDTC, pages 60–70, 2013.

[ATG+19] Md. Mahbub Alam, Shahin Tajik, Fatemeh Ganji, Mark Mohammad Tehra-
nipoor, and Domenic Forte. Ram-jam: Remote temperature and voltage
fault attack on fpgas using memory collisions. In 2019 Workshop on Fault
Diagnosis and Tolerance in Cryptography, FDTC 2019, Atlanta, GA, USA,
August 24, 2019, pages 48–55. IEEE, 2019.

[AWMN20] Victor Arribas, Felix Wegener, Amir Moradi, and Svetla Nikova. Crypto-
graphic fault diagnosis using verfi. In 2020 IEEE International Symposium
on Hardware Oriented Security and Trust (HOST), pages 229–240, 2020.

[BBK+03] Guido Bertoni, Luca Breveglieri, Israel Koren, Paolo Maistri, and Vincenzo
Piuri. Error analysis and detection procedures for a hardware implementation
of the advanced encryption standard. IEEE Trans. Computers, 52(4):492–505,
2003.

236 FaultMeter: Quantitative Fault Attack Assessment of Block Cipher Software

[BEG13] Nasour Bagheri, Reza Ebrahimpour, and Navid Ghaedi. New differential
fault analysis on PRESENT. EURASIP J. Adv. Signal Process., 2013:145,
2013.

[BG13] Alberto Battistello and Christophe Giraud. Fault analysis of infective AES
computations. In Wieland Fischer and Jörn-Marc Schmidt, editors, 2013
Workshop on Fault Diagnosis and Tolerance in Cryptography, Los Alamitos,
CA, USA, August 20, 2013, pages 101–107. IEEE Computer Society, 2013.

[BHE+19] Jean-Baptiste Bréjon, Karine Heydemann, Emmanuelle Encrenaz, Quentin
Meunier, and Son-Tuan Vu. Fault attack vulnerability assessment of binary
code. In Proceedings of the Sixth Workshop on Cryptography and Security
in Computing Systems, CS2 ’19, page 13–18, New York, NY, USA, 2019.
Association for Computing Machinery.

[BHL18] Jakub Breier, Xiaolu Hou, and Yang Liu. Fault attacks made easy: Differential
fault analysis automation on assembly code. IACR Trans. Cryptogr. Hardw.
Embed. Syst., 2018(2):96–122, 2018.

[CN10] Ware D Courtois NT, Jackson K. Fault-algebraic attacks on inner rounds of
des. In e-Smart ’10 Proceedings: The Future of Digital Security Technologies,
2010.

[DEK+18] Christoph Dobraunig, Maria Eichlseder, Thomas Korak, Stefan Mangard,
Florian Mendel, and Robert Primas. SIFA: exploiting ineffective fault induc-
tions on symmetric cryptography. IACR Trans. Cryptogr. Hardw. Embed.
Syst., 2018(3):547–572, 2018.

[DFL11] Patrick Derbez, Pierre-Alain Fouque, and Delphine Leresteux. Meet-in-the-
middle and impossible differential fault analysis on AES. In Cryptographic
Hardware and Embedded Systems - CHES 2011 - 13th International Workshop,
Nara, Japan, September 28 - October 1, 2011. Proceedings, pages 274–291,
2011.

[DPdC+15] Louis Dureuil, Marie-Laure Potet, Philippe de Choudens, Cécile Dumas,
and Jessy Clédière. From code review to fault injection attacks: Filling the
gap using fault model inference. In Naofumi Homma and Marcel Medwed,
editors, Smart Card Research and Advanced Applications - 14th International
Conference, CARDIS 2015, Bochum, Germany, November 4-6, 2015. Revised
Selected Papers, volume 9514 of Lecture Notes in Computer Science, pages
107–124. Springer, 2015.

[FVH+20] Pietro Frigo, Emanuele Vannacci, Hasan Hassan, Victor van der Veen, Onur
Mutlu, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi. TRRespass:
Exploiting the Many Sides of Target Row Refresh. In S&P, May 2020. Best
Paper Award, Pwnie Award for Most Innovative Research, IEEE Micro Top
Picks Honorable Mention.

[GJL20] Thomas Given-Wilson, Nisrine Jafri, and Axel Legay. Combined software
and hardware fault injection vulnerability detection. Innov. Syst. Softw. Eng.,
16(2):101–120, 2020.

[GK12] Xiaofei Guo and Ramesh Karri. Invariance-based concurrent error detection
for advanced encryption standard. In Patrick Groeneveld, Donatella Sciuto,
and Soha Hassoun, editors, The 49th Annual Design Automation Conference
2012, DAC ’12, San Francisco, CA, USA, June 3-7, 2012, pages 573–578.
ACM, 2012.

Keerthi K and Chester Rebeiro 237

[GK13] Xiaofei Guo and Ramesh Karri. Invariance-based concurrent error detection
for advanced encryption standard. IACR Cryptol. ePrint Arch., 2013:603,
2013.

[GST12] Benedikt Gierlichs, Jörn-Marc Schmidt, and Michael Tunstall. Infective
computation and dummy rounds: Fault protection for block ciphers without
check-before-output. In Alejandro Hevia and Gregory Neven, editors, Progress
in Cryptology - LATINCRYPT 2012 - 2nd International Conference on
Cryptology and Information Security in Latin America, Santiago, Chile,
October 7-10, 2012. Proceedings, volume 7533 of Lecture Notes in Computer
Science, pages 305–321. Springer, 2012.

[HBZL19] Xiaolu Hou, Jakub Breier, Fuyuan Zhang, and Yang Liu. Fully automated
differential fault analysis on software implementations of cryptographic algo-
rithms. IACR Trans. Cryptogr. Hardw. Embed. Syst., 3:1–29, 2019.

[HKR+15] Andrea Höller, Armin Krieg, Tobias Rauter, Johannes Iber, and Christian
Kreiner. Qemu-based fault injection for a system-level analysis of software
countermeasures against fault attacks. In 2015 Euromicro Conference on
Digital System Design, DSD 2015, Madeira, Portugal, August 26-28, 2015,
pages 530–533. IEEE Computer Society, 2015.

[HSP21] Max Hoffmann, Falk Schellenberg, and Christof Paar. ARMORY: fully
automated and exhaustive fault simulation on ARM-M binaries. IEEE Trans.
Inf. Forensics Secur., 16:1058–1073, 2021.

[HZFW15] Yuming Huo, Fan Zhang, Xiutao Feng, and Li-Ping Wang. Improved dif-
ferential fault attack on the block cipher SPECK. In Naofumi Homma and
Victor Lomné, editors, 2015 Workshop on Fault Diagnosis and Tolerance in
Cryptography, FDTC 2015, Saint Malo, France, September 13, 2015, pages
28–34. IEEE Computer Society, 2015.

[IMB+19] Saad Islam, Ahmad Moghimi, Ida Bruhns, Moritz Krebbel, Berk Gulme-
zoglu, Thomas Eisenbarth, and Berk Sunar. SPOILER: Speculative load
hazards boost rowhammer and cache attacks. In 28th USENIX Security
Symposium (USENIX Security 19), pages 621–637, Santa Clara, CA, August
2019. USENIX Association.

[JvdVF+22] Patrick Jattke, Victor van der Veen, Pietro Frigo, Stijn Gunter, and Kaveh
Razavi. Blacksmith: Scalable Rowhammering in the Frequency Domain. In
S&P, May 2022.

[KDK+14] Yoongu Kim, Ross Daly, Jeremie S. Kim, Chris Fallin, Ji-Hye Lee, Donghyuk
Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu. Flipping bits in memory
without accessing them: An experimental study of DRAM disturbance errors.
In ACM/IEEE 41st International Symposium on Computer Architecture,
ISCA 2014, Minneapolis, MN, USA, June 14-18, 2014, pages 361–372. IEEE
Computer Society, 2014.

[KGGY20] Andrew Kwong, Daniel Genkin, Daniel Gruss, and Yuval Yarom. Rambleed:
Reading bits in memory without accessing them. In 2020 IEEE Symposium
on Security and Privacy, SP 2020, San Francisco, CA, USA, May 18-21,
2020, pages 695–711. IEEE, 2020.

[KKG03] Ramesh Karri, Grigori Kuznetsov, and Michael Gössel. Parity-based concur-
rent error detection of substitution-permutation network block ciphers. In

238 FaultMeter: Quantitative Fault Attack Assessment of Block Cipher Software

Colin D. Walter, Çetin Kaya Koç, and Christof Paar, editors, Cryptographic
Hardware and Embedded Systems - CHES 2003, 5th International Workshop,
Cologne, Germany, September 8-10, 2003, Proceedings, volume 2779 of Lecture
Notes in Computer Science, pages 113–124. Springer, 2003.

[KRH17] Punit Khanna, Chester Rebeiro, and Aritra Hazra. XFC: A framework for
exploitable fault characterization in block ciphers. In Proceedings of the 54th
Annual Design Automation Conference, DAC 2017, Austin, TX, USA, June
18-22, 2017, pages 8:1–8:6, 2017.

[KRR+20] Keerthi K., Indrani Roy, Chester Rebeiro, Aritra Hazra, and Swarup Bhunia.
FEDS: comprehensive fault attack exploitability detection for software imple-
mentations of block ciphers. IACR Trans. Cryptogr. Hardw. Embed. Syst.,
2020(2):272–299, 2020.

[KSV13] Dusko Karaklajic, Jörn-Marc Schmidt, and Ingrid Verbauwhede. Hardware
designer’s guide to fault attacks. IEEE Trans. Very Large Scale Integr. Syst.,
21(12):2295–2306, 2013.

[KWMK02] Ramesh Karri, Kaijie Wu, Piyush Mishra, and Yongkook Kim. Concurrent
error detection schemes for fault-based side-channel cryptanalysis of symmet-
ric block ciphers. IEEE Trans. on CAD of Integrated Circuits and Systems,
21(12):1509–1517, 2002.

[LFB+21] Guilhem Lacombe, David Féliot, Etienne Boespflug, Marie-Laure, and Potet.
Combining static analysis and dynamic symbolic execution in a toolchain to
detect fault injection vulnerabilities. 2021.

[LPH+18] Guanpeng Li, Karthik Pattabiraman, Siva Kumar Sastry Hari, Michael B.
Sullivan, and Timothy Tsai. Modeling soft-error propagation in programs. In
48th Annual IEEE/IFIP International Conference on Dependable Systems
and Networks, DSN 2018, Luxembourg City, Luxembourg, June 25-28, 2018,
pages 27–38. IEEE Computer Society, 2018.

[LRT12] Victor Lomné, Thomas Roche, and Adrian Thillard. On the need of ran-
domness in fault attack countermeasures - application to AES. In Guido
Bertoni and Benedikt Gierlichs, editors, 2012 Workshop on Fault Diagnosis
and Tolerance in Cryptography, Leuven, Belgium, September 9, 2012, pages
85–94. IEEE Computer Society, 2012.

[ML08] Paolo Maistri and Régis Leveugle. Double-data-rate computation as a coun-
termeasure against fault analysis. IEEE Trans. Computers, 57(11):1528–1539,
2008.

[PMPD14] Marie-Laure Potet, Laurent Mounier, Maxime Puys, and Louis Dureuil.
Lazart: A symbolic approach for evaluation the robustness of secured codes
against control flow injections. In Seventh IEEE International Conference on
Software Testing, Verification and Validation, ICST 2014, March 31 2014-
April 4, 2014, Cleveland, Ohio, USA, pages 213–222. IEEE Computer Society,
2014.

[RBLC15] Lionel Rivière, Julien Bringer, Thanh-Ha Le, and Hervé Chabanne. A novel
simulation approach for fault injection resistance evaluation on smart cards.
In Eighth IEEE International Conference on Software Testing, Verification
and Validation, ICST 2015 Workshops, Graz, Austria, April 13-17, 2015,
pages 1–8. IEEE Computer Society, 2015.

Keerthi K and Chester Rebeiro 239

[RPL+14] Lionel Rivière, Marie-Laure Potet, Thanh-Ha Le, Julien Bringer, Hervé Cha-
banne, and Maxime Puys. Combining high-level and low-level approaches to
evaluate software implementations robustness against multiple fault injection
attacks. In Frédéric Cuppens, Joaquín García-Alfaro, A. Nur Zincir-Heywood,
and Philip W. L. Fong, editors, Foundations and Practice of Security - 7th
International Symposium, FPS 2014, Montreal, QC, Canada, November 3-5,
2014. Revised Selected Papers, volume 8930 of Lecture Notes in Computer
Science, pages 92–111. Springer, 2014.

[RRHB20] Indrani Roy, Chester Rebeiro, Aritra Hazra, and Swarup Bhunia. SAFARI:
automatic synthesis of fault-attack resistant block cipher implementations.
IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., 39(4):752–765, 2020.

[RRHB21] Indrani Roy, Chester Rebeiro, Aritra Hazra, and Swarup Bhunia. Faultdroid:
An algorithmic approach for fault-induced information leakage analysis. ACM
Trans. Design Autom. Electr. Syst., 26(1):2:1–2:27, 2021.

[RSD06] Chester Rebeiro, A. David Selvakumar, and A. S. L. Devi. Bitslice imple-
mentation of AES. In Cryptology and Network Security, 5th International
Conference, CANS 2006, Suzhou, China, December 8-10, 2006, Proceedings,
pages 203–212, 2006.

[RSS+21] Jan Richter-Brockmann, Aein Rezaei Shahmirzadi, Pascal Sasdrich, Amir
Moradi, and Tim Güneysu. FIVER - robust verification of countermea-
sures against fault injections. IACR Trans. Cryptogr. Hardw. Embed. Syst.,
2021(4):447–473, 2021.

[RWZ88] Barry K. Rosen, Mark N. Wegman, and F. Kenneth Zadeck. Global value
numbers and redundant computations. In Conference Record of the Fifteenth
Annual ACM Symposium on Principles of Programming Languages, San
Diego, California, USA, January 10-13, 1988, pages 12–27, 1988.

[SKMD17] Sayandeep Saha, Ujjawal Kumar, Debdeep Mukhopadhyay, and Pallab Das-
gupta. An automated framework for exploitable fault identification in block
ciphers - A data mining approach. In PROOFS@CHES 2017, 6th Interna-
tional Workshop on Security Proofs for Embedded Systems, Taipei, Taiwan,
Friday September 29th, 2017, pages 50–67, 2017.

[SM03] Andrei Sabelfeld and Andrew C. Myers. Language-based information-flow
security. IEEE J. Sel. Areas Commun., 21(1):5–19, 2003.

[SMD18] Sayandeep Saha, Debdeep Mukhopadhyay, and Pallab Dasgupta. Expfault:
An automated framework for exploitable fault characterization in block
ciphers. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2018(2):242–276, 2018.

[SSA+07] Taizo Shirai, Kyoji Shibutani, Toru Akishita, Shiho Moriai, and Tetsu Iwata.
The 128-bit blockcipher CLEFIA (extended abstract). In Fast Software En-
cryption, 14th International Workshop, FSE 2007, Luxembourg, Luxembourg,
March 26-28, 2007, Revised Selected Papers, pages 181–195, 2007.

[SSR+20] Milind Srivastava, Patanjali SLPSK, Indrani Roy, Chester Rebeiro, Aritra
Hazra, and Swarup Bhunia. SOLOMON: an automated framework for
detecting fault attack vulnerabilities in hardware. In 2020 Design, Automation
& Test in Europe Conference & Exhibition, DATE 2020, Grenoble, France,
March 9-13, 2020, pages 310–313. IEEE, 2020.

240 FaultMeter: Quantitative Fault Attack Assessment of Block Cipher Software

[TBM14a] Harshal Tupsamudre, Shikha Bisht, and Debdeep Mukhopadhyay. Destroy-
ing fault invariant with randomization - A countermeasure for AES against
differential fault attacks. In Lejla Batina and Matthew Robshaw, editors,
Cryptographic Hardware and Embedded Systems - CHES 2014 - 16th Interna-
tional Workshop, Busan, South Korea, September 23-26, 2014. Proceedings,
volume 8731 of Lecture Notes in Computer Science, pages 93–111. Springer,
2014.

[TBM14b] Harshal Tupsamudre, Shikha Bisht, and Debdeep Mukhopadhyay. Differential
fault analysis on the families of SIMON and SPECK ciphers. In Assia Tria
and Dooho Choi, editors, 2014 Workshop on Fault Diagnosis and Tolerance in
Cryptography, FDTC 2014, Busan, South Korea, September 23, 2014, pages
40–48. IEEE Computer Society, 2014.

[TMA11] Michael Tunstall, Debdeep Mukhopadhyay, and Subidh Ali. Differential fault
analysis of the advanced encryption standard using a single fault. In Infor-
mation Security Theory and Practice. Security and Privacy of Mobile Devices
in Wireless Communication - 5th IFIP WG 11.2 International Workshop,
WISTP 2011, Heraklion, Crete, Greece, June 1-3, 2011. Proceedings, pages
224–233, 2011.

[WKKG04] Kaijie Wu, Ramesh Karri, Grigori Kuznetsov, and Michael Gössel. Low
cost concurrent error detection for the advanced encryption standard. In
Proceedings 2004 International Test Conference (ITC 2004), October 26-28,
2004, Charlotte, NC, USA, pages 1242–1248. IEEE Computer Society, 2004.

[WLR+21] Huanyu Wang, Henian Li, Fahim Rahman, Mark M. Tehranipoor, and
Farimah Farahmandi. Sofi: Security property-driven vulnerability assessments
of ics against fault-injection attacks. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, pages 1–1, 2021.

[ZZJ+20] Fan Zhang, Yiran Zhang, Huilong Jiang, Xiang Zhu, Shivam Bhasin, Xinjie
Zhao, Zhe Liu, Dawu Gu, and Kui Ren. Persistent fault attack in practice.
IACR Trans. Cryptogr. Hardw. Embed. Syst., 2020(2):172–195, 2020.

	Introduction
	Background
	Fault Attacks
	Countermeasures for Fault Attacks
	Intermediate Representation (IR)

	Related Work
	Automated Fault Attack Vulnerability Detection
	Automated Fault Attack Countermeasure Insertion

	Quantifying the Success of Injected Fault
	Identifying Vulnerable Instructions in an implementation (C1)
	Quantifying the probability of fault-induced instruction corruption (C2)
	Fault propagation from the instruction to the ciphertext (C3)

	Implementation and Evaluation
	Vulnerable Instruction Identification
	Fault Exploitability Quantification

	Applying FaultMeter to automatically insert countermeasures based on User Specified Security Input (U_in)
	Limitations
	Discussion
	Conclusion

