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Abstract. Fault attacks are a potent class of physical attacks that exploit a fault
injected during device operation to steal secret keys from a cryptographic device. The
success of a fault attack depends intricately on (a) the cryptographic properties of
the cipher, (b) the program structure, and (c) the underlying hardware architecture.
While there are several tools that automate the process of fault attack evaluation,
none of them consider all three influencing aspects.

This paper proposes a framework called FaultMeter that builds on the state-of-art
by not just identifying fault vulnerable locations in a block cipher software, but also
providing a quantification for each vulnerable location. The quantification provides a
probability that an injected fault can be successfully exploited. It takes into consid-
eration the cryptographic properties of the cipher, structure of the implementation,
and the underlying Instruction Set Architecture’s (ISA) susceptibility to faults. We
demonstrate an application of FaultMeter to automatically insert optimal amounts
of countermeasures in a program to meet the user’s security requirements while
minimizing overheads. We demonstrate the versatility of the FaultMeter framework
by evaluating five cipher implementations on multiple hardware platforms, namely,
ARM (32 and 64 bit), RISC-V (32 and 64 bit), TI MSP-430 (16-bit) and Intel x86
(64-bit).
Keywords: Fault Attack, Automatic Fault Attack Evaluation, Quantification Coun-
termeasures

1 Introduction
Cipher implementations are highly vulnerable to a potent class of physical attacks known as
fault attacks. These attacks exploit faults injected during the cipher’s execution, causing an
error that propagates to the output. The flawed output, called faulty ciphertext, is then used
to extract the secret key using differential, impossible differential, or algebraic properties
of the cipher. Several block ciphers including the AES [TMA11], PRESENT [BEG13],
Simon [TBM14b], Speck [HZFW15], and CLEFIA [AM13] are vulnerable to fault attacks.
A single precisely injected fault in any of these ciphers is sufficient to substantially reduce
the entropy of its key.

For software implementations of block ciphers, faults are typically injected in memory
components such as registers, flash memory [CN10], SRAM [ZZJ+20], and DRAM [KGGY20].
Alternatively, faults are injected in the processor pipeline, for instance, causing instructions
to be skipped [KSV13]. Most faults are injected using glitches in the voltage or clock
source of the device or by using optical or electromagnetic radiation. Other faults are
injected by exploiting physical properties and the structure of device components. For
example, Rowhammer [KDK+14], RAM-Jam [ATG+19], SPOILER [IMB+19], RAM-
Bleed [KGGY20], TRRespass [FVH+20] and Blacksmith [JvdVF+22] utilize the physical
properties of memory to inject faults.
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Figure 1: The FaultMeter framework, to quantify the vulnerability of block cipher implementations. It
has two main modules. The Vulnerable Instruction Identification Module detects vulnerable instructions,
while the Fault Exploitability Quantification module quantifies the exploitability. The figure also shows
an application of FaultMeter to automatically insert countermeasures into the implementation. The
countermeasures are tuned to meet the user’s security requirement.

While there are a large number of locations in a program where faults can be injected
during its execution, only a small portion of these faults are exploitable. There are three
requirements that a fault should satisfy to be successfully exploited.

• Fault should impact vulnerable operations. The fault should target the small
subset of vulnerable operations in the cipher. For instance, prior works such
as [KRR+20] show that only 4.98% of instructions in an AES implementation1
are vulnerable. Faults injected elsewhere in the program cannot be exploited.

• Corrupt instruction output. Most fault attacks require that the fault modifies
an instruction output and not halt execution. For example, a fault that alters an
instruction’s opcode can lead to an illegal instruction exception causing the program
to terminate. Such a fault is not exploitable because it does not provide the attacker
with the faulty ciphertext, which is essential for the attack.

• Propagate to the output. The fault at the target instruction should propagate
to the ciphertext. This may not always be the case. For instance, if register r2 is
affected by a fault in the instruction mul r2, r1, the fault will not propagate if r1
= 0x0. Such a fault may not be exploitable2.

The success of a fault attack is intricately dependent on the cipher algorithm, its im-
plementation, and the underlying hardware. While the vulnerable operations depend
on the cipher algorithm, corrupting an instruction output depends considerably on the
Instruction Set Architecture (ISA) of the microprocessor, and propagating the fault to the
ciphertext depends on the program structure. Understanding the extent to which these
factors influence a fault attack would help develop metrics that can be used to compare
and evaluate implementations for fault attack resistance. It would help in designing
efficient countermeasures and tools that could automatically patch software for fault attack
vulnerabilities.

1OpenSSL (version 3.0) implementation with 1 lookup table occupying 2048 bytes: https://github.
com/openssl/openssl/blob/master/crypto/aes/aes_x86core.c

2This paper does not consider SIFA [DEK+18] which target faults that do not affect the output.
Incorporation of SIFA in FaultMeter is left as future work

https://github.com/openssl/openssl/blob/master/crypto/aes/aes_x86core.c
https://github.com/openssl/openssl/blob/master/crypto/aes/aes_x86core.c
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The current practice to evaluate fault attack resistance is by empirically subjecting
the device to faults. Unfortunately, this is largely a manual process, requiring expensive
instruments and considerable time. Recently researchers have introduced tools to automate
the process of finding vulnerable instructions in cipher implementations. While tools
such as [ABMP13,KRR+20] work on C implementations, [BHL18,HBZL19] operate on
assembly code. Many of these tools fail to assess the extent to which an injected fault is
exploitable. The output of these tools is binary: either an instruction is exploitable or
it is not. Few works like, TADA [HBZL19] additionally identify attacks from vulnerable
fault instructions. Most of the tools fail to consider cryptographic properties of the
cipher [TMA11,CN10,DFL11] that can significantly impact the attack success. Further,
most tools do not consider the impact of the underlying hardware in the fault attack.

Our Contributions. In this paper, we introduce an automated framework, called
FaultMeter, that not just identifies vulnerable instructions in ciphers but quantitatively
evaluates the success with which an injected fault can be transformed into an attack.
Figure 1 depicts the flow of FaultMeter. Given a block cipher implementation, FaultMeter
(C1) first uses existing tools such as [KRR+20], to identify the vulnerable instructions
taking into consideration the cipher’s cryptographic properties. Only faults injected in any
of these vulnerable instructions are exploitable and can be used to retrieve information
about the cipher’s key. (C2) Then, for each vulnerable instruction, it quantifies the
probability that an injected fault can corrupt the instruction’s output. To perform this
quantification, it captures the sensitivity of the underlying microprocessor’s instruction
opcodes and data to faults and quantifies the probability of successful instruction skips.
(C3) It then performs static analysis to capture the probability with which an injected
fault can propagate to the program output resulting in a faulty ciphertext. Steps (C2)
and (C3) are performed by the Fault Exploitability Quantification module in FaultMeter.
The output of this module is a success score for every vulnerable instruction. The success
score quantifies the fault attack vulnerability of an instruction. A fault injected in an
instruction with a high success score is more likely to yield a successful fault attack
compared to a fault in an instruction with a low success score. This quantification is
different from contemporary fault attack tools [BHL18,HBZL19,KRR+20] that provide the
list of vulnerable instructions from cipher implementation. We demonstrate the application
of FaultMeter in a compiler that generates executables with directed countermeasures
automatically inserted to meet user-specified security margins. In addition to the input
program, the compiler accepts a user input that specifies the desired security level. The
compiler uses the success score from FaultMeter to quantify the fault attack threat in
the program at an instruction granularity, then applies appropriate countermeasures
to minimize performance overheads while adhering to the desired security level. Our
contributions can be summarized as follows.

• We present FaultMeter, the first automated framework that can quantify the fault
attack vulnerability of instructions in block cipher implementations. The vulnera-
bility not just depends on the cipher algorithm and its crypto-properties, but the
implementation as well as the underlying hardware.

• We study how the processor’s Instruction Set Architectures (ISA) have an influence
on a fault attack. For the study, we consider six microprocessors, namely, Intel x86
(64 bit), RISC-V (32-bit and 64-bit), ARM (32-bit and 64-bit), and TI’s MSP-430
(16-bit).This results in interesting observations, such as TI’s MSP-430 and Intel
x86 having highest success score compared to other processors, and RISC-V(32-bit)
having the lowest success score.

• To demonstrate that the fault attack vulnerability depends on the implementation, we
consider three AES-128 implementations that include a lightweight implementation,
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a T-table implementation, and a bitsliced implementation [RSD06]. We also evaluate
two other cipher implementations, CLEFIA-128 and CAMELLIA-128, to demonstrate
the scalability of FaultMeter across ciphers.

• We present an application of FaultMeter by using it in a compiler that can au-
tomatically tradeoff between security and performance to meet the user’s security
requirements.

Structure of the Paper. The paper is organized as follows: Section 2 provides the
necessary background. Section 3 includes the recent works for automated fault vulnerability
detection tools. Section 4 discusses the requirements for a successful fault attack and the
FaultMeter framework, expanding on steps C2 and C3. Section 5 describes the implemen-
tation and evaluates the FaultMeter framework on different block cipher implementations
and processors. Section 6 provides an application of FaultMeter framework, where it
used to automatically insert countermeasures based on the user’s security requirement.
Section 7 provides the limitations of FaultMeter. Section 8 includes the discussion and
future work. Section 9 concludes the paper.

2 Background
2.1 Fault Attacks
A fault attack has two phases. In the first phase, the attacker injects a fault during the
cipher execution that corrupts the output of an operation, causing an error that propagates
to the output, resulting in a faulty ciphertext. In the second phase, the attacker uses the
faulty ciphertext to reduce the entropy of the secret key. The cipher algorithm critically
determines the success of a fault attack. For example, AES is far more vulnerable to
fault attacks compared to ciphers like CLEFIA and PRESENT. It takes a single fault
during an AES execution to completely reveal its secret key [TMA11], while 8 [AM13] and
18 [BEG13] faults are needed for CLEFIA and PRESENT, respectively. Within a cipher,
too, not all operations are equally vulnerable. For example, a fault in the 8-th round of
AES reveals the entire secret key, while a fault in the 9-th round only reveals 32-bits of
the key. Faults injected before the 7-th round are not exploitable.

Implementations of the cipher also influence the fault attack surface. Keerthi et
al. [KRR+20] for instance, showed that the percentage of vulnerable instructions in seven
different implementations of AES-128 varies from 4.2% to 11.4%. A fault in any of these
vulnerable instructions can potentially be exploited. In this paper, we provide quantification
for the success of a fault attack. We show how the exploitability of a fault injected in a
vulnerable instruction can depend not just on the cipher algorithm and the implementation
but also on the underlying Instruction Set Architecture of the microprocessor.

2.2 Countermeasures for Fault Attacks
Several countermeasures [BG13,GST12,LRT12,GK13,TBM14a,ML08] have been intro-
duced to protect cipher implementations from fault attacks. Most countermeasures detect
fault injection using techniques like redundancy, parity, or error correction codes [BBK+03,
GK12,KWMK02,KKG03,WKKG04]. If a fault is detected, the countermeasure either
aborts the encryption operation or masks the output of the operation to make the fault
unexploitable. Other countermeasures makes use of infection techniques that diffuse faults,
making them unexploitable [LRT12,GST12,BG13,TBM14a]. Naïvely inserting either of
these countermeasures has considerable overheads, often degrading performance by over
two times. In the paper we show how FaultMeter can be used to automatically insert
targeted countermeasures during compilation. The countermeasures are tuned to meet the
application’s security and performance requirements.
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Table 1: Comparison with the state-of-the-art fault attack automation tools. FaultMeter is the only tool
that works at the implementation level and considers the cryptographic properties, different hardware to
quantify the vulnerability.

Tools Output Tools Output Input Type Crypto Hardware
Detect Quantify Detect Quantify Properties Fault Analysis

Algorithm Software
XFC [KRH17] X X DATAC [BHL18] X 7 Assembly N/A N/A

ExpFault [SMD18] X 7 TADA [HBZL19] X X Assembly N/A N/A
FaultDroid [RRHB21] X X FEDS [KRR+20] X 7 Source Code X N/A

Hardware Lazart [PMPD14] X X IR N/A N/A
SOLOMON [SSR+20] X 7 ARMORY [HSP21] X 7 Assembly N/A ARM

SoFi [WLR+21] X 7 [RPL+14] X X Source Code
and Assembly N/A N/A

Verfi [AWMN20] X 7 [RBLC15] X X IR N/A N/A
FIVER [RSS+21] X X [LFB+21] X X IR N/A N/A

[DPdC+15] X X [BHE+19] X X Binary N/A ARM
[GJL20] X X IR N/A N/A

[HKR+15] X X Assembly N/A ARM

FaultMeter
(This Work) X X

Source Code
and IR
Analysis

X

ARM (32/64)
RISC-V (32/64)

TI-MSP430
Intel x86(64bit)

2.3 Intermediate Representation (IR)
The LLVM compiler converts the high-level representation to machine code using dif-
ferent compiler passes. The transformation pass converts the high-level representation
to Intermediate Representation (IR) instructions. FaultMeter uses LLVM’s generated
IR instructions for the analysis. These instructions are represented in the Static Single
Assignment form as defined below.

Definition 1. [Static Single Assignment] Static Single Assignment (SSA), is a format
for program representation, where variables in every assignment are used only once [RWZ88].

Below are a few examples of IR instructions.

%t0 = load %i8, i8 ∗%p0 : read from memory pointed by %p0 to variable %t0
%xor = xor i8 %x0, %x1 : %xor← %x0⊕%x1 (works on 8 bit integers (i8))
store i8 %xor, i8 ∗%s0 : write %xor to memory pointed by %s0
%a = alloca i8 : allocate a 8 bit integer on the stack
br i1 %cond, label %L1, label %L2 : if condition %cond is true jump to %L1, else %L2

3 Related Work
3.1 Automated Fault Attack Vulnerability Detection
Evaluating the security of cipher implementations against fault attacks is a tedious
and manual task. Recently a few tools were introduced to automate the fault attack
assessment process. Tools like [KRH17,SKMD17,RRHB21] work at the algorithm level to
determine vulnerable operations in a cipher and compute the attack complexity. These
tools work directly on the algorithm and do not consider implementation aspects, which
can significantly influence the attack success.

Another class of tools [SSR+20,AWMN20,GJL20,RSS+21,WLR+21] work on hardware
implementations of ciphers, typically taking RTL or netlist of the design as input to detect
fault vulnerable gates. Any fault injected in these vulnerable gates can result in a successful
fault attack. FIVER [RSS+21], for instance, determines effective and ineffective faults on
a gate-level netlist while [GJL20] bridges the gap between hardware and software faults.

The third set of tools [BHL18,HBZL19,HSP21,KRR+20,PMPD14,RPL+14,RBLC15,
LFB+21,HKR+15,BHE+19] detects fault attack vulnerable locations in software implemen-
tations. Software tools work either at the assembly level [BHL18,HBZL19,HSP21,HKR+15],
at the source code [KRR+20] or at a compiler-generated intermediate representation of the
program [PMPD14,RPL+14,RBLC15,LFB+21]. Some of these tools [HBZL19,PMPD14,
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Table 2: Comparison with automated fault attack countermeasure insertion tools. Unlike the other
tools, only FaultMeter can work with optimized code and tune the countermeasure to trade off between
performance and security.

Tools Work Optimized
Code

Provide
Security × Performance

Trade offs
Security Estimate

SAFARI [RRHB20] 7 X X
FEDS [KRR+20] X 7 7

FaultMeter(This work) X X X

RPL+14, RBLC15, LFB+21] quantify the vulnerability and can determine the attack
success based on specific fault models. They, however, do not consider cryptographic
properties of the cipher, such as its differential [TMA11] impossible differential [DFL11],
and algebraic properties [CN10]. A cipher’s cryptographic properties significantly abet
fault attacks. FaultMeter, on the other hand, builds on existing tools and can evaluate
cipher implementations considering complex cipher properties.

The underlying Instruction Set Architecture of the platform greatly affects fault
induction. Except for [HSP21], [BHE+19], and [HKR+15], none of the other software
tools take into consideration the impact of the fault in the underlying processor. While
[HSP21,BHE+19,HKR+15] evaluates faults in the ARM processor, FaultMeter considers
a range of processors from 16-bit to 64-bit, RISC and CISC architectures. This analysis
brings out interesting results, such as some ISAs are more vulnerable to fault attacks
compared to others. Further, FaultMeter computes the probability that a disturbed
instruction output can propagate to the ciphertext. Such quantification helps to customize
countermeasures as per the user’s requirement.

3.2 Automated Fault Attack Countermeasure Insertion

Automatic countermeasure insertion was first proposed in SAFARI [RRHB20], which
synthesized hardware and software programs based on a high-level specification of the
cipher algorithm and a user-defined security margin. While the generated programs had
fault-attack countermeasures inserted automatically, the programs were generic and could
not be optimized to suit specific platforms and requirements. For example, SAFARI would
synthesize the same code for an IoT edge device as well as a server.

Rather than synthesizing countermeasures like SAFARI, FEDS [KRR+20] can insert
countermeasures in any cipher implementation, thus supporting optimized codes in hand-
written assembly. However, FEDS cannot tune countermeasures to meet the user’s
security requirements. For example, a user developing a highly sensitive application such
as an electronic voting machine would require high security guarantees and would not
mind the additional performance overheads. On the other hand, less security critical
applications, such as a smart-clock, would value performance and energy consumption over
security. FEDS would be ignorant of the difference in requirements and provides the same
countermeasures for both applications.

Similar to FEDS, FaultMeter can produce highly optimized implementations of block
ciphers, however unlike FEDS, it can support countermeasures that can be added automat-
ically based on the user’s security requirements. Thus FaultMeter would likely provide a
stronger countermeasure for the electronic voting machine and weaker countermeasures for
the smart clock. The weaker countermeasures would result in lower performance overheads
and energy requirements. A critical aspect in FaultMeter that enables such application-
specific operations is the ability to quantify the success of converting an injected fault into
an attack.
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}
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swap(S0,S1)
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S0 ← MUL(S0)⊕t
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Enrypt() {
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Figure 2: The pseudo-code of a toy cipher, where (P0,P1) and (K0,K1) are pairs of plaintext and secret
key bytes, respectively. The output of the cipher is the ciphertext bytes (S0, S1). The figure also shows
the Control Flow Graph (CFG) for the code with vulnerable nodes with respect to K0 highlighted. The
vertices in the CFG represent the operations of the cipher, and the edges represent the program control
flow. A fault in vulnerable instructions can potentially alter its output. The probability that this happens
intricately depends on the underlying hardware.

4 Quantifying the Success of Injected Fault
The probability that an injected fault can be exploited to create a successful attack depends
on the (1) cipher algorithm, (2) its implementation, and (3) the underlying hardware.

FaultMeter uses FEDS, to detect instructions in a program that are vulnerable to
fault attacks. In this section, we provide a quantification of the vulnerability that can
be used to distinguish between less vulnerable and more vulnerable fault injections. The
quantification depends considerably on the underlying hardware architecture and program
structure. In this section, we provide the basis for the quantification.

Fault Model. Fault injection can either modify the data flow or control flow of the
program. We consider a single transient fault injected in the device during the cipher’s
execution. The fault either corrupts an instruction or the associated data during the
program execution. Alternatively, the fault can be inserted in the program counter altering
the sequence of instructions executed, i.e. the control flow. After the fault is injected, it
propagates towards the output. The fault model considered is a fault injected in code,
data, or program counter to randomly alter it.

Requirements for a fault attack exploit. To exploit the fault, requires three conditions
to be satisfied. We discuss these requirements using a toy cipher shown in Figure 2.

C1. [Fault in vulnerable instructions] Only faults injected in certain locations can
yield a successful attack. For example, only faults inserted in the shaded nodes in
the Control Flow Graph (CFG) in Figure 2 can be used to recover key K0. These
are the vulnerable instructions with respect to K0. Faults injected anywhere else in
the program do not yield any information about K0. FaultMeter identifies these
vulnerable instructions with the help of existing tools in the Vulnerable Instruction
Identification module (refer Figure 1).
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Figure 3: Vulnerable Instruction Identification. The Intermediate Representation obtained from the LLVM
compiler for the pseudo code is used by FEDS to identify vulnerable instructions.

C2. [Corrupting the output of vulnerable instructions] When a fault is injected
in the instruction, it causes bits in the opcode to toggle. Similarly, faults injected
in data can change the values stored in memory or registers, and faults injected
in the program counter can alter the sequence of instructions executed. However,
not all faults would result in a wrong output. For example, the fault may result in
an undefined instruction or get interpreted as another instruction. In the former
case, the undefined instruction would result in an exception, causing the program
to terminate. Such faults cannot be exploited because the faulty ciphertext is not
available. In the latter case, there is a chance that the output of the instruction is
not affected by the fault. For example, if a fault in the swap(S0, S1) instruction
transforms it to swap(S1, S0), the output of the instruction is unaffected. The
opcode encoding significantly impacts the probability that an instruction is corrupted
by a fault. Figure 2 shows the probability that a randomly injected fault corrupts
the output of the instruction a = a� 1 in the six different platforms namely, ARM
(32-bit and 64-bit), RISC-V (32-bit and 64-bit), TI’s MSP-430 (16-bit) and Intel
x86 (64-bit) microcontroller. FaultMeter learns these probabilities offline for each
microprocessor. Section 4.2 provides further details about how these probabilities
are computed.

C3. [Fault propagation to the ciphertext.] The structure of the program can
influence if the fault propagates to the ciphertext. For example, consider the
instruction L6 (Figure 2) resulting in a non-zero value for b. If a fault induced in this
instruction changes the value of the byte b to another non-zero value, then the fault
will not propagate to the ciphertext byte due to the condition statement in L8. Thus,
only a fault that changes b to zero would propagate to the output. FaultMeter uses
the Fault Exploitable Quantification module (refer Figure 1) to compute the fault
propagation probabilities. Section 4.3 provides more details.

4.1 Identifying Vulnerable Instructions in an implementation (C1)
Only faults injected in vulnerable instructions can yield a successful attack. The percentage
of vulnerable instructions varies based on the algorithm as well as the implementation
characteristics. Recently, researchers introduced tools [BHL18,HBZL19,KRR+20,HSP21]
that could automatically identify vulnerable instructions in implementations. The tools
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Figure 4: Manifestation of a fault injected in instruction or data may either alter or leave unaltered the
instruction output. It may also result in a program termination.

take as input block cipher implementation either in the form of assembly or in a high-level
language like C and outputs the list of instructions that are vulnerable to fault attacks.
Typically, each tool handles a subset of fault attacks. For example, [KRR+20] can detect
regions of an implementation that are vulnerable to Differential Fault Analysis [TMA11]
and Impossible Differential Fault Analysis [DFL11]. Similarly, the DATAC [BHL18] tool
identifies locations that are vulnerable to instruction skip fault injections.

The first stage of FaultMeter (Figure 1) uses one of these tools to determine vul-
nerable instructions in a program. Only a few instructions in a cipher implementation
are exploitable by a fault attack. In this paper, we make use of the open-source tool
FEDS3 [KRR+20] that uses the LLVM Intermediate Representation (IR)4 of the program
to identify vulnerable program instructions. FEDS takes the source code of a block cipher
as input and outputs the list of exploitable instructions in the implementation by mapping
the known vulnerable instructions as shown in Figure 3. A fault in any of these ‘vulnerable
instructions’ is exploitable.

The input to FEDS is a compiler generated Intermediate Representation (IR) obtained
from the LLVM compiler. FEDS converts the IR to a Control Flow Graph (CFG), where the
instructions form the vertices of the graph and edges are added based on the program flow.
To perform the analysis, FEDS performs backward dataflow analysis on the CFG to identify
the vulnerable nodes in the graph. Figure 3 depicts the list of vulnerable instructions (I1
to I18) that can induce a fault in the output of the operation t ← S0 ⊕ S1.

The result from FEDS is binary. Either an instruction is vulnerable, or it is not. For
each vulnerable instruction identified by FEDS, FaultMeter provides a score between 0
and 1. A score close to 1 indicates that a fault injected in that instruction is more likely
to result in a successful attack. For non-vulnerable instructions (not identified by FEDS),
FaultMeter results a score of 0.

4.2 Quantifying the probability of fault-induced instruction corruption
(C2)

When a single fault is transiently injected during an instruction execution, it can manifest
by either altering or leaving unaltered the instruction output, or terminating the program,
as shown in Figure 4. A fault due to the altered instruction output may propagate,
resulting in a faulty ciphertext. We classify the fault manifestations into four classes:

F1. Fault is activated: The induced fault alters the instruction execution resulting in
an incorrect instruction output.

3https://bitbucket.org/casl/faultanalysis/src/master/FEDS/
4https://llvm.org/

https://bitbucket.org/casl/faultanalysis/src/master/FEDS/
https://llvm.org/
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in a register or data memory operand

Figure 5: Probability on different microprocessors of instructions producing incorrect outputs when a
transient fault is injected during execution.

F2. Fault is not activated: The induced fault alters the instruction execution but does
not change the instruction output. For example, a fault in the instruction swap(S0,
S1) which swaps the contents of registers S0 and S1.

F3&F4. Program is terminated: The induced fault leads to an illegal operation causing
the program to terminate.

The faults in set F2, F3 and F4 cannot induce a successful fault attack, as the outcomes
do not provide the faulty ciphertext that is necessary to carry out the attacks. In this
section, we quantify the probability that an injected fault leads to a faulty output. We
consider three types of fault injections. First, we consider faults injected in an instruction
affecting the opcodes. Second, faults injected in operands (for example registers), and
third, faults injected in the program counter affecting the flow of the program. Each
subsection considers one of these fault injections.

4.2.1 Fault Injection in instructions

When an injected fault changes bits in an opcode, it can result in a valid or invalid
instruction (see Figure 4). An invalid instruction opcode results in program termination
(F4), while a valid instruction can have any of the remaining three (i.e. F1, F2, or F3)
outcomes. The probability of these outcomes depends not just on the type of instruction
but also on the encoding. They are thus unique to each Instruction Set Architecture. To
understand these probabilities, we consider six microprocessors, namely, Intel x86 (64-bit),
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TI’s MSP-430 (16-bit)5, ARM (32-bit and 64-bit)6and RISC-V(32-bit and 64-bit)7, to
identify the reliance of fault injection on the underlying architecture. For each of these
microprocessors, we generate random programs8, cross compile and execute the binary
multiple times in a simulator9. In each execution, faults are injected in an instruction
using simulation tools, such as by modifying the instruction memory and then observing
the instruction output. The result of the fault falls in one of the four classes i.e. F1, F2, F3,
or F4. Figure 5 shows the results from the simulation. These probabilities were computed
based on 50 randomly generated programs, with over 25,000 instructions and about a
million injected faults in each platform. Figure 5a shows the probability of each fault class
on the six microprocessors. Of the four classes, the probability that the fault is activated,
i.e. F1, is interesting for evaluating fault attacks. Figure 5b shows the impact of 1-bit,
2-bit, 3-bit, and 4-bit fault injections on an instruction. We observe that the probability of
F1 occurring, does not vary much based on the fault model. Thus, to simplify evaluation,
we consider only 1-bit fault injections.

Instruction encoding and fault outcome. The instruction encoding plays a critical
role in the outcome when a fault is injected. Reduced Instruction Set Computing processors
have fixed length instructions. Most instructions have two components: an opcode and
operands. The opcode defines if the instruction is an arithmetic, logic, branch, or a
memory operation. Instructions have zero or more operands. The operands, if present, in
an instruction can hold registers, immediate values, or memory addresses. In the following,
we evaluate the outcome of faults injected in the opcodes and operands.

Fault resulting in program termination due to invalid opcode (F4). A fault in the opcode
can either change the instruction or result in an invalid opcode. This depends on the
density of instructions in the instruction set. An instruction set is considered dense if a
fault injected in the opcode transforms it to another valid instruction with a significant
probability. Among the five processors considered, TI MSP-430 has the highest instruction
density. Thus for TI MSP-430, the probability of program termination due to an invalid
opcode (F4) is the lowest. For instance, the most significant four bits of double operand
instructions in TI MSP-4305 holds the opcode of the instruction. There are 15 valid
opcodes and one invalid opcode. Thus, a fault in any of these four bits is more likely to
change the opcode to a valid opcode than an invalid one.

Among the 32-bit processors considered, RISC-V has a lower instruction density
compared to ARM. This is because RISC-V has considerably large number of unused
opcodes compared to ARM, hence low density and higher chances that F4 occurs. RISC-V
64-bit has a higher instruction density compared to the 32-bit variant. This is because
of the additional instructions supported in the 64-bit and not 32-bit. This marginally
increases instruction density, lowering the chances that F4 occurs.

Fault resulting in a valid opcode but the program terminates (F3). In most cases, these
appear due to faults in the operand of branch and memory instructions. For example, a
fault changes the branch offsets stored as part of a branch instruction leading to an illegal
branch target. Similarly, faults may modify the address of load/store instructions leading
to an invalid memory operation. Arithmetic and logic instructions can also experience
these events. For example, the fault changes the destination register to either stack pointer
or program counter, potentially setting illegal values to these registers. In a few cases,
faults in the opcode of instructions can also trigger the event F3. For example, a fault
changing an arithmetic/logic opcode to a branch instruction.

5https://www.ti.com/tool/MSP430-GCC-OPENSOURCE
6https://developer.arm.com/architectures/instruction-sets
7https://riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf
8Random programs generated using Csmith https://embed.cs.utah.edu/csmith/
9QEMU (https://www.qemu.org/) is used for ARM and RISC-V, GDB5 is used for MSP-430 and x86

https://www.ti.com/tool/MSP430-GCC-OPENSOURCE
https://developer.arm.com/architectures/instruction-sets
https://riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf
https://embed.cs.utah.edu/csmith/
https://www.qemu.org/
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Faults that result in program completion (events F1 and F2). A fault that results in
program completion can either produce a correct output or a faulty output. For such
faults, the correct output is produced in 25% of the cases on average across all processors.
Some examples where the output of the program does not change in spite of fault injection
are provided here:

• ARM supports conditional execution of instructions, where an instruction is executed
only if certain conditional flags are set. We found that in many cases, a fault injected
in the condition bit present in the instruction did not alter the output.

• Often, multiple registers may hold the same data. Few bits in the instructions specify
the operands to be used for the source and destination registers. A fault that changes
the source register to another holding the same data would not affect the output.

• Certain faults were observed to change the arithmetic and logic opcodes in a way
that does not alter the outputs. For example, a fault that changes the opcode for
add to the signed equivalent adds in ARM may not always alter the output.

• Compare operations have outputs of True or False; hence with high probability, the
output remains the same even after fault injection.

• Faults that alter the memory address of load instructions in a way that the new
address holds the same data as the original do not alter the program output.

4.2.2 Fault in data memory and registers

Faults injected in data memory, or registers can influence the output of an instruction.
With respect to Figure 4, a disturbance in data memory or registers can cause in instruction
to provide a wrong output (F1) or cause program termination (F3). In some cases, the
fault would go unaffected (F2). However, such faults in data or registers cannot result in
an invalid opcode (i.e. F4). The probability of the events F1, F2, and F3 depend not just
on the type of instruction but also on the width of the registers.

To understand the probabilities of these events, we consider faults injected in 8-bit,
16-bit, 32-bit, and 64-bit registers. For each register size, we generate random C programs,
compile, simulate random fault injections in registers, and observe the outputs of each
instruction. The event F3 is observed when the fault modified registers are used to hold
addresses for branch, load, or store instructions. The modified registers result in invalid
instructions causing program termination.

In arithmetic and logic instructions, these faults result in either a wrong output (i.e.
F1), and in some cases do not affect the output (i.e. F2). For example, in a conditional
branch such as ’if (a < b)’ a fault in either a or b does not alter the output in half of the
executions. Arithmetic instructions like multiplication mul a,b do not alter the output if
one of the operands is zero. Similarly, in 32-bit platforms, the output of and a,b is not
altered when one of the operands is 0×FFFFFFFF.

4.2.3 Faults in the Program Counter

Unlike faults in instruction and data, the effect of a fault in the Program Counter (PC) is
influenced by the control flow graph of the program. If the fault modifies the PC in such
a way that the new address falls outside the control flow graph, i.e. an address outside
the program, then the program is likely to terminate (F3) (refer Figure 4). On the other
hand, if the fault modifies the PC such that the new address lies in the control flow graph,
then either events F1 or F2 are likely. These faults either skip instructions or repeat the
execution of instructions. The former generally occurs when the fault causes the PC to be
incremented, while the latter generally occurs when the fault decrements the PC. Not all
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Figure 6: Control Flow Graph (CFG) with addresses ( 〈 · 〉 ) for the intermediate representation of the
pseudo-code given in Figure 2. The addresses correspond to an implementation on TI’s MSP-430, while
the shaded nodes are vulnerable. A fault in the program counter can skip instructions or repeat the
execution of instructions as shown by the dashed lines.

F1 faults are exploitable. The exploitable F1 faults are restricted to those where one or
more vulnerable nodes in the program are skipped or executed more than the expected
number of times.

To understand the probabilities of these events for a given cipher implementation, we
generate the control flow graph of the program with vulnerable nodes marked. These nodes
are identified by the Vulnerable Instruction Identification module (Section 4.1). Fault
injections are simulated in the PC for each node of the CFG and the flow of the program
is observed after the fault injection. The events F1, F2, and F3 are counted to compute
the probabilities of occurrence.

The Control Flow Graph (CFG) for the LLVM intermediate representation (IR) in
Figure 3 is depicted in Figure 6. The cipher is implemented in the 16-bit TI MSP-430
and the address of each IR instruction is also shown in Figure 6. If a single bit fault
is injected in the program counter, for instance in node I6 with the address is <311C>,
the PC can take 16 possible values due to the fault injection, 11 of these values result
in a PC outside the program causing the program to terminate. The valid PCs after
fault injection are <3114>, <3118>, <311E>, <313C>, and <319C> as these addresses fall
within the CFG. Of these addresses, <311E>, <313C>, and <319C> result in a forward
jump, skipping vulnerable nodes (shaded in Figure 6). These faults result in exploitable
F1 events. The addresses <3114> and <3118> result in a backward jump, causing the
re-execution of vulnerable nodes. These too result in exploitable F1 events. There are no
F2 events in this example. Hence the probability of F1, F2, and F3 events for the fault
in the PC corresponding to node I6 are: 0.31, 0.0, and 0.69 respectively. In a similar
way, faults injected in the PC corresponding to the I53 results in probabilities 0.06, 0.25,
and 0.69 respectively. Among all faults, only one that modifies the PC from <31BC> to
<313C> resulting in the re-execution of the vulnerable instruction I18 which is a vulnerable
instructions and hence marked exploitable.

4.2.4 Computing the probability that an injected fault causes for an instruction

Of the four events, F1, F2, F3, and F4, only event F1 is useful in a fault attack because
only in this case the fault induces an error in the program and does not terminate it. We
denote the probability that the output of the j-th instruction can be faulted by

P(C∗
2,j) = P(F1) , (1)
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Figure 7: The probability of a fault corrupting the output of instructions given in Figure 3 on an TI
MSP-430 processor. Faults can be induced either in the instruction, memory, or in the program counter.

where P(F1) is the probability of event F1 occurring when a fault is injected and ‘∗’ denotes
any of the fault injections i.e. in the instruction, memory, or program counter.

Figure 7 depicts these probabilities for each IR instruction for the pseudo-code shown
in Figure 3 with the three fault injections corresponding to a fault in the instruction,
data/register, or the program counter. These probabilities are represented as P(Ci

2,j),
P(Cd

2,j), and P(Cp
2,j) respectively. To generate these probabilities, the source code writ-

ten in C is first compiled using the LLVM compiler to generate a binary and also the
Intermediate Representation (IR).

Using the probabilities obtained in Section 4.2.1 and 4.2.2, each instruction and
the operands in the generated executable are analyzed to determine the corresponding
P(C∗

2,j) (where ∗ is either i or d). These probabilities are at the instruction level and is
the only hardware dependent step. We map these probabilities onto the corresponding
machine-independent IR instructions generated by the LLVM compiler. Unlike opcodes
and operands, faults in the PC are directly evaluated using the control flow graphs (CFGs)
generated from the IR instructions as discussed in Section 4.2.3.

The graph in Figure 7 shows that the faults injected in registers or memory have a
higher probability of corrupting the instruction output compared to the faults injected in
the opcode or the program counter. This is because faults injected in opcodes and the
program counter are more likely to terminate the program due to invalid opcodes F4 or an
invalid program counter.

4.3 Fault propagation from the instruction to the ciphertext (C3)
The output of an instruction in the program can be corrupted either by a fault injected in
that instruction (discussed in Section 4.2.1) or a fault injected in a previous instruction
that propagates to the given instruction. The latter depends on the program structure.
For example, consider the instruction L6 (refer Figure 2) resulting in a non-zero value of b.
If a fault induced in this instruction changes the value of the byte b to another non-zero
value, then the fault will not propagate to the ciphertext due to the conditional statement
in L8. Thus, only a fault that changes b to zero would propagate to the output. We denote
the probability that the fault propagates through a sequence of instructions Ii, Ii+1, . . . ,
Ii+n as P(C3,(i,i+1,···,i+n)).

Fault propagation can be done in two ways. The first is through registers, where the
output of one instruction is used as an input to another. Alternatively, faults can propagate
through memory operations. For instance, by a store of faulted data to memory, followed
by a subsequent load from the same address. To compute P(C3,(∗)), FaultMeter classifies
instructions into three different classes based on the model proposed by Guanpeng et al.
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in [LPH+18]. The first class considers fault propagation through registers. The second
class considers fault propagation from a corrupted store to a subsequent load, while the
third class considers control flow instructions.

I1
I2

%xor = xor %0 %1 I3

store %xor, %s0 I4

%1 = load k0

%0 = load p0

P(Ci
2,4),

P(Ci
2,3) × P(Cd

2,4),

P(Ci
2,1) × P(Cd

2,3) × P(Cd
2,4),

P(Ci
2,2) × P(Cd

2,3) × P(Cd
2,4)

P(C3,(4)) = max

(a)

.
.
.
.

.
.
.
.

P(Ci
2,48) × P(Cd

2,49) × P(Cd
2,50)

P(Ci
2,50)

P(Ci
2,49) × P(Cd

2,50)

P(Ci
2,47) × P(Cd

2,48) × P(Cd
2,49) × P(Cd

2,50)

%t13 = load %s0 I47

store %xor22, %C0

I50

P(C3,29)

P(Ci
2,47)

P(C3,(50)) = max

P(C3,(47)) = max

I29store %xor, %s0

(b)

Figure 8: The instructions in (a) shows fault propagation data dependant instruction sequence corresponding
to IR instructions implementing S0 ← P0 ⊕ K0 in Figure 3. For instance, at I4, a fault could occur at I4
or one of the previous nodes, and propagate forward. (b) shows fault propagation in memory dependent
load and store instructions. A corrupted store in I29 will propagate to the load in I47, which propagates
further to influence the output in I50.

Fault propagation through registers. We consider a sequence of instructions, where
the output of instruction is the input to another, and the data is transferred through
registers. This data-dependent sequence of instructions has two properties: (a) it ends
with a store or a control flow instruction, and (b) the output of every instruction in the
sequence flows to the input of a subsequent instruction in the sequence. As an example
the first four IR instructions (I1, I2, I3, and I4) from Figure 3 have two data-dependent
sequences, namely, (I1, I3, I4) and (I2, I3, I4) as shown in Figure 8a. Note that I4 is a
store instruction that marks the end of the data sequence.

For each control flow or store instruction, FaultMeter computes the maximum proba-
bility that the output of the instruction is corrupted. To do this, it identifies all possible
data-dependent sequences that terminate with the given control flow or store instruction,
and computes the maximum probability that the output of the instruction is corrupted.
The choice of maximum probability gives the highest success with which the output of an
instruction can be corrupted. For instance, the maximum probability that I4 (Figure 8a)
is corrupted is given by

P(C3,(4)) = max
(
P(Ci

2,4),P(C3,(3,4)),P(C3,(1,3,4)),P(C3,(2,3,4))
)

. (2)

P(Ci
2,4) is the probability that a fault injected in instruction I4 and corrupts its output.

All other probabilities correspond to a fault injected in a predecessor instruction (either I1,
I2, or I3) that propagates, corrupting the output of I4. To compute these probabilities, we
take an example of the sequence of instructions I1, I3 and I4. If a fault is injected in the
instruction I1 then, assuming independence between instructions, the fault propagation
probability at the end of the sequence is computed as

P(C3,(1,3,4)) = P(Ci
2,1)× P(Cd

2,3)× P(Cd
2,4) , (3)

where P(Ci
2,1) is the probability of a fault injected in instruction I1 (refer Section 4.2.1).

This fault propagates through I3 and I4 due to the data dependent path. We quantify
this by considering the fault in the data in the corresponding instructions, i.e. P(Cd

2,3)
and P(Cd

2,4) (refer Section 4.2.2). In a similar manner we quantify the fault propagation
probability in each instruction sequence P(C3,(3,4)) and P(C3,(2,3,4)).

Fault propagation in memory dependent instructions. To compute the fault
propagation through memory operations, we keep track of load and store dependencies.
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Figure 9: Fault propagation across the control flow instruction can corrupts the store instruction I29 either
through data-dependent sequence (marked in red) or by a fault in branch I26.

For example, in Figure 8b, the store in I29 and the subsequent load in I47 are to the
same address. Thus a corrupted store in I29 corrupts the load in I47. From the corrupted
load, the fault propagates through registers in data-dependent instruction sequences. For
example, the next data dependant instruction sequence is from I47 to I50, which produces
an output. It should be noted that the current version of the work assumes that the
addresses can be resolved statically. The support for load and store operations that can
only be resolved at runtime is left as future work.

Fault propagation in control flow instructions. Instructions such as branch and
call, can propagate the fault to another location or change the control flow path of the
program. For example, in Figure 9, if a fault is injected in instruction I21, it can influence
the instructions within the control flow path of the program (I27 to I29) only if the branch
is taken. On the other hand, if a fault is injected in I26, it can change a taken branch to a
not-taken branch or vice-versa. We analyze these two cases separately.

Fault does not change the control flow path. For example, the fault in I21 can influence
the store in I29 only if the branch is taken. Thus, the probability of fault propagation
from I21 to I29 also depends on the probability that the branch is taken. To compute
these probabilities, we determine all the store instructions along the control flow path and
then evaluate fault propagation to the stored memory location using the data-dependant
sequence (discussed earlier in this section). Thus, the probability that a fault injected in
I21 can propagate to the memory location used in the store in I29 is computed as follows:

P(C3,(21,27,28,29)) = P(T26)× P(Ci
2,21)× P(Cd

2,27)× P(Cd
2,28)× P(Cd

2,29) , (4)

where T26 is the probability that the branch in I26 is taken. To generalize this approach
when there are multiple stores in both taken as well as not-taken branches, we independently
compute probability of fault propagation to each store using the data-dependant sequence
analysis as discussed earlier, and then consider the maximum probability.

Fault changes the control flow path of the program. For example, a fault in instruction
I26 can cause the taken branch to be not-taken (or vice-versa) and can result in the
store instruction at I29 to be illegally executed (or not executed). In either case, the
corresponding memory operation in the store instruction is corrupted. To compute the
fault propagation probability from the control flow instruction to the corrupted store, we
would need to consider the conditional probability that the branch is illegally taken or
not-taken due to the fault in the branch instruction. The probability that the branch is
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illegally not-taken due to the fault in the control flow instruction that alters the output of
the instruction and is given by

P[NT26 | F1] = P(T26)× P(Ci
2,26) . (5)

This fault corresponds to the event F1 defined in Section 4.2, where the fault is activated.
In Equation 5, P(T26) is the probability that a branch is taken, and P(Ci

2,26) is the
probability that the output of the 26-th instruction (the branch) is corrupted by the
fault. The probability of the branch taken or not taken is determined empirically. For
example, a corrupted output of a branch instruction could make a not-taken branch taken
or vice-versa. Similarly, we can compute the probability that the branch is illegally taken
due to the fault, i.e. P[T26 | F1], in a similar manner.

Considering Figure 9, the probability that the memory location used in the store
instruction I29 is corrupted due to a fault in I26 can either result in execution or non
execution of the store. Assuming that the branch at I26 is taken, the fault can force the
branch to be not-taken, resulting in the execution of the instruction I29 corrupting the
corresponding stored memory. On the other hand, assuming that the branch at I26 is
not-taken, the fault can force the branch to be taken, skipping the store instruction at I29.
This too corrupts the corresponding memory. Thus, the probability that the memory used
in the store is corrupted is given by

P(C3,(26,27,28,29)) = P
(

T26
∣∣ (Ci

2,26)
)

+ P
(

NT26
∣∣ (Ci

2,26)
)

= P(NT26)× P(Ci
2,26) + P(T26)× P(Ci

2,26)

= (1− P(T26))× P(Ci
2,26) + (P(T26)× P(Ci

2,26) = P(Ci
2,26) .

(6)

4.3.1 The FaultMeter Algorithm

The FaultMeter algorithm (Algorithm 1) takes three parameters. The first parameter,
CFG is the control flow graph of the implementation under test (IUT). The second is
V_list, which is a list of vulnerable instructions in the IUT. These vulnerable instructions
are obtained from the Fault Vulnerable Identification module and the only locations in the
IUT where an injected fault can be exploited. The third parameter is a processor specific
lookup table, TPF, comprising of instructions and the fault activation probabilities that were
obtained empirically as discussed in Section 4.2. The fault can be injected in instruction,
memory/register, or in the program counter. Without loss of generality, Algorithm 1
considers faults injected only in instructions. The algorithm assigns a probability to each
node in V_List. This probability, SuccessScore, denotes the success with which injected
faults propagate to the output.

The algorithm starts executing from Main(Line 1-7). For each vulnerable location
(i.e. each element in V_List), it creates a data-dependent graph (DDG). These graphs
are acyclic and show the propagation of a fault from Il to the output. For example, in
Figure 3, 18 out of the 54 instructions present are vulnerable, hence the algorithm would
have 18 different DDGs. For each of these graphs DDG[Il], function ComputeP is invoked.
The second parameter passed to ComputeP holds the fault activation probability for the
instruction Il. The function returns the probability with which a fault in instruction Il

propagates to the output.
The ComputeP function extracts the path from Il to In such that In is a store, a

branch instruction, or an output instruction. If there exists a branch between Il and In

in the CFG, then the probability of In being executed is determined (Line 11-14). This
depends on the probability that the branch is taken or not-taken. For example, in Figure 9,
the data dependant path is I21, I27, I28 and I29. The probability that I29 executes is
the probability that the branch at I26 is taken. Line 15, computes the fault propagation
probability from Il to In.

Lines 16-28 identify the next sequence of instructions to evaluate. If In is a branch,
it identifies the probability that store instructions in the taken and not-taken paths are
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Algorithm 1: The FaultMeter Algorithm
Input: CFG: Control Flow Graph of Implementation and V_List : List of the vulnerable

instructions and TPF: Processor dependent fault activation probability table
Output: SuccessScore : Success Score of the vulnerable instructions

1 Function Main():
2 begin
3 Create the Data Dependent Graph (DDG) for each node in V_List
4 for each graph with Il as the start node do
5 p← Fetch P(Ci

2,l) of Il from TPF
6 SuccessScore[Il] ←ComputeP(DDG[Il], p)

7 return SuccessScore

8 Function ComputeP(DDG[Il], p):
9 begin

10 SScore ← ∅
11 〈Il, · · · , In〉 ← Extract path from Il to In of DDGl, where In is the first be store, branch,

or output instruction in the path.
/* instruction sequence 〈Il, Il1 , Il2 · · · , In〉 */

12 b← T rue, if ∃ a branch between Il and In in CFG, else b← F alse
13 if b = True then
14 p← p × (Probability of In being executed)

/* Computing fault propagation probability of data-dependent sequence. */
15 p← p× P(Cd

2,l1
)× · · · × P(Cd

2,n)
16 if In is a branch then
17 〈store〉 ← Find all stores in the taken and not-taken path of branch In.
18 for each Is in 〈store〉 do
19 〈Is, ps〉 ← (Is, p)
20 for each 〈Is, ps〉 do
21 Mem ← Find the memory location in the store instruction
22 SScore[Mem]← ComputeP(DDG[Is], ps)
23 P(C3,(Il,···,In)) ← max(SScore[Mem])
24 else if In is output then
25 P(C3,(Il,···,In)) ← p

26 else if In is a store then
/* Instruction In to Il has the Store to Load Dependency */

27 Il ← Next Memory Dependent instruction of store (In) in the DDG[Il]
28 P(C3,(Il,···,In)) ← ComputeP(DDG[Il], p)
29 return P(C3,(Il,···,In))

corrupted as described in Equation 6. For each of these store instructions, the algorithm
recursively invokes ComputeP with Is as the start node of the DDG (DDG[Is]) and ps the
probability of the fault corrupting the output of Is (Line 20-22). The maximum probability
of all the stores is returned if there is a write to the same memory locations. ComputeP
terminates if In is an output instruction then P(C3,(Il,···,In)) is assigned with a probability
p (Line 25).

Suppose the instruction In is a store, then a store to load dependency (In to Il)
is determined to propagate the fault further (described in Section 4.3). ComputeP is
recursively invoked (Line 28) with the load instruction Il as the fault activation location
of the DDG[Il] and p, the probability of fault corrupting the output of Il (refer example in
Figure 8b). The function returns with the value of the fault propagation probability for Il,
when it finds an output instruction.

Figure 10 shows the fault propagation for 2 locations I1, I15 for two processors TI MSP-
430(16-bit) and RISC-V(32-bit) for the toy cipher given in Figure 3. The SuccessScore for
these locations is computed using Algorithm 1. The x-axis highlights the IR instructions
I1 to I54, and the y-axis shows the fault propagation probability. The graph shows that
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Figure 10: The fault propagation probability of instructions I1, I15 for the processors TI MSP-430(16-bit)
and RISC-V(32-bit) for the toy cipher implementation given in Figure 3.

Table 3: We invoke FEDS [KRR+20] in the Vulnerable Instruction Identification module for the five
implementations considered. This step is hardware independent.

Block Cipher #IR Instruction
in the CFG

% of Vulnerable
Instructions Time (in Secs)

AES-128(LookUp Table) 7206 6.56 38.2
AES-128(T Table) 4299 4.2 15.5
AES-128(BitSliced ) 8256 11.45 215.7
CAMELLIA-128 1475 23.2 99.3
CLEFIA-128 1024 6.54 105.5

the fault propagation probability varies based on the processor and the location of fault
activation.

5 Implementation and Evaluation
In this section we provide details about the implementation of FaultMeter and present
the results on the cipher implementations. We consider five cipher implementations.
Three implementations are realizations of AES-128 based on LookUp Tables, where the
SubBytes operation is implemented using a single 256 byte look-up table10, T-Tables,
where the operations SubBytes, ShiftRows, and MixColumns are merged and replaced
with look-ups11, and BitSliced [RSD06], where all the operations are bitsliced. We also
consider implementations of CLEFIA-128 [SSA+07] and CAMELLIA-128 [AIK+00]. The
FaultMeter framework is implemented as transformation passes in the LLVM Clang
compiler4 Version 7.0.

The probability that the output of an instruction is corrupted due to an injected fault,
event F1, is computed beforehand on the ARM (32 and 64 bit), RISC-V(32 and 64 bit),
TI MSP-430 (16 bit), and Intel x86(64-bit) architectures. Next, we discuss the results at
the output of each stage of FaultMeter.

5.1 Vulnerable Instruction Identification
The Vulnerable Instruction Identification module (refer Figure 3) takes the block cipher
source code as input and marks the fault vulnerable instructions from the implementation.

FaultMeter uses the FEDS [KRR+20] framework for this stage. FEDS determines
all the exploitable instructions from IR instructions that are susceptible to fault attack.
The Vulnerable Instruction Identification module works by converting the IR instructions
to control flow graph and also finds the dependencies between the instructions using a
reverse data flow analysis on the control flow graph (refer Section 4.1). Table 3 shows the

10https://github.com/BrianGladman/aes/blob/master/aestab.c
11https://github.com/openssl/openssl/blob/master/crypto/aes/aes_core.c

https://github.com/BrianGladman/aes/blob/master/aestab.c
https://github.com/openssl/openssl/blob/master/crypto/aes/aes_core.c
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ARM(32-bit) ARM(64-bit)

RISC-V(32-bit)

TI MSP-430(16-bit)

RISC-V(64-bit)

Intel x86(64-bit)

Figure 11: SuccessScore of vulnerable instruction from an AES(LookUp Table) based implementation on
six different processors. Each cell represents an instruction and the color code represents the SuccessScore.

output of the Vulnerable Instruction Identification module. The percentage of exploitable
instructions varies from 6.56% AES-128(LookUp Table) to 23.2% (CAMELLIA-128) from
the total instruction in the control flow graph. As an example, the AES (T-Table)
implementation has 4.2% instructions that are exploitable to fault attack from the total of
4299 IR instructions present. A fault induced in any of these vulnerable instructions can
result in a successful fault attack. These results just depend on the cipher implementation
and are agnostic of the underlying hardware used.

5.2 Fault Exploitability Quantification
Fault Exploitability Quantification module takes the Control Flow Graph with marked vul-
nerable nodes as input and processor dependent fault activation probability and quantifies
the vulnerability using Algorithm 1. The module considers faults injected in instruction
opcodes, memory, registers, and in the program counter. In each case, the probability of
the injected fault propagating to the output is computed. This probability depends on the
underlying hardware architecture and the program structure.

FaultMeter evaluation on different architectures. To demonstrate that the fault
propagation varies based on program structure, we have considered five cipher implemen-
tations (given in Table 3) and five RISC microprocessors: ARM (32 and 64 bit), RISC-V
(32 and 64 bit), and TI MSP-430 (16 bit). We also considered the Intel x86 (64-bit)
CISC architecture. Figure 11 shows the memory layout of exploitable instructions for
the AES-128 LookUp Table based implementation (Table 3). Each colored cell shows
the exploitable instructions, with the color indicating the probability that a fault in that
instruction can corrupt the ciphertext and result in a successful attack. Notice that on each
processor architecture, the vulnerable instructions are the same. However, the difference
in color across the architectures indicates that the exploitability of the instruction differs
from one architecture to another. TI’s MSP430 (16-bit) RISC processor and Intel x86
(64-bit) processor have instructions with high fault susceptibility. This means that a fault
injected in these processors have a high chance of disturbing the execution compared to
a fault in the same instruction in the other processors. This is because, comparatively,
TI MSP430 has a densely packed instruction set (refer Section 4.2); therefore, there is a
smaller probability of obtaining an invalid opcode. This results in high P(C2). Similarly,
the large number of instructions in Intel’s x86 platforms, owing to the CISC architecture,
provides a similar impact.
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Figure 12: Percentage of vulnerable instructions for different cipher implementations. To understand these
graphs, consider for example in Figure (d), when x = 85%, y = 0.38 on TI MSP-430(16-bit). This means
that 85% of CAMELLIA-128 instructions have SuccesScore ≤ 0.38.

FaultMeter evaluation on different software implementations. Figures 12a to 12e
shows the output of the Fault Exploitability Quantification module for the five cipher
implementations on the six processors. For AES-128 cipher implementations (Figures 12a
to 12c), the percentage of vulnerable instructions varies based on how the cipher is
implemented, and the final SuccessScore of vulnerable instructions varies based on the
program structure and the underlying architecture. For example, for AES-128 (LookUp
Table), Figure 12a, 0.5% of instructions (≈ 72) instructions have maximum SuccessScore
is 0.5 across different architecture, whereas for AES-128 (T-Table) Figure 12b and AES-128
(BitSliced) Figure 12c, the percentage of vulnerable instructions with similar SuccessScore
is 0.4% (≈ 18) and 1.5%(≈124) respectively. Of the three AES implementations, the
BitSliced implementation is most prone to fault attacks because it has the highest percentage
of vulnerable instructions (Table 3), and it has a higher fault propagation probability
across all the architectures (Figure 12). Similarly, the T-Table implementation is the most
secure of the AES-128 implementations considered.

Figure 12f compares the fault propagation probability of the cipher implementations
(given in Table 3) on the TI MSP-430 (16-bit) processor. From the figure, it is clear
that CAMELLIA-128 is more vulnerable to fault injection attacks as it has the highest
percentage of vulnerable instructions. For CAMELLIA-128, ≈ 85% of instructions have
SuccesScore ≤ 0.4. AES-128 (T-Table) is least vulnerable on TIs MSP-430, where ≈ 96%
of vulnerable instructions have SuccesScore ≤ 0.4.

6 Applying FaultMeter to automatically insert counter-
measures based on User Specified Security Input (Uin)

Incorporating fault attack countermeasures is expensive. It can increase run time overheads
by over 100% and memory requirements by over 800%. These overheads are unacceptable
for several applications, especially where time and resources are critical. One approach to
address this issue is to provide just sufficient countermeasures to meet an application’s
security requirement. This is motivated by the fact that a program’s security requirements
vary considerably based on the application. For instance, a block cipher used in critical
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Figure 13: SuccessScore of vulnerable instructions (AES-128 (LookUp Table)) after inserting counter-
measures on three processors with Uin 0.4 and 0.8. Each cell represents an instruction.

infrastructure would require much more secure implementations compared to an application
in a consumer device. Thus for such applications, designers typically would want to
prioritize security in lieu of performance. Such trade-offs would be less acceptable for the
consumer device, especially in a resource-constraint device, where each byte and each clock
cycle is valuable.

Table 4: Comparison of unprotected and naïvely protected implementations with FaultMeter based
countermeasure addition. The table shows the percentage increase in code size, clock, along with fault
coverage. The comparison is made on a TI MSP-430 (16-bit) and ARM(64-bit) processors with different
user requirements.

Block Cipher
Original Naive

Approach User
Input
(Uin)

FaultMeter
(TI MSP430(16-bit)) Coverage

(%)

FaultMeter
(ARM (64-bit)) Coverage

(%)
Code
Size

Clock
Cycles

% Increase
in Code Size

% Increase in
Execution Time
(Clock Cycles)

% Increase
in Code Size

% Increase in
Execution Time
(Clock Cycles)

% Increase
in Code Size

% Increase in
Execution Time
(Clock Cycles)

AES-128
(LookUp Table) 936 95347 886.12 157.80

0.8 110.68 23.01 84 110.03 20.00 84
0.6 108.54 18.75 82 80.05 15.12 75
0.4 102.56 10.40 79 75.32 10.27 74

AES-128
(T-Table) 1089 79141 590.02 25.75

0.8 173.55 3.54 90 173.00 3.50 90
0.6 165.47 2.65 89 150.00 2.50 84
0.4 120.75 2.48 86 100.00 2.40 80

AES-128
(BitSliced) 2606 643348 288.14 91.73

0.8 64.08 48.98 91 64.02 48.00 91
0.6 60.85 48.80 90 59.32 44.32 88
0.4 58.36 48.39 86 47.12 40.00 81

CAMELLIA-128 1045 108996 831 42.05
0.8 21.05 13.21 95 21.03 13.20 95
0.6 15.86 12.14 83 13.23 10.30 81
0.4 10.35 12.05 80 5.25 10.01 75

CLEFIA-128 895 81311 679.01 21.40
0.8 40.11 5.25 85 40.05 5.20 85
0.6 34.07 3.20 83 30.12 3.12 80
0.4 29.21 2.17 81 20.18 1.5 70

In this section, we demonstrate the use of FaultMeter to cater to the diverse security
requirements of applications. We use FaultMeter to automatically insert countermeasures
based on the user’s input, which is a number between 0 and 1 defining the extent to
which security is important in the application. A value close to 1 implies that the user
prioritizes security over performance, while a value close to 0 implies that performance
is critical. The SuccessScore produced by FaultMeter is used to tune between security
and performance. For instance, if the user input is Uin, then all the instructions where
SuccessScore ≥ (1− Uin) are protected by automatically inserting countermeasures only
in these locations. All other locations with lesser SuccessScore are not protected.

To demonstrate automatic countermeasure insertion, we use the spatial redundancy
countermeasure as a case study. The countermeasure addition module (Figure 1) works
at the IR level. It takes the vulnerable instructions along with the SuccessScore of
each instruction and replicates instructions where SuccessScore ≥ (1− Uin). Additional
variables are defined as required, and instructions are inserted to compare with redundant
results.
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Figure 14: Percentage of vulnerable instructions protected for different user input (Uin) across six different
processors.

Table 4 shows the percentage increase in code size and clock cycles for different ciphers
realized in the TI MSP-430 (16-bit) and ARM (64-bit) processors for a naïvely protected
executable and an executable generated with FaultMeter based countermeasures. We
observe that (a) the percentage increase in code size and execution clock cycles is far less
with FaultMeter based protection. Unlike the naïve approach where all instructions in the
executable are protected, with the FaultMeter based protection, only instructions with
a SuccessScore ≥ (1− Uin) are protected. (b) The increase in code size and execution
varies directly with the value of Uin and inversely with fault coverage.

The TI MSP-430(16-bit) is the most vulnerable processor compared to other archi-
tectures, hence the percentage increase in code size is higher compared to ARM (64-bit)
processor. From the table it is evident that the performance overhead after the countermea-
sure addition varies depends on the implementation as well as the underlying architecture.
Figure 13 shows the heat map of vulnerability of instructions for two different User

Input (Uin) values for the AES-128(Look-Up Table) (Table 3) on three platforms after
the countermeasure is inserted. From the figure, it is evident that a higher Uin results in
more protected implementations. The countermeasures inserted too is different in each
platform. The measure of SuccessScore after the countermeasure inserted is computed
independently of the previous experiments.

Figure 14 shows the percentage of instructions protected for different user inputs. For
example, for AES-128 (T-Table) on a TI MSP-430, when Uin = 0.7, 4% of vulnerable
instructions are protected, while for an ARM 64-bit, only 1% of vulnerable instructions
are protected

7 Limitations
In its current form, there are two limitations of FaultMeter.

• Fault Vulnerable Identification module used in FaultMeter identifies the vulnerable
instructions, while FaultMeter quantifies the vulnerability. If an instruction is
identified incorrectly as not vulnerable by the Fault Vulnerable Identification module,
FaultMeter will not be able to quantify it. Similarly, if an instruction is marked
incorrectly as vulnerable, the output of FaultMeter is also incorrect.

• FaultMeter currently works with unprotected implementations of block ciphers. It
needs to be extended to support implementations where the protection is already
incorporated. In order to do this, FaultMeter would need to distinguish instructions
that are present due to the countermeasure. Distinguishing these countermeasure re-
lated instructions from other instructions is challenging at the compiler’s intermediate
representation level and therefore left as future work.
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8 Discussion
Non-Cryptographic Applications: Besides cryptography, FaultMeter can be used
for other security applications, such as information flow analysis [SM03], safety-critical
applications etc. The major challenge is to find the sensitive locations from the application
software.

9 Conclusion
FaultMeter is an automated framework that can quantify the success with which an
injected fault can be exploited. We show that this success probability depends on the
cipher algorithm, its implementation, as well as the Instruction Set Architecture (ISA) of
the processor. Our evaluation of five cipher implementations on six hardware platforms
brings out interesting observations. For instance, TI MSP 430 (16-bit) and Intel x86
(64-bit) are the most vulnerable to fault attacks. Comparing the 32-bit RISC processors,
ARM is more vulnerable to fault injection than RISC-V. On the other hand, the 64-bit
variant of RISC-V is more vulnerable than the equivalent ARM variant. Further, the
smaller TI MSP-430 processor is the most vulnerable amongst all processors considered.
Comparing different implementations of AES, the T-table implementation is the most
secure against fault attacks. The quantification that FaultMeter provides can be used to
strategically used to choose the right countermeasure in block cipher implementations to
meet the application’s security requirements as we demonstrated in the paper.
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