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Abstract
In 2001, Chou et al. published a study of faults found by applying a
static analyzer to Linux versions 1.0 through 2.4.1. A major result of
their work was that the drivers directory contained up to 7 times
more of certain kinds of faults than other directories. This result
inspired a number of development and research efforts on improving
the reliability of driver code. Today Linux is used in a much wider
range of environments, provides a much wider range of services,
and has adopted a new development and release model. What has
been the impact of these changes on code quality? Are drivers still a
major problem?

To answer these questions, we have transported the experiments
of Chou et al. to Linux versions 2.6.0 to 2.6.33, released between
late 2003 and early 2010. We find that Linux has more than doubled
in size during this period, but that the number of faults per line of
code has been decreasing. And, even though drivers still accounts
for a large part of the kernel code and contains the most faults, its
fault rate is now below that of other directories, such as arch (HAL)
and fs (file systems). These results can guide further development
and research efforts. To enable others to continually update these
results as Linux evolves, we define our experimental protocol and
make our checkers and results available in a public archive.

Categories and Subject Descriptors D.4 [Operating Systems]:
Reliability

General Terms Reliability, Experimentation, Measurement

Keywords Linux, fault-finding tools

1. Introduction
The Linux operating system is widely used, on platforms ranging
from embedded systems, to personal computers, to servers and
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supercomputers. As an operating system (OS) with a traditional
monolithic kernel, Linux is responsible for the security and integrity
of the interactions between software and the underlying hardware.
Therefore, its correctness is essential. Linux also has a large devel-
oper base, as it is open source, and is rapidly evolving. Thus, it is
critical to be able to continually assess and control the quality of its
code.

Almost 10 years ago, in 2001, Chou et al. published a study of
the distribution and lifetime of certain kinds of faults1 in OS code,
focusing mostly on the x86 code in the Linux kernel [5], in versions
up to 2.4.1. The ability to collect fault information automatically
from such a large code base was revolutionary at the time, and this
work has been highly influential. Indeed, their study has been cited
over 360 times, according to Google Scholar, and has been followed
by the development of a whole series of strategies for automatically
finding faults in systems code [1, 16, 33, 36, 38]. The statistics
reported by Chou et al. have been used for a variety of purposes,
including providing evidence that driver code is unreliable [12, 35],
and evidence that certain OS subsystems are more reliable than
others [10].

Linux, however, has changed substantially since 2001, and thus
it is worth examining the continued relevance of Chou et al.’s
results. In 2001, Linux was a relatively young OS, having first
been released only 10 years earlier, and was primarily used by
specialists. Today, well-supported Linux distributions are available,
targeting servers, embedded systems, and the general public [11, 37].
Linux code is changing rapidly, and only 30% of the Linux 2.6.33
code is more than five years old [7, 8]. Linux now supports 23
architectures, up from 13 in Linux 2001, and the developer base has
grown commensurately. The development model has also changed
substantially. Until Linux 2.6.0, which was released at the end of
2003, Linux releases were split into stable versions, which were
installed by users, and development versions, which accommodated
new features. Since Linux 2.6.0 this distinction has disappeared;
releases in the 2.6 series occur every three months, and new features
are made available whenever they are ready. Finally, a number
of fault finding tools have been developed that target Linux code.
Patches are regularly submitted for faults found using checkpatch
[4], Coccinelle [24], Coverity [9], smatch [36] and sparse [31].

In this paper, we transport the experiments of Chou et al. to
the versions of Linux 2.6, in order to reevaluate their results in

1 Chou et al. used the terminology “errors.” In the software dependability literature
[13], however, this term is reserved for incorrect states that occur during execution,
rather than faults in the source code, as were investigated by Chou et al. and are
investigated here.
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the context of the current state of Linux development. Because
Chou et al.’s fault finding tool and checkers were not released, and
their results were released on a local web site but are no longer
available, it is impossible to exactly reproduce their results on recent
versions of the Linux kernel.2 To provide a baseline that can be
more easily updated as new versions are released, we propose an
experimental protocol based on the open source tools Coccinelle
[24], for automatically finding faults in source code, and Herodotos
[25], for tracking these faults across multiple versions of a software
project. We validate this protocol by replicating Chou et al.’s
experiments as closely as possible on Linux 2.4.1 and then apply
our protocol to all versions of Linux 2.6. To ensure the perenity of
our work, our tools and results are available in a public archival
repository [27].

The contributions of our work are as follows:

• We provide a repeatable methodology for finding faults in Linux
code, based on open source tools, and a publicly available archive
containing our complete results.

• We show that the faults kinds considered 10 years ago by Chou et
al. are still relevant, because such faults are still being introduced
and fixed, in both new and existing files. These fault kinds vary
in their impact, but we have seen many patches for all of these
kinds of faults submitted to the Linux kernel mailing list [17]
and have not seen any receive the response that the fault was too
trivial to fix.

• We show that while the rate of introduction of such faults
continues to rise, the rate of their elimination is rising slightly
faster, resulting in a kernel that is becoming more reliable with
respect to these kinds of faults. This is in contrast with previous
results for earlier versions of Linux which found that the number
of faults was rising with the code size.

• We show that the rate of the considered fault kinds is falling in
the drivers directory, which suggests that the work of Chou
et al. and others has succeeded in directing attention to driver
code. The directories arch (HAL) and fs (file systems) now
show a higher fault rate, and thus it may be worthwhile to direct
research efforts to the problems of such code.

• We show that the lifespan of faults in Linux 2.6 is comparable
to that observed for previous versions, at slightly under 2 years.
Nevertheless, we find that fault kinds that are more likely to have
a visible impact during execution have a much shorter average
lifespan, of as little as one year.

• Although fault-finding tools are now being used regularly in
Linux development, they seem to have only had a small impact
on the kinds of faults we consider. Research is thus needed on
how such tools can be better integrated into the development
process. Our experimental protocol exploits previously collected
information about false positives, reducing one of the burdens
of tool use, but we propose that approaches are also needed
to automate the fixing of faults, and not just the fault finding
process.

The rest of this paper is organized as follows. Section 2
briefly presents our experimental protocol based on Coccinelle
and Herodotos. Section 3 gives some background on the evolu-
tion of Linux. Section 4 establishes a baseline for our results, by
comparing our results for Linux 2.4.1 with those of Chou et al.
Section 5 presents a study of Linux 2.6, considering the kinds of
code that contain faults, the distribution of faults across Linux code,

2 Chou et al.’s work did lead to the development of the commercial tool Coverity,
but using it requires signing an agreement not to publish information about its results
(http://scan.coverity.com/policy.html#license).

the lifetime of faults, and effect of the use of fault-finding tools. Sec-
tion 6 presents some limitations of our approach. Finally, Section 7
describes related work and Section 8 presents our conclusions.

2. Experimental protocol
In laboratory sciences there is a notion of experimental protocol,
giving all of the information required to reproduce an experiment.
For a study of faults in operating systems code, such a protocol
should include the definition of the fault finding tools and checkers,
as well as the strategies for identifying false positives, as each of
these elements substantially affects the results. In this section, we
first present our checkers, both for finding faults and for assessing
the fault rate, and then describe the tools that we have used in the
fault finding and validation process. All of our results, as well as the
scripts used and the source code of the Coccinelle and Herodotos
tools are available on the open access archive HAL [28] and on the
project website [29].

2.1 Fault finding checkers
Based on the descriptions of Chou et al., we have implemented our
interpretations of their Block, Null, Var Inull, Range, Lock, Intr,
LockIntr, Float, and Size checkers. We omit the Real checker,
related to the misuse of realloc, and the Param checker, related
to dereferences of user-level pointers, as in both cases, we did not
have enough information to define checkers that found any faults.
In the description of each checker, the initial citation in italics is the
description provided by Chou et al.

Block “To avoid deadlock, do not call blocking functions with
interrupts disabled or a spinlock held.” Implementing this checker
requires knowing the set of functions that may block, the set of
functions that disable interrupts, and the set of functions that take
spinlocks. These functions vary across Linux versions. Identifying
them precisely requires a full interprocedural analysis of the Linux
kernel source code, including a precise alias analysis, as these oper-
ations may be performed via function pointers. To our knowledge,
Chou et al.’s tool xgcc did not provide these features in 2001, and
thus we assume that these functions were identified based on their
examination of the source code and possibly heuristics for collecting
functions with particular properties. We take the same approach, but
add a simple interprocedural analysis, based on the iterative com-
putation of a transitive closure though the call graph. This iterative
analysis implies that our Block checker automatically takes into
account the new blocking functions that are added in each version.

To identify blocking functions, we consider two kinds of func-
tions as the starting point of our interprocedural analysis. First, we
observe that basic memory allocation functions, such as the kernel
function kmalloc, often take as argument the constant GFP KERNEL
when they are allowed to block until a page becomes available. Thus,
we consider that a function that contains a call with GFP KERNEL
as an argument may block. Second, we observe that blocking is
directly caused by calling the function schedule. Given this initial
list of blocking functions, we then iteratively augment the list with
the names of functions that call functions already in the list without
first explicitly releasing locks or turning on interrupts, until reaching
a fixed point.

To identify functions that turn off interrupts and take locks, we
rely on our knowledge of a set of commonly used functions for these
purposes, listed in the appendix. However, we observe that blocking
with interrupts turned off is not necessarily a fault, and indeed core
Linux scheduling functions, such as interruptible sleep on,
call schedule with interrupts turned off. Thus, we only consider
the case where a blocking function is called while holding a spinlock,
which is always a fault. We refer to this checker as BlockLock to
highlight the different design.
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Null “Check potentially NULL pointers returned from routines.” To
collect a list of the functions that may return NULL, we follow the
same iterative strategy as for the Block checker, with the starting
point of the iteration being the set of functions that explicitly return
NULL. Once the transitive closure is computed, we check the call
sites of each collected function to determine whether the returned
value is compared to NULL before it is used.

Var “Do not allocate large stack variables (> 1K) on the fixed-size
kernel stack.” Our checker looks for local variables that are declared
as large arrays, e.g., 1,024 or more elements for a char array. Many
array declarations express the size of the array using macros, or even
local variables, rather than explicit constants. Because Coccinelle
does not expand macros, and indeed some macros may have multiple
definitions across different architectures, we consider only array
declarations where the size is expressed as an explicit constant.

Inull “Do not make inconsistent assumptions about whether a
pointer is NULL.” We distinguish two cases: IsNull, where a null
test on a pointer is followed by a dereference of the pointer, and
NullRef, where a dereference of a pointer is followed by a null test
on the pointer. The former is always an error, while the latter may be
an error or may simply indicate overly cautious code, if the pointer
can never be NULL. Still, at least one NullRef fault has been shown
to allow an attacker to obtain root access [34].

Range “Always check bounds of array indices and loop bounds de-
rived from user data.” We recognize the functions memcpy fromfs,
copy from user and get user as giving access to user data. Pos-
sible faults are cases where a value obtained using one of these
functions is used as an array index, with no prior test on its value,
and where some value is checked to be less than a value obtained
using one of these functions, as would occur in validating a loop
index.

Lock and Intr “Release acquired locks; do not double-acquire
locks (Lock).” “Restore disabled interrupts (Intr).” In early ver-
sions of Linux, locks and interrupts were managed separately: typ-
ically interrupts were disabled and reenabled using cli and sti,
respectively, while locks were managed using operations on spin-
locks or semaphores. In Linux 2.1.30, however, functions such as
spin lock irq were introduced to combine locking and interrupt
management. Our Lock checker is limited to operators that only
affect locks (spinlocks and, from Linux 2.6.16, mutexes), our Intr
checker is limited to operators that only disable interrupts, and for
the combined operations, we introduce a third checker, LockIntr.
The considered functions are listed in the appendix.

Free “Do not use freed memory.” Like the Null checker, this
checker first iteratively collects functions that always apply kfree
or some collected function to some parameter, and then checks each
call to kfree or a collected function for a use of the freed argument
after the call.

Float “Do not use floating point in the kernel.” Most uses of
floating point in kernel code are in computations that are performed
by the compiler and then converted to an integer or in code that is
part of the kernel source tree, but is not actually compiled into the
kernel. Our checker only reports a floating point constant that is not
a subterm of an arithmetic operation involving another constant.

Size “Allocate enough memory to hold the type for which you are
allocating.” Because our checker works at the source code level
without first invoking the C preprocessor, it is not aware of the
sizes of the various data types on a particular architecture. We thus
focus on the information apparent in the source code, considering
the following two cases. In the first case, one of the basic memory
allocation functions, kmalloc or kzalloc, is given a size argument

Find Fix Impact
Block Hard Hard Low
Null Hard Hard Low
Var Easy Easy Low
IsNull Easy Easy Low
NullRef Easy Hard Low
Range Easy Easy Low
Lock Easy Easy High
Intr Easy Easy High
LockIntr Easy Easy High
Free Hard Easy High
Size Easy Easy High
Float Easy Hard High

Table 1. Assessment of the difficulty of finding and fixing faults,
and the potential of a fault to cause a crash or hang at runtime

involving a sizeof expression defined in terms of a type that is
different from the type of the variable storing the result of the
allocation. To reduce the number of false positives, the checker
ignores cases where one of the types involved represents only
one byte, such as char, as these are often used for allocations
of unstructured data. We consider as a fault any case where there is
no clear relationship between the types, whether the allocated region
is too large or too small. In the second case, there is an assignment
where the right hand side involves taking the size of the left hand
side expression itself, rather than the result of dereferencing that
expression. In this case, the allocated region has the size of a pointer,
which is typically significantly smaller than the size intended.

These faults vary in how easy they are to find in the source
code, how easy they are to fix once found, and the likelihood of a
runtime impact. Table 1 summarizes these properties for the various
fault kinds, based on our observations in studying the code. Faults
involving code within a single function are often easy for both
maintainers and tools to detect, and thus we designate these as
“Easy.” Finding “Hard” faults requires an interprocedural analysis
to identify functions that have specific properties. Interprocedural
analysis requires more effort or expertise from a maintainer, or more
complexity in a tool. Fixing a fault may require only an easy local
change, as in Size, where the fix may require only changing the
argument of sizeof to the type of the allocated value. Cases that
require creating new error handling code, such as Null, or choosing
between several alternative fixes (e.g., moving a dereference or
dropping an unnecessary null test), such as NullRef, are more
difficult. Instances of fault kinds that entail more difficult fixes
may benefit less from the use of tools, as the tool user may not have
enough expertise to choose the correct fix. Finally, we indicate a
low impact when a crash or hang is only likely in an exceptional
condition, and high when it is likely in normal execution.

2.2 Assessing the fault rate
The maximum number of faults that code can contain is the number
of occurrences of code relevant to the fault, i.e. where a given kind
of fault may appear. For example, the number of Block faults is
limited by the number of calls to blocking functions. We follow
Chou et al. and refer to these occurrences of relevant code as notes.
Then,

fault rate = faults/notes

We find the notes associated with each of our checkers as follows.
For Block, Null, and Free, a note is a call to one of the functions
collected as part of the transitive closure in the fault-finding process.
For Var, a note is a local array declaration. For Inull (IsNull and
NullRef), a note is a null test of a value that is derefenced elsewhere
in the same function. For Range and for Lock, Intr, or LockIntr,
a note is a call to one of the user-level access functions or locking
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functions, respectively. For Size, a note is a use of sizeof as an
argument to one of the basic memory allocation functions kmalloc
or kzalloc when the argument is a type, or a use of sizeof where
the argument is an expression. In the former case, as for the checker,
we discard some cases that are commonly false positives such as
when the argument to sizeof is a one-byte type such as char.
Finally, we do not calculate the number of notes for Float, because
we consider that every occurrence of a float in a context where it
may be referenced in the compiled code is a fault, and thus the
number of notes and faults is the same.

2.3 Tools
Our experimental protocol relies on two open-source tools: Coc-
cinelle (v0.2.2), to automatically find potential faults and notes in
the Linux kernels [24], and Herodotos (v0.6.0), to correlate the
fault reports between versions [25]. We store the resulting data in a
PostgreSQL database (v8.4), and analyze it using SQL queries.

Coccinelle performs control-flow based pattern searches in C
code. It provides a language, the Semantic Patch Language (SmPL),
for specifying searches and transformations and an engine for
performing them. Coccinelle’s strategy for traversing control-flow
graphs is based on the temporal logic CTL [2], while that of the
tool used by Chou et al. is based on automata. There are technical
differences between these strategies, but we do not expect that they
are relevant here.

A notable feature of Coccinelle is that it does not expand
preprocessor directives. We have only found this feature to be a
limitation in the Var case, as noted in Section 2.1. On the other
hand, this feature has the benefit of making the fault-finding process
independent of configuration information, and thus we can find
faults across the entire Linux kernel source tree, rather than being
limited to a single architecture.

To be able to understand the evolution of faults in Linux code, it
is not sufficient to find potential faults in the code base; we must also
understand the history of individual fault occurrences. To do so, we
must be able to correlate potential fault occurrences across multiple
Linux versions, even in the presence of code changes in the files,
and manage the identification of these occurrences as real faults and
false positives. For these operations, we use Herodotos. To correlate
fault occurrences, Herodotos first uses diff to find the changes
in each pair of successive versions of a file for which Coccinelle
has produced fault reports. If a pair of reports in these files occur
in the unchanged part of the code, at corresponding lines, they are
automatically considered to represent the same fault, with no user
intervention. Otherwise, if only one of a pair of reports occurs in
the unchanged part of the code, then the reports are automatically
considered to be unrelated. Finally, if both of a pair of reports occur
in the changed part of the code, then their status is considered to
be unknown, and the user must indicate, via an interface based on
the emacs “org” mode, whether they represent the same fault or
unrelated ones. Once the correlation process is complete, a similar
interface is provided to allow the user to classify each group of
correlated reports as representing either a fault or a false positive.
Further details about the process of using Herodotos are provided
elsewhere [25, 26].

Once the fault reports are correlated and assessed for false posi-
tives, we import their histories into the database, along with the as-
sociated notes. The database also contains information about Linux
releases such as the release date and code size, and information
about Linux files (size, number of modifications between releases)
and functions (starting and ending line numbers). The complete
database, including both the reports and the extra information, con-
tains 1.5 GB of data. To analyze the collected data, we wrote over
2,000 lines of PL/pgSQL and SQL queries that extract and correlate
information.

1994
1995

1996
1997

1998
1999

2000
2001

2002
2003

2004
2005

2006
2007

2008
2009

2010

0

2

4

6

8

M
il

li
o
n

 l
in

e
s
 o

f 
c
o
d

e Other

Drivers/Staging

Arch

Drivers w/o Staging

File Systems (FS)

Net

Sound

1.0
1.2.0

2.0
2.1.0

2.2.0
2.3.0

2.4.0

2.4.1

2.5.0

2.6.0

2.6.12

2.6.28

Figure 1. Linux directory sizes (in MLOC)

2004 2005 2006 2007 2008 2009 2010

-20

0

20

%
 i

n
c
r
e
a

s
e

Other

Arch

Drivers with Staging

File Systems (FS)

Net

Sound

2.6.2

2.6.5

2.6.10

2.6.13
2.6.14 (ieee802.11, DCCP)

2.6.16 (OCFS2, configfs)
2.6.19 (ecryptfs, jdb2, ext4, GFS2)

2.6.19 (OSS)

2.6.21

2.6.22

2.6.23
(OSS)

2.6.27 (HAL includes)

2.6.27 (HAL includes)

2.6.29 (Btrfs, Staging)
2.6.31

ieee802.11 : new wireless infrastructure

DCCP : Datagram Congestion Control Protocol

OCFS2 : second Oracle Cluster Filesystem

JDB2 : Journaling layer for block devices

GFS2 : Global File System

Btrfs  : B-tree file system

Figure 2. Linux directory size increase

Extending the results to new versions A benefit of our experi-
mental protocol is that it makes it easy to extend the results to new
versions of Linux. When a new version of Linux is released, it is
only necessary to run the checkers on the new code, and then repeat
the correlation process. As our collected data contains information
not only about the faults that we have identified, but also about the
false positives, Herodotos automatically annotates both faults and
false positives left over from previous versions as such, leaving only
the new reports to be considered by the user.

3. Evolution of Linux
To give an overview of the complete history of Linux, we first
consider the evolution in code size of the Linux kernel between
version 1.0, released in March 1994, and version 2.6.33, released in
February 2010, as shown in Figure 1. This figure shows the size of
the development versions, when available, as it is in these versions
that new code is added, and this added code is then maintained in the
subsequent stable versions. Code sizes are computed using David
A. Wheeler’s ’SLOCCount’ (v2.26) [39] and include only the ANSI
C code. The code sizes are broken down by directory, highlighting
the largest directories: drivers/staging, arch, drivers, fs (file
systems), net, and sound. Drivers/staging was added in Linux
2.6.28 as an incubator for new drivers that are not yet mature
enough to be used by end users. Code in drivers/staging is
not compiled as part of the default Linux configuration, and is thus
not included in standard Linux distributions. Sound was added in
Linux 2.5.5, and contains sound drivers that were previously in
the drivers directory. The largest directory is drivers, which,
including drivers/staging, has made up 57% of the source code
since Linux 2.6.30.
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For most directories, the code growth has been roughly linear
since Linux 1.0. Some exceptions are highlighted in Figure 2, which
shows the percentage code size increase in each directory from one
version to the next. We have marked some of the larger increases
and decreases. Many of the increases involve the introduction of
new services, such as new file systems. In Linux 2.6.19 and 2.6.23,
old OSS drivers already supported by ALSA were removed from
sound, decreasing its size. In Linux 2.6.27, arch was reorganized,
and received some large header files from include, adding around
180,000 lines of C code. Finally, staging grew substantially in
2.6.29. All in all, these changes have resulted in code growth from
2MLOC in 2001 to more than 8MLOC in 2010.

In our study, we are less interested in the absolute number of
lines of code than the amount of code relevant to our fault kinds. As
shown in Figure 3, the increase in code size has induced an almost
linear increase in the number of notes, as defined in Section 2.2, in
almost all cases. In fact, across all of Linux 2.6, the number of notes
per line of code is essentially constant, between 0.027 and 0.030.

4. Linux 2.4.1
Linux 2.4.1 was the latest version of Linux considered by Chou
et al. [5]. To validate our experimental protocol, we have used our
checkers to find faults and notes in this version, and we compare
our results to those provided in their paper. We focus on the results
that are specific to Linux 2.4.1, rather than those that relate to the
history of Linux up to that point, to avoid the need to study earlier
versions that are of little relevance today.

4.1 What code is analyzed?
For the results of fault finding tools to be comparable, the tools
must be applied to the same code base. Chou et al. focus only on
x86 code, finding that 70% of the Linux 2.4.1 code is devoted to
drivers. Nevertheless, we do not know which drivers, file systems,
etc. were included. To calibrate our results, we use SLOCCount to
obtain the number of lines of ANSI C code in the Linux kernel and
in the drivers directory, considering three possibilities: all code in
the Linux 2.4.1 kernel source tree (“All code”), the set of .c files
compiled when using the default x86 configuration (“Min x86”),3

and all 2.4.1 code except the arch and include subdirectories that
are specific to non-x86 architectures (“Max x86”). Max x86 gives a
result that is closest to that of Chou et al., although the proportion of
driver code is slightly higher than 70%. This is reasonable, because
some driver code is associated with specific architectures and cannot
be compiled for x86. Nevertheless, these results show that we do
not know the precise set of files used in Chou et al.’s tests.

In our experiments, we consider the entire kernel source code,
and not just the code for x86, as every line of code can be assumed
to be relevant to some user.

3 This configuration was automatically generated using make menuconfig without
any modification of the proposed configuration. To collect the .c files, we compiled
Linux 2.4.1 according to this configuration using a Debian 3.1 (Sarge) installation in a
virtual machine, with gcc version 2.95.4 and make version 3.80.

All code Min x86 Max x86
Drivers LOC 1,248,930 71,938 1,248,930
Total LOC 2,090,638 174,912 1,685,265
Drivers % 59% 41% 74%

Table 2. Percentage of Linux code found in drivers calculated
according to various strategies

4.2 How many faults are there?
For the entire Linux 2.4.1 kernel, using the checkers described in
Section 2.1, we obtain 600 reports, of which we have determined
that 467 represent faults and the remainder represent false positives.
Chou et al.’s checkers find 1,025 faults in Linux 2.4.1. They have
checked 602 of these reports; the remainder are derived from what
they characterize as low false positive checkers. We have checked
all of the reports included in our study.

Table 3 compares the number of faults found per checker. In most
cases, we find fewer faults. This may be due to different definitions
of the checkers, or different criteria used when identifying false
positives. In the case of Var, we find fewer faults because we
consider only cases where the size is explicitly expressed as a
number. In a few cases, we find more faults. For example, Chou
et al.’s Inull checker can be compared to our IsNull and NullRef
checkers. We find fewer IsNull faults than their Inull faults, but
far more NullRef faults. We also find slightly more Free faults.
This may derive from considering a larger number of files, as we
have found that only one of our Free faults occurs in a file that is
compiled using the default x86 configuration. Results from Chou et
al.’s checkers were available at a web site interface to a database, but
Chou has informed us that this database is no longer available. Thus,
it is not possible to determine the precise reasons for the observed
differences.

Checker Chou et al. Our resultschecked unchecked
Block 206 87 N/A
BlockLock N/A N/A 43
Null 124 267 98
Var 33 69 13
Inull 69 0 N/A
IsNull N/A N/A 36
NullRef N/A N/A 221
Range 54 0 11
Lock 26 0 5
Intr 27 0 2
LockIntr N/A N/A 6
Free 17 0 21
Float 10 15 8
Size 3 0 3
Total 569 438 467

Table 3. Comparative fault count

4.3 Where are the faults?
Chou et al. find that the largest number of faults is in the drivers
directory and that the largest number of these faults are in the
categories Block, Null, and Inull, with around 180, 95, and 50 faults
in drivers, respectively.4 As shown in Figure 4(a), we also observe
that the largest number of faults is in the drivers directory, with
the largest number of these faults also being in BlockLock, Null,
and Inull (IsNull and NullRef), although in different proportions.

A widely cited result of Chou et al. is that the drivers directory
contains almost 7 times as many of a certain kind of faults (Lock)
as all other directories combined. They computed this ratio using

4 These numbers are approximated from the provided graphs.
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the following formula for each directory d, where d refers to the
directory d itself and d refers to all of the code in all other directories:

fault rated/fault rated

Figure 4(b) shows the values of the same formula, using our results.
We obtain a similar ratio with a relative rate of over 8 for Lock in
drivers, as compared to all other directories combined. We also
find that the drivers directory has a rate of Free faults that is
almost 8 times that of all other directories combined. Chou et al.,
however, found a fault rate of only around 1.75 times that of all other
directories combined in this case. With both approaches, however,
the absolute number of Free faults is rather small. Like Chou et al.,
we also observe a high fault rate in the arch directory for the Null
checker, in both cases about 4.8 times that of all other directories
combined. Finally, unlike Chou et al., we observe a high rate of Var
faults in both arch and other. In the arch case, all of the Var faults
found are for architectures other than x86. Indeed, overall for arch,
we find 60 faults, but only 3 (all Null) in the x86 directory.
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Figure 4. Faults in Linux 2.4.1

4.4 How are faults distributed?
Chou et al. plot numbers of faults against the percentage of files
containing each number of faults and find that for all of the checkers
except Block, the resulting curve fits a log series distribution, with
a θ value of 0.567 and a degree of confidence (p-value) as measured
by the χ2 test of 0.79 (79%). We observe a θ value of 0.562 and a p-
value of 0.234 without Block. We conjecture that this low p-value is
due to the fact that two files have 5 and 6 faults while three files have
7 faults each; such an increase for larger values is not compatible
with a log series distribution. Nevertheless, the values involved are
very small, and, as shown in Figure 5, the curve obtained from
our experimental results fits well with the curve obtained using the
corresponding calculated θ value. The curve obtained from Chou
et al.’s value of θ is somewhat lower, because they found a smaller
number of faulty files, probably due to having considered only the
x86 architecture.

Chou et al. also find that younger files and larger functions have
a higher fault rate, of up to 3% for the Null checker. We also find
fault rates of around 3% for the Null checker, for files of all ages
and for larger functions. Overall, we find that younger files have
a fault rate of 0.8% while middle aged files, i.e., those with an
average age of over 6 years, have a significantly higher fault rate, of
0.4%. We also find a definite increase in fault rate as function size
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Figure 5. Comparison of the error distributions

increases: from 0.2% for functions containing up to 16 lines, to 0.6%
for functions containing between 17 and 36 lines, to 0.8%-1.0% for
larger functions.

4.5 Assessment
In this section, we have seen that our checkers do not find the same
number of faults in Linux 2.4.1 code as those of Chou et al. We recall
that Chou et al.’s checkers are not very precisely described, and thus
we expect that most of the differences are in how the checkers are
defined. Furthermore, we do not consider exactly the same set of
files. Nevertheless, the distribution of these faults among the various
directories is roughly comparable, and their distribution among the
files is also comparable. We thus conclude that our checkers are
sufficient to provide a basis for comparison between Linux 2.6 and
previous versions studied by Chou et al.

5. Linux 2.6 kernels
We now assess the extent to which the trends observed for Linux
2.4.1 and previous versions continue to apply in Linux 2.6, and study
the points of difficulty in kernel development today. We consider
what has been the impact of the increasing code size and the addition
of new features on code quality, and whether drivers are still a major
problem.

Concretely, we study a period of over 6 years, beginning with
the release of Linux 2.6.0 at the end of 2003 and ending in early
2010 with the release of Linux 2.6.33. For the entire Linux 2.6
kernel, using the checkers described in Section 2.1, we obtain 3,915
different reports (after correlation), of which we have determined
that 2,370 represent faults and the rest represent false positives.
We also consider some new checkers related to the use of the
recently added RCU locking API. Finally, because one of our goals
is to provide a means of repeating our work, we consider how our
experimental protocol eases the extension of the results to new Linux
versions.

5.1 How many faults are there?
We first analyze the relation between the code growth and the total
number of faults in Linux 2.6. As shown in Figure 6(a), the number
of the faults considered has held roughly steady over this period,
with an overall increase of only 7%, and indeed a decrease of 11%
from 2.6.0 to 2.6.28. This is quite remarkable given that the code
size has more than doubled since Linux 2.6.0 (Figure 1). Indeed, the
rate of faults per line of code has significantly decreased, by 50%,
as shown in Figure 6(b). These observations are quite different from
those for versions up through Linux 2.4.1: there was a code size
increase of over 17 times between Linux 1.0 and Linux 2.4.1 and
a corresponding increase in the number of the faults considered of
over 33 times [5]. Figure 6(c) shows that faults are still introduced,
indeed at a growing rate. But in most versions even more faults are
eliminated.

Figure 7 shows the number of each kind of fault found in Linux
2.6, separated for readability into those that have increased in
number between the beginning and the end (Figure 7(a)) and those
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that have decreased in number in the same versions (Figure 7(b)).
NullRef and Null are further separated from the others. For many
fault kinds, the number of faults is essentially constant over the
considered period.

Three notable exceptions to the stability in the number of Linux
2.6 faults are Lock, Null, and Float, in Linux 2.6.16 and 2.6.17,
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Figure 8. Fault rate per fault kind

Linux 2.6.29, and Linux 2.6.30, respectively (Figures 7(a) and 7(c)).
In Linux 2.6.16, the functions mutex lock and mutex unlock
were introduced to replace mutex-like occurrences of the semaphore
functions down and up. 9 of the 11 Lock faults introduced in Linux
2.6.16 and 23 of the 25 Lock faults introduced in Linux 2.6.17 were
in the use of mutex lock. In Linux 2.6.29, the btrfs file system
was introduced, as seen in Figure 2. 33 Null faults were added with
this code. 7 more Null faults were added in drivers/staging,
which more than tripled in size at this time. 29 other Null faults
were also added in this version. Finally, in Linux 2.6.30 there
was a substantial increase in the number of Comedi drivers [6]
in drivers/staging. All of the 21 Float faults introduced in this
version were in two Comedi files. These faults are still present in
Linux 2.6.33. Recall, however, that staging drivers are not included
in Linux distributions.

As shown in Figure 8, the fault rate, i.e., the ratio of observed
faults to the number of notes, for the considered fault kinds con-
firms the increase in reliability (Float is omitted, as described in
Section 2.2). As the number of notes increases roughly with the size
of the Linux kernel while the number of faults is relatively stable,
the fault rate tends to decline. The main increases, in Lock and
Null, are due to the introduction of mutex lock and the btrfs file
system, respectively, as mentioned previously.

5.2 Where are the faults?
The presence of a high rate of faults in a certain kind of code may
indicate that this kind of code overall needs more attention. Indeed,
Chou et al.’s work motivated studies of many kinds of driver faults,
going beyond the fault kinds they considered. Many properties of
the Linux kernel have, however, changed since 2001, and so we
reinvestigate what kind of code has the highest rate of faults, to
determine whether attention should now be placed elsewhere.

As shown in Figure 9, the largest number of faults is still in
drivers, which indeed makes up over half of the Linux kernel
source code. The second-largest number of faults is in arch, accom-
panied by fs and drivers/staging in recent versions. In contrast
to the case of Linux 2.4.1, however, as shown in Figure 10, drivers
no longer has the largest fault rate, and indeed since Linux 2.6.19
its fault rate has been right at the average. There was not a large
increase in the number of drivers notes at that time, so this de-
crease is indicative of the amount of attention drivers receive in the
peer reviewing process. Arch on the other hand has many faults and
relatively little code, and so it has the highest fault rate throughout
most of Linux 2.6. Around 30% of the arch faults are Null faults,
although there appears to be no pattern to their introduction. Over
90% of the arch faults are outside of the x86/i386 directories, with
many of these faults being in the ppc and powerpc code. The largest
numbers of faults in fs are in cifs, with over 40 faults in Linux
2.6.0 but a decreasing number after, in ocfs2, with 10-15 faults per
version starting in Linux 2.6.17, and in btrfs, with 36 in Linux
2.6.29 and 38 in Linux 2.6.30 and gradually fewer after that. All of
these are recently introduced file systems: cifs was introduced in
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Linux 2.5.42, ocfs2 in Linux 2.6.16, and btrfs in Linux 2.6.29.
Drivers/staging, introduced in Linux 2.6.28, also has a high
fault rate, exceeding that of arch. This directory is thus receiving
drivers that are not yet mature, as intended. The introduction of
drivers/staging, however, has no impact on the fault rate of
drivers, as drivers/staging accommodates drivers that would
not otherwise be accepted into the Linux kernel source tree. Such
drivers benefit from the expertise of the Linux maintainers, and are
updated according to API changes with the rest of the kernel.

For Linux 2.4.1, we observed that drivers had a much higher
fault rate for certain kinds of faults than other directories. Figure 11
shows that drivers has a high rate of Intr faults in Linux 2.6.33
as compared to other directories, but there are very few Intr fault
in this version. Sound, which was part of drivers in 2.4.1, has
a high rate of Range faults, as compared to the other directories,
but again the actual number of faults is relatively small. Overall,
while drivers has a high rate as compared to other directories for
some fault kinds, it is more common that drivers/staging, arch,
or other has the highest fault rate, indicating again that the drivers
that are intended for use in the Linux kernel are no longer the main
source of faults.

Finally, in Figure 12, we consider the number of faults per file
that contains at least one fault. The highest average number of
faults per faulty file is for fs in the versions prior to 2.6.12. In this
case, there was a single file with many NullRef faults, as many
as 45 in Linux 2.6.11. In later versions, the highest average is for
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Figure 12. Faults per faulty file per directory

drivers/staging, for which the average was over 2 in Linux
2.6.30. At that point, a large number of drivers had recently been
introduced in this directory. Many of these faults have been corrected
and the rate of entry of new drivers has slowed, and thus the average
has dropped to around 1.5, close to that of other directories. Sound
had a relatively high number of faults per faulty file starting in
Linux 2.6.16 with the introduction of mutex lock; faulty functions
often contain more than one mutex lock, and thus a single omitted
mutex unlock may result in multiple Lock reports.

5.3 How long do faults live?
Eliminating a fault in Linux code is a three step process. First, the
fault must be detected, either manually or using a tool. Then it must
be corrected, and a patch submitted to the appropriate maintainers.
Then, the patch must be accepted by a hierarchy of maintainers,
ending with Linus Torvalds. Finally, there is a delay of up to 3
months until the next release. The lifespan of a fault, modulo this
three month delay, is an indication of the efficiency of this process.

Fault lifespans Figure 13 presents the average lifespan of faults
across Linux 2.6, by directory and by fault kind. We omit drivers/-
staging because it was only introduced recently. Some faults were
present before Linux 2.6.0 and some faults were still present in
Linux 2.6.33. For the average lifespan calculation, in the former
case, we assume that the fault was introduced in Linux 2.6.0 and
in the latter case, we assume that the fault was eliminated in Linux
2.6.34, thus potentially underestimating the lifespan of such faults.
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Figure 13. Average fault lifespans (without staging)

The average fault lifespan across all files of Linux 2.6 is 1.5
years, as indicated by the horizontal dotted line in Figure 13 The
lifespans vary somewhat by directory. As shown in Figure 13(a), the
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average lifespan of faults in the drivers directory is the same as
the average lifespan of all faults, and indeed is less than the average
lifespan of faults in the sound and arch directories. Sound faults
now have the longest average lifespan. Sound used to be part of
drivers; it may be that the sound drivers are no longer benefiting
from the attention that other drivers receive.

For the fault kinds, Figure 13(b) shows that the average lifespans
correspond roughly to our assessment of the difficulty of finding
and fixing the faults and their likelihood of impact (Table 1). In
particular, all of the fault kinds we have designated as having high
impact, meaning that the fault is likely to have an observable effect
if the containing function is executed, are fixed relatively quickly.
On the other hand, the ease of finding and fixing the faults has little
impact on their lifespan, showing that developers are willing to
invest in tracking down any faults that cause obvious problems.

Figure 14 examines the fault lifetimes in more detail, by showing
the number of faults that have been fixed in less than each amount of
time. Again we include the faults already present in Linux 2.6.0 and
the faults still remaining in Linux 2.6.33. While half of the faults we
found where fixed within just under one year, it took about 5.5 years
(almost half of the period studied) to fix 80% of the faults. For the
drivers and fs directories, half of the faults were fixed within just
under one year, while 2.5 years were required for sound. On the
other hand, half of the staging and other faults were fixed within
6 months.
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Origin of faults Figure 15 shows the lifetime of all of the Linux
2.6 faults in our study, with Linux 2.6.1 at the bottom of the graph
and Linux 2.6.33 at the top. The 689 faults in Linux 2.6.0 are omitted
to save space; their lifetime within Linux 2.6 can be seen later as
the leftmost curve in Figure 16. They may, however, have been
introduced earlier. Of the faults introduced and eliminated within
the period considered, 36% of the faults introduced in or after Linux
2.6.0 were introduced with the file and 12% of the faults eliminated
before Linux 2.6.33 were eliminated with the file.5

While we have seen that the total number of faults is essentially
constant across the versions, Figure 15 shows that since Linux 2.6.27
a significantly larger number of faults have been introduced. Null
and NullRef faults predominate, with for example 51% of the added
faults in Linux 2.6.27 being NullRef faults, most of which were
introduced in various drivers. In Linux 2.6.30 and Linux 2.6.32,
43% and 26% of the introduced faults were in drivers/staging.
In each case, about half of the introduced faults were fixed within a
few versions.

Figure 16 shows the number of faults in each version that are
still present in each of the previous and successive versions. Except
for the increase at Linux 2.6.29 and 2.6.30, as previously noted,
the height and angle of all of the lines is fairly similar, indicating
that the rate of introductions and eliminations of faults across the
versions is relatively stable. These facts indicate a maturity in the
Linux code and its development model.

5 The degree to which this is visible depends on the image quality. It may be useful to
print this page rather than view it on a screen.
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Figure 15. Lifetime of faults. Each row represents a separate fault.
Blue (grey) lines indicate the periods where the fault is present.
Black lines indicate the period where the file containing the fault
does not exist and white lines indicate the period where the file
does exist but the fault does not. The 689 faults in Linux 2.6.0 are
omitted.

Developer and maintainer activity In the Linux development
model, anyone (an author) can submit a patch, and the patch is then
picked up by a maintainer, who commits it into his git repository
that is then propagated to Linus Torvalds. The number of patch
authors is thus an indicator of the number of participants in the
Linux development process, and the number of committers is an
indicator of the amount of manpower that is available to begin the
integration of patches into a release. Figure 17 shows the number
of authors and committers associated with the patches included in
each version, both in total and broken down by directory.

For drivers, the numbers of authors and committers are rising
at the same rate, roughly at the rate of the increase in the code
size. For arch and fs, however, where we have previously noted a
higher fault rate, the number of authors is rising significantly more
slowly than the number of committers. The lower number of authors
may suggest that potential authors are not able to develop adequate
expertise to keep up with the number of new architectures and file
systems (Figure 2). Finally, the small number of sound authors may
explain the previously observed long life of sound faults (Figure
13(a)).
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Figure 16. Lifetime of faults across versions
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Figure 17. Authors and committers per version

Use of tools In principle, since the work of Chou et al., it has been
possible to find all of the considered faults using tools. Figure 18
shows the number of patches in each Linux version that mention
one of the fault-finding tools Coccinelle [24] (used in this paper),
Coverity [9] (the commercial version of Chou et al.’s xgcc tool),
sparse [31, 33], and smatch [36]. As developers are not obliged to
mention the tools they use, these results may be an underestimation.

The use of the various tools is somewhat variable across the
different versions. In the case of Coverity, the main use occurred be-
tween 2006 and 2009, when its application to open-source software,
including Linux, was funded by the US Department of Homeland
Security [3]. Sparse usage shows several peaks, at 2.6.25 and at
2.6.29-30. No particular pattern emerges for 2.6.25. For versions
2.6.29 and 2.6.30, a single developer was responsible for 140 of the
253 sparse-related patches. He fixed faults across the entire kernel.
The tools have also been used to find a wider range of faults than
those considered in this paper. For example, in Linux 2.6.24, only
about half of the patches that mention Coverity relate to the kinds

of faults we consider, particularly Null, IsNull, NullRef, and Free.
Overall, despite the variability in usage, the results show a willing-
ness on the part of the Linux developers to use fault-finding tools
and to pay attention to the kinds of faults that they find.
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Figure 18. Tool usage since the introduction of git

5.4 Is code quality predictable?
In the software engineering community, substantial work has been
done on identifying metrics that predict code quality. We consider
three possible metrics: code churn, file age, and function size. We
also evaluate the quality of Linux code in light of the conjecture that
open source code is more reliable because it can be examined by
many people.

Churn Elbaum and Munson observed that code churn, i.e., the
number of times a file is modified, is a good predictor of fault rate
[21]. Nagappan and Ball reached a similar conclusion in a study that
used metrics relating to the development of Windows Server 2003
to predict SP1’s fault rate [22]. Figure 19 shows the relationship
between the average churn per day preceding the release of each
version and the number of the considered faults added in that version.
The relationship between churn and fault rate is similar. There is
an overall tendency of high-churn versions to contain more new
faults, even if some high-churn versions have a smaller number
of faults than lower churn versions. Recall, however, that in most
versions, more faults were eliminated than added; the churn includes
the elimination of faults as well.
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Figure 19. Churn vs. new faults

Kernel configuration In “The Cathedral and the Bazaar” [30],
Eric S. Raymond formalized Linus’ law: “given enough eyeballs, all
bugs are shallow.” But, in practice, code that is frequently executed,
or at least frequently compiled, is more likely to be reviewed than
the rest. When code is frequently executed, many users are likely
to encounter any faults, and some may fix the faults themselves or
submit a request that the faults be fixed by a kernel maintainer. When
code is frequently compiled, even if it is not frequently executed,
it can easily be submitted to fault-finding tools that are integrated
with the kernel compilation process. “Eyeballs” may also focus on
fixing faults in code that they are able to compile, as even standard
compilers such as gcc perform some sanity checks that provide
some confidence that a fix has not e.g., introduced a typographical
error, even if the code cannot be tested.

314



B
lockLock

N
ull

V
ar

IsN
ull

N
ullR

ef

R
ange

Lock
Intr

LockIntr

Free
Size

0.0

0.5

1.0

%
 o

f 
fa

u
lt

y
 n

o
te

s Average

6 826 .c files compiled by allyesconfig

6 831 other .c files

Figure 20. Fault rate compared between configurations (Linux
2.6.33)

Figure 20 compares the number of faults found in the .c files
that are compiled using the configuration generated on an x86
architecture by the Linux Makefile argument allyesconfig to
the number of faults found in the .c files found in the rest of
the Linux kernel.6 The Makefile argument allyesconfig creates
a configuration file for the given architecture that includes as
many options as possible without causing a conflict and without
including drivers/staging. Thus, it can be assumed to trigger
the compilation of a set of well-tested files and a superset of what
is normally included with a Linux distribution, and thus what is
executed by ordinary users. In most cases, we do find that the
allyesconfig files have a lower fault rate than the other files.
The only exception is for Intr faults, but there are only 4 faults in
this case.

File age and function size One may expect that as a file ages the
number of faults would decrease, and that large functions would tend
to harbor more faults. Indeed, Chou et al. found these trends in Linux
2.4.1, to a varying degree for the different fault kinds. Figure 21
considers the relationship between file age or function size and fault
rate in Linux 2.6.33. Files and functions are organized by increasing
age or size, respectively, then collected into buckets containing an
exponentially decreasing number of elements, from the smallest
age or size to the largest. This strategy permits a fine degree of
granularity for the files with smaller ages or sizes, respectively. Each
graph then shows the average age or size of the files or functions in
each bucket and their average fault rate.

Figure 21 shows that in Linux 2.6.33, the youngest half of the
files, represented by the leftmost point, has a fault rate about twice
that of the next youngest quarter of the files. For older files, however,
the relation between age and fault rate is less clear, as the rate first
increases and then decreases as the file age increases. On the other
hand, the average fault rate clearly increases as the function size
increases. Indeed, the bucket with the smallest functions (up to 14
lines) has a significantly lower fault rate than the next bucket. There
is also an increase at 54 lines. This suggests that larger functions,
although there are relatively fewer of them, may need more attention.
As shown by our exponential bucketing strategy, there are relatively
few large functions, meaning that it should be feasible to check them
more carefully, either manually or using tools.

5.5 How does the fault rate in new APIs compare
The fault kinds that we have considered until now involve code
structures that are either common to all C code or that have been
present in Linux for a long time. To give an alternate perspective
on the robustness of Linux 2.6 code, we consider the use of a more
recent and specialized locking API: the one that implements the
Read-Copy-Update (RCU) mechanism [20]. RCU is a lightweight
synchronization mechanism that protects readers against writers.

6 Compilation was done on an Ubuntu 10.04 (Lucid Lynx) installation with gcc 4.4.3
and make 3.81.
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Figure 21. Impact of file age and function size. Each point repre-
sents twice as many files or functions as the next point. At each
point, “files” and “fns” refers respectively to the number of files and
functions considered to compute the point, “min” and “max” refer
to the minimal or maximal age or size represented by the point, and
faults indicates the number of faults that occur in the code in that
range

Reads are wait-free with very low overhead while writes are more
expensive. Therefore, RCU particularly favors workloads that mostly
read shared data rather than updating it. RCU has been increasingly
used in Linux 2.6, but is still used less often than spinlocks and
mutexes, as shown in Figure 22.
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Figure 22. The use of spinlock and mutex locking functions as
compared to the use of RCU locking functions

The main functions that we consider in the RCU API are the
locking functions: rcu read lock, srcu read lock, rcu read -
lock bh, rcu read lock sched, and rcu read lock sched -
notrace. We identify as faults any cases where a blocking function
is called while a RCU lock is held (BlockRCU) and where a RCU
lock is taken but not released (LockRCU). These are analogous
to the previously considered BlockLock and Lock fault kinds,
respectively. Double-acquiring an RCU lock is allowed, and thus
this is not considered to be a fault. Finally, we identify as a fault any
case where shared data is accessed using rcu dereference when
an RCU lock is not held (DerefRCU).

The largest number of uses of the RCU lock functions is in net,
followed by drivers in earlier versions and other in later versions,
with kernel, include, mm, and security being the main other
directories where it is used. Correspondingly, as shown in Figure 23,
most faults are found in net, and the few remaining faults are
found in other. The average lifespan of the net faults is around
a year, while that of the other faults is a few months longer. As
shown in Figure 24, most of the faults are BlockRCU faults, and
the largest number of faults per version is only 10, in Linux 2.6.26.
Thus, overall, the fault rates are substantially below the fault rates

315



observed for any of the previously considered fault kinds, and in
particular far below the rates observed for the various locking faults
(Lock, Intr, and LockIntr). Nevertheless, the developers who have
added calls to the various RCU locking functions are relatively
experienced, having at the median 123 patches accepted between
Linux 2.6.12 and Linux 2.6.33. Still, these results suggest that Linux
developers can be successful at adopting a new API and using it
correctly.
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Figure 23. RCU faults per directory
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5.6 Processing New Versions
As presented in Section 2, the automatic report correlations provided
by Herodotos make it easy to extend an existing set of results to
the next version of Linux. For example, for the BlockLock checker,
suppose one starts with a set of already annotated reports for at
least Linux 2.6.32. For Linux 2.6.33, as shown in Figure 25, the
checker produces 70 reports of potential faults of which 51 are faults
inherited from Linux 2.6.32, and 14 are false positives also present in
that version. Herodotos would annotate these reports automatically,
leaving only five reports to be annotated by the user. In this case,
four are faults. Overall, for Linux 2.6.33 there are 232 new reports
to consider. Half of these are for Float, but of these most follow the
same pattern, and can be dealt with in a few minutes.

6. Limitations
The main limitations of our work are in the choice of faults
considered and the definition of the checkers. We have focused
on the same kinds of faults as Chou et al., to be able to assess
the changes in Linux since their work. Current fault finding tools,
including Coccinelle, are able to find other kinds of faults, such as
memory leaks. The considered set of faults also does not include
concurrency faults, which are becoming increasingly important
with the prevalence of multicore architectures. A recent study of
concurrency faults in infrastructure software, however, has shown
that over 20% of deadlocks are caused by a thread reacquiring
a resource it already holds [18], amounting to a double lock, as
detected by our Lock checker.

Our checkers could also be improved to reduce the number of
false positives. In particular, as we have seen for Float in Section 5.6,
some kinds of false positives are due to recurring patterns specific to
certain Linux files. Taking these patterns into account in the checkers
would avoid generating large numbers of trivial false positive reports.
Finally, we have tried to be conservative in our identification of real
faults, and this may have lead to an underestimation of their number.
By making our results available in a public archive, we hope to
benefit from feedback from the Linux community to improve our
classification strategies.
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7. Related Work
Chou et al. briefly considered OpenBSD, as well as Linux [5].
Because of its wider use and more active development, we have
focused only on Linux instead, comparing the properties of old and
new versions.

In previous work, Palix et al. have used Coccinelle to conduct a
study of faults in versions of Linux and several other open source
projects released between 2005 and 2009 [25]. They proposed
Herodotos, in order to correlate the faults between releases. They
did not consider fault kinds requiring an interprocedural analysis,
nor did they consider lock-related faults. As shown in Figure 7, these
are among the most prevalent and also have high impact. Lawall et
al. proposed a methodology allowing to find interprocedural faults
in Linux code, but consider only a single Linux version [15].

Israeli and Feitelson have studied 810 versions of the Linux
kernel, from Linux 1.0 to Linux 2.6.25 [14]. They considered
traditional source-code metrics to measure complexity [19] and
maintainability [23], rather than actual numbers of faults. They
found that the complexity per Linux function is decreasing, and
the maintainability is increasing. Nevertheless, they did find that
arch and drivers do contain some very high complexity functions,
typically interrupt handlers or ioctl functions, and that arch and
drivers code is somewhat less maintainable than the code in other
parts of the kernel. Their work is complementary to ours, and reaches
some of the same conclusions.

Song et al. have studied the reasons for software hangs in open
source infrastructure software, such as MySQL and Apache [32].
They focused on bug reports rather than analysis of the source
code. They found that most types of concurrency faults are fixed
on average within 100 days. Nevertheless, they did not take into
account the time elapsed between the introduction of the fault and
the time when it was first detected, and so the actual fault lifetime
may be more in line with what we have observed. Lu et al. also
considered concurrency faults in infrastructure software, primarily
focusing on the kinds of tools that would be helpful to address them
[18].

8. Conclusion
During the last 10 years, much of the research in operating system
reliability has been predicated on the assumption that drivers are
the main problem. The first major result of our study is that while
drivers still has the largest number of faults in absolute terms, it
no longer has the highest fault rate in Linux kernel code, having
been supplanted by the HAL. The second major result of our study is
that even though faults are continually being introduced, the overall
code quality is improving. Our work thus shows the importance of
being able to periodically repeat the study of faults in source code
in order to revise research priorities as the fault patterns change in
response to research efforts. Because the priorities of individuals
and individual institutions change over time, the need to repeat
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such studies implies that the tools and other data required must be
available in an public archival repository.

Our study also shows that tools, while used, are under-exploited.
Tools are indeed available to find all of the fault kinds considered
in this paper. The fact that these kinds of faults remain and have a
relatively long lifespan suggests that research is needed on how to
design tools that are better integrated into the Linux development
process. Another potential problem is the reactiveness of maintain-
ers. Indeed, some services have no maintainer, but remain in the
kernel source tree. This may somewhat artificially increase the num-
ber of faults. Still, any such faults can impact anyone who uses the
code.

Our study has identified 736 faults in Linux 2.6.33, including
RCU faults, some of which have not yet been corrected in the current
developer snapshot, linux-next. We have submitted a number of
patches based on our results.

Acknowledgments
We thank the anonymous reviewers and our shepherd, Frans
Kaashoek, for their feedback. We also thank Emmanuel Cecchet and
Willy Zwaenepoel for comments on an earlier version of this paper.
This work was partially supported by the Agence Nationale de la
Recherche (France) under the contract ANR-09-BLAN-0158-01
and the Danish Research Council for Technology and Production
Sciences.

References
[1] A. Aiken, S. Bugrara, I. Dillig, T. Dillig, B. Hackett, and P. Hawkins.

An overview of the Saturn project. In Proceedings of the 7th ACM
SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools
and Engineering, PASTE’07, pages 43–48, San Diego, CA, June 2007.

[2] J. Brunel, D. Doligez, R. R. Hansen, J. Lawall, and G. Muller. A
foundation for flow-based program matching using temporal logic
and model checking. In The 36th annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 114–126,
Savannah, GA, USA, Jan. 2009.

[3] How is the department of homeland security involved?,
2009. http://scan.coverity.com/faq.html#
how-department-homeland-security-involved.

[4] Checkpatch. http://www.codemonkey.org.uk/projects/
checkpatch/.

[5] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler. An empirical
study of operating systems errors. In Proceedings of the 18th ACM
Symposium on Operating System Principles, pages 73–88, Banff,
Canada, Oct. 2001.

[6] Comedi: Linux Control and Mesurement Device Interface. http:
//www.comedi.org/.

[7] J. Corbet. The age of kernel code in various subsystems, Feb. 2010.
http://lwn.net/Articles/374622/.

[8] J. Corbet. How old is our kernel?, Feb. 2010. http://lwn.net/
Articles/374574/.

[9] Static source code analysis, static analysis, software quality tools by
Coverity Inc. http://www.coverity.com/, 2008.

[10] A. Depoutovitch and M. Stumm. Otherworld – giving applications a
chance to survive OS kernel crashes. In ACM EuroSys, pages 181–194,
Paris, France, Apr. 2010.

[11] Fedora project, 2010. http://fedoraproject.org/.

[12] J. N. Herder, H. Bos, B. Gras, P. Homburg, and A. S. Tanenbaum.
Fault isolation for device drivers. In 2009 IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN), pages 33–42,
Estoril, Portugal, June 2009.

[13] IEEE std 982.2-1988 IEEE guide for the use of IEEE standard dictio-
nary of measures to produce reliable software, 1988.

[14] A. Israeli and D. G. Feitelson. The Linux kernel as a case study in
software evolution. Journal of Systems and Software, 83(3):485–501,
2010.

[15] J. L. Lawall, J. Brunel, R. R. Hansen, H. Stuart, G. Muller, and N. Palix.
WYSIWIB: A declarative approach to finding protocols and bugs in
Linux code. In The 39th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks, pages 43–52, Estoril, Portugal,
June 2009.

[16] Z. Li and Y. Zhou. PR-Miner: automatically extracting implicit
programming rules and detecting violations in large software code.
In Proceedings of the 10th European Software Engineering Conference
held jointly with 13th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, pages 306–315, Lisbon, Portugal,
Sept. 2005.

[17] Lkml: The Linux kernel mailing list. http://lkml.org/.

[18] S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from mistakes: a
comprehensive study on real world concurrency bug characteristics.
In Architectural Support for Programming Languages and Operating
Systems (ASPLOS), pages 329–339, Seattle, WA, USA, Mar. 2008.

[19] T. J. McCabe. A complexity measure. IEEE Transactions on Software
Engineering, 2(4):308–320, July 1976.

[20] P. E. McKenney and J. Walpole. Introducing technology into the Linux
kernel: a case study. ACM SIGOPS Operating Systems Review, 42(5):4–
17, 2008.

[21] J. C. Munson and S. G. Elbaum. Code churn: A measure for estimating
the impact of code change. In International Conference Software
Maintenance (ICSM), pages 24–31, 1998.

[22] N. Nagappan and T. Ball. Use of relative code churn measures to predict
system defect density. In 27th International Conference on Software
Engineering (ICSE), pages 284–292, St. Louis, Missouri, USA, May
2005.

[23] P. Oman and J. Hagemeister. Construction and testing of polynomials
predicting software maintainability. Journal of Systems and Software,
24(3):251–266, 1994.

[24] Y. Padioleau, J. Lawall, R. R. Hansen, and G. Muller. Documenting and
automating collateral evolutions in Linux device drivers. In EuroSys
2008, pages 247–260, Glasgow, Scotland, Mar. 2008.

[25] N. Palix, J. Lawall, and G. Muller. Tracking code patterns over
multiple software versions with Herodotos. In Proc. of the ACM
International Conference on Aspect-Oriented Software Development,
AOSD’10, pages 169–180, Rennes and Saint Malo, France, Mar. 2010.

[26] N. Palix, J. L. Lawall, and G. Muller. Herodotos: A tool to expose bugs’
lives. Research report RR-6984, INRIA, July 2009.

[27] N. Palix, S. Saha, G. Thomas, C. Calvès, J. Lawall, and G. Muller.
Database of Faults in Linux: Ten Years Later, Aug. 2010. http://hal.
inria.fr/docs/00/50/92/56/ANNEX/10years.sql.pg_dump.

[28] N. Palix, S. Saha, G. Thomas, C. Calvès, J. Lawall, and G. Muller.
Faults in Linux: Ten years later. Research report RR-7357, INRIA,
Aug. 2010.

[29] N. Palix, S. Saha, G. Thomas, C. Calvès, J. Lawall, and G. Muller.
Website of Faults in Linux: Ten Years Later, Dec. 2010. http:
//faultlinux.lip6.fr/.

[30] E. S. Raymond. The Cathedral and the Bazaar: Musings on Linux and
Open Source by an Accidental Revolutionary. O’Reilly & Associates,
Inc., 2001.

[31] D. Searls. Sparse, Linus & the Lunatics, Nov. 2004. Available at
http://www.linuxjournal.com/article/7272.

[32] X. Song, H. Chen, and B. Zang. Why software hangs and what can be
done with it. In International Conference on Dependable Systems and
Networks (DSN 2010), Chicago, IL, USA, June 2010.

[33] Sparse. https://sparse.wiki.kernel.org/index.php/Main_
Page.

[34] B. Spencer. Local kernel exploit in /dev/net/tun. http://grsecurity.
net/~spender/cheddar_bay.tgz.

317



[35] M. M. Swift, M. Annamalai, B. N. Bershad, and H. M. Levy. Re-
covering device drivers. ACM Transactions on Computer Systems,
24(4):333–360, 2006.

[36] The Kernel Janitors. Smatch, the source matcher, 2010. Available at
http://smatch.sourceforge.net.

[37] Ubuntu, 2010. http://www.ubuntu.com/.
[38] D. Wheeler. Flawfinder home page. Web page: http://www.

dwheeler.com/flawfinder/, Oct. 2006.
[39] D. A. Wheeler. SLOCCount. http://www.dwheeler.com/

sloccount/.

Appendix
Locking functions: {mutex,spin,read,write} lock,
{mutex,spin,read,write} trylock

Interrupt disabling functions: cli, local irq disable

Functions combining both: {read,write,spin} lock irq,
{read,write,spin} lock irqsave,
local irq save, save and cli
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