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The van der Pauw method is commonly used in the
applied sciences to find the resistivity of a simply
connected, two-dimensional conducting laminate.
Given the usefulness of this “4-point probe” method
there has been much recent interest in trying to extend
it to holey, that is, multiply connected, samples. This
paper introduces two new mathematical tools to this
area of investigation – the prime function on the
Schottky double of a planar domain and the Fay
trisecant identity – and uses them to show how the
van der Pauw method can be extended to find the
resistivity of a sample with a hole. We show that an
integrated form of the Fay trisecant identity provides
valuable information concerning the appearance of
“envelopes” observed in the case of holey samples by
previous authors. We find explicit formulas for these
envelopes, as well as an approximate formula relating
two pairs of resistance measurements to the sample
resistivity that is expected to be valid when the hole
is sufficiently small and not too close to the outer
boundary. We describe how these new mathematical
tools have enabled us to prove certain conjectures
recently made in the engineering literature.

1. Introduction
Sheet resistances and Hall coefficients are key parameters
for the performance of semiconductors and conducting
materials and methods for measuring these important
material properties have been extensively studied [1].
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Figure 1. The original van der Pauw set-up. The first measurement is the voltage difference between z and w with a

source of current a and a sink of current b. The second measurement is the difference between z and b with a source a

and a sink w. These resistances satisfy the van der Pauw equation (1.1) which can be solved for λ.

One of the most prevalent and successful measurement techniques is the four-point probe
method; a recent centenary review of this method [2] provides a comprehensive survey of the
vast literature on such methods. While the basic idea of a four-point measurement dates back
to early work by Wenner [2] who was trying to measure the resistivity of the Earth, van der
Pauw [3,4] pointed out that the basic idea of the four-point method works for determining the
resistivity of uniform two-dimensional samples of any shape provided the contacts are placed at
the edges of the sample. Samples must have a flat shape of uniform thickness, be isotropic of
uniform resistivity, and be simply connected (no holes). Extensions of the method to contacts of
finite width have been made [5]. These powerful four-point methods have perennial importance
and have been applied to modern materials such as graphene [6].

Figure 1 shows a setup for the original van der Pauw measurement: the four electrical contacts
(Ωa, Ωb, Ωz , Ωw) are placed on the perimeter of a test sample. If Ωa and Ωb are a source and
sink of current Jab respectively, then the potential difference Vzw between points Ωz and Ωw
can be measured while this current is flowing. The resistance Rzwab = Vzw/Jab is then a measured
quantity; a second resistance Rzbaw can be measured in exactly the same way. Van der Pauw [4]
showed that for any arrangement of four electrical contacts, and given these two resistance
measurements Rzwab and Rzbaw , the resistivity λ can be found by solving the nonlinear equation:

exp

(
−R

zw
ab

λ

)
+ exp

(
−R

zb
aw

λ

)
= 1. (1.1)

We will refer to this as the classical van der Pauw equation and it provides the basis for the van
der Pauw method. Because this method needs only two resistance measurements, and works
for samples of arbitrary shape, the method is widely applied for measuring the resistivity of
superconductors or Hall coefficients of materials in laboratory experiments [3,7]. An efficient
numerical method to determine λ is discussed in [8].

While applied scientists might be familiar with the van der Pauw equation (1.1)
mathematicians are perhaps more familiar with a similar-looking cross-ratio identity given by

p0(z, w; b, a) + p0(z, b;w, a) = 1, (1.2)

where the classical cross-ratio is defined by

p0(z, w; a, b)≡ ω(z, a)ω(w, b)

ω(z, b)ω(w, a)
, (1.3)
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and where, in a step usually not carried out, we introduce the prime function [9] as the simple
monomial function of two complex variables, ζ and c say, defined by

ω(ζ, c) = ζ − c. (1.4)

Establishing the identity (1.2) is a simple exercise. In complex analysis the cross-ratio [9,10] is
most commonly encountered in a geometrical context as the Möbius mapping that provides
a conformal mapping, as a function of the variable z say, between 3 arbitrary complex points
(a,w, b) in the complex z plane and the canonical choice of points (0, 1,∞).

Concerning the function (1.4), it is so simple in this case that it is rarely given the designation
“prime function”. However, the monograph [9] makes the case that recognizing it as the simplest
instance of a more general notion of a prime function is important for generalizing many known
results for simply connected planar geometries to multiply connected cases. The van der Pauw
problem of interest here is no exception. It will be shown later that the natural way to extend the
classical van der Pauw method to multiply connected geometries is to treat the problem using the
prime function – more specifically, the multiply connected generalization of (1.4) – and to make
use of some important identities satisfied by that function.

There is a connection between (1.1) and (1.2). It can be elucidated by considering the complex
potential H0(Ω) of the complex variable Ω = x+ iy, where (x, y) denotes Cartesian coordinates
in the physical plane, whose real part is the harmonic voltage potential V (x, y) in the sample:

H0(Ω) = V (x, y) + iχ(x, y), (1.5)

where we have introduced χ(x, y), the harmonic conjugate of V (x, y). The voltage V (x, y) is
harmonic in the sample and its normal derivative vanishes on the sample boundary; equivalently,
by the Cauchy-Riemann equations, its harmonic conjugateχ(x, y) is constant on the boundary. Let
σ be the sought-after resistivity of the sample. Its thickness, measured beforehand, is denoted by
d.

By the Riemann mapping theorem, we can introduce a conformal mapping Ω = f(ζ) between
the unit disc in a complex parametric ζ plane and the sample in the physical Ω plane. By the
conformal invariance of the boundary value problem for V (x, y) [10], the complex potential
h0(ζ)≡H0(Ω) for the voltage distribution caused by a current source at Ωa and a compensating
sink at Ωb is then given, as a function of ζ, by

h0(ζ) =
σJab
πd

log

(
ω(ζ, a)

ω(ζ, b)

)
, (1.6)

where,

Ωa = f(a), Ωb = f(b). (1.7)

The reader will notice that the prime function (1.4) appears in (1.6). The potential difference Vzw
is therefore given by

Vzw ≡Re[h0(z)]− Re[h0(w)] = λJab log

∣∣∣∣ω(z, a)ω(w, b)

ω(z, b)ω(w, a)

∣∣∣∣= λJab log |p0(z, w; a, b)| , (1.8)

where λ≡ σ/(πd). It follows that

Rzwab =
Vzw
Jab

= λ log p0(z, w; a, b), (1.9)

where we have removed the modulus symbols because the cross-ratio is real and positive when
all (z, w, a, b) are on the unit circle in the ζ plane, and 0≤ arg[z]< arg[w]< arg[a]< arg[b]< 2π.
On combining (1.9) with (1.2), we arrive at the van der Pauw equation (1.1).

In recent years, the van der Pauw method for samples with a single hole, or even several holes,
has been extensively studied [11–20]. It has been reported that the van der Pauw equation (1.1) is
inaccurate for samples with several holes [21]. This is to be expected since this formula takes no
account of the presence of any holes. Indeed, quite what form the appropriate generalization of
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the van der Pauw method should take is not currently clear from the extant literature. The present
paper aims to shed light on this matter.

A sample with a single isolated hole whose boundary comprises more than a single point is the
natural first case to study and has been considered by [11,16]. Any 2D sample with a single hole
is doubly connected and can be transplanted conformally into an annulus [9] where the radius of
the inner circle of the annulus depends on the shape of sample [22]. By conducting both numerical
and laboratory experiments Szymański et al. [11] showed that the van der Pauw equation (1.1)
does not hold for a sample with a hole but conjectured that the data instead satisfies the inequality

exp

(
−R

zw
ab

λ

)
+ exp

(
−R

zb
aw

λ

)
≤ 1. (1.10)

This inequality has been conjectured in series of papers [12,13] but, to the best of the authors’
knowledge, no rigorous proof has yet been given. One objective of this paper to show how the
inequality (1.10) can be confirmed mathematically.

For holey samples Szymański et al. proposed some modifications to the van der Pauw
setting [12,16]. Firstly, they proposed a six-point method, which uses six electrical contacts on
the perimeter of a sample with a hole, and measures nine pairs of resistances [16]. Because the
nine resistances can be expressed explicitly in terms of the coordinates of six electrical contacts
on the perimeter of a unit circle, they obtained a well-conditioned equation for the unknown
sample resistivity. The method was also validated by some laboratory experiments. Arguably
a drawback is that the method requires the measurement of nine resistances to solve seven
nonlinear equations.

Szymański et al. [12] also find that the pair of measured resistance (Rzwab , R
zb
aw) satisfies another

inequality which they dubbed a “lower envelope” – a phrase we also adopt – and they proposed
a method to measure the resistivity based on the existence of this envelope. By conjecturing that
the shape of the lower envelope depends only on a Riemann modulus ρ, they applied a standard
fitting technique for pairs of measurements (Rzwab , R

zb
aw) lying on this envelope and consequently

were able to determine the sample resistivity. They did not, however, find a mathematical
expression for this lower envelope. This is one of the new contributions of the present paper
which we now describe.

Figure 2 shows the results of the same numerical experiment conducted in [12]. It shows the
data from 40,000 pairs (X,Y ), where the more convenient designations

X ≡ exp(−Rzwab /λ), Y ≡ exp(−Rzbaw/λ) (1.11)

are introduced. In Figure 2 three different samples are used, corresponding to three different
values of ρ. The contact points z,w, a, and b are chosen at random but always such that they retain
the ordering 0 = arg[z]< arg[w]< arg[a]< arg[b]< 2π. The data is found to fall in the gray-shaded
regions in Figure 2. If there is no hole, which means ρ= 0, the pair satisfies X + Y = 1 as must be
true since that data is known to satisfy the original van der Pauw equation (1.1). However, if ρ > 0,
this is no longer true and the data (X,Y ) “fills in” a crescent-shaped domain shown shaded in
Figure 2. Szymański et al. conjecture that the data (X,Y ) always lies in such a domain bounded by
the upper envelope X + Y ≤ 1 and some lower envelope, dependent purely on ρ. Those authors
do not, however, give a definite equation for the curve described by this envelope. The same
authors also conjecture, again without a rigorous mathematical proof, that the lower envelope
might correspond to the pair of (Xθ, Yθ), where (Xθ, Yθ) are measurements with the four electrical
contacts having the “symmetry” shown on the right of Figure 3; for brevity, we will refer to these
as “symmetric resistance measurements”. The angle θ is defined as θ≡ arg[w/z] = arg[b/a]; for
such contact points the sector formed by the pair (a, b) subtends the same angle θ at the origin as
that formed by the pair (z, w). Based on these conjectures, Szymański et al. [12] propose a method
to determine λ by measuring some pairs of resistances which lie on the lower envelope. If these
conjectures hold then the form of the upper and lower envelopes can be expressed mathematically
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Figure 2. Evidence for the two “envelopes”. Numerical experiments for pairs (X,Y ) where X ≡ exp(−Rzwab /λ) and

Y ≡ exp(−Rzbaw/λ) following [12]. The point z = 1 is fixed, but (a, b, w) are picked at random with the ordering arg[z]<

arg[w]< arg[a]< arg[b]< 2π. When ρ= 0, all pairs (X,Y ) are on the lineX + Y = 1 which is (1.1). However, when

ρ > 0, all points (X,Y ) lie in the gray-shaded region bounded by X + Y = 1 and a “lower envelope” which is curved.

As shown in the center and right, the size of the gray-shaded area increases with ρ.

x

x

Figure 3. The upper envelope (red line) and the lower envelope (blue line). The lower envelope, parametrized by the

variable θ, is defined by its set of tangents as in (1.12): any point in the gray region, which is where all measurement pairs

lie, is above the tangent line for each point on the lower envelope. The right-most figure gives a geometrical interpretation

of θ and shows what we mean by “symmetric resistance measurements”: the sector formed by the pair (a, b) subtends

the same angle θ at the origin as that formed by the pair (z, w).

as

X + Y ≤ 1, Y − Yθ ≥
∂Yθ/∂θ

∂Xθ/∂θ
(X −Xθ), 0< θ < π, (1.12)

where θ parametrizes the lower envelope which is defined by its set of tangents. Two examples of
such tangents (1.12) are shown on the left of Figure 3. These inequalities have been put forward
in several papers [11–14] but without mathematical substantiation.

This paper aims to understand the envelope structure mathematically. This is done by
introducing, for the first time, two important tools into this area of investigation: (i) use of the
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prime function [9] associated with the concentric annulus ρ < |ζ|< 1 that generalizes the simple
monomial prime function (1.4) relevant when the sample if free of holes; (ii) use of the Fay
trisecant identity [9,23,24] satisfied by this new prime function to gain insights into the two
envelopes associated with the two resistance measurements (1.11).

With these tools we are able to establish three main new results.
First, the following explicit formula for the lower envelope is derived:∫2π

0
log

(
exp

(
−R

θ
X

λ

)
+
P (−ρeiφ)2

P (+ρeiφ)2
exp

(
−R

θ
Y

λ

))
dφ= 0, (1.13)

where RθX and RθY are resistance measurements corresponding to contact points (a, b, z, w) with
the symmetry depicted in Figure 3 and parametrized by the angle θ shown there; for a fixed ρ

and λ, formula (1.13) therefore defines a curve as θ varies between 0 and π and this is precisely
the lower envelope. The function P (ζ), defined in (2.4), is essentially the prime function of the
concentric annulus.

Equation (1.13) includes two unknown parameters ρ and λ. By measuring two pairs of
resistances (R

θj
X , R

θj
Y ), j = 1, 2, for two sets of contact points with different angles θ1 and θ2 in

the symmetric arrangement shown in Figure 3, λ can be determined by solving two simultaneous
equations of the form (1.13) for ρ and λ. This procedure is elucidated in more detail in §5.

It should be pointed out that the new expression (1.13) explicitly confirms the conjecture
of Szymański et al. [12] that the lower envelope depends only on the value of the conformal
modulus ρ. Indeed, using the new mathematical tools introduced herein, we have been able
to prove mathematically several conjectures made by Szymański et al. [12] including the two
inequalities (1.12) defining the upper and lower envelopes. Full technical details of those proofs
will be given elsewhere [25] but the main ideas will be outlined here too. Formula (1.13) emerges
as a by-product of our approach.

Second, we produce an approximate formula directly relating two pairs of symmetric resistance
measurements (R

θj
X , R

θj
Y ), j = 1, 2, and λ, under the assumption that ρ is sufficiently small that

terms of O(ρ4) can be safely ignored. That new formula is

exp

(
Rθ1X −R

θ1
Y

λ

)
+ exp

(
Rθ1Y −R

θ1
X

λ

)
− exp

(
Rθ1X +Rθ1Y

λ

)
=

exp

(
Rθ2X −R

θ2
Y

λ

)
+ exp

(
Rθ2Y −R

θ2
X

λ

)
− exp

(
Rθ2X +Rθ2Y

λ

)
. (1.14)

The significance of equation (1.14) is that it more closely resembles the classical van der Pauw
equation (1.1) since it depends only on λ and the resistance measurements although, in this case,
there are 4 such measurements involved not just 2. The important point is that dependence on ρ
has disappeared in (1.14). An approximation for λ can be calculated by solving the single equation
(1.14) provided that the two pairs of resistance measurements (R

θj
X , R

θj
Y ), j = 1, 2 corresponding

to “symmetric” contact points are available.
Third, we are also able to justify mathematically a practical procedure for obtaining such

“symmetric” resistance measurements for a general non-symmetric sample as proposed by
Szymański et al. [12]. Those authors gave evidence that their practical construction produces such
data, but did not appear to give any mathematical justification as to why the method works.

The paper is structured as follows. In §2 the prime function for the annulus is introduced and,
in §3, the Fay trisecant identity satisfied by this particular prime function is presented. Section
4 shows how these mathematical tools can be used to understand the structure of the envelopes
associated with a holey sample. This involves analysis of an integrated form of the Fay trisecant
identity. In §5 we propose how to use the new expressions for the lower envelope curve in a
generalized van der Pauw setting and carry out some numerical tests to validate the scheme. The
paper closes with a discussion of new perspectives opened up by our analysis for samples with
more than one hole.
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2. The prime function for the annulus ρ < |ζ|< 1
Let D denote a bounded sample with an isolated hole. Let ∂D0 be the outer boundary of the
sample and ∂D1 the boundary of the hole. Similar to the original van der Pauw method, we
assume that the sample thickness is d. We assume that the hole in the sample carries no net charge.

We also suppose that 4 point contacts (Ωa, Ωb, Ωz , Ωw), of infinitesimal width, are placed on
∂D0. It is known, by an extension of the Riemann mapping theorem [9], that any such domain
is conformally equivalent to a concentric annulus ρ < |ζ|< 1 with circular boundaries C0 and C1

and 0≤ ρ < 1. The circle C0 is the unit circle; C1 is the circle |ζ|= ρ. In other words, there exists
an analytic function

Ω = f(ζ) (2.1)

that transplants the annulus ρ < |ζ|< 1 to the domain D with C0 being transplanted to ∂D0 and
C1 to ∂D1.

Let the required complex potential, as a function of Ω = x+ iy be

H(Ω) = V (x, y) + iχ(x, y). (2.2)

We can still exploit the conformal invariance for the problem of determining the potential V (x, y)

in this doubly connected domain. Crowdy [9,26] has shown that the complex potentials for any
source/sink driven harmonic field in a multiply connected domain can be written down explicitly
in terms of the prime function associated with that domain. It is important to emphasize that this
fact holds for domains of any finite connectivity not just the doubly connected case of interest
here.

The prime function ω(ζ, c) for the annulus ρ < |ζ|< 1, can be defined explicitly by the formula
(see [9]):

ω(ζ, c) =− c

P̂ (1)
P (ζ/c), (2.3)

where

P (ζ)≡ (1− ζ)P̂ (ζ), P̂ (ζ)≡
∞∏
n=1

(1− ρ2nζ)(1− ρ2n/ζ). (2.4)

It is easy to show, directly from these definitions, that

P (ζ−1) =−ζ−1P (ζ), P (ρ2ζ) =−ζ−1P (ζ). (2.5)

For notational brevity, we write P (ζ) even though this function – and hence the prime function
for the annulus – also depends on the parameter ρ as is clear from (2.4). The reader should bear in
mind this additional parametric dependence on ρ. We will also need

K(ζ)≡ ζ ∂
∂ζ

logP (ζ). (2.6)

This logarithmic derivative of the prime function is a useful function in the general function
theory on multiply connected domains [9]. It is easily shown to satisfy the functional relations

K(ζ−1) = 1−K(ζ), K(ρ2ζ) =K(ζ)− 1. (2.7)

A detailed account of the theory of this prime function in the concentric annulus can be found in
Chapter 5 of [9].

Following [9,26] the complex potential h(ζ)≡H(f(ζ)) is given by

h(ζ) =
σJab
2πd

log

(
āb

|ab|
ω(ζ, a)ω(ζ, ā−1)

ω(ζ, b)ω(ζ, b̄−1)

)
= λJab log

(
a

b

P (ζ/a)

P (ζ/b)

)
, (2.8)

where the first equality is derived in [9,26] and follows from the general properties of the prime
function, and where we have used (2.3) in the second equality. The relation (2.1) gives the
relationship between (a, b, z, w) and (Ωa, Ωb, Ωz , Ωw) although it is understood that the mapping
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f(ζ) is now the new mapping from the concentric annulus to the holey sample. Note that, because
two electrical contacts a and b are on C0, ā= a−1 and b̄= b−1.

The voltage difference between z and w is given by

Vzw ≡Re[h(z)]− Re[h(w)] = λJab log
P (z/a)P (w/b)

P (z/b)P (w/a)
. (2.9)

It is important to note that because all contacts are located on the same boundary of the annulus,
Im[h(z)]− Im[h(w)] = 0. The measured resistances Rzwab and Rzbaw are defined as

Rzwab ≡
Vzw
Jab

= λ log
P (z/a)P (w/b)

P (z/b)P (w/a)
, Rzbaw ≡

Vzb
Jaw

= λ log
P (z/a)P (b/w)

P (z/w)P (b/a)
. (2.10)

It can be checked that formulas (2.10) are equivalent to those given in [11] in terms of a function
G(φ) related to P (ζ) – and hence to the prime function (2.3) – by the formula

P (eiφ) =−2ie
iφ
2 P̂ (i)G(φ). (2.11)

While (2.11) shows that our new expressions (2.10) coincide with those of [11], there is much
significance in having recognized that the resistances can be written in terms of the prime function
[9] of the preimage concentric annulus. First, the notion of a prime function extends to a planar
domain of any finite connectivity [9] thereby providing a route to generalizing all the ideas in this
paper to any higher connected domain (i.e. a sample with more than one hole). Crowdy [26] was
the first to show how the complex potentials for source/sink driven harmonic fields in multiply
connected domains can be written explicitly. His treatment uses irrotational fluid mechanics as
the physical context but, mathematically, the problem is equivalent to the electrical conduction
problems of interest here. Second, it is known [9] that prime functions, including those associated
with domains of connectivity higher than one, satisfy a so-called Fay trisecant identity which is
an analogue of the cross-ratio identity (1.2) on a higher genus Riemann surface [23] and is the
topic of the next section.

3. The Fay trisecant identity for the annulus ρ < |ζ|< 1
It is useful to introduce the function

p(z, w; a, b)≡ ω(z, a)ω(w, b)

ω(z, b)ω(w, a)
. (3.1)

Although this formula is identical to that defining the cross-ratio (1.2) this quantity is no longer
a cross-ratio since the definition of the prime function has changed. On use of (2.3) formula (3.1)
can be written in terms of P (ζ) as

p(z, w; a, b) =
P (z/a)P (w/b)

P (z/b)P (w/a)
. (3.2)

From (3.2) and (2.10) we see that

exp(−Rzwab /λ) = p(z, w; b, a), exp(−Rzbaw/λ) = p(z, b;w, a). (3.3)

The Fay trisecant identity associated with this prime function is

P (kz/w)P (ka/b)

P (kza/wb)
p(z, w; b, a) +

P (kz/b)P (ka/w)

P (kza/wb)
p(z, b;w, a) = P (k), (3.4)

where k is an arbitrary complex number. This statement (3.4) of the genus-1 Fay trisecant identity
expressed purely in terms of the prime function of the concentric annulus has been taken from
Exercise 8.9 of Chapter 8 of the monograph [9] which asks the reader to prove it using the
properties of so-called loxodromic functions. While (3.4) is a particular form of the more general
Fay trisecant identity [23,24] the authors have not found it written in the form (3.4) anywhere else
in the literature (besides [9]). The identity (3.4) is stated here without proof since it is easily shown
to hold for any choice of k, a, b, z and w on use of the functional relations (2.5).
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A key observation is that, on substituting (2.10) into (3.4), we obtain

P (kz/w)P (ka/b)

P (k)P (kza/wb)
exp

(
−R

zw
ab

λ

)
+
P (kz/b)P (ka/w)

P (k)P (kza/wb)
exp

(
−R

zb
aw

λ

)
= 1 . (3.5)

When ρ→ 0, so that there is no hole in a sample, it is straightforward to check that

P (kz/w)P (ka/b)

P (k)P (kza/wb)
=
P (kz/b)P (ka/w)

P (k)P (kza/wb)
= 1 (3.6)

because, from (2.4), P (ζ) = 1− ζ when ρ= 0. The original van der Pauw equation (1.1) is therefore
retrieved from (3.5) in the simply connected (i.e. “no hole”) limit. All dependence on the new
parameter k disappears in this limit.

The title of this paper is chosen because it appears to be the first to point out that the Fay
trisecant identity can be expressed in terms of the two resistances appearing in a typical van der
Pauw procedure as evinced in (3.5). Relation (3.5) opens up new perspectives: that it reduces,
as ρ→ 0, to the original van der Pauw equation (1.1) is tantalizing. It also makes it a natural
candidate, at least from the mathematical point of view, to find natural ways to extend the van
der Pauw method to holey samples. In contrast to the original van der Pauw equation, the
coefficients of exp(−Rzwab /λ) and exp(−Rzbaw/λ) in (3.5) now depend not only on the electrical
contact locations via the parameters z, w, a, b as well as the conformal modulus ρ, but also on a
fifth complex parameter k. For a given ρ it should be emphasized that (3.5) holds for arbitrary
choices of a, b, z, w and k even though, for present purposes, it has been assumed that a, b, z and
w lie on C0. The degree of freedom in the choice of k will be exploited in the next section to gain
insights into the envelope structure evident in Figure 2.

4. Analysis of the envelopes: the integrated Fay identity
In §1 the existence of two envelopes, an “upper” and a “lower” envelope, were discussed based
on the observations of previous authors. These envelopes have the conjectured mathematical
definitions given in (1.12). In this section it is shown how the new tools introduced in the previous
two sections allow us to prove the conjectured form of these envelopes.

For arbitrary z, w, a, and b on C0 we can introduce the special choice of angular coordinates
θ, θ1 and θ3 defined by

z = 1, w= exp(i(θ1 + θ)), a= exp(i(θ1 + θ3)), b= exp(i(θ + θ3)). (4.1)

The arbitrary points with the angular coordinates is described in Figure 4. Because 0< arg[w]<

arg[a]< arg[b]< 2π, the ranges of θ1, θ, θ3 are given by

−θ < θ1 < θ, θ < θ3 < 2π − θ, 0< θ < π. (4.2)

It is important to emphasize that the case of symmetric contact points shown in Figure 3
corresponds to θ1 = 0 and θ3 = π. The choice (4.1) of angular variables may not seem very intuitive
but they have been chosen because they allow us to make progress with the proofs.

The Fay trisecant identity (3.5) can be written

A(θ1, θ, k̂)Xθ1,θ3,θ +B(θ3, θ, k̂)Yθ1,θ3,θ = 1, (4.3)

where Xθ1,θ3,θ ≡ exp(−Rzwab /λ), Yθ1,θ3,θ ≡ exp(−Rzbaw/λ) and the coefficient functions are

A(θ1, θ, k̂)≡ P (kz/w)P (ka/b)

P (k)P (kza/wb)
=
P (ke−i(θ+θ1))P (kei(−θ+θ1))

P (k)P (ke−2iθ)
=
P (k̂e−iθ1)P (k̂eiθ1)

P (k̂e−iθ)P (k̂eiθ)
, (4.4)

B(θ3, θ, k̂)≡ P (kz/b)P (ka/w)

P (k)P (kza/wb)
=
P (ke−i(θ+θ3))P (kei(−θ+θ3))

P (k)P (ke−2iθ)
=
P (k̂e−iθ3)P (k̂eiθ3)

P (k̂e−iθ)P (k̂eiθ)
, (4.5)

and where we have set k= k̂eiθ because k is arbitrary. Because of this choice, A(θ1, θ, k̂) becomes
independent of θ3 and B(θ3, θ, k̂) becomes independent of θ1.
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Figure 4. Special choice of angular coordinates: the angles θ1 and θ3 measure deviations from the symmetric choice of

contact points.

The next step is to consider contour integrals of A(θ1, θ, k̂) and B(θ3, θ, k̂) with respect to k̂
around the circle |k̂|= ρ. From (4.3), we thus obtain an integrated Fay trisecant identity:

α(θ1, θ)Xθ1,θ3,θ + β(θ3, θ)Yθ1,θ3,θ = 1, (4.6)

where

α(θ1, θ)≡
1

2π

∫2π
0
A(θ1, θ, ρe

iφ)dφ=
1

2π

∫2π
0

P (ρei(φ−θ1))P (ρei(φ+θ1))

P (ρei(φ−θ))P (ρei(φ+θ))
dφ, (4.7)

β(θ3, θ)≡
1

2π

∫2π
0
B(θ3, θ, ρe

iφ)dφ=
1

2π

∫2π
0

P (ρei(φ−θ3))P (ρei(φ+θ3))

P (ρei(φ−θ))P (ρei(φ+θ))
dφ. (4.8)

The integrated Fay trisecant identity (4.6) is essential for understanding the envelope structure
and proving the conjectures made about it in the literature.

On taking a derivative of (4.6) with respect to θ, we find

∂α(θ1, θ)

∂θ
Xθ1,θ3,θ +

∂β(θ3, θ)

∂θ
Yθ1,θ3,θ + α(θ1, θ)

∂Xθ1,θ3,θ
∂θ

+ β(θ3, θ)
∂Yθ1,θ3,θ

∂θ
= 0. (4.9)

The sum of the first two terms is zero because

∂α(θ1, θ)

∂θ
Xθ1,θ3,θ +

∂β(θ3, θ)

∂θ
Yθ1,θ3,θ =

i

2π

∫2π
0

[K(ρei(φ−θ))−K(ρei(φ+θ))]dφ= 0, (4.10)

where we used the Fay identity (4.3) in the first equality. On use of (4.10) in (4.9), we find

α(θ1, θ)
∂Xθ1,θ3,θ

∂θ
+ β(θ3, θ)

∂Yθ1,θ3,θ
∂θ

= 0. (4.11)

Suppose now that we fix the two parameters θ1 and θ3. Then the points (Xθ1,θ3,θ, Yθ1,θ3,θ) lie
on some curve dependent only on the single parameter θ with the tangent at (Xθ1,θ3,θ, Yθ1,θ3,θ),
when viewed as a function of θ, defined as the set of points (X,Y ) satisfying

Y − Yθ1,θ3,θ =
∂Yθ1,θ3,θ/∂θ

∂Xθ1,θ3,θ/∂θ
(X −Xθ1,θ3,θ). (4.12)

If we now make use of both (4.11) and (4.6) we can see that the tangent line (4.12) is equivalent to

α(θ1, θ)X + β(θ3, θ)Y = 1. (4.13)

This is an important observation and it is helpful to visualize this pictorially. Figure 5 shows
some examples of these tangent lines. The red line represents the collection of data points
(Xθ1,θ3,θ, Yθ1,θ3,θ) sketched out when both θ1 and θ3 are fixed and the parameter θ is varied;
the blue lines in Figure 5, given by (4.13), are clearly tangent to those red lines (each blue line
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Figure 5. The red lines are collections of data points (Xθ1,θ3,θ, Yθ1,θ3,θ) with both θ1 and θ3 fixed and only parameter

θ changed. The blue lines, given by (4.13), are typical tangents to the red lines at (Xθ1,θ3, 2π5
, Yθ1,θ3, 2π5

). When the

fixed parameters θ1 and θ3 take the particular values θ1 = 0 and θ3 = π the red line, parameterized by θ, corresponds

to the lower envelope.

corresponds to a particular choice of θ). The important point is that, in view of the observation
(4.13), and the observation made earlier that the symmetric choice of (a, b, z, w) shown in Figure
3 corresponds to θ1 = 0 and θ3 = π, the two inequalities in (1.12) are equivalent to

X + Y ≤ 1, (4.14)

αθX + βθY ≥ 1, αθ ≡ α(0, θ), βθ ≡ β(π, θ), (4.15)

for all pairs (X,Y ) and 0< θ < π. The first statement simply states that all pairs (X,Y ) for ρ≥ 0

lie on or below the line X + Y = 1 relevant to the classical van der Pauw case ρ= 0; the second
statement states that all pairs (X,Y ) for ρ≥ 0 lie above a curve, parametrized by θ associated
with the symmetric choice of points shown in Figure 3, and defined for θ1 = 0 and θ3 = π.

The more technical details are relegated to appendix A but the overall strategy is easy to
explain: we prove (4.14) and (4.15) for all (X,Y ) by considering the maximum values and
minimum values of the coefficient functions α(θ1, θ) and β(θ3, θ) subject to the condition (4.2).
From the integrated Fay identity (4.6) and the principles of the minimum and the maximum, we
have that

min
−θ<θ1<θ

(α(θ1, θ))Xθ1,θ3,θ + min
θ<θ3<2π−θ

(β(θ3, θ))Yθ1,θ3,θ

≤ α(θ1, θ)Xθ1,θ3,θ + β(θ3, θ)Yθ1,θ3,θ = 1, (4.16)

max
−θ<θ1<θ

(α(θ1, θ))Xθ1,θ3,θ + max
θ<θ3<2π−θ

(β(θ3, θ))Yθ1,θ3,θ

≥ α(θ1, θ)Xθ1,θ3,θ + β(θ3, θ)Yθ1,θ3,θ = 1. (4.17)

The strategy is illustrated schematically in Figure 6. By minimising both α(θ1, θ) and β(θ3, θ), the
upper envelope X + Y = 1 is obtained. In contrast, by maximising both α(θ1, θ) and β(θ3, θ), a
tangent line to the lower envelope is obtained; moreover, the explicit equation (1.13) for the curve
traced out by this lower envelope arises from this analysis. Thus (4.16) is essentially equivalent
to (4.14), and (4.17) is equivalent to (4.15).

While the new formula (1.13) describes the lower envelope an approximation of small ρ� 1

can be used to provide a more explicit expression of van der Pauw type relating the measured
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Figure 6. Visualizing the relationship between tangent lines and the upper and lower envelopes. The parameter θ= 4π
7

is fixed in all figures. Red lines show the curves produced by changing only θ, and blue lines are tangents to the envelope

at (Xθ1,θ3,θ, Yθ1,θ3,θ). When α(θ1, θ) and β(θ3, θ) are minimised, the tangent line corresponds toX + Y = 1. When

α(θ1, θ) and β(θ3, θ) are maximised, the line becomes a tangent line to the lower envelope at (Xθ, Yθ), where Xθ ≡
X0,π,θ and Yθ ≡ Y0,π,θ .

resistances. The values X0,π,θ and Y0,π,θ are

X0,π,θ = exp

(
−R

θ
X

λ

)
=
P (−eiθ)P (−e−iθ)
P (−1)P (−1)

, Y0,π,θ = exp

(
−R

θ
Y

λ

)
=
P (eiθ)P (e−iθ)
P (−1)P (−1)

.

(4.18)

By expanding in powers of ρ2 and eliminating terms of order ρ4 and higher, an approximation
for the lower envelope is obtained as follows:

(
exp

(
−R

θ
X

λ

)
+ exp

(
−R

θ
Y

λ

))2

+
32ρ2

1− 4ρ2
exp

(
−R

θ
X +RθY
λ

)
= 1. (4.19)
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Figure 7. The approximation (4.19) of the lower envelope is superposed on data from numerical experiments for different

values of ρ. The exact formula (1.13) lies precisely on the lower envelope formed by the data. For small ρ the lower

envelope is well approximated by a quadratic in X and Y .

The derivation of (4.19) is given in Appendix C. Equation (4.19) includes two unknown
parameters ρ and λ but ρ can be eliminated explicitly by considering the ratio of the first term and
the second term in (4.19). The approximate formula (1.14) recorded earlier then follows. Roughly
speaking, one would expect this formula to give good results for a sample with relatively small
holes located away from the sample boundaries since then one might expect ρ to be small. In
any event, (1.14) provides a useful first approximation for any sample with a single hole and will
certainly be more accurate than use of (1.1). It can also provide an initial guess for an iterative
solution procedure.

Figure 7 shows the comparison between the actual lower envelope (1.13) and the asymptotic
expansion (4.19) as the conformal modulus ρ varies. These graphs show that the asymptotic
expansion yields a very satisfactory approximation for the lower envelope when ρ < 0.3 and it
remains quite accurate for larger ρ.

5. Determining resistivity using the lower envelope equation
A method to obtain λ based on the lower envelope has already been proposed in [12]. Because
the resistance (Rzwab , R

zb
aw) from the symmetric points shown in Figure 3 can be parametrized by

the angle θ the corresponding resistances can be denoted by the parameter θ as follows:

RθX ≡R
ẑŵ
âb̂
, RθY ≡R

ẑb̂
âŵ, (5.1)

where ẑ = 1 =−â, ŵ= exp(iθ) =−b̂, 0< θ < π. The paper [12] proposed to measure several
resistivities on the lower envelope and conducted a standard fit to obtain λ.

If the given sample has clear reflectional symmetries about two perpendicular axes, it is an easy
matter to find resistances within the class (5.1) associated with symmetrically-disposed points in
the preimage domain as shown in Figure 3. This is because one expects to be able to identify
reflectionally symmetric points in the physical domain with reflectionally symmetric preimage
points in the annulus.

However, for a generally non-symmetric sample it is not obvious how one might obtain this
resistance information for such symmetrically-disposed points in the preimage domain. If one
knows the conformal mapping to the given doubly connected sample from a preimage annulus
then the contact points corresponding to such symmetric preimage points can be determined
in principle. However, one of the advantages of the traditional van der Pauw method is that it
exploits the underlying conformal invariance of the problem; this manifests itself in a practical
way by formula (1.1) being valid for any shapes and, in particular, without the need to determine
any conformal mapping functions. Ideally, any practical method for a holey sample should also
avoid the need to compute any conformal mappings.
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Figure 8. (i), (ii) Illustration of the practical procedure, proposed in [12], to obtain contact points w1, b1, w2, b2 with the

symmetry shown in Figure 3. By searching for the local extrema ofRzwab a symmetrical choice of points shown in (iii), and

corresponding to resistances lying on the lower envelope, can be found.

A practical method has been proposed in [12] based on searching for the extrema of the
resistance measurements. That procedure is as follows: firstly, as shown in (i) in Figure 8, arbitrary
points are chosen on the sample boundary with preimage points z and a with a source placed at
z and a sink at a. Then, by changing the two contact points with preimages w and b, with the
condition that the potential at w remains the same as the potential at b, the local extremum of
the measured resistance Rzwab is found. When the resistance Rzwab is at the local extremum, the
claim in [12] is that the line wb become diametrically opposed points in the preimage annulus;
this special choice of points are then marked as w1 and b1. In a second step, as shown in (ii) in
Figure 8, the point a is changed to a′, and the same procedure as in (i) is repeated in order to
obtain a second such diametrically-opposed pair w2 and b2. It is then clear from (iii) in Figure 8
that the four-point pair (w1, w2, b1, b2) has the sought-after symmetry shown in Figure 3 and
which, therefore, correspond to resistance measurements that lie on the lower envelope.

Szymański et al. [12] verified experimentally that this method works, but appeared not to give
any mathematical explanation of why it works. We now provide such an explanation.

When there are a source a and sink z as shown in (i) in Figure 8, the potential difference
between w and b is

Vwb ≡ Vw − Vb = λJaz log
P (w/a)P (b/z)

P (w/z)P (b/a)
. (5.2)

Suppose we search for a local extremum of Rzwab while changing w and b with the condition that
Vwb = 0. This problem is expressed mathematically using a Lagrange multiplier γ:

F (w, b)≡ 1

λ
(Rzwab + γVwb) = log

P (z/a)P (w/b)

P (z/b)P (w/a)
+ γ̂ log

P (w/a)P (b/z)

P (w/z)P (b/a)
, (5.3)
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where γ̂ ≡ γ/Jaz . By considering the derivative with respect to w and b, we obtain two conditions
for local extrema:

∂F

∂w
=

1

w
[K(w/b)−K(w/a)) + γ̂(K(w/a)−K(w/z))] = 0, (5.4)

∂F

∂b
=

1

b
[K(z/b)−K(w/b)) + γ̂(K(b/z)−K(b/a))] = 0. (5.5)

It can be verified that both conditions are satisfied when w=−b and a/w=w/z, which
correspond to the symmetric choice of contact points. This explains why the practical procedure
just described does indeed pick out points with diametrically-opposed preimages w and b in the
annulus.

In view of the above discussion we now proceed under the assumption that two pairs of
resistances (R

θj
X , R

θj
Y ), j = 1, 2, for two sets of contact points in the symmetric arrangement

shown in Figure 3 are available. The method proposed here is to make use of the two explicit
formulas (1.13) and (1.14) to determine λ.

Some simple numerical experiments validate that λ can indeed be robustly found using the
new expressions (1.13) and (1.14) for the lower envelope. We set λ= 0.25 and then used the
explicit formulas for the voltage based on (2.8) to generate the “data” giving the resistances
corresponding to two four-point pairs in symmetric configurations around C0; in a real
experiment, this data would be found by measurement on the physical sample such as those
just described. Those values are used both in (two instances of) formula (1.13) and in the single
approximate formula (1.14) and a standard nonlinear solver (interior-point method) is used to
solve them for λ. Table 1 show the values of λ and ρ. As expected, the methods retrieve the
known results to the expected degrees of accuracy.

Table 1. Numerical determination of λ and ρ on solving (1.13) and (1.14)

λ (i) (ii) (iii)
Env. method 0.25000 0.25000 0.25000

Approx. method 0.25061 0.25705 0.27608
True value 0.25 0.25 0.25

ρ (i) (ii) (iii)
Env. method 0.100001 0.20000 0.30000

Approx. method 0.097726 0.18445 0.25401
True value 0.1 0.2 0.3

6. Discussion
This paper has demonstrated the importance of the prime function associated with a concentric
annulus, and the Fay trisecant identity expressible in terms of it, to extending the well-known van
der Pauw method to measuring the resistivity of a sample with a hole.

By considering an integrated form of the Fay trisecant identity, we have derived an explicit
formula (1.13) for the lower envelope formed by the resistance measurements from sets of
symmetrically-disposed contact points shown in Figure 3. An approximate form (1.14) more
closely resembling the original van der Pauw formula (1.1) has also been given depending on
4 symmetric resistance measurements instead of 2.

Using these same mathematical tools, we have also been able to justify mathematically a
number of conjectures made in the literature. Those results have been described here with full
technical details available in [25].

The van der Pauw method for a sample with two or more holes is, of course, of interest and
several studies have recently appeared [13,15]. The significance of the mathematical tools we have
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introduced here to the van der Pauw problem is that they all have natural higher-genus analogues,
that is, natural extensions to domains of higher connectivity. The monograph [9] is dedicated
to the theory of the prime function on planar domains of general finite connectivity, and the
relevance of the prime function to expressing the complex potential for source/sink flows in such
domains is already known [26]. At the same time, the Fay trisecant identity also carries over to
higher genus Riemann surfaces [23,24]. Therefore, while we have focused here on what we believe
to be the simplest non-trivial case of a holey sample, we expect all the ideas to be extendible to
the case of a sample with any finite number of holes.
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A. Analysis of the upper and lower envelopes
To study the extrema of α(θ1, θ) and β(θ1, θ) in (4.16) and (4.17) we define an important function

gθ(η)≡ 1

2π

∫2π
0

P (ρei(φ−η))P (ρei(φ+η))

P (ρei(φ−θ))P (ρei(φ+θ))
dφ, (A.1)

where 0≤ η≤ 2π. This function is significant because, from (4.8) it is clear that the two coefficients
functions in (4.6) can be written

α(θ1, θ) = gθ(θ1), β(θ3, θ) = gθ(θ3). (A.2)

Analysis of this function gθ(η) provides the key to justifying the conjectures. The function arises
naturally from the integrated Fay trisecant identity.

Figure 9 shows the typical behaviour of the function gθ(η) for a range of ρ values; recall that the
function P (ζ), and hence gθ(η), depends on the parameter ρ. A companion paper [25] provides
details showing that gθ(η) has this same qualitative form for all admissible ρ.

Figure 9. Behavior of the function gθ(η). A local maximum of gθ(η) is obtained when η= 0 or η= π. A local minimum of

gθ(η) is obtained when η= θ or 2π − θ. It can be proven [25] that gθ(η) has this qualitative structure for any 0< ρ< 1.

Upper envelope: Figure 9 suggests that, for any value 0< ρ< 1, gθ(η) attains a local minimum
when η= θ, 2π − θ. Moreover it is clear that, at these local minima, the extremal values of α(θ1, θ)
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and β(θ3, θ) is 1. This fact, combined with (4.16) and (A.2), imply that

Xθ1,θ3,θ + Yθ1,θ3,θ ≤ 1 (A.3)

for all (Xθ1,θ3,θ, Yθ1,θ3,θ). This defines the upper envelope (4.14).
Lower envelope: Figure 9 also suggests that, for any value 0< ρ< 1, gθ(η) attains a local

maximum when η= 0, π. On use of (A.2) the maxima of α(θ1, θ) and β(θ3, θ) occur when θ1 = 0

and θ3 = π. Hence, from (4.17) and (A.2) we conclude that

αθXθ1,θ3,θ + βθYθ1,θ3,θ ≥ 1, αθ ≡ α(0, θ), βθ ≡ β(π, θ). (A.4)

This shows that the pair of measurements (Xθ1,θ3,θ, Yθ1,θ3,θ) lies above the tangent line
at (X0,π,θ, Y0,π,θ). Note that this result holds under the assumption that θ is fixed. The
final step, in order to prove that this set of tangent lines forms a lower envelope for the
resistance measurements, is to show that for any other choice θ′ 6= θ, the pair of measurements
(Xθ1,θ3,θ, Yθ1,θ3,θ) also lies above the tangent line at (X0,π,θ′ , Y0,π,θ′). This is equivalent to
showing that

αθ′Xθ1,θ3,θ + βθ′Yθ1,θ3,θ ≥ 1. (A.5)

To show (A.5), we note first from the definition of P (ζ) in (2.4),

P (ρeiφ) =

∞∏
n=1

(1 + ρ4n−2 − 2ρ2n−1 cosφ)> 0, (A.6)

which means both A(θ1, θ3, ρe
iφ) and B(θ1, θ3, ρe

iφ) are real and positive. We can therefore use a
sum-log and log-sum inequality in the integral as follows:

log
[
αθ′Xθ1,θ3,θ + βθ′Yθ1,θ3,θ

]
≥ log

[
α(θ1, θ

′)Xθ1,θ3,θ + β(θ3, θ
′)Yθ1,θ3,θ

]
= log

[
1

2π

∫2π
0

(A(θ1, θ
′, ρeiφ)Xθ1,θ3,θ +B(θ3, θ

′, ρeiφ)Yθ1,θ3,θ)dφ

]

≥ 1

2π

∫2π
0

log
[
A(θ1, θ

′, ρeiφ)Xθ1,θ3,θ +B(θ3, θ
′, ρeiφ)Yθ1,θ3,θ

]
dφ. (A.7)

Now the right hand side of this inequality can be written as

1

2π

∫2π
0

log

[
Xθ1,θ3,θ +

B(θ3, θ
′, ρeiφ)

A(θ1, θ′, ρeiφ)
Yθ1,θ3,θ

]
dφ+

1

2π

∫2π
0

logA(θ1, θ
′, ρeiφ)dφ

=
1

2π

∫2π
0

log

[
Xθ1,θ3,θ +

B(θ3, θ, ρe
iφ)

A(θ1, θ, ρeiφ)
Yθ1,θ3,θ

]
dφ+

1

2π

∫2π
0

logA(θ1, θ, ρe
iφ)dφ

=
1

2π

∫2π
0

log
[
A(θ1, θ, ρe

iφ)Xθ1,θ3,θ +B(θ3, θ, ρe
iφ)Yθ1,θ3,θ

]
dφ= 0, (A.8)

where we used the fact that the integral of logA(θ1, θ, ρe
iφ) is zero and the fact that

B(θ1, θ
′, ρeiφ)

A(θ3, θ′, ρeiφ)
=
B(θ1, θ, ρe

iφ)

A(θ3, θ, ρeiφ)
=
P (ρei(φ−θ3))P (ρei(φ+θ3))

P (ρei(φ−θ1))P (ρei(φ+θ1))
, (A.9)

so that this ratio is independent of the middle argument of the numerator and denominator (that
is, either θ or θ′ in (A.9)). See Appendix B for the integral of logA(θ1, θ, ρe

iφ). Putting all these
pieces together we have shown that

log
[
αθ′Xθ1,θ3,θ + βθ′Yθ1,θ3,θ

]
≥ 0 (A.10)

which is equivalent, on exponentiation, to (A.5). Each step in the proof is shown schematically in
Figure 10.
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Figure 10. Schematic illustrating the idea of the proof that αθ′Xθ1,θ3,θ + βθ′Yθ1,θ3,θ ≥ 1 for any 0< θ′ <π. For

simplicity, we focus on the case such that αθ′ ≥ α(θ1, θ′) and βθ′ ≥ β(θ3, θ′). After Step 1, a sum-log and log-

sum inequality is used to prove that α(θ1, θ′)Xθ1,θ3,θ + β(θ3, θ′)Yθ1,θ3,θ ≥ 1 in Step 2. Once this is done for every

point on the lower envelope (i.e., for any 0< θ′ <π and there are three cases to consider) we establish that the point

(Xθ1,θ3,θ, Yθ1,θ3,θ) is to the right of the lower envelope.

For simplicity in this exposition, we focus on the case that αθ′ ≥ α(θ1, θ
′) and βθ′ ≥ β(θ3, θ

′)

which is illustrated in Figure 10. This case corresponds to the particular choice of (θ1, θ3, θ
′)

such that |θ1| ≤ θ′ ≤ π − |π − θ3| as shown in the blue line in Figure 10. Thus, there are two
other cases to be considered: 0< θ′ < |θ1| and π − |π − θ3|< θ′ <π. An outline of the technical
arguments will be summarized here. When θ′ < |θ1|, it can be shown that αθ′ ≥ α(θ1, |θ1|)
and βθ′ ≥ β(θ3, |θ1|). When π − |π − θ3|< θ′, it can be shown that αθ′ ≥ α(θ1, π − |π − θ3|) and
βθ′ ≥ β(θ3, π − |π − θ3|). In any of these cases, we can use the same technique (a log-sum and
sum-log inequality) to prove (A.5). It is clear that the features of the function gθ(η) evident from
Figure 9 are the crucial facts needed to establish the envelope structure. It is necessary to prove
that the function gθ(η) always behaves in this way for any value of ρ. Full technical details can be
found in [25].

We conclude that for 0< θ < π and for all (X,Y ), αθX + βθY ≥ 1 for all (X,Y ). In this way,
we have identified the lower envelope.

The formula (1.13) for the lower envelope follows from (A.8) on setting θ1 = 0, θ3 = π:

1

2π

∫2π
0

log

[
X0,π,θ +

B(π, θ, ρeiφ)

A(0, θ, ρeiφ)
Y0,π,θ

]
dφ= 0. (A.11)

Using the definitions in (4.4)–(4.5), and with X0,π,θ = exp(−RθX/λ), and Y0,π,θ = exp(−RθY /λ),
we obtain (1.13).

B. The integral of logA(θ1, θ, ρe
iφ)

This result follows from the observation

1

2π

∫2π
0

logA(θ1, θ, ρe
iφ)dφ=

1

2π

∫2π
0

log

(
P (ρei(φ−θ1))P (ρei(φ+θ1))

P (ρei(φ−θ))P (ρei(φ+θ))

)
dφ

=
1

2π

∫2π
0

[logP (ρei(φ−θ1)) + logP (ρei(φ+θ1))− logP (ρei(φ−θ))− logP (ρei(φ+θ))]dφ= 0.

(B.1)
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C. Deviation of (4.19)
Here we derive a formula for the lower envelope under the assumption that ρ� 1. From the
definitions of X0,π,θ and Y0,π,θ it follows that

X0,π,θ =
P (−eiθ)P (−e−iθ)
P (−1)P (−1)

∼ (1 + cos θ)(1 + 4ρ2 cos θ)

2(1 + 4ρ2)
, (C.1)

Y0,π,θ =
P (eiθ)P (e−iθ)
P (−1)P (−1)

∼ (1− cos θ)(1− 4ρ2 cos θ)

2(1 + 4ρ2)
, (C.2)

where we used the first order approximation in ρ2:

P (ζ)∼ (1− ζ)(1− ρ2ζ)(1− ρ2ζ−1) +O(ρ4). (C.3)

We can calculate

(1− 4ρ2)(X0,π,θ + Y0,π,θ)
2 + 32ρ2X0,π,θY0,π,θ =

(1− 4ρ2)(1 + 4ρ2 cos2 θ)2 + 8ρ2 sin2 θ

(1 + 4ρ2)2

=
1

1 + 4ρ2
+O(ρ4) = 1− 4ρ2 +O(ρ4).

Since X0,π,θ = exp(−RθX/λ) and Y0,π,θ = exp(−RθY /λ), we obtain(
exp

(
−R

θ
X

λ

)
+ exp

(
−R

θ
Y

λ

))2

+
32ρ2

1− 4ρ2
exp

(
−R

θ
X +RθY
λ

)
= 1. (C.4)
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12. Szymański K, Łapiński K, Cieśliński JL. 2015 Determination of the Riemann modulus and

sheet resistance of a sample with a hole by the van der Pauw method. Meas. Sci. Technol. 26,
055003.

13. Oh D, Ahn C, Kim M, Park EK, Kim YS. 2016 Application of the van der Pauw method for
samples with holes. Meas. Sci. Technol. 27, 12.

14. Sun ZH, Zhou J, Xia XJ, Zhou DM. 2017 Two-dimensional electrostatic model for the Van der
Pauw method. Phys. Lett. A 381, 2144–2148.



20

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................
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